]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
Mark mandatory elevator functions in the biodoc.txt
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
2056a782 29#include <linux/blktrace_api.h>
c17bb495 30#include <linux/fault-inject.h>
5f3ea37c 31#include <trace/block.h>
1da177e4 32
8324aa91
JA
33#include "blk.h"
34
0bfc2455
IM
35DEFINE_TRACE(block_plug);
36DEFINE_TRACE(block_unplug_io);
37DEFINE_TRACE(block_unplug_timer);
38DEFINE_TRACE(block_getrq);
39DEFINE_TRACE(block_sleeprq);
40DEFINE_TRACE(block_rq_requeue);
41DEFINE_TRACE(block_bio_backmerge);
42DEFINE_TRACE(block_bio_frontmerge);
43DEFINE_TRACE(block_bio_queue);
44DEFINE_TRACE(block_rq_complete);
45DEFINE_TRACE(block_remap); /* Also used in drivers/md/dm.c */
46EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
47
165125e1 48static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
49
50/*
51 * For the allocated request tables
52 */
5ece6c52 53static struct kmem_cache *request_cachep;
1da177e4
LT
54
55/*
56 * For queue allocation
57 */
6728cb0e 58struct kmem_cache *blk_requestq_cachep;
1da177e4 59
1da177e4
LT
60/*
61 * Controlling structure to kblockd
62 */
ff856bad 63static struct workqueue_struct *kblockd_workqueue;
1da177e4 64
26b8256e
JA
65static void drive_stat_acct(struct request *rq, int new_io)
66{
28f13702 67 struct hd_struct *part;
26b8256e 68 int rw = rq_data_dir(rq);
c9959059 69 int cpu;
26b8256e
JA
70
71 if (!blk_fs_request(rq) || !rq->rq_disk)
72 return;
73
074a7aca 74 cpu = part_stat_lock();
e71bf0d0 75 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
c9959059 76
28f13702 77 if (!new_io)
074a7aca 78 part_stat_inc(cpu, part, merges[rw]);
28f13702 79 else {
074a7aca
TH
80 part_round_stats(cpu, part);
81 part_inc_in_flight(part);
26b8256e 82 }
e71bf0d0 83
074a7aca 84 part_stat_unlock();
26b8256e
JA
85}
86
8324aa91 87void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
88{
89 int nr;
90
91 nr = q->nr_requests - (q->nr_requests / 8) + 1;
92 if (nr > q->nr_requests)
93 nr = q->nr_requests;
94 q->nr_congestion_on = nr;
95
96 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
97 if (nr < 1)
98 nr = 1;
99 q->nr_congestion_off = nr;
100}
101
1da177e4
LT
102/**
103 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
104 * @bdev: device
105 *
106 * Locates the passed device's request queue and returns the address of its
107 * backing_dev_info
108 *
109 * Will return NULL if the request queue cannot be located.
110 */
111struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
112{
113 struct backing_dev_info *ret = NULL;
165125e1 114 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
115
116 if (q)
117 ret = &q->backing_dev_info;
118 return ret;
119}
1da177e4
LT
120EXPORT_SYMBOL(blk_get_backing_dev_info);
121
2a4aa30c 122void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 123{
1afb20f3
FT
124 memset(rq, 0, sizeof(*rq));
125
1da177e4 126 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 127 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 128 rq->cpu = -1;
63a71386
JA
129 rq->q = q;
130 rq->sector = rq->hard_sector = (sector_t) -1;
2e662b65
JA
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 133 rq->cmd = rq->__cmd;
63a71386 134 rq->tag = -1;
1da177e4 135 rq->ref_count = 1;
1da177e4 136}
2a4aa30c 137EXPORT_SYMBOL(blk_rq_init);
1da177e4 138
5bb23a68
N
139static void req_bio_endio(struct request *rq, struct bio *bio,
140 unsigned int nbytes, int error)
1da177e4 141{
165125e1 142 struct request_queue *q = rq->q;
797e7dbb 143
5bb23a68
N
144 if (&q->bar_rq != rq) {
145 if (error)
146 clear_bit(BIO_UPTODATE, &bio->bi_flags);
147 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
148 error = -EIO;
797e7dbb 149
5bb23a68 150 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 151 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 152 __func__, nbytes, bio->bi_size);
5bb23a68
N
153 nbytes = bio->bi_size;
154 }
797e7dbb 155
08bafc03
KM
156 if (unlikely(rq->cmd_flags & REQ_QUIET))
157 set_bit(BIO_QUIET, &bio->bi_flags);
158
5bb23a68
N
159 bio->bi_size -= nbytes;
160 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
161
162 if (bio_integrity(bio))
163 bio_integrity_advance(bio, nbytes);
164
5bb23a68 165 if (bio->bi_size == 0)
6712ecf8 166 bio_endio(bio, error);
5bb23a68
N
167 } else {
168
169 /*
170 * Okay, this is the barrier request in progress, just
171 * record the error;
172 */
173 if (error && !q->orderr)
174 q->orderr = error;
175 }
1da177e4 176}
1da177e4 177
1da177e4
LT
178void blk_dump_rq_flags(struct request *rq, char *msg)
179{
180 int bit;
181
6728cb0e 182 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
183 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
184 rq->cmd_flags);
1da177e4 185
6728cb0e
JA
186 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
187 (unsigned long long)rq->sector,
188 rq->nr_sectors,
189 rq->current_nr_sectors);
190 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
191 rq->bio, rq->biotail,
192 rq->buffer, rq->data,
193 rq->data_len);
1da177e4 194
4aff5e23 195 if (blk_pc_request(rq)) {
6728cb0e 196 printk(KERN_INFO " cdb: ");
d34c87e4 197 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
198 printk("%02x ", rq->cmd[bit]);
199 printk("\n");
200 }
201}
1da177e4
LT
202EXPORT_SYMBOL(blk_dump_rq_flags);
203
1da177e4
LT
204/*
205 * "plug" the device if there are no outstanding requests: this will
206 * force the transfer to start only after we have put all the requests
207 * on the list.
208 *
209 * This is called with interrupts off and no requests on the queue and
210 * with the queue lock held.
211 */
165125e1 212void blk_plug_device(struct request_queue *q)
1da177e4
LT
213{
214 WARN_ON(!irqs_disabled());
215
216 /*
217 * don't plug a stopped queue, it must be paired with blk_start_queue()
218 * which will restart the queueing
219 */
7daac490 220 if (blk_queue_stopped(q))
1da177e4
LT
221 return;
222
e48ec690 223 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 224 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 225 trace_block_plug(q);
2056a782 226 }
1da177e4 227}
1da177e4
LT
228EXPORT_SYMBOL(blk_plug_device);
229
6c5e0c4d
JA
230/**
231 * blk_plug_device_unlocked - plug a device without queue lock held
232 * @q: The &struct request_queue to plug
233 *
234 * Description:
235 * Like @blk_plug_device(), but grabs the queue lock and disables
236 * interrupts.
237 **/
238void blk_plug_device_unlocked(struct request_queue *q)
239{
240 unsigned long flags;
241
242 spin_lock_irqsave(q->queue_lock, flags);
243 blk_plug_device(q);
244 spin_unlock_irqrestore(q->queue_lock, flags);
245}
246EXPORT_SYMBOL(blk_plug_device_unlocked);
247
1da177e4
LT
248/*
249 * remove the queue from the plugged list, if present. called with
250 * queue lock held and interrupts disabled.
251 */
165125e1 252int blk_remove_plug(struct request_queue *q)
1da177e4
LT
253{
254 WARN_ON(!irqs_disabled());
255
e48ec690 256 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
257 return 0;
258
259 del_timer(&q->unplug_timer);
260 return 1;
261}
1da177e4
LT
262EXPORT_SYMBOL(blk_remove_plug);
263
264/*
265 * remove the plug and let it rip..
266 */
165125e1 267void __generic_unplug_device(struct request_queue *q)
1da177e4 268{
7daac490 269 if (unlikely(blk_queue_stopped(q)))
1da177e4 270 return;
a31a9738 271 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
1da177e4
LT
272 return;
273
22e2c507 274 q->request_fn(q);
1da177e4 275}
1da177e4
LT
276
277/**
278 * generic_unplug_device - fire a request queue
165125e1 279 * @q: The &struct request_queue in question
1da177e4
LT
280 *
281 * Description:
282 * Linux uses plugging to build bigger requests queues before letting
283 * the device have at them. If a queue is plugged, the I/O scheduler
284 * is still adding and merging requests on the queue. Once the queue
285 * gets unplugged, the request_fn defined for the queue is invoked and
286 * transfers started.
