]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
ide: convert to rq pos and nr_sectors accessors
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
2056a782 29#include <linux/blktrace_api.h>
c17bb495 30#include <linux/fault-inject.h>
5f3ea37c 31#include <trace/block.h>
1da177e4 32
8324aa91
JA
33#include "blk.h"
34
0bfc2455
IM
35DEFINE_TRACE(block_plug);
36DEFINE_TRACE(block_unplug_io);
37DEFINE_TRACE(block_unplug_timer);
38DEFINE_TRACE(block_getrq);
39DEFINE_TRACE(block_sleeprq);
40DEFINE_TRACE(block_rq_requeue);
41DEFINE_TRACE(block_bio_backmerge);
42DEFINE_TRACE(block_bio_frontmerge);
43DEFINE_TRACE(block_bio_queue);
44DEFINE_TRACE(block_rq_complete);
45DEFINE_TRACE(block_remap); /* Also used in drivers/md/dm.c */
46EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
47
165125e1 48static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
49
50/*
51 * For the allocated request tables
52 */
5ece6c52 53static struct kmem_cache *request_cachep;
1da177e4
LT
54
55/*
56 * For queue allocation
57 */
6728cb0e 58struct kmem_cache *blk_requestq_cachep;
1da177e4 59
1da177e4
LT
60/*
61 * Controlling structure to kblockd
62 */
ff856bad 63static struct workqueue_struct *kblockd_workqueue;
1da177e4 64
26b8256e
JA
65static void drive_stat_acct(struct request *rq, int new_io)
66{
28f13702 67 struct hd_struct *part;
26b8256e 68 int rw = rq_data_dir(rq);
c9959059 69 int cpu;
26b8256e 70
c2553b58 71 if (!blk_do_io_stat(rq))
26b8256e
JA
72 return;
73
074a7aca 74 cpu = part_stat_lock();
83096ebf 75 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
c9959059 76
28f13702 77 if (!new_io)
074a7aca 78 part_stat_inc(cpu, part, merges[rw]);
28f13702 79 else {
074a7aca
TH
80 part_round_stats(cpu, part);
81 part_inc_in_flight(part);
26b8256e 82 }
e71bf0d0 83
074a7aca 84 part_stat_unlock();
26b8256e
JA
85}
86
8324aa91 87void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
88{
89 int nr;
90
91 nr = q->nr_requests - (q->nr_requests / 8) + 1;
92 if (nr > q->nr_requests)
93 nr = q->nr_requests;
94 q->nr_congestion_on = nr;
95
96 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
97 if (nr < 1)
98 nr = 1;
99 q->nr_congestion_off = nr;
100}
101
1da177e4
LT
102/**
103 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
104 * @bdev: device
105 *
106 * Locates the passed device's request queue and returns the address of its
107 * backing_dev_info
108 *
109 * Will return NULL if the request queue cannot be located.
110 */
111struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
112{
113 struct backing_dev_info *ret = NULL;
165125e1 114 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
115
116 if (q)
117 ret = &q->backing_dev_info;
118 return ret;
119}
1da177e4
LT
120EXPORT_SYMBOL(blk_get_backing_dev_info);
121
2a4aa30c 122void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 123{
1afb20f3
FT
124 memset(rq, 0, sizeof(*rq));
125
1da177e4 126 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 127 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 128 rq->cpu = -1;
63a71386
JA
129 rq->q = q;
130 rq->sector = rq->hard_sector = (sector_t) -1;
2e662b65
JA
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 133 rq->cmd = rq->__cmd;
e2494e1b 134 rq->cmd_len = BLK_MAX_CDB;
63a71386 135 rq->tag = -1;
1da177e4 136 rq->ref_count = 1;
b243ddcb 137 rq->start_time = jiffies;
1da177e4 138}
2a4aa30c 139EXPORT_SYMBOL(blk_rq_init);
1da177e4 140
5bb23a68
N
141static void req_bio_endio(struct request *rq, struct bio *bio,
142 unsigned int nbytes, int error)
1da177e4 143{
165125e1 144 struct request_queue *q = rq->q;
797e7dbb 145
5bb23a68
N
146 if (&q->bar_rq != rq) {
147 if (error)
148 clear_bit(BIO_UPTODATE, &bio->bi_flags);
149 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
150 error = -EIO;
797e7dbb 151
5bb23a68 152 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 153 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 154 __func__, nbytes, bio->bi_size);
5bb23a68
N
155 nbytes = bio->bi_size;
156 }
797e7dbb 157
08bafc03
KM
158 if (unlikely(rq->cmd_flags & REQ_QUIET))
159 set_bit(BIO_QUIET, &bio->bi_flags);
160
5bb23a68
N
161 bio->bi_size -= nbytes;
162 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
163
164 if (bio_integrity(bio))
165 bio_integrity_advance(bio, nbytes);
166
5bb23a68 167 if (bio->bi_size == 0)
6712ecf8 168 bio_endio(bio, error);
5bb23a68
N
169 } else {
170
171 /*
172 * Okay, this is the barrier request in progress, just
173 * record the error;
174 */
175 if (error && !q->orderr)
176 q->orderr = error;
177 }
1da177e4 178}
1da177e4 179
1da177e4
LT
180void blk_dump_rq_flags(struct request *rq, char *msg)
181{
182 int bit;
183
6728cb0e 184 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
185 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
186 rq->cmd_flags);
1da177e4 187
83096ebf
TH
188 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
189 (unsigned long long)blk_rq_pos(rq),
190 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 191 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
6728cb0e 192 rq->bio, rq->biotail,
731ec497 193 rq->buffer, rq->data_len);
1da177e4 194
4aff5e23 195 if (blk_pc_request(rq)) {
6728cb0e 196 printk(KERN_INFO " cdb: ");
d34c87e4 197 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
198 printk("%02x ", rq->cmd[bit]);
199 printk("\n");
200 }
201}
1da177e4
LT
202EXPORT_SYMBOL(blk_dump_rq_flags);
203
1da177e4
LT
204/*
205 * "plug" the device if there are no outstanding requests: this will
206 * force the transfer to start only after we have put all the requests
207 * on the list.
