]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-core.c
blkcg: move per-queue blkg list heads and counters to queue and blkg
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
55782138
LZ
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/block.h>
1da177e4 35
8324aa91 36#include "blk.h"
5efd6113 37#include "blk-cgroup.h"
8324aa91 38
d07335e5 39EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 40EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 41EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 42
a73f730d
TH
43DEFINE_IDA(blk_queue_ida);
44
1da177e4
LT
45/*
46 * For the allocated request tables
47 */
5ece6c52 48static struct kmem_cache *request_cachep;
1da177e4
LT
49
50/*
51 * For queue allocation
52 */
6728cb0e 53struct kmem_cache *blk_requestq_cachep;
1da177e4 54
1da177e4
LT
55/*
56 * Controlling structure to kblockd
57 */
ff856bad 58static struct workqueue_struct *kblockd_workqueue;
1da177e4 59
26b8256e
JA
60static void drive_stat_acct(struct request *rq, int new_io)
61{
28f13702 62 struct hd_struct *part;
26b8256e 63 int rw = rq_data_dir(rq);
c9959059 64 int cpu;
26b8256e 65
c2553b58 66 if (!blk_do_io_stat(rq))
26b8256e
JA
67 return;
68
074a7aca 69 cpu = part_stat_lock();
c9959059 70
09e099d4
JM
71 if (!new_io) {
72 part = rq->part;
074a7aca 73 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
74 } else {
75 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 76 if (!hd_struct_try_get(part)) {
09e099d4
JM
77 /*
78 * The partition is already being removed,
79 * the request will be accounted on the disk only
80 *
81 * We take a reference on disk->part0 although that
82 * partition will never be deleted, so we can treat
83 * it as any other partition.
84 */
85 part = &rq->rq_disk->part0;
6c23a968 86 hd_struct_get(part);
09e099d4 87 }
074a7aca 88 part_round_stats(cpu, part);
316d315b 89 part_inc_in_flight(part, rw);
09e099d4 90 rq->part = part;
26b8256e 91 }
e71bf0d0 92
074a7aca 93 part_stat_unlock();
26b8256e
JA
94}
95
8324aa91 96void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
97{
98 int nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) + 1;
101 if (nr > q->nr_requests)
102 nr = q->nr_requests;
103 q->nr_congestion_on = nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
106 if (nr < 1)
107 nr = 1;
108 q->nr_congestion_off = nr;
109}
110
1da177e4
LT
111/**
112 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
113 * @bdev: device
114 *
115 * Locates the passed device's request queue and returns the address of its
116 * backing_dev_info
117 *
118 * Will return NULL if the request queue cannot be located.
119 */
120struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
121{
122 struct backing_dev_info *ret = NULL;
165125e1 123 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
124
125 if (q)
126 ret = &q->backing_dev_info;
127 return ret;
128}
1da177e4
LT
129EXPORT_SYMBOL(blk_get_backing_dev_info);
130
2a4aa30c 131void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 132{
1afb20f3
FT
133 memset(rq, 0, sizeof(*rq));
134
1da177e4 135 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 136 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 137 rq->cpu = -1;
63a71386 138 rq->q = q;
a2dec7b3 139 rq->__sector = (sector_t) -1;
2e662b65
JA
140 INIT_HLIST_NODE(&rq->hash);
141 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 142 rq->cmd = rq->__cmd;
e2494e1b 143 rq->cmd_len = BLK_MAX_CDB;
63a71386 144 rq->tag = -1;
1da177e4 145 rq->ref_count = 1;
b243ddcb 146 rq->start_time = jiffies;
9195291e 147 set_start_time_ns(rq);
09e099d4 148 rq->part = NULL;
1da177e4 149}
2a4aa30c 150EXPORT_SYMBOL(blk_rq_init);
1da177e4 151
5bb23a68
N
152static void req_bio_endio(struct request *rq, struct bio *bio,
153 unsigned int nbytes, int error)
1da177e4 154{
143a87f4
TH
155 if (error)
156 clear_bit(BIO_UPTODATE, &bio->bi_flags);
157 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
158 error = -EIO;
797e7dbb 159
143a87f4
TH
160 if (unlikely(nbytes > bio->bi_size)) {
161 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
162 __func__, nbytes, bio->bi_size);
163 nbytes = bio->bi_size;
5bb23a68 164 }
797e7dbb 165
143a87f4
TH
166 if (unlikely(rq->cmd_flags & REQ_QUIET))
167 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 168
143a87f4
TH
169 bio->bi_size -= nbytes;
170 bio->bi_sector += (nbytes >> 9);
7ba1ba12 171
143a87f4
TH
172 if (bio_integrity(bio))
173 bio_integrity_advance(bio, nbytes);
7ba1ba12 174
143a87f4
TH
175 /* don't actually finish bio if it's part of flush sequence */
176 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
177 bio_endio(bio, error);
1da177e4 178}
1da177e4 179
1da177e4
LT
180void blk_dump_rq_flags(struct request *rq, char *msg)
181{
182 int bit;
183
6728cb0e 184 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
185 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
186 rq->cmd_flags);
1da177e4 187
83096ebf
TH
188 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
189 (unsigned long long)blk_rq_pos(rq),
190 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 191 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 192 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 193
33659ebb 194 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 195 printk(KERN_INFO " cdb: ");
d34c87e4 196 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
197 printk("%02x ", rq->cmd[bit]);
198 printk("\n");
199 }
200}
1da177e4
LT
201EXPORT_SYMBOL(blk_dump_rq_flags);
202
3cca6dc1 203static void blk_delay_work(struct work_struct *work)
1da177e4 204{
3cca6dc1 205 struct request_queue *q;
1da177e4 206
3cca6dc1
JA
207 q = container_of(work, struct request_queue, delay_work.work);
208 spin_lock_irq(q->queue_lock);
24ecfbe2 209 __blk_run_queue(q);
3cca6dc1 210 spin_unlock_irq(q->queue_lock);
1da177e4 211}
1da177e4
LT
212
213/**
3cca6dc1
JA
214 * blk_delay_queue - restart queueing after defined interval
215 * @q: The &struct request_queue in question
216 * @msecs: Delay in msecs
1da177e4
LT
217 *
218 * Description:
3cca6dc1
JA
219 * Sometimes queueing needs to be postponed for a little while, to allow
220 * resources to come back. This function will make sure that queueing is
221 * restarted around the specified time.
222 */
223void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 224{
4521cc4e
JA
225 queue_delayed_work(kblockd_workqueue, &q->delay_work,
226 msecs_to_jiffies(msecs));
2ad8b1ef 227}
3cca6dc1 228EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 229
1da177e4
LT
230/**
231 * blk_start_queue - restart a previously stopped queue
165125e1 232 * @q: The &struct request_queue in question
1da177e4
LT
233 *
234 * Description:
235 * blk_start_queue() will clear the stop flag on the queue, and call
236 * the request_fn for the queue if it was in a stopped state when
237 * entered. Also see blk_stop_queue(). Queue lock must be held.
238 **/
165125e1 239void blk_start_queue(struct request_queue *q)
1da177e4 240{
a038e253
PBG
241 WARN_ON(!irqs_disabled());
242
75ad23bc 243 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 244 __blk_run_queue(q);
1da177e4 245}
1da177e4
LT
246EXPORT_SYMBOL(blk_start_queue);
247
248/**
249 * blk_stop_queue - stop a queue
165125e1 250 * @q: The &struct request_queue in question
1da177e4
LT
251 *
252 * Description:
253 * The Linux block layer assumes that a block driver will consume all
254 * entries on the request queue when the request_fn strategy is called.
255 * Often this will not happen, because of hardware limitations (queue
256 * depth settings). If a device driver gets a 'queue full' response,
257 * or if it simply chooses not to queue more I/O at one point, it can
258 * call this function to prevent the request_fn from being called until
259 * the driver has signalled it's ready to go again. This happens by calling
260 * blk_start_queue() to restart queue operations. Queue lock must be held.
261 **/
165125e1 262void blk_stop_queue(struct request_queue *q)
1da177e4 263{
ad3d9d7e 264 __cancel_delayed_work(&q->delay_work);
75ad23bc 265 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
266}
267EXPORT_SYMBOL(blk_stop_queue);
268
269/**
270 * blk_sync_queue - cancel any pending callbacks on a queue
271 * @q: the queue
272 *
273 * Description:
274 * The block layer may perform asynchronous callback activity
275 * on a queue, such as calling the unplug function after a timeout.
276 * A block device may call blk_sync_queue to ensure that any
277 * such activity is cancelled, thus allowing it to release resources
59c51591 278 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
279 * that its ->make_request_fn will not re-add plugging prior to calling
280 * this function.
281 *
da527770
VG
282 * This function does not cancel any asynchronous activity arising
283 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 284 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 285 *
1da177e4
LT
286 */
287void blk_sync_queue(struct request_queue *q)
288{
70ed28b9 289 del_timer_sync(&q->timeout);
3cca6dc1 290 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
291}
292EXPORT_SYMBOL(blk_sync_queue);
293
294/**
80a4b58e 295 * __blk_run_queue - run a single device queue
1da177e4 296 * @q: The queue to run
80a4b58e
JA
297 *
298 * Description:
299 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 300 * held and interrupts disabled.
1da177e4 301 */
24ecfbe2 302void __blk_run_queue(struct request_queue *q)
1da177e4 303{
a538cd03
TH
304 if (unlikely(blk_queue_stopped(q)))
305 return;
306
c21e6beb 307 q->request_fn(q);
75ad23bc
NP
308}
309EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 310
24ecfbe2
CH
311/**
312 * blk_run_queue_async - run a single device queue in workqueue context
313 * @q: The queue to run
314 *
315 * Description:
316 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
317 * of us.
318 */
319void blk_run_queue_async(struct request_queue *q)
320{
3ec717b7
SL
321 if (likely(!blk_queue_stopped(q))) {
322 __cancel_delayed_work(&q->delay_work);
24ecfbe2 323 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
3ec717b7 324 }
24ecfbe2 325}
c21e6beb 326EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 327
75ad23bc
NP
328/**
329 * blk_run_queue - run a single device queue
330 * @q: The queue to run
80a4b58e
JA
331 *
332 * Description:
333 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 334 * May be used to restart queueing when a request has completed.
75ad23bc
NP
335 */
336void blk_run_queue(struct request_queue *q)
337{
338 unsigned long flags;
339
340 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 341 __blk_run_queue(q);
1da177e4
LT
342 spin_unlock_irqrestore(q->queue_lock, flags);
343}
344EXPORT_SYMBOL(blk_run_queue);
345
165125e1 346void blk_put_queue(struct request_queue *q)
483f4afc
AV
347{
348 kobject_put(&q->kobj);
349}
d86e0e83 350EXPORT_SYMBOL(blk_put_queue);
483f4afc 351
e3c78ca5
TH
352/**
353 * blk_drain_queue - drain requests from request_queue
354 * @q: queue to drain
c9a929dd 355 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 356 *
c9a929dd
TH
357 * Drain requests from @q. If @drain_all is set, all requests are drained.
358 * If not, only ELVPRIV requests are drained. The caller is responsible
359 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 360 */
c9a929dd 361void blk_drain_queue(struct request_queue *q, bool drain_all)
e3c78ca5
TH
362{
363 while (true) {
481a7d64
TH
364 bool drain = false;
365 int i;
e3c78ca5
TH
366
367 spin_lock_irq(q->queue_lock);
368
b855b04a
TH
369 /*
370 * The caller might be trying to drain @q before its
371 * elevator is initialized.
372 */
373 if (q->elevator)
374 elv_drain_elevator(q);
375
5efd6113 376 blkcg_drain_queue(q);
e3c78ca5 377
4eabc941
TH
378 /*
379 * This function might be called on a queue which failed
b855b04a
TH
380 * driver init after queue creation or is not yet fully
381 * active yet. Some drivers (e.g. fd and loop) get unhappy
382 * in such cases. Kick queue iff dispatch queue has
383 * something on it and @q has request_fn set.