287 **/
165125e1 288void generic_unplug_device(struct request_queue *q)
1da177e4 289{
dbaf2c00
JA
290 if (blk_queue_plugged(q)) {
291 spin_lock_irq(q->queue_lock);
292 __generic_unplug_device(q);
293 spin_unlock_irq(q->queue_lock);
294 }
1da177e4
LT
295}
296EXPORT_SYMBOL(generic_unplug_device);
297
298static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
299 struct page *page)
300{
165125e1 301 struct request_queue *q = bdi->unplug_io_data;
1da177e4 302
2ad8b1ef 303 blk_unplug(q);
1da177e4
LT
304}
305
86db1e29 306void blk_unplug_work(struct work_struct *work)
1da177e4 307{
165125e1
JA
308 struct request_queue *q =
309 container_of(work, struct request_queue, unplug_work);
1da177e4 310
5f3ea37c 311 trace_block_unplug_io(q);
1da177e4
LT
312 q->unplug_fn(q);
313}
314
86db1e29 315void blk_unplug_timeout(unsigned long data)
1da177e4 316{
165125e1 317 struct request_queue *q = (struct request_queue *)data;
1da177e4 318
5f3ea37c 319 trace_block_unplug_timer(q);
18887ad9 320 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
321}
322
2ad8b1ef
AB
323void blk_unplug(struct request_queue *q)
324{
325 /*
326 * devices don't necessarily have an ->unplug_fn defined
327 */
328 if (q->unplug_fn) {
5f3ea37c 329 trace_block_unplug_io(q);
2ad8b1ef
AB
330 q->unplug_fn(q);
331 }
332}
333EXPORT_SYMBOL(blk_unplug);
334
c7c22e4d
JA
335static void blk_invoke_request_fn(struct request_queue *q)
336{
80a4b58e
JA
337 if (unlikely(blk_queue_stopped(q)))
338 return;
339
c7c22e4d
JA
340 /*
341 * one level of recursion is ok and is much faster than kicking
342 * the unplug handling
343 */
344 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
345 q->request_fn(q);
346 queue_flag_clear(QUEUE_FLAG_REENTER, q);
347 } else {
348 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
349 kblockd_schedule_work(q, &q->unplug_work);
350 }
351}
352
1da177e4
LT
353/**
354 * blk_start_queue - restart a previously stopped queue
165125e1 355 * @q: The &struct request_queue in question
1da177e4
LT
356 *
357 * Description:
358 * blk_start_queue() will clear the stop flag on the queue, and call
359 * the request_fn for the queue if it was in a stopped state when
360 * entered. Also see blk_stop_queue(). Queue lock must be held.
361 **/
165125e1 362void blk_start_queue(struct request_queue *q)
1da177e4 363{
a038e253
PBG
364 WARN_ON(!irqs_disabled());
365
75ad23bc 366 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
c7c22e4d 367 blk_invoke_request_fn(q);
1da177e4 368}
1da177e4
LT
369EXPORT_SYMBOL(blk_start_queue);
370
371/**
372 * blk_stop_queue - stop a queue
165125e1 373 * @q: The &struct request_queue in question
1da177e4
LT
374 *
375 * Description:
376 * The Linux block layer assumes that a block driver will consume all
377 * entries on the request queue when the request_fn strategy is called.
378 * Often this will not happen, because of hardware limitations (queue
379 * depth settings). If a device driver gets a 'queue full' response,
380 * or if it simply chooses not to queue more I/O at one point, it can
381 * call this function to prevent the request_fn from being called until
382 * the driver has signalled it's ready to go again. This happens by calling
383 * blk_start_queue() to restart queue operations. Queue lock must be held.
384 **/
165125e1 385void blk_stop_queue(struct request_queue *q)
1da177e4
LT
386{
387 blk_remove_plug(q);
75ad23bc 388 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
389}
390EXPORT_SYMBOL(blk_stop_queue);
391
392/**
393 * blk_sync_queue - cancel any pending callbacks on a queue
394 * @q: the queue
395 *
396 * Description:
397 * The block layer may perform asynchronous callback activity
398 * on a queue, such as calling the unplug function after a timeout.
399 * A block device may call blk_sync_queue to ensure that any
400 * such activity is cancelled, thus allowing it to release resources
59c51591 401 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
402 * that its ->make_request_fn will not re-add plugging prior to calling
403 * this function.
404 *
405 */
406void blk_sync_queue(struct request_queue *q)
407{
408 del_timer_sync(&q->unplug_timer);
70ed28b9 409 del_timer_sync(&q->timeout);
64d01dc9 410 cancel_work_sync(&q->unplug_work);
1da177e4
LT
411}
412EXPORT_SYMBOL(blk_sync_queue);
413
414/**
80a4b58e 415 * __blk_run_queue - run a single device queue
1da177e4 416 * @q: The queue to run
80a4b58e
JA
417 *
418 * Description:
419 * See @blk_run_queue. This variant must be called with the queue lock
420 * held and interrupts disabled.
421 *
1da177e4 422 */
75ad23bc 423void __blk_run_queue(struct request_queue *q)
1da177e4 424{
1da177e4 425 blk_remove_plug(q);
dac07ec1
JA
426
427 /*
428 * Only recurse once to avoid overrunning the stack, let the unplug
429 * handling reinvoke the handler shortly if we already got there.
430 */
c7c22e4d
JA
431 if (!elv_queue_empty(q))
432 blk_invoke_request_fn(q);
75ad23bc
NP
433}
434EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 435
75ad23bc
NP
436/**
437 * blk_run_queue - run a single device queue
438 * @q: The queue to run
80a4b58e
JA
439 *
440 * Description:
441 * Invoke request handling on this queue, if it has pending work to do.
442 * May be used to restart queueing when a request has completed. Also
443 * See @blk_start_queueing.
444 *
75ad23bc
NP
445 */
446void blk_run_queue(struct request_queue *q)
447{
448 unsigned long flags;
449
450 spin_lock_irqsave(q->queue_lock, flags);
451 __blk_run_queue(q);
1da177e4
LT
452 spin_unlock_irqrestore(q->queue_lock, flags);
453}
454EXPORT_SYMBOL(blk_run_queue);
455
165125e1 456void blk_put_queue(struct request_queue *q)
483f4afc
AV
457{
458 kobject_put(&q->kobj);
459}
483f4afc 460
6728cb0e 461void blk_cleanup_queue(struct request_queue *q)
483f4afc 462{
e3335de9
JA
463 /*
464 * We know we have process context here, so we can be a little
465 * cautious and ensure that pending block actions on this device
466 * are done before moving on. Going into this function, we should
467 * not have processes doing IO to this device.
468 */
469 blk_sync_queue(q);
470
483f4afc 471 mutex_lock(&q->sysfs_lock);
75ad23bc 472 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
473 mutex_unlock(&q->sysfs_lock);
474
475 if (q->elevator)
476 elevator_exit(q->elevator);
477
478 blk_put_queue(q);
479}
1da177e4
LT
480EXPORT_SYMBOL(blk_cleanup_queue);
481
165125e1 482static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
483{
484 struct request_list *rl = &q->rq;
485
486 rl->count[READ] = rl->count[WRITE] = 0;
487 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 488 rl->elvpriv = 0;
1da177e4
LT
489 init_waitqueue_head(&rl->wait[READ]);
490 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 491
1946089a
CL
492 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
493 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
494
495 if (!rl->rq_pool)
496 return -ENOMEM;
497
498 return 0;
499}
500
165125e1 501struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 502{
1946089a
CL
503 return blk_alloc_queue_node(gfp_mask, -1);
504}
505EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 506
165125e1 507struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 508{
165125e1 509 struct request_queue *q;
e0bf68dd 510 int err;
1946089a 511
8324aa91 512 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 513 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
514 if (!q)
515 return NULL;
516
e0bf68dd
PZ
517 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
518 q->backing_dev_info.unplug_io_data = q;
519 err = bdi_init(&q->backing_dev_info);
520 if (err) {
8324aa91 521 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
522 return NULL;
523 }
524
1da177e4 525 init_timer(&q->unplug_timer);
242f9dcb
JA
526 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
527 INIT_LIST_HEAD(&q->timeout_list);
713ada9b 528 INIT_WORK(&q->unplug_work, blk_unplug_work);
483f4afc 529
8324aa91 530 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 531
483f4afc 532 mutex_init(&q->sysfs_lock);
e7e72bf6 533 spin_lock_init(&q->__queue_lock);
483f4afc 534
1da177e4
LT
535 return q;
536}
1946089a 537EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
538
539/**
540 * blk_init_queue - prepare a request queue for use with a block device
541 * @rfn: The function to be called to process requests that have been
542 * placed on the queue.
543 * @lock: Request queue spin lock
544 *
545 * Description:
546 * If a block device wishes to use the standard request handling procedures,
547 * which sorts requests and coalesces adjacent requests, then it must
548 * call blk_init_queue(). The function @rfn will be called when there
549 * are requests on the queue that need to be processed. If the device
550 * supports plugging, then @rfn may not be called immediately when requests
551 * are available on the queue, but may be called at some time later instead.
552 * Plugged queues are generally unplugged when a buffer belonging to one
553 * of the requests on the queue is needed, or due to memory pressure.
554 *
555 * @rfn is not required, or even expected, to remove all requests off the
556 * queue, but only as many as it can handle at a time. If it does leave
557 * requests on the queue, it is responsible for arranging that the requests
558 * get dealt with eventually.
559 *
560 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
561 * request queue; this lock will be taken also from interrupt context, so irq
562 * disabling is needed for it.
1da177e4 563 *
710027a4 564 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
565 * it didn't succeed.
566 *
567 * Note:
568 * blk_init_queue() must be paired with a blk_cleanup_queue() call
569 * when the block device is deactivated (such as at module unload).
570 **/
1946089a 571
165125e1 572struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 573{
1946089a
CL
574 return blk_init_queue_node(rfn, lock, -1);
575}
576EXPORT_SYMBOL(blk_init_queue);
577
165125e1 578struct request_queue *
1946089a
CL
579blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
580{
165125e1 581 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
582
583 if (!q)
584 return NULL;
585
1946089a 586 q->node = node_id;
8669aafd 587 if (blk_init_free_list(q)) {
8324aa91 588 kmem_cache_free(blk_requestq_cachep, q);
8669aafd
AV
589 return NULL;
590 }
1da177e4 591
152587de
JA
592 /*
593 * if caller didn't supply a lock, they get per-queue locking with
594 * our embedded lock
595 */
e7e72bf6 596 if (!lock)
152587de 597 lock = &q->__queue_lock;
152587de 598
1da177e4 599 q->request_fn = rfn;
1da177e4
LT
600 q->prep_rq_fn = NULL;
601 q->unplug_fn = generic_unplug_device;
4ee5eaf4
KU
602 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER |
603 1 << QUEUE_FLAG_STACKABLE);
1da177e4
LT
604 q->queue_lock = lock;
605
0e435ac2 606 blk_queue_segment_boundary(q, BLK_SEG_BOUNDARY_MASK);
1da177e4
LT
607
608 blk_queue_make_request(q, __make_request);
609 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
610
611 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
612 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
613
44ec9542
AS
614 q->sg_reserved_size = INT_MAX;
615
abf54393
FT
616 blk_set_cmd_filter_defaults(&q->cmd_filter);
617
1da177e4
LT
618 /*
619 * all done
620 */
621 if (!elevator_init(q, NULL)) {
622 blk_queue_congestion_threshold(q);
623 return q;
624 }
625
8669aafd 626 blk_put_queue(q);
1da177e4
LT
627 return NULL;
628}
1946089a 629EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 630
165125e1 631int blk_get_queue(struct request_queue *q)
1da177e4 632{
fde6ad22 633 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 634 kobject_get(&q->kobj);
1da177e4
LT
635 return 0;
636 }
637
638 return 1;
639}
1da177e4 640
165125e1 641static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 642{
4aff5e23 643 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 644 elv_put_request(q, rq);
1da177e4
LT
645 mempool_free(rq, q->rq.rq_pool);
646}
647
1ea25ecb 648static struct request *
165125e1 649blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
650{
651 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
652
653 if (!rq)
654 return NULL;
655
2a4aa30c 656 blk_rq_init(q, rq);
1afb20f3 657
49171e5c 658 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 659
cb98fc8b 660 if (priv) {
cb78b285 661 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
662 mempool_free(rq, q->rq.rq_pool);
663 return NULL;
664 }
4aff5e23 665 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 666 }
1da177e4 667
cb98fc8b 668 return rq;
1da177e4
LT
669}
670
671/*
672 * ioc_batching returns true if the ioc is a valid batching request and
673 * should be given priority access to a request.
674 */
165125e1 675static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
676{
677 if (!ioc)
678 return 0;
679
680 /*
681 * Make sure the process is able to allocate at least 1 request
682 * even if the batch times out, otherwise we could theoretically
683 * lose wakeups.
684 */
685 return ioc->nr_batch_requests == q->nr_batching ||
686 (ioc->nr_batch_requests > 0
687 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
688}
689
690/*
691 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
692 * will cause the process to be a "batcher" on all queues in the system. This
693 * is the behaviour we want though - once it gets a wakeup it should be given
694 * a nice run.
695 */
165125e1 696static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
697{
698 if (!ioc || ioc_batching(q, ioc))
699 return;
700
701 ioc->nr_batch_requests = q->nr_batching;
702 ioc->last_waited = jiffies;
703}
704
165125e1 705static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
706{
707 struct request_list *rl = &q->rq;
708
709 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 710 blk_clear_queue_congested(q, rw);
1da177e4
LT
711
712 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
713 if (waitqueue_active(&rl->wait[rw]))
714 wake_up(&rl->wait[rw]);
715
716 blk_clear_queue_full(q, rw);
717 }
718}
719
720/*
721 * A request has just been released. Account for it, update the full and
722 * congestion status, wake up any waiters. Called under q->queue_lock.
723 */
165125e1 724static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
725{
726 struct request_list *rl = &q->rq;
727
728 rl->count[rw]--;
cb98fc8b
TH
729 if (priv)
730 rl->elvpriv--;
1da177e4
LT
731
732 __freed_request(q, rw);
733
734 if (unlikely(rl->starved[rw ^ 1]))
735 __freed_request(q, rw ^ 1);
1da177e4
LT
736}
737
738#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
739/*
d6344532
NP
740 * Get a free request, queue_lock must be held.
741 * Returns NULL on failure, with queue_lock held.
742 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 743 */
165125e1 744static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 745 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
746{
747 struct request *rq = NULL;
748 struct request_list *rl = &q->rq;
88ee5ef1 749 struct io_context *ioc = NULL;
7749a8d4 750 const int rw = rw_flags & 0x01;
88ee5ef1
JA
751 int may_queue, priv;
752
7749a8d4 753 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
754 if (may_queue == ELV_MQUEUE_NO)
755 goto rq_starved;
756
757 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
758 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 759 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
760 /*
761 * The queue will fill after this allocation, so set
762 * it as full, and mark this process as "batching".
763 * This process will be allowed to complete a batch of
764 * requests, others will be blocked.
765 */
766 if (!blk_queue_full(q, rw)) {
767 ioc_set_batching(q, ioc);
768 blk_set_queue_full(q, rw);
769 } else {
770 if (may_queue != ELV_MQUEUE_MUST
771 && !ioc_batching(q, ioc)) {
772 /*
773 * The queue is full and the allocating
774 * process is not a "batcher", and not
775 * exempted by the IO scheduler
776 */
777 goto out;
778 }
779 }
1da177e4 780 }
79e2de4b 781 blk_set_queue_congested(q, rw);
1da177e4
LT
782 }
783
082cf69e
JA
784 /*
785 * Only allow batching queuers to allocate up to 50% over the defined
786 * limit of requests, otherwise we could have thousands of requests
787 * allocated with any setting of ->nr_requests
788 */
fd782a4a 789 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 790 goto out;
fd782a4a 791
1da177e4
LT
792 rl->count[rw]++;
793 rl->starved[rw] = 0;
cb98fc8b 794
64521d1a 795 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
796 if (priv)
797 rl->elvpriv++;
798
1da177e4
LT
799 spin_unlock_irq(q->queue_lock);
800
7749a8d4 801 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 802 if (unlikely(!rq)) {
1da177e4
LT
803 /*
804 * Allocation failed presumably due to memory. Undo anything
805 * we might have messed up.
806 *
807 * Allocating task should really be put onto the front of the
808 * wait queue, but this is pretty rare.
809 */
810 spin_lock_irq(q->queue_lock);
cb98fc8b 811 freed_request(q, rw, priv);
1da177e4
LT
812
813 /*
814 * in the very unlikely event that allocation failed and no
815 * requests for this direction was pending, mark us starved
816 * so that freeing of a request in the other direction will
817 * notice us. another possible fix would be to split the
818 * rq mempool into READ and WRITE
819 */
820rq_starved:
821 if (unlikely(rl->count[rw] == 0))
822 rl->starved[rw] = 1;
823
1da177e4
LT
824 goto out;
825 }
826
88ee5ef1
JA
827 /*
828 * ioc may be NULL here, and ioc_batching will be false. That's
829 * OK, if the queue is under the request limit then requests need
830 * not count toward the nr_batch_requests limit. There will always
831 * be some limit enforced by BLK_BATCH_TIME.
832 */
1da177e4
LT
833 if (ioc_batching(q, ioc))
834 ioc->nr_batch_requests--;
6728cb0e 835
5f3ea37c 836 trace_block_getrq(q, bio, rw);
1da177e4 837out:
1da177e4
LT
838 return rq;
839}
840
841/*
842 * No available requests for this queue, unplug the device and wait for some
843 * requests to become available.
d6344532
NP
844 *
845 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 846 */
165125e1 847static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 848 struct bio *bio)
1da177e4 849{
7749a8d4 850 const int rw = rw_flags & 0x01;
1da177e4
LT
851 struct request *rq;
852
7749a8d4 853 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
854 while (!rq) {
855 DEFINE_WAIT(wait);
05caf8db 856 struct io_context *ioc;
1da177e4
LT
857 struct request_list *rl = &q->rq;
858
859 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
860 TASK_UNINTERRUPTIBLE);
861
5f3ea37c 862 trace_block_sleeprq(q, bio, rw);
1da177e4 863
05caf8db
ZY
864 __generic_unplug_device(q);
865 spin_unlock_irq(q->queue_lock);
866 io_schedule();
1da177e4 867
05caf8db
ZY
868 /*
869 * After sleeping, we become a "batching" process and
870 * will be able to allocate at least one request, and
871 * up to a big batch of them for a small period time.