4eabc941 384 */
b855b04a 385 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 386 __blk_run_queue(q);
c9a929dd 387
481a7d64
TH
388 drain |= q->rq.elvpriv;
389
390 /*
391 * Unfortunately, requests are queued at and tracked from
392 * multiple places and there's no single counter which can
393 * be drained. Check all the queues and counters.
394 */
395 if (drain_all) {
396 drain |= !list_empty(&q->queue_head);
397 for (i = 0; i < 2; i++) {
398 drain |= q->rq.count[i];
399 drain |= q->in_flight[i];
400 drain |= !list_empty(&q->flush_queue[i]);
401 }
402 }
e3c78ca5
TH
403
404 spin_unlock_irq(q->queue_lock);
405
481a7d64 406 if (!drain)
e3c78ca5
TH
407 break;
408 msleep(10);
409 }
410}
411
d732580b
TH
412/**
413 * blk_queue_bypass_start - enter queue bypass mode
414 * @q: queue of interest
415 *
416 * In bypass mode, only the dispatch FIFO queue of @q is used. This
417 * function makes @q enter bypass mode and drains all requests which were
6ecf23af
TH
418 * throttled or issued before. On return, it's guaranteed that no request
419 * is being throttled or has ELVPRIV set.
d732580b
TH
420 */
421void blk_queue_bypass_start(struct request_queue *q)
422{
423 spin_lock_irq(q->queue_lock);
424 q->bypass_depth++;
425 queue_flag_set(QUEUE_FLAG_BYPASS, q);
426 spin_unlock_irq(q->queue_lock);
427
428 blk_drain_queue(q, false);
429}
430EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
431
432/**
433 * blk_queue_bypass_end - leave queue bypass mode
434 * @q: queue of interest
435 *
436 * Leave bypass mode and restore the normal queueing behavior.
437 */
438void blk_queue_bypass_end(struct request_queue *q)
439{
440 spin_lock_irq(q->queue_lock);
441 if (!--q->bypass_depth)
442 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
443 WARN_ON_ONCE(q->bypass_depth < 0);
444 spin_unlock_irq(q->queue_lock);
445}
446EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
447
c9a929dd
TH
448/**
449 * blk_cleanup_queue - shutdown a request queue
450 * @q: request queue to shutdown
451 *
452 * Mark @q DEAD, drain all pending requests, destroy and put it. All
453 * future requests will be failed immediately with -ENODEV.
c94a96ac 454 */
6728cb0e 455void blk_cleanup_queue(struct request_queue *q)
483f4afc 456{
c9a929dd 457 spinlock_t *lock = q->queue_lock;
e3335de9 458
c9a929dd 459 /* mark @q DEAD, no new request or merges will be allowed afterwards */
483f4afc 460 mutex_lock(&q->sysfs_lock);
75ad23bc 461 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
c9a929dd
TH
462
463 spin_lock_irq(lock);
6ecf23af
TH
464
465 /* dead queue is permanently in bypass mode till released */
466 q->bypass_depth++;
467 queue_flag_set(QUEUE_FLAG_BYPASS, q);
468
c9a929dd
TH
469 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
470 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
471 queue_flag_set(QUEUE_FLAG_DEAD, q);
483f4afc 472
777eb1bf
HR
473 if (q->queue_lock != &q->__queue_lock)
474 q->queue_lock = &q->__queue_lock;
da527770 475
c9a929dd
TH
476 spin_unlock_irq(lock);
477 mutex_unlock(&q->sysfs_lock);
478
b855b04a
TH
479 /* drain all requests queued before DEAD marking */
480 blk_drain_queue(q, true);
c9a929dd
TH
481
482 /* @q won't process any more request, flush async actions */
483 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
484 blk_sync_queue(q);
485
486 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
487 blk_put_queue(q);
488}
1da177e4
LT
489EXPORT_SYMBOL(blk_cleanup_queue);
490
165125e1 491static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
492{
493 struct request_list *rl = &q->rq;
494
1abec4fd
MS
495 if (unlikely(rl->rq_pool))
496 return 0;
497
1faa16d2
JA
498 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
499 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 500 rl->elvpriv = 0;
1faa16d2
JA
501 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
502 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 503
1946089a
CL
504 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
505 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
506
507 if (!rl->rq_pool)
508 return -ENOMEM;
509
510 return 0;
511}
512
165125e1 513struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 514{
1946089a
CL
515 return blk_alloc_queue_node(gfp_mask, -1);
516}
517EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 518
165125e1 519struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 520{
165125e1 521 struct request_queue *q;
e0bf68dd 522 int err;
1946089a 523
8324aa91 524 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 525 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
526 if (!q)
527 return NULL;
528
a73f730d
TH
529 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
530 if (q->id < 0)
531 goto fail_q;
532
0989a025
JA
533 q->backing_dev_info.ra_pages =
534 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
535 q->backing_dev_info.state = 0;
536 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 537 q->backing_dev_info.name = "block";
5151412d 538 q->node = node_id;
0989a025 539
e0bf68dd 540 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
541 if (err)
542 goto fail_id;
e0bf68dd 543
31373d09
MG
544 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
545 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 546 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 547 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 548 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 549 INIT_LIST_HEAD(&q->icq_list);
4eef3049
TH
550#ifdef CONFIG_BLK_CGROUP
551 INIT_LIST_HEAD(&q->blkg_list[0]);
552 INIT_LIST_HEAD(&q->blkg_list[1]);
553#endif
ae1b1539
TH
554 INIT_LIST_HEAD(&q->flush_queue[0]);
555 INIT_LIST_HEAD(&q->flush_queue[1]);
556 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 557 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 558
8324aa91 559 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 560
483f4afc 561 mutex_init(&q->sysfs_lock);
e7e72bf6 562 spin_lock_init(&q->__queue_lock);
483f4afc 563
c94a96ac
VG
564 /*
565 * By default initialize queue_lock to internal lock and driver can
566 * override it later if need be.
567 */
568 q->queue_lock = &q->__queue_lock;
569
5efd6113 570 if (blkcg_init_queue(q))
f51b802c
TH
571 goto fail_id;
572
1da177e4 573 return q;
a73f730d
TH
574
575fail_id:
576 ida_simple_remove(&blk_queue_ida, q->id);
577fail_q:
578 kmem_cache_free(blk_requestq_cachep, q);
579 return NULL;
1da177e4 580}
1946089a 581EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
582
583/**
584 * blk_init_queue - prepare a request queue for use with a block device
585 * @rfn: The function to be called to process requests that have been
586 * placed on the queue.
587 * @lock: Request queue spin lock
588 *
589 * Description:
590 * If a block device wishes to use the standard request handling procedures,
591 * which sorts requests and coalesces adjacent requests, then it must
592 * call blk_init_queue(). The function @rfn will be called when there
593 * are requests on the queue that need to be processed. If the device
594 * supports plugging, then @rfn may not be called immediately when requests
595 * are available on the queue, but may be called at some time later instead.
596 * Plugged queues are generally unplugged when a buffer belonging to one
597 * of the requests on the queue is needed, or due to memory pressure.
598 *
599 * @rfn is not required, or even expected, to remove all requests off the
600 * queue, but only as many as it can handle at a time. If it does leave
601 * requests on the queue, it is responsible for arranging that the requests
602 * get dealt with eventually.
603 *
604 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
605 * request queue; this lock will be taken also from interrupt context, so irq
606 * disabling is needed for it.
1da177e4 607 *
710027a4 608 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
609 * it didn't succeed.
610 *
611 * Note:
612 * blk_init_queue() must be paired with a blk_cleanup_queue() call
613 * when the block device is deactivated (such as at module unload).
614 **/
1946089a 615
165125e1 616struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 617{
1946089a
CL
618 return blk_init_queue_node(rfn, lock, -1);
619}
620EXPORT_SYMBOL(blk_init_queue);
621
165125e1 622struct request_queue *
1946089a
CL
623blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
624{
c86d1b8a 625 struct request_queue *uninit_q, *q;
1da177e4 626
c86d1b8a
MS
627 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
628 if (!uninit_q)
629 return NULL;
630
5151412d 631 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a
MS
632 if (!q)
633 blk_cleanup_queue(uninit_q);
634
635 return q;
01effb0d
MS
636}
637EXPORT_SYMBOL(blk_init_queue_node);
638
639struct request_queue *
640blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
641 spinlock_t *lock)
01effb0d 642{
1da177e4
LT
643 if (!q)
644 return NULL;
645
c86d1b8a 646 if (blk_init_free_list(q))
8669aafd 647 return NULL;
1da177e4
LT
648
649 q->request_fn = rfn;
1da177e4 650 q->prep_rq_fn = NULL;
28018c24 651 q->unprep_rq_fn = NULL;
bc58ba94 652 q->queue_flags = QUEUE_FLAG_DEFAULT;
c94a96ac
VG
653
654 /* Override internal queue lock with supplied lock pointer */
655 if (lock)
656 q->queue_lock = lock;
1da177e4 657
f3b144aa
JA
658 /*
659 * This also sets hw/phys segments, boundary and size
660 */
c20e8de2 661 blk_queue_make_request(q, blk_queue_bio);
1da177e4 662
44ec9542
AS
663 q->sg_reserved_size = INT_MAX;
664
1da177e4
LT
665 /*
666 * all done
667 */
668 if (!elevator_init(q, NULL)) {
669 blk_queue_congestion_threshold(q);
670 return q;
671 }
672
1da177e4
LT
673 return NULL;
674}
5151412d 675EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 676
09ac46c4 677bool blk_get_queue(struct request_queue *q)
1da177e4 678{
34f6055c 679 if (likely(!blk_queue_dead(q))) {
09ac46c4
TH
680 __blk_get_queue(q);
681 return true;
1da177e4
LT
682 }
683
09ac46c4 684 return false;
1da177e4 685}
d86e0e83 686EXPORT_SYMBOL(blk_get_queue);
1da177e4 687
165125e1 688static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 689{
f1f8cc94 690 if (rq->cmd_flags & REQ_ELVPRIV) {
cb98fc8b 691 elv_put_request(q, rq);
f1f8cc94 692 if (rq->elv.icq)
11a3122f 693 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
694 }
695
1da177e4
LT
696 mempool_free(rq, q->rq.rq_pool);
697}
698
1ea25ecb 699static struct request *
f1f8cc94
TH
700blk_alloc_request(struct request_queue *q, struct io_cq *icq,
701 unsigned int flags, gfp_t gfp_mask)
1da177e4
LT
702{
703 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
704
705 if (!rq)
706 return NULL;
707
2a4aa30c 708 blk_rq_init(q, rq);
1afb20f3 709
42dad764 710 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 711
f1f8cc94
TH
712 if (flags & REQ_ELVPRIV) {
713 rq->elv.icq = icq;
714 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
715 mempool_free(rq, q->rq.rq_pool);
716 return NULL;
717 }
718 /* @rq->elv.icq holds on to io_context until @rq is freed */
719 if (icq)
720 get_io_context(icq->ioc);
cb98fc8b 721 }
1da177e4 722
cb98fc8b 723 return rq;
1da177e4
LT
724}
725
726/*
727 * ioc_batching returns true if the ioc is a valid batching request and
728 * should be given priority access to a request.
729 */
165125e1 730static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
731{
732 if (!ioc)
733 return 0;
734
735 /*
736 * Make sure the process is able to allocate at least 1 request
737 * even if the batch times out, otherwise we could theoretically
738 * lose wakeups.
739 */
740 return ioc->nr_batch_requests == q->nr_batching ||
741 (ioc->nr_batch_requests > 0
742 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
743}
744
745/*
746 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
747 * will cause the process to be a "batcher" on all queues in the system. This
748 * is the behaviour we want though - once it gets a wakeup it should be given
749 * a nice run.
750 */
165125e1 751static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
752{
753 if (!ioc || ioc_batching(q, ioc))
754 return;
755
756 ioc->nr_batch_requests = q->nr_batching;
757 ioc->last_waited = jiffies;
758}
759
1faa16d2 760static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
761{
762 struct request_list *rl = &q->rq;
763
1faa16d2
JA
764 if (rl->count[sync] < queue_congestion_off_threshold(q))
765 blk_clear_queue_congested(q, sync);
1da177e4 766
1faa16d2
JA
767 if (rl->count[sync] + 1 <= q->nr_requests) {
768 if (waitqueue_active(&rl->wait[sync]))
769 wake_up(&rl->wait[sync]);
1da177e4 770
1faa16d2 771 blk_clear_queue_full(q, sync);
1da177e4
LT
772 }
773}
774
775/*
776 * A request has just been released. Account for it, update the full and
777 * congestion status, wake up any waiters. Called under q->queue_lock.