872 * See ioc_batching, ioc_set_batching
873 */
874 ioc = current_io_context(GFP_NOIO, q->node);
875 ioc_set_batching(q, ioc);
d6344532 876
05caf8db 877 spin_lock_irq(q->queue_lock);
1da177e4 878 finish_wait(&rl->wait[rw], &wait);
05caf8db
ZY
879
880 rq = get_request(q, rw_flags, bio, GFP_NOIO);
881 };
1da177e4
LT
882
883 return rq;
884}
885
165125e1 886struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
887{
888 struct request *rq;
889
890 BUG_ON(rw != READ && rw != WRITE);
891
d6344532
NP
892 spin_lock_irq(q->queue_lock);
893 if (gfp_mask & __GFP_WAIT) {
22e2c507 894 rq = get_request_wait(q, rw, NULL);
d6344532 895 } else {
22e2c507 896 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
897 if (!rq)
898 spin_unlock_irq(q->queue_lock);
899 }
900 /* q->queue_lock is unlocked at this point */
1da177e4
LT
901
902 return rq;
903}
1da177e4
LT
904EXPORT_SYMBOL(blk_get_request);
905
dc72ef4a
JA
906/**
907 * blk_start_queueing - initiate dispatch of requests to device
908 * @q: request queue to kick into gear
909 *
910 * This is basically a helper to remove the need to know whether a queue
911 * is plugged or not if someone just wants to initiate dispatch of requests
80a4b58e
JA
912 * for this queue. Should be used to start queueing on a device outside
913 * of ->request_fn() context. Also see @blk_run_queue.
dc72ef4a
JA
914 *
915 * The queue lock must be held with interrupts disabled.
916 */
165125e1 917void blk_start_queueing(struct request_queue *q)
dc72ef4a 918{
336c3d8c
EO
919 if (!blk_queue_plugged(q)) {
920 if (unlikely(blk_queue_stopped(q)))
921 return;
dc72ef4a 922 q->request_fn(q);
336c3d8c 923 } else
dc72ef4a
JA
924 __generic_unplug_device(q);
925}
926EXPORT_SYMBOL(blk_start_queueing);
927
1da177e4
LT
928/**
929 * blk_requeue_request - put a request back on queue
930 * @q: request queue where request should be inserted
931 * @rq: request to be inserted
932 *
933 * Description:
934 * Drivers often keep queueing requests until the hardware cannot accept
935 * more, when that condition happens we need to put the request back
936 * on the queue. Must be called with queue lock held.
937 */
165125e1 938void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 939{
242f9dcb
JA
940 blk_delete_timer(rq);
941 blk_clear_rq_complete(rq);
5f3ea37c 942 trace_block_rq_requeue(q, rq);
2056a782 943
1da177e4
LT
944 if (blk_rq_tagged(rq))
945 blk_queue_end_tag(q, rq);
946
947 elv_requeue_request(q, rq);
948}
1da177e4
LT
949EXPORT_SYMBOL(blk_requeue_request);
950
951/**
710027a4 952 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
953 * @q: request queue where request should be inserted
954 * @rq: request to be inserted
955 * @at_head: insert request at head or tail of queue
956 * @data: private data
1da177e4
LT
957 *
958 * Description:
959 * Many block devices need to execute commands asynchronously, so they don't
960 * block the whole kernel from preemption during request execution. This is
961 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
962 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
963 * be scheduled for actual execution by the request queue.
1da177e4
LT
964 *
965 * We have the option of inserting the head or the tail of the queue.
966 * Typically we use the tail for new ioctls and so forth. We use the head
967 * of the queue for things like a QUEUE_FULL message from a device, or a
968 * host that is unable to accept a particular command.
969 */
165125e1 970void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 971 int at_head, void *data)
1da177e4 972{
867d1191 973 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
974 unsigned long flags;
975
976 /*
977 * tell I/O scheduler that this isn't a regular read/write (ie it
978 * must not attempt merges on this) and that it acts as a soft
979 * barrier
980 */
4aff5e23
JA
981 rq->cmd_type = REQ_TYPE_SPECIAL;
982 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
983
984 rq->special = data;
985
986 spin_lock_irqsave(q->queue_lock, flags);
987
988 /*
989 * If command is tagged, release the tag
990 */
867d1191
TH
991 if (blk_rq_tagged(rq))
992 blk_queue_end_tag(q, rq);
1da177e4 993
b238b3d4 994 drive_stat_acct(rq, 1);
867d1191 995 __elv_add_request(q, rq, where, 0);
dc72ef4a 996 blk_start_queueing(q);
1da177e4
LT
997 spin_unlock_irqrestore(q->queue_lock, flags);
998}
1da177e4
LT
999EXPORT_SYMBOL(blk_insert_request);
1000
1da177e4
LT
1001/*
1002 * add-request adds a request to the linked list.
1003 * queue lock is held and interrupts disabled, as we muck with the
1004 * request queue list.
1005 */
6728cb0e 1006static inline void add_request(struct request_queue *q, struct request *req)
1da177e4 1007{
b238b3d4 1008 drive_stat_acct(req, 1);
1da177e4 1009
1da177e4
LT
1010 /*
1011 * elevator indicated where it wants this request to be
1012 * inserted at elevator_merge time
1013 */
1014 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1015}
6728cb0e 1016
074a7aca
TH
1017static void part_round_stats_single(int cpu, struct hd_struct *part,
1018 unsigned long now)
1019{
1020 if (now == part->stamp)
1021 return;
1022
1023 if (part->in_flight) {
1024 __part_stat_add(cpu, part, time_in_queue,
1025 part->in_flight * (now - part->stamp));
1026 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1027 }
1028 part->stamp = now;
1029}
1030
1031/**
496aa8a9
RD
1032 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1033 * @cpu: cpu number for stats access
1034 * @part: target partition
1da177e4
LT
1035 *
1036 * The average IO queue length and utilisation statistics are maintained
1037 * by observing the current state of the queue length and the amount of
1038 * time it has been in this state for.
1039 *
1040 * Normally, that accounting is done on IO completion, but that can result
1041 * in more than a second's worth of IO being accounted for within any one
1042 * second, leading to >100% utilisation. To deal with that, we call this
1043 * function to do a round-off before returning the results when reading
1044 * /proc/diskstats. This accounts immediately for all queue usage up to
1045 * the current jiffies and restarts the counters again.
1046 */
c9959059 1047void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1048{
1049 unsigned long now = jiffies;
1050
074a7aca
TH
1051 if (part->partno)
1052 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1053 part_round_stats_single(cpu, part, now);
6f2576af 1054}
074a7aca 1055EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1056
1da177e4
LT
1057/*
1058 * queue lock must be held
1059 */
165125e1 1060void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1061{
1da177e4
LT
1062 if (unlikely(!q))
1063 return;
1064 if (unlikely(--req->ref_count))
1065 return;
1066
8922e16c
TH
1067 elv_completed_request(q, req);
1068
1da177e4
LT
1069 /*
1070 * Request may not have originated from ll_rw_blk. if not,
1071 * it didn't come out of our reserved rq pools
1072 */
49171e5c 1073 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 1074 int rw = rq_data_dir(req);
4aff5e23 1075 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1076
1da177e4 1077 BUG_ON(!list_empty(&req->queuelist));
9817064b 1078 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1079
1080 blk_free_request(q, req);
cb98fc8b 1081 freed_request(q, rw, priv);
1da177e4
LT
1082 }
1083}
6e39b69e
MC
1084EXPORT_SYMBOL_GPL(__blk_put_request);
1085
1da177e4
LT
1086void blk_put_request(struct request *req)
1087{
8922e16c 1088 unsigned long flags;
165125e1 1089 struct request_queue *q = req->q;
8922e16c 1090
52a93ba8
FT
1091 spin_lock_irqsave(q->queue_lock, flags);
1092 __blk_put_request(q, req);
1093 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1094}
1da177e4
LT
1095EXPORT_SYMBOL(blk_put_request);
1096
86db1e29 1097void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1098{
c7c22e4d 1099 req->cpu = bio->bi_comp_cpu;
4aff5e23 1100 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
1101
1102 /*
1103 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1104 */
6000a368
MC
1105 if (bio_rw_ahead(bio))
1106 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
1107 REQ_FAILFAST_DRIVER);
1108 if (bio_failfast_dev(bio))
1109 req->cmd_flags |= REQ_FAILFAST_DEV;
1110 if (bio_failfast_transport(bio))
1111 req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
1112 if (bio_failfast_driver(bio))
1113 req->cmd_flags |= REQ_FAILFAST_DRIVER;
52d9e675
TH
1114
1115 /*
1116 * REQ_BARRIER implies no merging, but lets make it explicit
1117 */
fb2dce86 1118 if (unlikely(bio_discard(bio))) {
e17fc0a1
DW
1119 req->cmd_flags |= REQ_DISCARD;
1120 if (bio_barrier(bio))
1121 req->cmd_flags |= REQ_SOFTBARRIER;
fb2dce86 1122 req->q->prepare_discard_fn(req->q, req);
e17fc0a1
DW
1123 } else if (unlikely(bio_barrier(bio)))
1124 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 1125
b31dc66a 1126 if (bio_sync(bio))
4aff5e23 1127 req->cmd_flags |= REQ_RW_SYNC;
213d9417
JA
1128 if (bio_unplug(bio))
1129 req->cmd_flags |= REQ_UNPLUG;
5404bc7a
JA
1130 if (bio_rw_meta(bio))
1131 req->cmd_flags |= REQ_RW_META;
b31dc66a 1132
52d9e675
TH
1133 req->errors = 0;
1134 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 1135 req->ioprio = bio_prio(bio);
52d9e675 1136 req->start_time = jiffies;
bc1c56fd 1137 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1138}
1139
165125e1 1140static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1141{
450991bc 1142 struct request *req;
a7384677 1143 int el_ret, nr_sectors;
51da90fc
JA
1144 const unsigned short prio = bio_prio(bio);
1145 const int sync = bio_sync(bio);
213d9417 1146 const int unplug = bio_unplug(bio);
7749a8d4 1147 int rw_flags;
1da177e4 1148
1da177e4 1149 nr_sectors = bio_sectors(bio);
1da177e4
LT
1150
1151 /*
1152 * low level driver can indicate that it wants pages above a
1153 * certain limit bounced to low memory (ie for highmem, or even
1154 * ISA dma in theory)
1155 */
1156 blk_queue_bounce(q, &bio);
1157
1da177e4
LT
1158 spin_lock_irq(q->queue_lock);
1159
a7384677 1160 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q))
1da177e4
LT
1161 goto get_rq;
1162
1163 el_ret = elv_merge(q, &req, bio);
1164 switch (el_ret) {
6728cb0e
JA
1165 case ELEVATOR_BACK_MERGE:
1166 BUG_ON(!rq_mergeable(req));
1da177e4 1167
6728cb0e
JA
1168 if (!ll_back_merge_fn(q, req, bio))
1169 break;
1da177e4 1170
5f3ea37c 1171 trace_block_bio_backmerge(q, bio);
2056a782 1172
6728cb0e
JA
1173 req->biotail->bi_next = bio;
1174 req->biotail = bio;
1175 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1176 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1177 if (!blk_rq_cpu_valid(req))
1178 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1179 drive_stat_acct(req, 0);
1180 if (!attempt_back_merge(q, req))
1181 elv_merged_request(q, req, el_ret);
1182 goto out;
1da177e4 1183
6728cb0e
JA
1184 case ELEVATOR_FRONT_MERGE:
1185 BUG_ON(!rq_mergeable(req));
1da177e4 1186
6728cb0e
JA
1187 if (!ll_front_merge_fn(q, req, bio))
1188 break;
1da177e4 1189
5f3ea37c 1190 trace_block_bio_frontmerge(q, bio);
2056a782 1191
6728cb0e
JA
1192 bio->bi_next = req->bio;
1193 req->bio = bio;
1da177e4 1194
6728cb0e
JA
1195 /*
1196 * may not be valid. if the low level driver said
1197 * it didn't need a bounce buffer then it better
1198 * not touch req->buffer either...