778 */
75eb6c37 779static void freed_request(struct request_queue *q, unsigned int flags)
1da177e4
LT
780{
781 struct request_list *rl = &q->rq;
75eb6c37 782 int sync = rw_is_sync(flags);
1da177e4 783
1faa16d2 784 rl->count[sync]--;
75eb6c37 785 if (flags & REQ_ELVPRIV)
cb98fc8b 786 rl->elvpriv--;
1da177e4 787
1faa16d2 788 __freed_request(q, sync);
1da177e4 789
1faa16d2
JA
790 if (unlikely(rl->starved[sync ^ 1]))
791 __freed_request(q, sync ^ 1);
1da177e4
LT
792}
793
9d5a4e94
MS
794/*
795 * Determine if elevator data should be initialized when allocating the
796 * request associated with @bio.
797 */
798static bool blk_rq_should_init_elevator(struct bio *bio)
799{
800 if (!bio)
801 return true;
802
803 /*
804 * Flush requests do not use the elevator so skip initialization.
805 * This allows a request to share the flush and elevator data.
806 */
807 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
808 return false;
809
810 return true;
811}
812
da8303c6
TH
813/**
814 * get_request - get a free request
815 * @q: request_queue to allocate request from
816 * @rw_flags: RW and SYNC flags
817 * @bio: bio to allocate request for (can be %NULL)
818 * @gfp_mask: allocation mask
819 *
820 * Get a free request from @q. This function may fail under memory
821 * pressure or if @q is dead.
822 *
823 * Must be callled with @q->queue_lock held and,
824 * Returns %NULL on failure, with @q->queue_lock held.
825 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 826 */
165125e1 827static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 828 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
829{
830 struct request *rq = NULL;
831 struct request_list *rl = &q->rq;
f1f8cc94 832 struct elevator_type *et;
f2dbd76a 833 struct io_context *ioc;
f1f8cc94 834 struct io_cq *icq = NULL;
1faa16d2 835 const bool is_sync = rw_is_sync(rw_flags) != 0;
f2dbd76a 836 bool retried = false;
75eb6c37 837 int may_queue;
f2dbd76a 838retry:
f1f8cc94 839 et = q->elevator->type;
f2dbd76a 840 ioc = current->io_context;
88ee5ef1 841
34f6055c 842 if (unlikely(blk_queue_dead(q)))
da8303c6
TH
843 return NULL;
844
7749a8d4 845 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
846 if (may_queue == ELV_MQUEUE_NO)
847 goto rq_starved;
848
1faa16d2
JA
849 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
850 if (rl->count[is_sync]+1 >= q->nr_requests) {
f2dbd76a
TH
851 /*
852 * We want ioc to record batching state. If it's
853 * not already there, creating a new one requires
854 * dropping queue_lock, which in turn requires
855 * retesting conditions to avoid queue hang.
856 */
857 if (!ioc && !retried) {
858 spin_unlock_irq(q->queue_lock);
859 create_io_context(current, gfp_mask, q->node);
860 spin_lock_irq(q->queue_lock);
861 retried = true;
862 goto retry;
863 }
864
88ee5ef1
JA
865 /*
866 * The queue will fill after this allocation, so set
867 * it as full, and mark this process as "batching".
868 * This process will be allowed to complete a batch of
869 * requests, others will be blocked.
870 */
1faa16d2 871 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 872 ioc_set_batching(q, ioc);
1faa16d2 873 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
874 } else {
875 if (may_queue != ELV_MQUEUE_MUST
876 && !ioc_batching(q, ioc)) {
877 /*
878 * The queue is full and the allocating
879 * process is not a "batcher", and not
880 * exempted by the IO scheduler
881 */
882 goto out;
883 }
884 }
1da177e4 885 }
1faa16d2 886 blk_set_queue_congested(q, is_sync);
1da177e4
LT
887 }
888
082cf69e
JA
889 /*
890 * Only allow batching queuers to allocate up to 50% over the defined
891 * limit of requests, otherwise we could have thousands of requests
892 * allocated with any setting of ->nr_requests
893 */
1faa16d2 894 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 895 goto out;
fd782a4a 896
1faa16d2
JA
897 rl->count[is_sync]++;
898 rl->starved[is_sync] = 0;
cb98fc8b 899
f1f8cc94
TH
900 /*
901 * Decide whether the new request will be managed by elevator. If
902 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
903 * prevent the current elevator from being destroyed until the new
904 * request is freed. This guarantees icq's won't be destroyed and
905 * makes creating new ones safe.
906 *
907 * Also, lookup icq while holding queue_lock. If it doesn't exist,
908 * it will be created after releasing queue_lock.
909 */
d732580b 910 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37
TH
911 rw_flags |= REQ_ELVPRIV;
912 rl->elvpriv++;
f1f8cc94
TH
913 if (et->icq_cache && ioc)
914 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 915 }
cb98fc8b 916
f253b86b
JA
917 if (blk_queue_io_stat(q))
918 rw_flags |= REQ_IO_STAT;
1da177e4
LT
919 spin_unlock_irq(q->queue_lock);
920
f1f8cc94 921 /* create icq if missing */
05c30b95 922 if ((rw_flags & REQ_ELVPRIV) && unlikely(et->icq_cache && !icq)) {
f1f8cc94 923 icq = ioc_create_icq(q, gfp_mask);
05c30b95
SL
924 if (!icq)
925 goto fail_icq;
926 }
f1f8cc94 927
05c30b95 928 rq = blk_alloc_request(q, icq, rw_flags, gfp_mask);
f1f8cc94 929
05c30b95 930fail_icq:
88ee5ef1 931 if (unlikely(!rq)) {
1da177e4
LT
932 /*
933 * Allocation failed presumably due to memory. Undo anything
934 * we might have messed up.
935 *
936 * Allocating task should really be put onto the front of the
937 * wait queue, but this is pretty rare.
938 */
939 spin_lock_irq(q->queue_lock);
75eb6c37 940 freed_request(q, rw_flags);
1da177e4
LT
941
942 /*
943 * in the very unlikely event that allocation failed and no
944 * requests for this direction was pending, mark us starved
945 * so that freeing of a request in the other direction will
946 * notice us. another possible fix would be to split the
947 * rq mempool into READ and WRITE
948 */
949rq_starved:
1faa16d2
JA
950 if (unlikely(rl->count[is_sync] == 0))
951 rl->starved[is_sync] = 1;
1da177e4 952
1da177e4
LT
953 goto out;
954 }
955
88ee5ef1
JA
956 /*
957 * ioc may be NULL here, and ioc_batching will be false. That's
958 * OK, if the queue is under the request limit then requests need
959 * not count toward the nr_batch_requests limit. There will always
960 * be some limit enforced by BLK_BATCH_TIME.
961 */
1da177e4
LT
962 if (ioc_batching(q, ioc))
963 ioc->nr_batch_requests--;
6728cb0e 964
1faa16d2 965 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 966out:
1da177e4
LT
967 return rq;
968}
969
da8303c6
TH
970/**
971 * get_request_wait - get a free request with retry
972 * @q: request_queue to allocate request from
973 * @rw_flags: RW and SYNC flags
974 * @bio: bio to allocate request for (can be %NULL)
975 *
976 * Get a free request from @q. This function keeps retrying under memory
977 * pressure and fails iff @q is dead.
d6344532 978 *
da8303c6
TH
979 * Must be callled with @q->queue_lock held and,
980 * Returns %NULL on failure, with @q->queue_lock held.
981 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 982 */
165125e1 983static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 984 struct bio *bio)
1da177e4 985{
1faa16d2 986 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
987 struct request *rq;
988
7749a8d4 989 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
990 while (!rq) {
991 DEFINE_WAIT(wait);
1da177e4
LT
992 struct request_list *rl = &q->rq;
993
34f6055c 994 if (unlikely(blk_queue_dead(q)))
da8303c6
TH
995 return NULL;
996
1faa16d2 997 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
998 TASK_UNINTERRUPTIBLE);
999
1faa16d2 1000 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1001
05caf8db
ZY
1002 spin_unlock_irq(q->queue_lock);
1003 io_schedule();
1da177e4 1004
05caf8db
ZY
1005 /*
1006 * After sleeping, we become a "batching" process and
1007 * will be able to allocate at least one request, and
1008 * up to a big batch of them for a small period time.
1009 * See ioc_batching, ioc_set_batching
1010 */
f2dbd76a
TH
1011 create_io_context(current, GFP_NOIO, q->node);
1012 ioc_set_batching(q, current->io_context);
d6344532 1013
05caf8db 1014 spin_lock_irq(q->queue_lock);
1faa16d2 1015 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
1016
1017 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1018 };
1da177e4
LT
1019
1020 return rq;
1021}
1022
165125e1 1023struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
1024{
1025 struct request *rq;
1026
1027 BUG_ON(rw != READ && rw != WRITE);
1028
d6344532 1029 spin_lock_irq(q->queue_lock);
da8303c6 1030 if (gfp_mask & __GFP_WAIT)
22e2c507 1031 rq = get_request_wait(q, rw, NULL);
da8303c6 1032 else
22e2c507 1033 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1034 if (!rq)
1035 spin_unlock_irq(q->queue_lock);
d6344532 1036 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1037
1038 return rq;
1039}
1da177e4
LT
1040EXPORT_SYMBOL(blk_get_request);
1041
dc72ef4a 1042/**
79eb63e9 1043 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1044 * @q: target request queue
79eb63e9
BH
1045 * @bio: The bio describing the memory mappings that will be submitted for IO.
1046 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1047 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1048 *
79eb63e9
BH
1049 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1050 * type commands. Where the struct request needs to be farther initialized by
1051 * the caller. It is passed a &struct bio, which describes the memory info of
1052 * the I/O transfer.
dc72ef4a 1053 *
79eb63e9
BH
1054 * The caller of blk_make_request must make sure that bi_io_vec
1055 * are set to describe the memory buffers. That bio_data_dir() will return
1056 * the needed direction of the request. (And all bio's in the passed bio-chain
1057 * are properly set accordingly)
1058 *
1059 * If called under none-sleepable conditions, mapped bio buffers must not
1060 * need bouncing, by calling the appropriate masked or flagged allocator,
1061 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1062 * BUG.
53674ac5
JA
1063 *
1064 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1065 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1066 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1067 * completion of a bio that hasn't been submitted yet, thus resulting in a
1068 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1069 * of bio_alloc(), as that avoids the mempool deadlock.
1070 * If possible a big IO should be split into smaller parts when allocation
1071 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1072 */
79eb63e9
BH
1073struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1074 gfp_t gfp_mask)
dc72ef4a 1075{
79eb63e9
BH
1076 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1077
1078 if (unlikely(!rq))
1079 return ERR_PTR(-ENOMEM);
1080
1081 for_each_bio(bio) {
1082 struct bio *bounce_bio = bio;
1083 int ret;
1084
1085 blk_queue_bounce(q, &bounce_bio);
1086 ret = blk_rq_append_bio(q, rq, bounce_bio);
1087 if (unlikely(ret)) {
1088 blk_put_request(rq);
1089 return ERR_PTR(ret);
1090 }
1091 }
1092
1093 return rq;
dc72ef4a 1094}
79eb63e9 1095EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1096
1da177e4
LT
1097/**
1098 * blk_requeue_request - put a request back on queue
1099 * @q: request queue where request should be inserted
1100 * @rq: request to be inserted
1101 *
1102 * Description:
1103 * Drivers often keep queueing requests until the hardware cannot accept
1104 * more, when that condition happens we need to put the request back
1105 * on the queue. Must be called with queue lock held.
1106 */
165125e1 1107void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1108{
242f9dcb
JA
1109 blk_delete_timer(rq);
1110 blk_clear_rq_complete(rq);
5f3ea37c 1111 trace_block_rq_requeue(q, rq);
2056a782 1112
1da177e4
LT
1113 if (blk_rq_tagged(rq))
1114 blk_queue_end_tag(q, rq);
1115
ba396a6c
JB
1116 BUG_ON(blk_queued_rq(rq));
1117
1da177e4
LT
1118 elv_requeue_request(q, rq);
1119}
1da177e4
LT
1120EXPORT_SYMBOL(blk_requeue_request);
1121
73c10101
JA
1122static void add_acct_request(struct request_queue *q, struct request *rq,
1123 int where)
1124{
1125 drive_stat_acct(rq, 1);
7eaceacc 1126 __elv_add_request(q, rq, where);
73c10101
JA
1127}
1128
074a7aca
TH
1129static void part_round_stats_single(int cpu, struct hd_struct *part,
1130 unsigned long now)
1131{
1132 if (now == part->stamp)
1133 return;
1134
316d315b 1135 if (part_in_flight(part)) {
074a7aca 1136 __part_stat_add(cpu, part, time_in_queue,
316d315b 1137 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1138 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1139 }
1140 part->stamp = now;
1141}
1142
1143/**
496aa8a9
RD
1144 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1145 * @cpu: cpu number for stats access
1146 * @part: target partition
1da177e4
LT
1147 *
1148 * The average IO queue length and utilisation statistics are maintained
1149 * by observing the current state of the queue length and the amount of
1150 * time it has been in this state for.
1151 *
1152 * Normally, that accounting is done on IO completion, but that can result
1153 * in more than a second's worth of IO being accounted for within any one
1154 * second, leading to >100% utilisation. To deal with that, we call this
1155 * function to do a round-off before returning the results when reading
1156 * /proc/diskstats. This accounts immediately for all queue usage up to
1157 * the current jiffies and restarts the counters again.
1158 */
c9959059 1159void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1160{
1161 unsigned long now = jiffies;
1162
074a7aca
TH
1163 if (part->partno)
1164 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1165 part_round_stats_single(cpu, part, now);
6f2576af 1166}
074a7aca 1167EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1168
1da177e4
LT
1169/*
1170 * queue lock must be held
1171 */
165125e1 1172void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1173{
1da177e4
LT
1174 if (unlikely(!q))
1175 return;
1176 if (unlikely(--req->ref_count))
1177 return;
1178
8922e16c
TH
1179 elv_completed_request(q, req);
1180
1cd96c24
BH
1181 /* this is a bio leak */
1182 WARN_ON(req->bio != NULL);
1183
1da177e4
LT
1184 /*
1185 * Request may not have originated from ll_rw_blk. if not,
1186 * it didn't come out of our reserved rq pools
1187 */
49171e5c 1188 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1189 unsigned int flags = req->cmd_flags;
1da177e4 1190
1da177e4 1191 BUG_ON(!list_empty(&req->queuelist));
9817064b 1192 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1193
1194 blk_free_request(q, req);
75eb6c37 1195 freed_request(q, flags);
1da177e4
LT
1196 }
1197}
6e39b69e
MC
1198EXPORT_SYMBOL_GPL(__blk_put_request);
1199
1da177e4
LT
1200void blk_put_request(struct request *req)
1201{
8922e16c 1202 unsigned long flags;
165125e1 1203 struct request_queue *q = req->q;
8922e16c 1204
52a93ba8
FT
1205 spin_lock_irqsave(q->queue_lock, flags);
1206 __blk_put_request(q, req);
1207 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1208}
1da177e4
LT
1209EXPORT_SYMBOL(blk_put_request);
1210
66ac0280
CH
1211/**
1212 * blk_add_request_payload - add a payload to a request
1213 * @rq: request to update
1214 * @page: page backing the payload
1215 * @len: length of the payload.
1216 *
1217 * This allows to later add a payload to an already submitted request by
1218 * a block driver. The driver needs to take care of freeing the payload
1219 * itself.
1220 *
1221 * Note that this is a quite horrible hack and nothing but handling of
1222 * discard requests should ever use it.
1223 */
1224void blk_add_request_payload(struct request *rq, struct page *page,
1225 unsigned int len)
1226{
1227 struct bio *bio = rq->bio;
1228
1229 bio->bi_io_vec->bv_page = page;
1230 bio->bi_io_vec->bv_offset = 0;
1231 bio->bi_io_vec->bv_len = len;
1232
1233 bio->bi_size = len;
1234 bio->bi_vcnt = 1;
1235 bio->bi_phys_segments = 1;
1236
1237 rq->__data_len = rq->resid_len = len;
1238 rq->nr_phys_segments = 1;
1239 rq->buffer = bio_data(bio);
1240}
1241EXPORT_SYMBOL_GPL(blk_add_request_payload);
1242
73c10101
JA
1243static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1244 struct bio *bio)
1245{
1246 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1247
73c10101
JA
1248 if (!ll_back_merge_fn(q, req, bio))
1249 return false;
1250
1251 trace_block_bio_backmerge(q, bio);
1252
1253 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1254 blk_rq_set_mixed_merge(req);
1255
1256 req->biotail->bi_next = bio;
1257 req->biotail = bio;
1258 req->__data_len += bio->bi_size;
1259 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1260
1261 drive_stat_acct(req, 0);
1262 return true;
1263}
1264
1265static bool bio_attempt_front_merge(struct request_queue *q,
1266 struct request *req, struct bio *bio)
1267{
1268 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1269
73c10101
JA
1270 if (!ll_front_merge_fn(q, req, bio))
1271 return false;
1272
1273 trace_block_bio_frontmerge(q, bio);
1274
1275 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1276 blk_rq_set_mixed_merge(req);
1277
73c10101
JA
1278 bio->bi_next = req->bio;
1279 req->bio = bio;
1280
1281 /*
1282 * may not be valid. if the low level driver said
1283 * it didn't need a bounce buffer then it better
1284 * not touch req->buffer either...
1285 */
1286 req->buffer = bio_data(bio);
1287 req->__sector = bio->bi_sector;
1288 req->__data_len += bio->bi_size;
1289 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1290
1291 drive_stat_acct(req, 0);
1292 return true;
1293}
1294
bd87b589
TH
1295/**
1296 * attempt_plug_merge - try to merge with %current's plugged list
1297 * @q: request_queue new bio is being queued at
1298 * @bio: new bio being queued
1299 * @request_count: out parameter for number of traversed plugged requests
1300 *
1301 * Determine whether @bio being queued on @q can be merged with a request
1302 * on %current's plugged list. Returns %true if merge was successful,
1303 * otherwise %false.
1304 *
07c2bd37
TH
1305 * Plugging coalesces IOs from the same issuer for the same purpose without
1306 * going through @q->queue_lock. As such it's more of an issuing mechanism
1307 * than scheduling, and the request, while may have elvpriv data, is not
1308 * added on the elevator at this point. In addition, we don't have
1309 * reliable access to the elevator outside queue lock. Only check basic
1310 * merging parameters without querying the elevator.
73c10101 1311 */
bd87b589
TH
1312static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1313 unsigned int *request_count)
73c10101
JA
1314{
1315 struct blk_plug *plug;
1316 struct request *rq;
1317 bool ret = false;
1318
bd87b589 1319 plug = current->plug;
73c10101
JA
1320 if (!plug)
1321 goto out;
56ebdaf2 1322 *request_count = 0;
73c10101
JA
1323
1324 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1325 int el_ret;
1326
56ebdaf2
SL
1327 (*request_count)++;
1328
07c2bd37 1329 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1330 continue;
1331
050c8ea8 1332 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1333 if (el_ret == ELEVATOR_BACK_MERGE) {
1334 ret = bio_attempt_back_merge(q, rq, bio);
1335 if (ret)
1336 break;
1337 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1338 ret = bio_attempt_front_merge(q, rq, bio);
1339 if (ret)
1340 break;
1341 }
1342 }
1343out:
1344 return ret;
1345}
1346
86db1e29 1347void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1348{
4aff5e23 1349 req->cmd_type = REQ_TYPE_FS;
52d9e675 1350
7b6d91da
CH
1351 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1352 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1353 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1354
52d9e675 1355 req->errors = 0;
a2dec7b3 1356 req->__sector = bio->bi_sector;
52d9e675 1357 req->ioprio = bio_prio(bio);
bc1c56fd 1358 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1359}
1360
5a7bbad2 1361void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1362{
5e00d1b5 1363 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1364 struct blk_plug *plug;
1365 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1366 struct request *req;
56ebdaf2 1367 unsigned int request_count = 0;
1da177e4 1368
1da177e4
LT
1369 /*
1370 * low level driver can indicate that it wants pages above a
1371 * certain limit bounced to low memory (ie for highmem, or even
1372 * ISA dma in theory)
1373 */
1374 blk_queue_bounce(q, &bio);
1375
4fed947c 1376 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1377 spin_lock_irq(q->queue_lock);
ae1b1539 1378 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1379 goto get_rq;
1380 }
1381
73c10101
JA
1382 /*
1383 * Check if we can merge with the plugged list before grabbing
1384 * any locks.
1385 */
bd87b589 1386 if (attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1387 return;
1da177e4 1388
73c10101 1389 spin_lock_irq(q->queue_lock);
2056a782 1390
73c10101
JA
1391 el_ret = elv_merge(q, &req, bio);
1392 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1393 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1394 elv_bio_merged(q, req, bio);
73c10101
JA
1395 if (!attempt_back_merge(q, req))
1396 elv_merged_request(q, req, el_ret);
1397 goto out_unlock;
1398 }
1399 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1400 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1401 elv_bio_merged(q, req, bio);
73c10101
JA
1402 if (!attempt_front_merge(q, req))
1403 elv_merged_request(q, req, el_ret);
1404 goto out_unlock;
80a761fd 1405 }
1da177e4
LT
1406 }
1407
450991bc 1408get_rq:
7749a8d4
JA
1409 /*
1410 * This sync check and mask will be re-done in init_request_from_bio(),
1411 * but we need to set it earlier to expose the sync flag to the
1412 * rq allocator and io schedulers.
1413 */
1414 rw_flags = bio_data_dir(bio);
1415 if (sync)
7b6d91da 1416 rw_flags |= REQ_SYNC;
7749a8d4 1417
1da177e4 1418 /*
450991bc 1419 * Grab a free request. This is might sleep but can not fail.
d6344532 1420 * Returns with the queue unlocked.
450991bc 1421 */
7749a8d4 1422 req = get_request_wait(q, rw_flags, bio);
da8303c6
TH
1423 if (unlikely(!req)) {
1424 bio_endio(bio, -ENODEV); /* @q is dead */
1425 goto out_unlock;
1426 }
d6344532 1427
450991bc
NP
1428 /*
1429 * After dropping the lock and possibly sleeping here, our request
1430 * may now be mergeable after it had proven unmergeable (above).
1431 * We don't worry about that case for efficiency. It won't happen
1432 * often, and the elevators are able to handle it.
1da177e4 1433 */
52d9e675 1434 init_request_from_bio(req, bio);
1da177e4 1435
9562ad9a 1436 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1437 req->cpu = raw_smp_processor_id();
73c10101
JA
1438
1439 plug = current->plug;
721a9602 1440 if (plug) {
dc6d36c9
JA
1441 /*
1442 * If this is the first request added after a plug, fire
1443 * of a plug trace. If others have been added before, check
1444 * if we have multiple devices in this plug. If so, make a
1445 * note to sort the list before dispatch.