1199 */
1200 req->buffer = bio_data(bio);
1201 req->current_nr_sectors = bio_cur_sectors(bio);
1202 req->hard_cur_sectors = req->current_nr_sectors;
1203 req->sector = req->hard_sector = bio->bi_sector;
1204 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1205 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1206 if (!blk_rq_cpu_valid(req))
1207 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1208 drive_stat_acct(req, 0);
1209 if (!attempt_front_merge(q, req))
1210 elv_merged_request(q, req, el_ret);
1211 goto out;
1212
1213 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1214 default:
1215 ;
1da177e4
LT
1216 }
1217
450991bc 1218get_rq:
7749a8d4
JA
1219 /*
1220 * This sync check and mask will be re-done in init_request_from_bio(),
1221 * but we need to set it earlier to expose the sync flag to the
1222 * rq allocator and io schedulers.
1223 */
1224 rw_flags = bio_data_dir(bio);
1225 if (sync)
1226 rw_flags |= REQ_RW_SYNC;
1227
1da177e4 1228 /*
450991bc 1229 * Grab a free request. This is might sleep but can not fail.
d6344532 1230 * Returns with the queue unlocked.
450991bc 1231 */
7749a8d4 1232 req = get_request_wait(q, rw_flags, bio);
d6344532 1233
450991bc
NP
1234 /*
1235 * After dropping the lock and possibly sleeping here, our request
1236 * may now be mergeable after it had proven unmergeable (above).
1237 * We don't worry about that case for efficiency. It won't happen
1238 * often, and the elevators are able to handle it.
1da177e4 1239 */
52d9e675 1240 init_request_from_bio(req, bio);
1da177e4 1241
450991bc 1242 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1243 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1244 bio_flagged(bio, BIO_CPU_AFFINE))
1245 req->cpu = blk_cpu_to_group(smp_processor_id());
a31a9738 1246 if (!blk_queue_nonrot(q) && elv_queue_empty(q))
450991bc 1247 blk_plug_device(q);
1da177e4
LT
1248 add_request(q, req);
1249out:
213d9417 1250 if (unplug || blk_queue_nonrot(q))
1da177e4 1251 __generic_unplug_device(q);
1da177e4
LT
1252 spin_unlock_irq(q->queue_lock);
1253 return 0;
1da177e4
LT
1254}
1255
1256/*
1257 * If bio->bi_dev is a partition, remap the location
1258 */
1259static inline void blk_partition_remap(struct bio *bio)
1260{
1261 struct block_device *bdev = bio->bi_bdev;
1262
bf2de6f5 1263 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1264 struct hd_struct *p = bdev->bd_part;
1265
1da177e4
LT
1266 bio->bi_sector += p->start_sect;
1267 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1268
5f3ea37c 1269 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
c7149d6b
AB
1270 bdev->bd_dev, bio->bi_sector,
1271 bio->bi_sector - p->start_sect);
1da177e4
LT
1272 }
1273}
1274
1da177e4
LT
1275static void handle_bad_sector(struct bio *bio)
1276{
1277 char b[BDEVNAME_SIZE];
1278
1279 printk(KERN_INFO "attempt to access beyond end of device\n");
1280 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1281 bdevname(bio->bi_bdev, b),
1282 bio->bi_rw,
1283 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1284 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1285
1286 set_bit(BIO_EOF, &bio->bi_flags);
1287}
1288
c17bb495
AM
1289#ifdef CONFIG_FAIL_MAKE_REQUEST
1290
1291static DECLARE_FAULT_ATTR(fail_make_request);
1292
1293static int __init setup_fail_make_request(char *str)
1294{
1295 return setup_fault_attr(&fail_make_request, str);
1296}
1297__setup("fail_make_request=", setup_fail_make_request);
1298
1299static int should_fail_request(struct bio *bio)
1300{
eddb2e26
TH
1301 struct hd_struct *part = bio->bi_bdev->bd_part;
1302
1303 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1304 return should_fail(&fail_make_request, bio->bi_size);
1305
1306 return 0;
1307}
1308
1309static int __init fail_make_request_debugfs(void)
1310{
1311 return init_fault_attr_dentries(&fail_make_request,
1312 "fail_make_request");
1313}
1314
1315late_initcall(fail_make_request_debugfs);
1316
1317#else /* CONFIG_FAIL_MAKE_REQUEST */
1318
1319static inline int should_fail_request(struct bio *bio)
1320{
1321 return 0;
1322}
1323
1324#endif /* CONFIG_FAIL_MAKE_REQUEST */
1325
c07e2b41
JA
1326/*
1327 * Check whether this bio extends beyond the end of the device.
1328 */
1329static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1330{
1331 sector_t maxsector;
1332
1333 if (!nr_sectors)
1334 return 0;
1335
1336 /* Test device or partition size, when known. */
1337 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1338 if (maxsector) {
1339 sector_t sector = bio->bi_sector;
1340
1341 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1342 /*
1343 * This may well happen - the kernel calls bread()
1344 * without checking the size of the device, e.g., when
1345 * mounting a device.
1346 */
1347 handle_bad_sector(bio);
1348 return 1;
1349 }
1350 }
1351
1352 return 0;
1353}
1354
1da177e4 1355/**
710027a4 1356 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1357 * @bio: The bio describing the location in memory and on the device.
1358 *
1359 * generic_make_request() is used to make I/O requests of block
1360 * devices. It is passed a &struct bio, which describes the I/O that needs
1361 * to be done.
1362 *
1363 * generic_make_request() does not return any status. The
1364 * success/failure status of the request, along with notification of
1365 * completion, is delivered asynchronously through the bio->bi_end_io
1366 * function described (one day) else where.
1367 *
1368 * The caller of generic_make_request must make sure that bi_io_vec
1369 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1370 * set to describe the device address, and the
1371 * bi_end_io and optionally bi_private are set to describe how
1372 * completion notification should be signaled.
1373 *
1374 * generic_make_request and the drivers it calls may use bi_next if this
1375 * bio happens to be merged with someone else, and may change bi_dev and
1376 * bi_sector for remaps as it sees fit. So the values of these fields
1377 * should NOT be depended on after the call to generic_make_request.
1378 */
d89d8796 1379static inline void __generic_make_request(struct bio *bio)
1da177e4 1380{
165125e1 1381 struct request_queue *q;
5ddfe969 1382 sector_t old_sector;
1da177e4 1383 int ret, nr_sectors = bio_sectors(bio);
2056a782 1384 dev_t old_dev;
51fd77bd 1385 int err = -EIO;
1da177e4
LT
1386
1387 might_sleep();
1da177e4 1388
c07e2b41
JA
1389 if (bio_check_eod(bio, nr_sectors))
1390 goto end_io;
1da177e4
LT
1391
1392 /*
1393 * Resolve the mapping until finished. (drivers are
1394 * still free to implement/resolve their own stacking
1395 * by explicitly returning 0)
1396 *
1397 * NOTE: we don't repeat the blk_size check for each new device.