1446 */
1447 if (list_empty(&plug->list))
1448 trace_block_plug(q);
3540d5e8
SL
1449 else {
1450 if (!plug->should_sort) {
1451 struct request *__rq;
73c10101 1452
3540d5e8
SL
1453 __rq = list_entry_rq(plug->list.prev);
1454 if (__rq->q != q)
1455 plug->should_sort = 1;
1456 }
019ceb7d 1457 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1458 blk_flush_plug_list(plug, false);
019ceb7d
SL
1459 trace_block_plug(q);
1460 }
73c10101 1461 }
73c10101
JA
1462 list_add_tail(&req->queuelist, &plug->list);
1463 drive_stat_acct(req, 1);
1464 } else {
1465 spin_lock_irq(q->queue_lock);
1466 add_acct_request(q, req, where);
24ecfbe2 1467 __blk_run_queue(q);
73c10101
JA
1468out_unlock:
1469 spin_unlock_irq(q->queue_lock);
1470 }
1da177e4 1471}
c20e8de2 1472EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1473
1474/*
1475 * If bio->bi_dev is a partition, remap the location
1476 */
1477static inline void blk_partition_remap(struct bio *bio)
1478{
1479 struct block_device *bdev = bio->bi_bdev;
1480
bf2de6f5 1481 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1482 struct hd_struct *p = bdev->bd_part;
1483
1da177e4
LT
1484 bio->bi_sector += p->start_sect;
1485 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1486
d07335e5
MS
1487 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1488 bdev->bd_dev,
1489 bio->bi_sector - p->start_sect);
1da177e4
LT
1490 }
1491}
1492
1da177e4
LT
1493static void handle_bad_sector(struct bio *bio)
1494{
1495 char b[BDEVNAME_SIZE];
1496
1497 printk(KERN_INFO "attempt to access beyond end of device\n");
1498 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1499 bdevname(bio->bi_bdev, b),
1500 bio->bi_rw,
1501 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1502 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1503
1504 set_bit(BIO_EOF, &bio->bi_flags);
1505}
1506
c17bb495
AM
1507#ifdef CONFIG_FAIL_MAKE_REQUEST
1508
1509static DECLARE_FAULT_ATTR(fail_make_request);
1510
1511static int __init setup_fail_make_request(char *str)
1512{
1513 return setup_fault_attr(&fail_make_request, str);
1514}
1515__setup("fail_make_request=", setup_fail_make_request);
1516
b2c9cd37 1517static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1518{
b2c9cd37 1519 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1520}
1521
1522static int __init fail_make_request_debugfs(void)
1523{
dd48c085
AM
1524 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1525 NULL, &fail_make_request);
1526
1527 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1528}
1529
1530late_initcall(fail_make_request_debugfs);
1531
1532#else /* CONFIG_FAIL_MAKE_REQUEST */
1533
b2c9cd37
AM
1534static inline bool should_fail_request(struct hd_struct *part,
1535 unsigned int bytes)
c17bb495 1536{
b2c9cd37 1537 return false;
c17bb495
AM
1538}
1539
1540#endif /* CONFIG_FAIL_MAKE_REQUEST */
1541
c07e2b41
JA
1542/*
1543 * Check whether this bio extends beyond the end of the device.
1544 */
1545static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1546{
1547 sector_t maxsector;
1548
1549 if (!nr_sectors)
1550 return 0;
1551
1552 /* Test device or partition size, when known. */
77304d2a 1553 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1554 if (maxsector) {
1555 sector_t sector = bio->bi_sector;
1556
1557 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1558 /*
1559 * This may well happen - the kernel calls bread()
1560 * without checking the size of the device, e.g., when
1561 * mounting a device.
1562 */
1563 handle_bad_sector(bio);
1564 return 1;
1565 }
1566 }
1567
1568 return 0;
1569}
1570
27a84d54
CH
1571static noinline_for_stack bool
1572generic_make_request_checks(struct bio *bio)
1da177e4 1573{
165125e1 1574 struct request_queue *q;
5a7bbad2 1575 int nr_sectors = bio_sectors(bio);
51fd77bd 1576 int err = -EIO;
5a7bbad2
CH
1577 char b[BDEVNAME_SIZE];
1578 struct hd_struct *part;
1da177e4
LT
1579
1580 might_sleep();
1da177e4 1581
c07e2b41
JA
1582 if (bio_check_eod(bio, nr_sectors))
1583 goto end_io;
1da177e4 1584
5a7bbad2
CH
1585 q = bdev_get_queue(bio->bi_bdev);
1586 if (unlikely(!q)) {
1587 printk(KERN_ERR
1588 "generic_make_request: Trying to access "
1589 "nonexistent block-device %s (%Lu)\n",
1590 bdevname(bio->bi_bdev, b),
1591 (long long) bio->bi_sector);
1592 goto end_io;
1593 }
c17bb495 1594
5a7bbad2
CH
1595 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1596 nr_sectors > queue_max_hw_sectors(q))) {
1597 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1598 bdevname(bio->bi_bdev, b),
1599 bio_sectors(bio),
1600 queue_max_hw_sectors(q));
1601 goto end_io;
1602 }
1da177e4 1603
5a7bbad2
CH
1604 part = bio->bi_bdev->bd_part;
1605 if (should_fail_request(part, bio->bi_size) ||
1606 should_fail_request(&part_to_disk(part)->part0,
1607 bio->bi_size))
1608 goto end_io;
2056a782 1609
5a7bbad2
CH
1610 /*
1611 * If this device has partitions, remap block n
1612 * of partition p to block n+start(p) of the disk.
1613 */
1614 blk_partition_remap(bio);
2056a782 1615
5a7bbad2
CH
1616 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1617 goto end_io;
a7384677 1618
5a7bbad2
CH
1619 if (bio_check_eod(bio, nr_sectors))
1620 goto end_io;
1e87901e 1621
5a7bbad2
CH
1622 /*
1623 * Filter flush bio's early so that make_request based
1624 * drivers without flush support don't have to worry
1625 * about them.
1626 */
1627 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1628 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1629 if (!nr_sectors) {
1630 err = 0;
51fd77bd
JA
1631 goto end_io;
1632 }
5a7bbad2 1633 }
5ddfe969 1634
5a7bbad2
CH
1635 if ((bio->bi_rw & REQ_DISCARD) &&
1636 (!blk_queue_discard(q) ||
1637 ((bio->bi_rw & REQ_SECURE) &&
1638 !blk_queue_secdiscard(q)))) {
1639 err = -EOPNOTSUPP;
1640 goto end_io;
1641 }
01edede4 1642
bc16a4f9
TH
1643 if (blk_throtl_bio(q, bio))
1644 return false; /* throttled, will be resubmitted later */
27a84d54 1645
5a7bbad2 1646 trace_block_bio_queue(q, bio);
27a84d54 1647 return true;
a7384677
TH
1648
1649end_io:
1650 bio_endio(bio, err);
27a84d54 1651 return false;
1da177e4
LT
1652}
1653
27a84d54
CH
1654/**
1655 * generic_make_request - hand a buffer to its device driver for I/O
1656 * @bio: The bio describing the location in memory and on the device.
1657 *
1658 * generic_make_request() is used to make I/O requests of block
1659 * devices. It is passed a &struct bio, which describes the I/O that needs
1660 * to be done.
1661 *
1662 * generic_make_request() does not return any status. The
1663 * success/failure status of the request, along with notification of
1664 * completion, is delivered asynchronously through the bio->bi_end_io
1665 * function described (one day) else where.
1666 *
1667 * The caller of generic_make_request must make sure that bi_io_vec
1668 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1669 * set to describe the device address, and the
1670 * bi_end_io and optionally bi_private are set to describe how
1671 * completion notification should be signaled.
1672 *
1673 * generic_make_request and the drivers it calls may use bi_next if this
1674 * bio happens to be merged with someone else, and may resubmit the bio to
1675 * a lower device by calling into generic_make_request recursively, which
1676 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1677 */
1678void generic_make_request(struct bio *bio)
1679{
bddd87c7
AM
1680 struct bio_list bio_list_on_stack;
1681
27a84d54
CH
1682 if (!generic_make_request_checks(bio))
1683 return;
1684
1685 /*
1686 * We only want one ->make_request_fn to be active at a time, else
1687 * stack usage with stacked devices could be a problem. So use
1688 * current->bio_list to keep a list of requests submited by a
1689 * make_request_fn function. current->bio_list is also used as a
1690 * flag to say if generic_make_request is currently active in this
1691 * task or not. If it is NULL, then no make_request is active. If
1692 * it is non-NULL, then a make_request is active, and new requests
1693 * should be added at the tail
1694 */
bddd87c7 1695 if (current->bio_list) {
bddd87c7 1696 bio_list_add(current->bio_list, bio);
d89d8796
NB
1697 return;
1698 }
27a84d54 1699
d89d8796
NB
1700 /* following loop may be a bit non-obvious, and so deserves some
1701 * explanation.
1702 * Before entering the loop, bio->bi_next is NULL (as all callers
1703 * ensure that) so we have a list with a single bio.
1704 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1705 * we assign bio_list to a pointer to the bio_list_on_stack,
1706 * thus initialising the bio_list of new bios to be
27a84d54 1707 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1708 * through a recursive call to generic_make_request. If it
1709 * did, we find a non-NULL value in bio_list and re-enter the loop
1710 * from the top. In this case we really did just take the bio
bddd87c7 1711 * of the top of the list (no pretending) and so remove it from
27a84d54 1712 * bio_list, and call into ->make_request() again.
d89d8796
NB
1713 */
1714 BUG_ON(bio->bi_next);
bddd87c7
AM
1715 bio_list_init(&bio_list_on_stack);
1716 current->bio_list = &bio_list_on_stack;
d89d8796 1717 do {
27a84d54
CH
1718 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1719
1720 q->make_request_fn(q, bio);
1721
bddd87c7 1722 bio = bio_list_pop(current->bio_list);
d89d8796 1723 } while (bio);
bddd87c7 1724 current->bio_list = NULL; /* deactivate */
d89d8796 1725}
1da177e4
LT
1726EXPORT_SYMBOL(generic_make_request);
1727
1728/**
710027a4 1729 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1730 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1731 * @bio: The &struct bio which describes the I/O
1732 *
1733 * submit_bio() is very similar in purpose to generic_make_request(), and
1734 * uses that function to do most of the work. Both are fairly rough
710027a4 1735 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1736 *
1737 */
1738void submit_bio(int rw, struct bio *bio)
1739{
1740 int count = bio_sectors(bio);
1741
22e2c507 1742 bio->bi_rw |= rw;
1da177e4 1743
bf2de6f5
JA
1744 /*
1745 * If it's a regular read/write or a barrier with data attached,
1746 * go through the normal accounting stuff before submission.
1747 */
3ffb52e7 1748 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1749 if (rw & WRITE) {
1750 count_vm_events(PGPGOUT, count);
1751 } else {
1752 task_io_account_read(bio->bi_size);
1753 count_vm_events(PGPGIN, count);
1754 }
1755
1756 if (unlikely(block_dump)) {
1757 char b[BDEVNAME_SIZE];
8dcbdc74 1758 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1759 current->comm, task_pid_nr(current),
bf2de6f5
JA
1760 (rw & WRITE) ? "WRITE" : "READ",
1761 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1762 bdevname(bio->bi_bdev, b),
1763 count);
bf2de6f5 1764 }
1da177e4
LT
1765 }
1766
1767 generic_make_request(bio);
1768}
1da177e4
LT
1769EXPORT_SYMBOL(submit_bio);
1770
82124d60
KU
1771/**
1772 * blk_rq_check_limits - Helper function to check a request for the queue limit
1773 * @q: the queue
1774 * @rq: the request being checked
1775 *
1776 * Description:
1777 * @rq may have been made based on weaker limitations of upper-level queues
1778 * in request stacking drivers, and it may violate the limitation of @q.
1779 * Since the block layer and the underlying device driver trust @rq
1780 * after it is inserted to @q, it should be checked against @q before
1781 * the insertion using this generic function.
1782 *
1783 * This function should also be useful for request stacking drivers
eef35c2d 1784 * in some cases below, so export this function.
82124d60
KU
1785 * Request stacking drivers like request-based dm may change the queue
1786 * limits while requests are in the queue (e.g. dm's table swapping).
1787 * Such request stacking drivers should check those requests agaist
1788 * the new queue limits again when they dispatch those requests,
1789 * although such checkings are also done against the old queue limits
1790 * when submitting requests.
1791 */
1792int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1793{
3383977f
S
1794 if (rq->cmd_flags & REQ_DISCARD)
1795 return 0;
1796
ae03bf63
MP
1797 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1798 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1799 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1800 return -EIO;
1801 }
1802
1803 /*
1804 * queue's settings related to segment counting like q->bounce_pfn
1805 * may differ from that of other stacking queues.