1398 * Stacking drivers are expected to know what they are doing.
1399 */
5ddfe969 1400 old_sector = -1;
2056a782 1401 old_dev = 0;
1da177e4
LT
1402 do {
1403 char b[BDEVNAME_SIZE];
1404
1405 q = bdev_get_queue(bio->bi_bdev);
a7384677 1406 if (unlikely(!q)) {
1da177e4
LT
1407 printk(KERN_ERR
1408 "generic_make_request: Trying to access "
1409 "nonexistent block-device %s (%Lu)\n",
1410 bdevname(bio->bi_bdev, b),
1411 (long long) bio->bi_sector);
a7384677 1412 goto end_io;
1da177e4
LT
1413 }
1414
4fa253f3 1415 if (unlikely(nr_sectors > q->max_hw_sectors)) {
6728cb0e 1416 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1da177e4
LT
1417 bdevname(bio->bi_bdev, b),
1418 bio_sectors(bio),
1419 q->max_hw_sectors);
1420 goto end_io;
1421 }
1422
fde6ad22 1423 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1424 goto end_io;
1425
c17bb495
AM
1426 if (should_fail_request(bio))
1427 goto end_io;
1428
1da177e4
LT
1429 /*
1430 * If this device has partitions, remap block n
1431 * of partition p to block n+start(p) of the disk.
1432 */
1433 blk_partition_remap(bio);
1434
7ba1ba12
MP
1435 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1436 goto end_io;
1437
5ddfe969 1438 if (old_sector != -1)
5f3ea37c 1439 trace_block_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 1440 old_sector);
2056a782 1441
5f3ea37c 1442 trace_block_bio_queue(q, bio);
2056a782 1443
5ddfe969 1444 old_sector = bio->bi_sector;
2056a782
JA
1445 old_dev = bio->bi_bdev->bd_dev;
1446
c07e2b41
JA
1447 if (bio_check_eod(bio, nr_sectors))
1448 goto end_io;
a7384677
TH
1449
1450 if (bio_discard(bio) && !q->prepare_discard_fn) {
51fd77bd
JA
1451 err = -EOPNOTSUPP;
1452 goto end_io;
1453 }
cec0707e
JA
1454 if (bio_barrier(bio) && bio_has_data(bio) &&
1455 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1456 err = -EOPNOTSUPP;
1457 goto end_io;
1458 }
5ddfe969 1459
1da177e4
LT
1460 ret = q->make_request_fn(q, bio);
1461 } while (ret);
a7384677
TH
1462
1463 return;
1464
1465end_io:
1466 bio_endio(bio, err);
1da177e4
LT
1467}
1468
d89d8796
NB
1469/*
1470 * We only want one ->make_request_fn to be active at a time,
1471 * else stack usage with stacked devices could be a problem.
1472 * So use current->bio_{list,tail} to keep a list of requests
1473 * submited by a make_request_fn function.
1474 * current->bio_tail is also used as a flag to say if
1475 * generic_make_request is currently active in this task or not.
1476 * If it is NULL, then no make_request is active. If it is non-NULL,
1477 * then a make_request is active, and new requests should be added
1478 * at the tail
1479 */
1480void generic_make_request(struct bio *bio)
1481{
1482 if (current->bio_tail) {
1483 /* make_request is active */
1484 *(current->bio_tail) = bio;
1485 bio->bi_next = NULL;
1486 current->bio_tail = &bio->bi_next;
1487 return;
1488 }
1489 /* following loop may be a bit non-obvious, and so deserves some
1490 * explanation.
1491 * Before entering the loop, bio->bi_next is NULL (as all callers
1492 * ensure that) so we have a list with a single bio.
1493 * We pretend that we have just taken it off a longer list, so
1494 * we assign bio_list to the next (which is NULL) and bio_tail
1495 * to &bio_list, thus initialising the bio_list of new bios to be
1496 * added. __generic_make_request may indeed add some more bios
1497 * through a recursive call to generic_make_request. If it
1498 * did, we find a non-NULL value in bio_list and re-enter the loop
1499 * from the top. In this case we really did just take the bio
1500 * of the top of the list (no pretending) and so fixup bio_list and
1501 * bio_tail or bi_next, and call into __generic_make_request again.
1502 *
1503 * The loop was structured like this to make only one call to
1504 * __generic_make_request (which is important as it is large and
1505 * inlined) and to keep the structure simple.
1506 */
1507 BUG_ON(bio->bi_next);
1508 do {
1509 current->bio_list = bio->bi_next;
1510 if (bio->bi_next == NULL)
1511 current->bio_tail = &current->bio_list;
1512 else
1513 bio->bi_next = NULL;
1514 __generic_make_request(bio);
1515 bio = current->bio_list;
1516 } while (bio);
1517 current->bio_tail = NULL; /* deactivate */
1518}
1da177e4
LT
1519EXPORT_SYMBOL(generic_make_request);
1520
1521/**
710027a4 1522 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1523 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1524 * @bio: The &struct bio which describes the I/O
1525 *
1526 * submit_bio() is very similar in purpose to generic_make_request(), and
1527 * uses that function to do most of the work. Both are fairly rough
710027a4 1528 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1529 *
1530 */
1531void submit_bio(int rw, struct bio *bio)
1532{
1533 int count = bio_sectors(bio);
1534
22e2c507 1535 bio->bi_rw |= rw;
1da177e4 1536
bf2de6f5
JA
1537 /*
1538 * If it's a regular read/write or a barrier with data attached,
1539 * go through the normal accounting stuff before submission.
1540 */
a9c701e5 1541 if (bio_has_data(bio)) {
bf2de6f5
JA
1542 if (rw & WRITE) {
1543 count_vm_events(PGPGOUT, count);
1544 } else {
1545 task_io_account_read(bio->bi_size);
1546 count_vm_events(PGPGIN, count);
1547 }
1548
1549 if (unlikely(block_dump)) {
1550 char b[BDEVNAME_SIZE];
1551 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1552 current->comm, task_pid_nr(current),
bf2de6f5
JA
1553 (rw & WRITE) ? "WRITE" : "READ",
1554 (unsigned long long)bio->bi_sector,
6728cb0e 1555 bdevname(bio->bi_bdev, b));
bf2de6f5 1556 }
1da177e4
LT
1557 }
1558
1559 generic_make_request(bio);
1560}
1da177e4
LT
1561EXPORT_SYMBOL(submit_bio);
1562
82124d60
KU
1563/**
1564 * blk_rq_check_limits - Helper function to check a request for the queue limit
1565 * @q: the queue
1566 * @rq: the request being checked
1567 *
1568 * Description:
1569 * @rq may have been made based on weaker limitations of upper-level queues
1570 * in request stacking drivers, and it may violate the limitation of @q.
1571 * Since the block layer and the underlying device driver trust @rq
1572 * after it is inserted to @q, it should be checked against @q before
1573 * the insertion using this generic function.
1574 *
1575 * This function should also be useful for request stacking drivers
1576 * in some cases below, so export this fuction.
1577 * Request stacking drivers like request-based dm may change the queue
1578 * limits while requests are in the queue (e.g. dm's table swapping).
1579 * Such request stacking drivers should check those requests agaist
1580 * the new queue limits again when they dispatch those requests,
1581 * although such checkings are also done against the old queue limits
1582 * when submitting requests.
1583 */
1584int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1585{
1586 if (rq->nr_sectors > q->max_sectors ||
1587 rq->data_len > q->max_hw_sectors << 9) {
1588 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1589 return -EIO;
1590 }
1591
1592 /*
1593 * queue's settings related to segment counting like q->bounce_pfn
1594 * may differ from that of other stacking queues.
1595 * Recalculate it to check the request correctly on this queue's
1596 * limitation.
1597 */
1598 blk_recalc_rq_segments(rq);
1599 if (rq->nr_phys_segments > q->max_phys_segments ||
1600 rq->nr_phys_segments > q->max_hw_segments) {
1601 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1602 return -EIO;
1603 }
1604
1605 return 0;
1606}
1607EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1608
1609/**
1610 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1611 * @q: the queue to submit the request
1612 * @rq: the request being queued
1613 */
1614int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1615{
1616 unsigned long flags;
1617
1618 if (blk_rq_check_limits(q, rq))
1619 return -EIO;
1620
1621#ifdef CONFIG_FAIL_MAKE_REQUEST
1622 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1623 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1624 return -EIO;
1625#endif
1626
1627 spin_lock_irqsave(q->queue_lock, flags);
1628
1629 /*
1630 * Submitting request must be dequeued before calling this function
1631 * because it will be linked to another request_queue
1632 */
1633 BUG_ON(blk_queued_rq(rq));
1634
1635 drive_stat_acct(rq, 1);
1636 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1637
1638 spin_unlock_irqrestore(q->queue_lock, flags);
1639
1640 return 0;
1641}
1642EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1643
53a08807
TH
1644/**
1645 * blkdev_dequeue_request - dequeue request and start timeout timer
1646 * @req: request to dequeue
1647 *
1648 * Dequeue @req and start timeout timer on it. This hands off the
1649 * request to the driver.
1650 *
1651 * Block internal functions which don't want to start timer should
1652 * call elv_dequeue_request().