1806 * Recalculate it to check the request correctly on this queue's
1807 * limitation.
1808 */
1809 blk_recalc_rq_segments(rq);
8a78362c 1810 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1811 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1812 return -EIO;
1813 }
1814
1815 return 0;
1816}
1817EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1818
1819/**
1820 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1821 * @q: the queue to submit the request
1822 * @rq: the request being queued
1823 */
1824int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1825{
1826 unsigned long flags;
4853abaa 1827 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1828
1829 if (blk_rq_check_limits(q, rq))
1830 return -EIO;
1831
b2c9cd37
AM
1832 if (rq->rq_disk &&
1833 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1834 return -EIO;
82124d60
KU
1835
1836 spin_lock_irqsave(q->queue_lock, flags);
8ba61435
TH
1837 if (unlikely(blk_queue_dead(q))) {
1838 spin_unlock_irqrestore(q->queue_lock, flags);
1839 return -ENODEV;
1840 }
82124d60
KU
1841
1842 /*
1843 * Submitting request must be dequeued before calling this function
1844 * because it will be linked to another request_queue
1845 */
1846 BUG_ON(blk_queued_rq(rq));
1847
4853abaa
JM
1848 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1849 where = ELEVATOR_INSERT_FLUSH;
1850
1851 add_acct_request(q, rq, where);
e67b77c7
JM
1852 if (where == ELEVATOR_INSERT_FLUSH)
1853 __blk_run_queue(q);
82124d60
KU
1854 spin_unlock_irqrestore(q->queue_lock, flags);
1855
1856 return 0;
1857}
1858EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1859
80a761fd
TH
1860/**
1861 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1862 * @rq: request to examine
1863 *
1864 * Description:
1865 * A request could be merge of IOs which require different failure
1866 * handling. This function determines the number of bytes which
1867 * can be failed from the beginning of the request without
1868 * crossing into area which need to be retried further.
1869 *
1870 * Return:
1871 * The number of bytes to fail.
1872 *
1873 * Context:
1874 * queue_lock must be held.
1875 */
1876unsigned int blk_rq_err_bytes(const struct request *rq)
1877{
1878 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1879 unsigned int bytes = 0;
1880 struct bio *bio;
1881
1882 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1883 return blk_rq_bytes(rq);
1884
1885 /*
1886 * Currently the only 'mixing' which can happen is between
1887 * different fastfail types. We can safely fail portions
1888 * which have all the failfast bits that the first one has -
1889 * the ones which are at least as eager to fail as the first
1890 * one.
1891 */
1892 for (bio = rq->bio; bio; bio = bio->bi_next) {
1893 if ((bio->bi_rw & ff) != ff)
1894 break;
1895 bytes += bio->bi_size;
1896 }
1897
1898 /* this could lead to infinite loop */
1899 BUG_ON(blk_rq_bytes(rq) && !bytes);
1900 return bytes;
1901}
1902EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1903
bc58ba94
JA
1904static void blk_account_io_completion(struct request *req, unsigned int bytes)
1905{
c2553b58 1906 if (blk_do_io_stat(req)) {
bc58ba94
JA
1907 const int rw = rq_data_dir(req);
1908 struct hd_struct *part;
1909 int cpu;
1910
1911 cpu = part_stat_lock();
09e099d4 1912 part = req->part;
bc58ba94
JA
1913 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1914 part_stat_unlock();
1915 }
1916}
1917
1918static void blk_account_io_done(struct request *req)
1919{
bc58ba94 1920 /*
dd4c133f
TH
1921 * Account IO completion. flush_rq isn't accounted as a
1922 * normal IO on queueing nor completion. Accounting the
1923 * containing request is enough.
bc58ba94 1924 */
414b4ff5 1925 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1926 unsigned long duration = jiffies - req->start_time;
1927 const int rw = rq_data_dir(req);
1928 struct hd_struct *part;
1929 int cpu;
1930
1931 cpu = part_stat_lock();
09e099d4 1932 part = req->part;
bc58ba94
JA
1933
1934 part_stat_inc(cpu, part, ios[rw]);
1935 part_stat_add(cpu, part, ticks[rw], duration);
1936 part_round_stats(cpu, part);
316d315b 1937 part_dec_in_flight(part, rw);
bc58ba94 1938
6c23a968 1939 hd_struct_put(part);
bc58ba94
JA
1940 part_stat_unlock();
1941 }
1942}
1943
3bcddeac 1944/**
9934c8c0
TH
1945 * blk_peek_request - peek at the top of a request queue
1946 * @q: request queue to peek at
1947 *
1948 * Description:
1949 * Return the request at the top of @q. The returned request
1950 * should be started using blk_start_request() before LLD starts
1951 * processing it.
1952 *
1953 * Return:
1954 * Pointer to the request at the top of @q if available. Null
1955 * otherwise.
1956 *
1957 * Context:
1958 * queue_lock must be held.
1959 */
1960struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1961{
1962 struct request *rq;
1963 int ret;
1964
1965 while ((rq = __elv_next_request(q)) != NULL) {
1966 if (!(rq->cmd_flags & REQ_STARTED)) {
1967 /*
1968 * This is the first time the device driver
1969 * sees this request (possibly after
1970 * requeueing). Notify IO scheduler.
1971 */
33659ebb 1972 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1973 elv_activate_rq(q, rq);
1974
1975 /*
1976 * just mark as started even if we don't start
1977 * it, a request that has been delayed should
1978 * not be passed by new incoming requests
1979 */
1980 rq->cmd_flags |= REQ_STARTED;
1981 trace_block_rq_issue(q, rq);
1982 }
1983
1984 if (!q->boundary_rq || q->boundary_rq == rq) {
1985 q->end_sector = rq_end_sector(rq);
1986 q->boundary_rq = NULL;
1987 }
1988
1989 if (rq->cmd_flags & REQ_DONTPREP)
1990 break;
1991
2e46e8b2 1992 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1993 /*
1994 * make sure space for the drain appears we
1995 * know we can do this because max_hw_segments
1996 * has been adjusted to be one fewer than the
1997 * device can handle
1998 */
1999 rq->nr_phys_segments++;
2000 }
2001
2002 if (!q->prep_rq_fn)
2003 break;
2004
2005 ret = q->prep_rq_fn(q, rq);
2006 if (ret == BLKPREP_OK) {
2007 break;
2008 } else if (ret == BLKPREP_DEFER) {
2009 /*
2010 * the request may have been (partially) prepped.
2011 * we need to keep this request in the front to
2012 * avoid resource deadlock. REQ_STARTED will
2013 * prevent other fs requests from passing this one.
2014 */
2e46e8b2 2015 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2016 !(rq->cmd_flags & REQ_DONTPREP)) {
2017 /*
2018 * remove the space for the drain we added
2019 * so that we don't add it again
2020 */
2021 --rq->nr_phys_segments;
2022 }
2023
2024 rq = NULL;
2025 break;
2026 } else if (ret == BLKPREP_KILL) {
2027 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2028 /*
2029 * Mark this request as started so we don't trigger
2030 * any debug logic in the end I/O path.
2031 */
2032 blk_start_request(rq);
40cbbb78 2033 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2034 } else {
2035 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2036 break;
2037 }
2038 }
2039
2040 return rq;
2041}
9934c8c0 2042EXPORT_SYMBOL(blk_peek_request);
158dbda0 2043
9934c8c0 2044void blk_dequeue_request(struct request *rq)
158dbda0 2045{
9934c8c0
TH
2046 struct request_queue *q = rq->q;
2047
158dbda0
TH
2048 BUG_ON(list_empty(&rq->queuelist));
2049 BUG_ON(ELV_ON_HASH(rq));
2050
2051 list_del_init(&rq->queuelist);
2052
2053 /*
2054 * the time frame between a request being removed from the lists
2055 * and to it is freed is accounted as io that is in progress at
2056 * the driver side.
2057 */
9195291e 2058 if (blk_account_rq(rq)) {
0a7ae2ff 2059 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2060 set_io_start_time_ns(rq);
2061 }
158dbda0
TH
2062}
2063
9934c8c0
TH
2064/**
2065 * blk_start_request - start request processing on the driver
2066 * @req: request to dequeue
2067 *
2068 * Description:
2069 * Dequeue @req and start timeout timer on it. This hands off the
2070 * request to the driver.
2071 *
2072 * Block internal functions which don't want to start timer should
2073 * call blk_dequeue_request().
2074 *
2075 * Context:
2076 * queue_lock must be held.
2077 */
2078void blk_start_request(struct request *req)
2079{
2080 blk_dequeue_request(req);
2081
2082 /*
5f49f631
TH
2083 * We are now handing the request to the hardware, initialize
2084 * resid_len to full count and add the timeout handler.
9934c8c0 2085 */
5f49f631 2086 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2087 if (unlikely(blk_bidi_rq(req)))
2088 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2089
9934c8c0
TH
2090 blk_add_timer(req);
2091}
2092EXPORT_SYMBOL(blk_start_request);
2093
2094/**
2095 * blk_fetch_request - fetch a request from a request queue
2096 * @q: request queue to fetch a request from
2097 *
2098 * Description:
2099 * Return the request at the top of @q. The request is started on
2100 * return and LLD can start processing it immediately.
2101 *
2102 * Return:
2103 * Pointer to the request at the top of @q if available. Null
2104 * otherwise.
2105 *
2106 * Context:
2107 * queue_lock must be held.
2108 */
2109struct request *blk_fetch_request(struct request_queue *q)
2110{
2111 struct request *rq;
2112
2113 rq = blk_peek_request(q);
2114 if (rq)
2115 blk_start_request(rq);
2116 return rq;
2117}
2118EXPORT_SYMBOL(blk_fetch_request);
2119
3bcddeac 2120/**
2e60e022 2121 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2122 * @req: the request being processed
710027a4 2123 * @error: %0 for success, < %0 for error
8ebf9756 2124 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2125 *
2126 * Description:
8ebf9756
RD
2127 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2128 * the request structure even if @req doesn't have leftover.
2129 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2130 *
2131 * This special helper function is only for request stacking drivers
2132 * (e.g. request-based dm) so that they can handle partial completion.
2133 * Actual device drivers should use blk_end_request instead.
2134 *
2135 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2136 * %false return from this function.
3bcddeac
KU
2137 *
2138 * Return:
2e60e022
TH
2139 * %false - this request doesn't have any more data
2140 * %true - this request has more data
3bcddeac 2141 **/
2e60e022 2142bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2143{
5450d3e1 2144 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2145 struct bio *bio;
2146
2e60e022
TH
2147 if (!req->bio)
2148 return false;
2149
5f3ea37c 2150 trace_block_rq_complete(req->q, req);
2056a782 2151
1da177e4 2152 /*
6f41469c
TH
2153 * For fs requests, rq is just carrier of independent bio's
2154 * and each partial completion should be handled separately.
2155 * Reset per-request error on each partial completion.
2156 *
2157 * TODO: tj: This is too subtle. It would be better to let
2158 * low level drivers do what they see fit.