1653 */
1654void blkdev_dequeue_request(struct request *req)
1655{
1656 elv_dequeue_request(req->q, req);
1657
1658 /*
1659 * We are now handing the request to the hardware, add the
1660 * timeout handler.
1661 */
1662 blk_add_timer(req);
1663}
1664EXPORT_SYMBOL(blkdev_dequeue_request);
1665
3bcddeac
KU
1666/**
1667 * __end_that_request_first - end I/O on a request
1668 * @req: the request being processed
710027a4 1669 * @error: %0 for success, < %0 for error
3bcddeac
KU
1670 * @nr_bytes: number of bytes to complete
1671 *
1672 * Description:
1673 * Ends I/O on a number of bytes attached to @req, and sets it up
1674 * for the next range of segments (if any) in the cluster.
1675 *
1676 * Return:
710027a4
RD
1677 * %0 - we are done with this request, call end_that_request_last()
1678 * %1 - still buffers pending for this request
3bcddeac 1679 **/
5450d3e1 1680static int __end_that_request_first(struct request *req, int error,
1da177e4
LT
1681 int nr_bytes)
1682{
5450d3e1 1683 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1684 struct bio *bio;
1685
5f3ea37c 1686 trace_block_rq_complete(req->q, req);
2056a782 1687
1da177e4 1688 /*
710027a4 1689 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1da177e4
LT
1690 * sense key with us all the way through
1691 */
1692 if (!blk_pc_request(req))
1693 req->errors = 0;
1694
6728cb0e
JA
1695 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1696 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4
LT
1697 req->rq_disk ? req->rq_disk->disk_name : "?",
1698 (unsigned long long)req->sector);
1699 }
1700
d72d904a 1701 if (blk_fs_request(req) && req->rq_disk) {
a362357b 1702 const int rw = rq_data_dir(req);
e71bf0d0 1703 struct hd_struct *part;
c9959059 1704 int cpu;
a362357b 1705
074a7aca 1706 cpu = part_stat_lock();
e71bf0d0 1707 part = disk_map_sector_rcu(req->rq_disk, req->sector);
074a7aca
TH
1708 part_stat_add(cpu, part, sectors[rw], nr_bytes >> 9);
1709 part_stat_unlock();
d72d904a
JA
1710 }
1711
1da177e4
LT
1712 total_bytes = bio_nbytes = 0;
1713 while ((bio = req->bio) != NULL) {
1714 int nbytes;
1715
1716 if (nr_bytes >= bio->bi_size) {
1717 req->bio = bio->bi_next;
1718 nbytes = bio->bi_size;
5bb23a68 1719 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
1720 next_idx = 0;
1721 bio_nbytes = 0;
1722 } else {
1723 int idx = bio->bi_idx + next_idx;
1724
1725 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1726 blk_dump_rq_flags(req, "__end_that");
6728cb0e 1727 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
24c03d47 1728 __func__, bio->bi_idx, bio->bi_vcnt);
1da177e4
LT
1729 break;
1730 }
1731
1732 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1733 BIO_BUG_ON(nbytes > bio->bi_size);
1734
1735 /*
1736 * not a complete bvec done
1737 */
1738 if (unlikely(nbytes > nr_bytes)) {
1739 bio_nbytes += nr_bytes;
1740 total_bytes += nr_bytes;
1741 break;
1742 }
1743
1744 /*
1745 * advance to the next vector
1746 */
1747 next_idx++;
1748 bio_nbytes += nbytes;
1749 }
1750
1751 total_bytes += nbytes;
1752 nr_bytes -= nbytes;
1753
6728cb0e
JA
1754 bio = req->bio;
1755 if (bio) {
1da177e4
LT
1756 /*
1757 * end more in this run, or just return 'not-done'
1758 */
1759 if (unlikely(nr_bytes <= 0))
1760 break;
1761 }
1762 }
1763
1764 /*
1765 * completely done
1766 */
1767 if (!req->bio)
1768 return 0;
1769
1770 /*
1771 * if the request wasn't completed, update state
1772 */
1773 if (bio_nbytes) {
5bb23a68 1774 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
1775 bio->bi_idx += next_idx;
1776 bio_iovec(bio)->bv_offset += nr_bytes;
1777 bio_iovec(bio)->bv_len -= nr_bytes;
1778 }
1779
1780 blk_recalc_rq_sectors(req, total_bytes >> 9);
1781 blk_recalc_rq_segments(req);
1782 return 1;
1783}
1784
1da177e4
LT
1785/*
1786 * queue lock must be held
1787 */
5450d3e1 1788static void end_that_request_last(struct request *req, int error)
1da177e4
LT
1789{
1790 struct gendisk *disk = req->rq_disk;
8ffdc655 1791
b8286239
KU
1792 if (blk_rq_tagged(req))
1793 blk_queue_end_tag(req->q, req);
1794
1795 if (blk_queued_rq(req))
53a08807 1796 elv_dequeue_request(req->q, req);
1da177e4
LT
1797
1798 if (unlikely(laptop_mode) && blk_fs_request(req))
1799 laptop_io_completion();
1800
e78042e5
MA
1801 blk_delete_timer(req);
1802
fd0ff8aa
JA
1803 /*
1804 * Account IO completion. bar_rq isn't accounted as a normal
1805 * IO on queueing nor completion. Accounting the containing
1806 * request is enough.
1807 */
1808 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 1809 unsigned long duration = jiffies - req->start_time;
a362357b 1810 const int rw = rq_data_dir(req);
e71bf0d0 1811 struct hd_struct *part;
c9959059 1812 int cpu;
e71bf0d0 1813
074a7aca 1814 cpu = part_stat_lock();
e71bf0d0 1815 part = disk_map_sector_rcu(disk, req->sector);
a362357b 1816
074a7aca
TH
1817 part_stat_inc(cpu, part, ios[rw]);
1818 part_stat_add(cpu, part, ticks[rw], duration);
1819 part_round_stats(cpu, part);
1820 part_dec_in_flight(part);
e71bf0d0 1821
074a7aca 1822 part_stat_unlock();
1da177e4 1823 }
b8286239 1824
1da177e4 1825 if (req->end_io)
8ffdc655 1826 req->end_io(req, error);
b8286239
KU
1827 else {
1828 if (blk_bidi_rq(req))
1829 __blk_put_request(req->next_rq->q, req->next_rq);
1830
1da177e4 1831 __blk_put_request(req->q, req);
b8286239 1832 }
1da177e4
LT
1833}
1834
3b11313a
KU
1835/**
1836 * blk_rq_bytes - Returns bytes left to complete in the entire request
5d87a052 1837 * @rq: the request being processed
3b11313a
KU
1838 **/
1839unsigned int blk_rq_bytes(struct request *rq)
a0cd1285
JA
1840{
1841 if (blk_fs_request(rq))
1842 return rq->hard_nr_sectors << 9;
1843
1844 return rq->data_len;
1845}
3b11313a
KU
1846EXPORT_SYMBOL_GPL(blk_rq_bytes);
1847
1848/**
1849 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
5d87a052 1850 * @rq: the request being processed
3b11313a
KU
1851 **/
1852unsigned int blk_rq_cur_bytes(struct request *rq)
1853{
1854 if (blk_fs_request(rq))
1855 return rq->current_nr_sectors << 9;
1856
1857 if (rq->bio)
1858 return rq->bio->bi_size;
1859
1860 return rq->data_len;
1861}
1862EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
a0cd1285 1863
a0cd1285
JA
1864/**
1865 * end_request - end I/O on the current segment of the request
8f731f7d 1866 * @req: the request being processed
710027a4 1867 * @uptodate: error value or %0/%1 uptodate flag
a0cd1285
JA
1868 *
1869 * Description:
1870 * Ends I/O on the current segment of a request. If that is the only
1871 * remaining segment, the request is also completed and freed.
1872 *
710027a4
RD
1873 * This is a remnant of how older block drivers handled I/O completions.
1874 * Modern drivers typically end I/O on the full request in one go, unless
a0cd1285
JA
1875 * they have a residual value to account for. For that case this function
1876 * isn't really useful, unless the residual just happens to be the
1877 * full current segment. In other words, don't use this function in new
d00e29fd 1878 * code. Use blk_end_request() or __blk_end_request() to end a request.
a0cd1285
JA
1879 **/
1880void end_request(struct request *req, int uptodate)
1881{
d00e29fd
KU
1882 int error = 0;
1883
1884 if (uptodate <= 0)
1885 error = uptodate ? uptodate : -EIO;
1886
1887 __blk_end_request(req, error, req->hard_cur_sectors << 9);
a0cd1285 1888}
1da177e4
LT
1889EXPORT_SYMBOL(end_request);
1890
32fab448
KU
1891static int end_that_request_data(struct request *rq, int error,
1892 unsigned int nr_bytes, unsigned int bidi_bytes)
1893{
1894 if (rq->bio) {
1895 if (__end_that_request_first(rq, error, nr_bytes))
1896 return 1;
1897
1898 /* Bidi request must be completed as a whole */
1899 if (blk_bidi_rq(rq) &&
1900 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1901 return 1;
1902 }
1903
1904 return 0;
1905}
1906
336cdb40 1907/**
e19a3ab0
KU
1908 * blk_end_io - Generic end_io function to complete a request.