1da177e4 2159 */
33659ebb 2160 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2161 req->errors = 0;
2162
33659ebb
CH
2163 if (error && req->cmd_type == REQ_TYPE_FS &&
2164 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2165 char *error_type;
2166
2167 switch (error) {
2168 case -ENOLINK:
2169 error_type = "recoverable transport";
2170 break;
2171 case -EREMOTEIO:
2172 error_type = "critical target";
2173 break;
2174 case -EBADE:
2175 error_type = "critical nexus";
2176 break;
2177 case -EIO:
2178 default:
2179 error_type = "I/O";
2180 break;
2181 }
2182 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2183 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2184 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2185 }
2186
bc58ba94 2187 blk_account_io_completion(req, nr_bytes);
d72d904a 2188
1da177e4
LT
2189 total_bytes = bio_nbytes = 0;
2190 while ((bio = req->bio) != NULL) {
2191 int nbytes;
2192
2193 if (nr_bytes >= bio->bi_size) {
2194 req->bio = bio->bi_next;
2195 nbytes = bio->bi_size;
5bb23a68 2196 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2197 next_idx = 0;
2198 bio_nbytes = 0;
2199 } else {
2200 int idx = bio->bi_idx + next_idx;
2201
af498d7f 2202 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2203 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2204 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2205 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2206 break;
2207 }
2208
2209 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2210 BIO_BUG_ON(nbytes > bio->bi_size);
2211
2212 /*
2213 * not a complete bvec done
2214 */
2215 if (unlikely(nbytes > nr_bytes)) {
2216 bio_nbytes += nr_bytes;
2217 total_bytes += nr_bytes;
2218 break;
2219 }
2220
2221 /*
2222 * advance to the next vector
2223 */
2224 next_idx++;
2225 bio_nbytes += nbytes;
2226 }
2227
2228 total_bytes += nbytes;
2229 nr_bytes -= nbytes;
2230
6728cb0e
JA
2231 bio = req->bio;
2232 if (bio) {
1da177e4
LT
2233 /*
2234 * end more in this run, or just return 'not-done'
2235 */
2236 if (unlikely(nr_bytes <= 0))
2237 break;
2238 }
2239 }
2240
2241 /*
2242 * completely done
2243 */
2e60e022
TH
2244 if (!req->bio) {
2245 /*
2246 * Reset counters so that the request stacking driver
2247 * can find how many bytes remain in the request
2248 * later.
2249 */
a2dec7b3 2250 req->__data_len = 0;
2e60e022
TH
2251 return false;
2252 }
1da177e4
LT
2253
2254 /*
2255 * if the request wasn't completed, update state
2256 */
2257 if (bio_nbytes) {
5bb23a68 2258 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2259 bio->bi_idx += next_idx;
2260 bio_iovec(bio)->bv_offset += nr_bytes;
2261 bio_iovec(bio)->bv_len -= nr_bytes;
2262 }
2263
a2dec7b3 2264 req->__data_len -= total_bytes;
2e46e8b2
TH
2265 req->buffer = bio_data(req->bio);
2266
2267 /* update sector only for requests with clear definition of sector */
33659ebb 2268 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2269 req->__sector += total_bytes >> 9;
2e46e8b2 2270
80a761fd
TH
2271 /* mixed attributes always follow the first bio */
2272 if (req->cmd_flags & REQ_MIXED_MERGE) {
2273 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2274 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2275 }
2276
2e46e8b2
TH
2277 /*
2278 * If total number of sectors is less than the first segment
2279 * size, something has gone terribly wrong.
2280 */
2281 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2282 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2283 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2284 }
2285
2286 /* recalculate the number of segments */
1da177e4 2287 blk_recalc_rq_segments(req);
2e46e8b2 2288
2e60e022 2289 return true;
1da177e4 2290}
2e60e022 2291EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2292
2e60e022
TH
2293static bool blk_update_bidi_request(struct request *rq, int error,
2294 unsigned int nr_bytes,
2295 unsigned int bidi_bytes)
5efccd17 2296{
2e60e022
TH
2297 if (blk_update_request(rq, error, nr_bytes))
2298 return true;
5efccd17 2299
2e60e022
TH
2300 /* Bidi request must be completed as a whole */
2301 if (unlikely(blk_bidi_rq(rq)) &&
2302 blk_update_request(rq->next_rq, error, bidi_bytes))
2303 return true;
5efccd17 2304
e2e1a148
JA
2305 if (blk_queue_add_random(rq->q))
2306 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2307
2308 return false;
1da177e4
LT
2309}
2310
28018c24
JB
2311/**
2312 * blk_unprep_request - unprepare a request
2313 * @req: the request
2314 *
2315 * This function makes a request ready for complete resubmission (or
2316 * completion). It happens only after all error handling is complete,
2317 * so represents the appropriate moment to deallocate any resources
2318 * that were allocated to the request in the prep_rq_fn. The queue
2319 * lock is held when calling this.
2320 */
2321void blk_unprep_request(struct request *req)
2322{
2323 struct request_queue *q = req->q;
2324
2325 req->cmd_flags &= ~REQ_DONTPREP;
2326 if (q->unprep_rq_fn)
2327 q->unprep_rq_fn(q, req);
2328}
2329EXPORT_SYMBOL_GPL(blk_unprep_request);
2330
1da177e4
LT
2331/*
2332 * queue lock must be held
2333 */
2e60e022 2334static void blk_finish_request(struct request *req, int error)
1da177e4 2335{
b8286239
KU
2336 if (blk_rq_tagged(req))
2337 blk_queue_end_tag(req->q, req);
2338
ba396a6c 2339 BUG_ON(blk_queued_rq(req));
1da177e4 2340
33659ebb 2341 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2342 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2343
e78042e5
MA
2344 blk_delete_timer(req);
2345
28018c24
JB
2346 if (req->cmd_flags & REQ_DONTPREP)
2347 blk_unprep_request(req);
2348
2349
bc58ba94 2350 blk_account_io_done(req);
b8286239 2351
1da177e4 2352 if (req->end_io)
8ffdc655 2353 req->end_io(req, error);
b8286239
KU
2354 else {
2355 if (blk_bidi_rq(req))
2356 __blk_put_request(req->next_rq->q, req->next_rq);
2357
1da177e4 2358 __blk_put_request(req->q, req);
b8286239 2359 }
1da177e4
LT
2360}
2361
3b11313a 2362/**
2e60e022
TH
2363 * blk_end_bidi_request - Complete a bidi request
2364 * @rq: the request to complete
2365 * @error: %0 for success, < %0 for error
2366 * @nr_bytes: number of bytes to complete @rq
2367 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2368 *
2369 * Description:
e3a04fe3 2370 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2371 * Drivers that supports bidi can safely call this member for any
2372 * type of request, bidi or uni. In the later case @bidi_bytes is
2373 * just ignored.
336cdb40
KU
2374 *
2375 * Return:
2e60e022
TH
2376 * %false - we are done with this request
2377 * %true - still buffers pending for this request
a0cd1285 2378 **/
b1f74493 2379static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2380 unsigned int nr_bytes, unsigned int bidi_bytes)
2381{
336cdb40 2382 struct request_queue *q = rq->q;
2e60e022 2383 unsigned long flags;
32fab448 2384
2e60e022
TH
2385 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2386 return true;
32fab448 2387
336cdb40 2388 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2389 blk_finish_request(rq, error);
336cdb40
KU
2390 spin_unlock_irqrestore(q->queue_lock, flags);
2391
2e60e022 2392 return false;
32fab448
KU
2393}
2394
336cdb40 2395/**
2e60e022
TH
2396 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2397 * @rq: the request to complete
710027a4 2398 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2399 * @nr_bytes: number of bytes to complete @rq
2400 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2401 *
2402 * Description:
2e60e022
TH
2403 * Identical to blk_end_bidi_request() except that queue lock is
2404 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2405 *
2406 * Return:
2e60e022
TH
2407 * %false - we are done with this request
2408 * %true - still buffers pending for this request
336cdb40 2409 **/
4853abaa 2410bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2411 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2412{
2e60e022
TH
2413 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2414 return true;
336cdb40 2415
2e60e022 2416 blk_finish_request(rq, error);
336cdb40 2417
2e60e022 2418 return false;
336cdb40 2419}
e19a3ab0
KU
2420
2421/**
2422 * blk_end_request - Helper function for drivers to complete the request.
2423 * @rq: the request being processed
710027a4 2424 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2425 * @nr_bytes: number of bytes to complete
2426 *
2427 * Description:
2428 * Ends I/O on a number of bytes attached to @rq.
2429 * If @rq has leftover, sets it up for the next range of segments.
2430 *
2431 * Return:
b1f74493
FT
2432 * %false - we are done with this request
2433 * %true - still buffers pending for this request
e19a3ab0 2434 **/
b1f74493 2435bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2436{
b1f74493 2437 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2438}
56ad1740 2439EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2440
2441/**
b1f74493
FT
2442 * blk_end_request_all - Helper function for drives to finish the request.
2443 * @rq: the request to finish
8ebf9756 2444 * @error: %0 for success, < %0 for error
336cdb40
KU
2445 *
2446 * Description:
b1f74493
FT
2447 * Completely finish @rq.
2448 */
2449void blk_end_request_all(struct request *rq, int error)
336cdb40 2450{
b1f74493
FT
2451 bool pending;
2452 unsigned int bidi_bytes = 0;
336cdb40 2453
b1f74493
FT
2454 if (unlikely(blk_bidi_rq(rq)))
2455 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2456
b1f74493
FT
2457 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2458 BUG_ON(pending);
2459}
56ad1740 2460EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2461
b1f74493
FT
2462/**
2463 * blk_end_request_cur - Helper function to finish the current request chunk.
2464 * @rq: the request to finish the current chunk for
8ebf9756 2465 * @error: %0 for success, < %0 for error
b1f74493
FT
2466 *
2467 * Description:
2468 * Complete the current consecutively mapped chunk from @rq.
2469 *
2470 * Return:
2471 * %false - we are done with this request
2472 * %true - still buffers pending for this request
2473 */
2474bool blk_end_request_cur(struct request *rq, int error)
2475{
2476 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2477}
56ad1740 2478EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2479
80a761fd
TH
2480/**
2481 * blk_end_request_err - Finish a request till the next failure boundary.
2482 * @rq: the request to finish till the next failure boundary for
2483 * @error: must be negative errno
2484 *
2485 * Description:
2486 * Complete @rq till the next failure boundary.
2487 *
2488 * Return:
2489 * %false - we are done with this request
2490 * %true - still buffers pending for this request
2491 */
2492bool blk_end_request_err(struct request *rq, int error)
2493{
2494 WARN_ON(error >= 0);
2495 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2496}
2497EXPORT_SYMBOL_GPL(blk_end_request_err);
2498
e3a04fe3 2499/**
b1f74493
FT
2500 * __blk_end_request - Helper function for drivers to complete the request.
2501 * @rq: the request being processed
2502 * @error: %0 for success, < %0 for error
2503 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2504 *
2505 * Description:
b1f74493 2506 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2507 *
2508 * Return:
b1f74493
FT
2509 * %false - we are done with this request
2510 * %true - still buffers pending for this request
e3a04fe3 2511 **/
b1f74493 2512bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2513{
b1f74493 2514 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2515}
56ad1740 2516EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2517
32fab448 2518/**
b1f74493
FT
2519 * __blk_end_request_all - Helper function for drives to finish the request.
2520 * @rq: the request to finish
8ebf9756 2521 * @error: %0 for success, < %0 for error
32fab448
KU
2522 *
2523 * Description:
b1f74493 2524 * Completely finish @rq. Must be called with queue lock held.
32fab448 2525 */
b1f74493 2526void __blk_end_request_all(struct request *rq, int error)
32fab448 2527{
b1f74493
FT
2528 bool pending;
2529 unsigned int bidi_bytes = 0;
2530
2531 if (unlikely(blk_bidi_rq(rq)))
2532 bidi_bytes = blk_rq_bytes(rq->next_rq);
2533
2534 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2535 BUG_ON(pending);
32fab448 2536}
56ad1740 2537EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2538
e19a3ab0 2539/**
b1f74493
FT
2540 * __blk_end_request_cur - Helper function to finish the current request chunk.
2541 * @rq: the request to finish the current chunk for
8ebf9756 2542 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2543 *
2544 * Description:
b1f74493
FT
2545 * Complete the current consecutively mapped chunk from @rq. Must
2546 * be called with queue lock held.
e19a3ab0
KU
2547 *
2548 * Return:
b1f74493
FT
2549 * %false - we are done with this request
2550 * %true - still buffers pending for this request
2551 */
2552bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2553{
b1f74493 2554 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2555}
56ad1740 2556EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2557
80a761fd
TH
2558/**
2559 * __blk_end_request_err - Finish a request till the next failure boundary.
2560 * @rq: the request to finish till the next failure boundary for
2561 * @error: must be negative errno
2562 *
2563 * Description:
2564 * Complete @rq till the next failure boundary. Must be called
2565 * with queue lock held.