1909 * @rq: the request being processed
710027a4 1910 * @error: %0 for success, < %0 for error
e3a04fe3
KU
1911 * @nr_bytes: number of bytes to complete @rq
1912 * @bidi_bytes: number of bytes to complete @rq->next_rq
e19a3ab0
KU
1913 * @drv_callback: function called between completion of bios in the request
1914 * and completion of the request.
710027a4 1915 * If the callback returns non %0, this helper returns without
e19a3ab0 1916 * completion of the request.
336cdb40
KU
1917 *
1918 * Description:
e3a04fe3 1919 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
336cdb40
KU
1920 * If @rq has leftover, sets it up for the next range of segments.
1921 *
1922 * Return:
710027a4
RD
1923 * %0 - we are done with this request
1924 * %1 - this request is not freed yet, it still has pending buffers.
336cdb40 1925 **/
22b13210
JA
1926static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1927 unsigned int bidi_bytes,
1928 int (drv_callback)(struct request *))
336cdb40
KU
1929{
1930 struct request_queue *q = rq->q;
1931 unsigned long flags = 0UL;
336cdb40 1932
32fab448
KU
1933 if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
1934 return 1;
336cdb40 1935
e19a3ab0
KU
1936 /* Special feature for tricky drivers */
1937 if (drv_callback && drv_callback(rq))
1938 return 1;
1939
336cdb40
KU
1940 add_disk_randomness(rq->rq_disk);
1941
1942 spin_lock_irqsave(q->queue_lock, flags);
b8286239 1943 end_that_request_last(rq, error);
336cdb40
KU
1944 spin_unlock_irqrestore(q->queue_lock, flags);
1945
1946 return 0;
1947}
e19a3ab0
KU
1948
1949/**
1950 * blk_end_request - Helper function for drivers to complete the request.
1951 * @rq: the request being processed
710027a4 1952 * @error: %0 for success, < %0 for error
e19a3ab0
KU
1953 * @nr_bytes: number of bytes to complete
1954 *
1955 * Description:
1956 * Ends I/O on a number of bytes attached to @rq.
1957 * If @rq has leftover, sets it up for the next range of segments.
1958 *
1959 * Return:
710027a4
RD
1960 * %0 - we are done with this request
1961 * %1 - still buffers pending for this request
e19a3ab0 1962 **/
22b13210 1963int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 1964{
e3a04fe3 1965 return blk_end_io(rq, error, nr_bytes, 0, NULL);
e19a3ab0 1966}
336cdb40
KU
1967EXPORT_SYMBOL_GPL(blk_end_request);
1968
1969/**
1970 * __blk_end_request - Helper function for drivers to complete the request.
1971 * @rq: the request being processed
710027a4 1972 * @error: %0 for success, < %0 for error
336cdb40
KU
1973 * @nr_bytes: number of bytes to complete
1974 *
1975 * Description:
1976 * Must be called with queue lock held unlike blk_end_request().
1977 *
1978 * Return:
710027a4
RD
1979 * %0 - we are done with this request
1980 * %1 - still buffers pending for this request
336cdb40 1981 **/
22b13210 1982int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
336cdb40 1983{
60540161 1984 if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
051cc395 1985 return 1;
336cdb40
KU
1986
1987 add_disk_randomness(rq->rq_disk);
1988
b8286239 1989 end_that_request_last(rq, error);
336cdb40
KU
1990
1991 return 0;
1992}
1993EXPORT_SYMBOL_GPL(__blk_end_request);
1994
e3a04fe3
KU
1995/**
1996 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1997 * @rq: the bidi request being processed
710027a4 1998 * @error: %0 for success, < %0 for error
e3a04fe3
KU
1999 * @nr_bytes: number of bytes to complete @rq
2000 * @bidi_bytes: number of bytes to complete @rq->next_rq
2001 *
2002 * Description:
2003 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2004 *
2005 * Return:
710027a4
RD
2006 * %0 - we are done with this request
2007 * %1 - still buffers pending for this request
e3a04fe3 2008 **/
22b13210
JA
2009int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
2010 unsigned int bidi_bytes)
e3a04fe3
KU
2011{
2012 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
2013}
2014EXPORT_SYMBOL_GPL(blk_end_bidi_request);
2015
32fab448
KU
2016/**
2017 * blk_update_request - Special helper function for request stacking drivers
2018 * @rq: the request being processed
2019 * @error: %0 for success, < %0 for error
2020 * @nr_bytes: number of bytes to complete @rq
2021 *
2022 * Description:
2023 * Ends I/O on a number of bytes attached to @rq, but doesn't complete
2024 * the request structure even if @rq doesn't have leftover.
2025 * If @rq has leftover, sets it up for the next range of segments.
2026 *
2027 * This special helper function is only for request stacking drivers
2028 * (e.g. request-based dm) so that they can handle partial completion.
2029 * Actual device drivers should use blk_end_request instead.
2030 */
2031void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
2032{
2033 if (!end_that_request_data(rq, error, nr_bytes, 0)) {
2034 /*
2035 * These members are not updated in end_that_request_data()
2036 * when all bios are completed.
2037 * Update them so that the request stacking driver can find
2038 * how many bytes remain in the request later.
2039 */
2040 rq->nr_sectors = rq->hard_nr_sectors = 0;
2041 rq->current_nr_sectors = rq->hard_cur_sectors = 0;
2042 }
2043}
2044EXPORT_SYMBOL_GPL(blk_update_request);
2045
e19a3ab0
KU
2046/**
2047 * blk_end_request_callback - Special helper function for tricky drivers
2048 * @rq: the request being processed
710027a4 2049 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2050 * @nr_bytes: number of bytes to complete
2051 * @drv_callback: function called between completion of bios in the request
2052 * and completion of the request.
710027a4 2053 * If the callback returns non %0, this helper returns without
e19a3ab0
KU
2054 * completion of the request.
2055 *
2056 * Description:
2057 * Ends I/O on a number of bytes attached to @rq.
2058 * If @rq has leftover, sets it up for the next range of segments.
2059 *
2060 * This special helper function is used only for existing tricky drivers.
2061 * (e.g. cdrom_newpc_intr() of ide-cd)
2062 * This interface will be removed when such drivers are rewritten.
2063 * Don't use this interface in other places anymore.
2064 *
2065 * Return:
710027a4
RD
2066 * %0 - we are done with this request
2067 * %1 - this request is not freed yet.
2068 * this request still has pending buffers or
2069 * the driver doesn't want to finish this request yet.
e19a3ab0 2070 **/
22b13210
JA
2071int blk_end_request_callback(struct request *rq, int error,
2072 unsigned int nr_bytes,
e19a3ab0
KU
2073 int (drv_callback)(struct request *))
2074{
e3a04fe3 2075 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
e19a3ab0
KU
2076}
2077EXPORT_SYMBOL_GPL(blk_end_request_callback);
2078
86db1e29
JA
2079void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2080 struct bio *bio)
1da177e4 2081{
d628eaef
DW
2082 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2083 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
4aff5e23 2084 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4 2085
fb2dce86
DW
2086 if (bio_has_data(bio)) {
2087 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2088 rq->buffer = bio_data(bio);
2089 }
1da177e4
LT
2090 rq->current_nr_sectors = bio_cur_sectors(bio);
2091 rq->hard_cur_sectors = rq->current_nr_sectors;
2092 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
0e75f906 2093 rq->data_len = bio->bi_size;
1da177e4
LT
2094
2095 rq->bio = rq->biotail = bio;
1da177e4 2096
66846572
N
2097 if (bio->bi_bdev)
2098 rq->rq_disk = bio->bi_bdev->bd_disk;
2099}
1da177e4 2100
ef9e3fac
KU
2101/**
2102 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2103 * @q : the queue of the device being checked
2104 *
2105 * Description:
2106 * Check if underlying low-level drivers of a device are busy.
2107 * If the drivers want to export their busy state, they must set own
2108 * exporting function using blk_queue_lld_busy() first.
2109 *
2110 * Basically, this function is used only by request stacking drivers
2111 * to stop dispatching requests to underlying devices when underlying
2112 * devices are busy. This behavior helps more I/O merging on the queue
2113 * of the request stacking driver and prevents I/O throughput regression
2114 * on burst I/O load.
2115 *
2116 * Return:
2117 * 0 - Not busy (The request stacking driver should dispatch request)
2118 * 1 - Busy (The request stacking driver should stop dispatching request)
2119 */
2120int blk_lld_busy(struct request_queue *q)
2121{
2122 if (q->lld_busy_fn)
2123 return q->lld_busy_fn(q);
2124
2125 return 0;
2126}
2127EXPORT_SYMBOL_GPL(blk_lld_busy);
2128
18887ad9 2129int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2130{
2131 return queue_work(kblockd_workqueue, work);
2132}
1da177e4
LT
2133EXPORT_SYMBOL(kblockd_schedule_work);
2134
1da177e4
LT
2135int __init blk_dev_init(void)
2136{
2137 kblockd_workqueue = create_workqueue("kblockd");
2138 if (!kblockd_workqueue)
2139 panic("Failed to create kblockd\n");
2140
2141 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2142 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2143
8324aa91 2144 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2145 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2146
d38ecf93 2147 return 0;
1da177e4 2148}
1da177e4 2149