2566 *
2567 * Return:
2568 * %false - we are done with this request
2569 * %true - still buffers pending for this request
2570 */
2571bool __blk_end_request_err(struct request *rq, int error)
2572{
2573 WARN_ON(error >= 0);
2574 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2575}
2576EXPORT_SYMBOL_GPL(__blk_end_request_err);
2577
86db1e29
JA
2578void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2579 struct bio *bio)
1da177e4 2580{
a82afdfc 2581 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2582 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2583
fb2dce86
DW
2584 if (bio_has_data(bio)) {
2585 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2586 rq->buffer = bio_data(bio);
2587 }
a2dec7b3 2588 rq->__data_len = bio->bi_size;
1da177e4 2589 rq->bio = rq->biotail = bio;
1da177e4 2590
66846572
N
2591 if (bio->bi_bdev)
2592 rq->rq_disk = bio->bi_bdev->bd_disk;
2593}
1da177e4 2594
2d4dc890
IL
2595#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2596/**
2597 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2598 * @rq: the request to be flushed
2599 *
2600 * Description:
2601 * Flush all pages in @rq.
2602 */
2603void rq_flush_dcache_pages(struct request *rq)
2604{
2605 struct req_iterator iter;
2606 struct bio_vec *bvec;
2607
2608 rq_for_each_segment(bvec, rq, iter)
2609 flush_dcache_page(bvec->bv_page);
2610}
2611EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2612#endif
2613
ef9e3fac
KU
2614/**
2615 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2616 * @q : the queue of the device being checked
2617 *
2618 * Description:
2619 * Check if underlying low-level drivers of a device are busy.
2620 * If the drivers want to export their busy state, they must set own
2621 * exporting function using blk_queue_lld_busy() first.
2622 *
2623 * Basically, this function is used only by request stacking drivers
2624 * to stop dispatching requests to underlying devices when underlying
2625 * devices are busy. This behavior helps more I/O merging on the queue
2626 * of the request stacking driver and prevents I/O throughput regression
2627 * on burst I/O load.
2628 *
2629 * Return:
2630 * 0 - Not busy (The request stacking driver should dispatch request)
2631 * 1 - Busy (The request stacking driver should stop dispatching request)
2632 */
2633int blk_lld_busy(struct request_queue *q)
2634{
2635 if (q->lld_busy_fn)
2636 return q->lld_busy_fn(q);
2637
2638 return 0;
2639}
2640EXPORT_SYMBOL_GPL(blk_lld_busy);
2641
b0fd271d
KU
2642/**
2643 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2644 * @rq: the clone request to be cleaned up
2645 *
2646 * Description:
2647 * Free all bios in @rq for a cloned request.
2648 */
2649void blk_rq_unprep_clone(struct request *rq)
2650{
2651 struct bio *bio;
2652
2653 while ((bio = rq->bio) != NULL) {
2654 rq->bio = bio->bi_next;
2655
2656 bio_put(bio);
2657 }
2658}
2659EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2660
2661/*
2662 * Copy attributes of the original request to the clone request.
2663 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2664 */
2665static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2666{
2667 dst->cpu = src->cpu;
3a2edd0d 2668 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2669 dst->cmd_type = src->cmd_type;
2670 dst->__sector = blk_rq_pos(src);
2671 dst->__data_len = blk_rq_bytes(src);
2672 dst->nr_phys_segments = src->nr_phys_segments;
2673 dst->ioprio = src->ioprio;
2674 dst->extra_len = src->extra_len;
2675}
2676
2677/**
2678 * blk_rq_prep_clone - Helper function to setup clone request
2679 * @rq: the request to be setup
2680 * @rq_src: original request to be cloned
2681 * @bs: bio_set that bios for clone are allocated from
2682 * @gfp_mask: memory allocation mask for bio
2683 * @bio_ctr: setup function to be called for each clone bio.
2684 * Returns %0 for success, non %0 for failure.
2685 * @data: private data to be passed to @bio_ctr
2686 *
2687 * Description:
2688 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2689 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2690 * are not copied, and copying such parts is the caller's responsibility.
2691 * Also, pages which the original bios are pointing to are not copied
2692 * and the cloned bios just point same pages.
2693 * So cloned bios must be completed before original bios, which means
2694 * the caller must complete @rq before @rq_src.
2695 */
2696int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2697 struct bio_set *bs, gfp_t gfp_mask,
2698 int (*bio_ctr)(struct bio *, struct bio *, void *),
2699 void *data)
2700{
2701 struct bio *bio, *bio_src;
2702
2703 if (!bs)
2704 bs = fs_bio_set;
2705
2706 blk_rq_init(NULL, rq);
2707
2708 __rq_for_each_bio(bio_src, rq_src) {
2709 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2710 if (!bio)
2711 goto free_and_out;
2712
2713 __bio_clone(bio, bio_src);
2714
2715 if (bio_integrity(bio_src) &&
7878cba9 2716 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2717 goto free_and_out;
2718
2719 if (bio_ctr && bio_ctr(bio, bio_src, data))
2720 goto free_and_out;
2721
2722 if (rq->bio) {
2723 rq->biotail->bi_next = bio;
2724 rq->biotail = bio;
2725 } else
2726 rq->bio = rq->biotail = bio;
2727 }
2728
2729 __blk_rq_prep_clone(rq, rq_src);
2730
2731 return 0;
2732
2733free_and_out:
2734 if (bio)
2735 bio_free(bio, bs);
2736 blk_rq_unprep_clone(rq);
2737
2738 return -ENOMEM;
2739}
2740EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2741
18887ad9 2742int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2743{
2744 return queue_work(kblockd_workqueue, work);
2745}
1da177e4
LT
2746EXPORT_SYMBOL(kblockd_schedule_work);
2747
e43473b7
VG
2748int kblockd_schedule_delayed_work(struct request_queue *q,
2749 struct delayed_work *dwork, unsigned long delay)
2750{
2751 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2752}
2753EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2754
73c10101
JA
2755#define PLUG_MAGIC 0x91827364
2756
75df7136
SJ
2757/**
2758 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2759 * @plug: The &struct blk_plug that needs to be initialized
2760 *
2761 * Description:
2762 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2763 * pending I/O should the task end up blocking between blk_start_plug() and
2764 * blk_finish_plug(). This is important from a performance perspective, but
2765 * also ensures that we don't deadlock. For instance, if the task is blocking
2766 * for a memory allocation, memory reclaim could end up wanting to free a
2767 * page belonging to that request that is currently residing in our private
2768 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2769 * this kind of deadlock.
2770 */
73c10101
JA
2771void blk_start_plug(struct blk_plug *plug)
2772{
2773 struct task_struct *tsk = current;
2774
2775 plug->magic = PLUG_MAGIC;
2776 INIT_LIST_HEAD(&plug->list);
048c9374 2777 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2778 plug->should_sort = 0;
2779
2780 /*
2781 * If this is a nested plug, don't actually assign it. It will be
2782 * flushed on its own.
2783 */
2784 if (!tsk->plug) {
2785 /*
2786 * Store ordering should not be needed here, since a potential
2787 * preempt will imply a full memory barrier
2788 */
2789 tsk->plug = plug;
2790 }
2791}
2792EXPORT_SYMBOL(blk_start_plug);
2793
2794static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2795{
2796 struct request *rqa = container_of(a, struct request, queuelist);
2797 struct request *rqb = container_of(b, struct request, queuelist);
2798
f83e8261 2799 return !(rqa->q <= rqb->q);
73c10101
JA
2800}
2801
49cac01e
JA
2802/*
2803 * If 'from_schedule' is true, then postpone the dispatch of requests
2804 * until a safe kblockd context. We due this to avoid accidental big
2805 * additional stack usage in driver dispatch, in places where the originally
2806 * plugger did not intend it.
2807 */
f6603783 2808static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2809 bool from_schedule)
99e22598 2810 __releases(q->queue_lock)
94b5eb28 2811{
49cac01e 2812 trace_block_unplug(q, depth, !from_schedule);
99e22598 2813
8ba61435
TH
2814 /*
2815 * Don't mess with dead queue.
2816 */
2817 if (unlikely(blk_queue_dead(q))) {
2818 spin_unlock(q->queue_lock);
2819 return;
2820 }
2821
99e22598
JA
2822 /*
2823 * If we are punting this to kblockd, then we can safely drop
2824 * the queue_lock before waking kblockd (which needs to take
2825 * this lock).
2826 */
2827 if (from_schedule) {
2828 spin_unlock(q->queue_lock);
24ecfbe2 2829 blk_run_queue_async(q);
99e22598 2830 } else {
24ecfbe2 2831 __blk_run_queue(q);
99e22598
JA
2832 spin_unlock(q->queue_lock);
2833 }
2834
94b5eb28
JA
2835}
2836
048c9374
N
2837static void flush_plug_callbacks(struct blk_plug *plug)
2838{
2839 LIST_HEAD(callbacks);
2840
2841 if (list_empty(&plug->cb_list))
2842 return;
2843
2844 list_splice_init(&plug->cb_list, &callbacks);
2845
2846 while (!list_empty(&callbacks)) {
2847 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2848 struct blk_plug_cb,
2849 list);
2850 list_del(&cb->list);
2851 cb->callback(cb);
2852 }
2853}
2854
49cac01e 2855void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2856{
2857 struct request_queue *q;
2858 unsigned long flags;
2859 struct request *rq;
109b8129 2860 LIST_HEAD(list);
94b5eb28 2861 unsigned int depth;
73c10101
JA
2862
2863 BUG_ON(plug->magic != PLUG_MAGIC);
2864
048c9374 2865 flush_plug_callbacks(plug);
73c10101
JA
2866 if (list_empty(&plug->list))
2867 return;
2868
109b8129
N
2869 list_splice_init(&plug->list, &list);
2870
2871 if (plug->should_sort) {
2872 list_sort(NULL, &list, plug_rq_cmp);
2873 plug->should_sort = 0;
2874 }
73c10101
JA
2875
2876 q = NULL;
94b5eb28 2877 depth = 0;
18811272
JA
2878
2879 /*
2880 * Save and disable interrupts here, to avoid doing it for every
2881 * queue lock we have to take.
2882 */
73c10101 2883 local_irq_save(flags);
109b8129
N
2884 while (!list_empty(&list)) {
2885 rq = list_entry_rq(list.next);
73c10101 2886 list_del_init(&rq->queuelist);
73c10101
JA
2887 BUG_ON(!rq->q);
2888 if (rq->q != q) {
99e22598
JA
2889 /*
2890 * This drops the queue lock
2891 */
2892 if (q)
49cac01e 2893 queue_unplugged(q, depth, from_schedule);
73c10101 2894 q = rq->q;
94b5eb28 2895 depth = 0;
73c10101
JA
2896 spin_lock(q->queue_lock);
2897 }
8ba61435
TH
2898
2899 /*
2900 * Short-circuit if @q is dead
2901 */
2902 if (unlikely(blk_queue_dead(q))) {
2903 __blk_end_request_all(rq, -ENODEV);
2904 continue;
2905 }
2906
73c10101
JA
2907 /*
2908 * rq is already accounted, so use raw insert
2909 */
401a18e9
JA
2910 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2911 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2912 else
2913 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
2914
2915 depth++;
73c10101
JA
2916 }
2917
99e22598
JA
2918 /*
2919 * This drops the queue lock
2920 */
2921 if (q)
49cac01e 2922 queue_unplugged(q, depth, from_schedule);
73c10101 2923
73c10101
JA
2924 local_irq_restore(flags);
2925}
73c10101
JA
2926
2927void blk_finish_plug(struct blk_plug *plug)
2928{
f6603783 2929 blk_flush_plug_list(plug, false);
73c10101 2930
88b996cd
CH
2931 if (plug == current->plug)
2932 current->plug = NULL;
73c10101 2933}
88b996cd 2934EXPORT_SYMBOL(blk_finish_plug);
73c10101 2935
1da177e4
LT
2936int __init blk_dev_init(void)
2937{
9eb55b03
NK
2938 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2939 sizeof(((struct request *)0)->cmd_flags));
2940
89b90be2
TH
2941 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2942 kblockd_workqueue = alloc_workqueue("kblockd",
2943 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2944 if (!kblockd_workqueue)
2945 panic("Failed to create kblockd\n");
2946
2947 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2948 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2949
8324aa91 2950 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2951 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2952
d38ecf93 2953 return 0;
1da177e4 2954}