208 *
209 * This is called with interrupts off and no requests on the queue and
210 * with the queue lock held.
211 */
165125e1 212void blk_plug_device(struct request_queue *q)
1da177e4
LT
213{
214 WARN_ON(!irqs_disabled());
215
216 /*
217 * don't plug a stopped queue, it must be paired with blk_start_queue()
218 * which will restart the queueing
219 */
7daac490 220 if (blk_queue_stopped(q))
1da177e4
LT
221 return;
222
e48ec690 223 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 224 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 225 trace_block_plug(q);
2056a782 226 }
1da177e4 227}
1da177e4
LT
228EXPORT_SYMBOL(blk_plug_device);
229
6c5e0c4d
JA
230/**
231 * blk_plug_device_unlocked - plug a device without queue lock held
232 * @q: The &struct request_queue to plug
233 *
234 * Description:
235 * Like @blk_plug_device(), but grabs the queue lock and disables
236 * interrupts.
237 **/
238void blk_plug_device_unlocked(struct request_queue *q)
239{
240 unsigned long flags;
241
242 spin_lock_irqsave(q->queue_lock, flags);
243 blk_plug_device(q);
244 spin_unlock_irqrestore(q->queue_lock, flags);
245}
246EXPORT_SYMBOL(blk_plug_device_unlocked);
247
1da177e4
LT
248/*
249 * remove the queue from the plugged list, if present. called with
250 * queue lock held and interrupts disabled.
251 */
165125e1 252int blk_remove_plug(struct request_queue *q)
1da177e4
LT
253{
254 WARN_ON(!irqs_disabled());
255
e48ec690 256 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
257 return 0;
258
259 del_timer(&q->unplug_timer);
260 return 1;
261}
1da177e4
LT
262EXPORT_SYMBOL(blk_remove_plug);
263
264/*
265 * remove the plug and let it rip..
266 */
165125e1 267void __generic_unplug_device(struct request_queue *q)
1da177e4 268{
7daac490 269 if (unlikely(blk_queue_stopped(q)))
1da177e4 270 return;
a31a9738 271 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
1da177e4
LT
272 return;
273
22e2c507 274 q->request_fn(q);
1da177e4 275}
1da177e4
LT
276
277/**
278 * generic_unplug_device - fire a request queue
165125e1 279 * @q: The &struct request_queue in question
1da177e4
LT
280 *
281 * Description:
282 * Linux uses plugging to build bigger requests queues before letting
283 * the device have at them. If a queue is plugged, the I/O scheduler
284 * is still adding and merging requests on the queue. Once the queue
285 * gets unplugged, the request_fn defined for the queue is invoked and
286 * transfers started.
287 **/
165125e1 288void generic_unplug_device(struct request_queue *q)
1da177e4 289{
dbaf2c00
JA
290 if (blk_queue_plugged(q)) {
291 spin_lock_irq(q->queue_lock);
292 __generic_unplug_device(q);
293 spin_unlock_irq(q->queue_lock);
294 }
1da177e4
LT
295}
296EXPORT_SYMBOL(generic_unplug_device);
297
298static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
299 struct page *page)
300{
165125e1 301 struct request_queue *q = bdi->unplug_io_data;
1da177e4 302
2ad8b1ef 303 blk_unplug(q);
1da177e4
LT
304}
305
86db1e29 306void blk_unplug_work(struct work_struct *work)
1da177e4 307{
165125e1
JA
308 struct request_queue *q =
309 container_of(work, struct request_queue, unplug_work);
1da177e4 310
5f3ea37c 311 trace_block_unplug_io(q);
1da177e4
LT
312 q->unplug_fn(q);
313}
314
86db1e29 315void blk_unplug_timeout(unsigned long data)
1da177e4 316{
165125e1 317 struct request_queue *q = (struct request_queue *)data;
1da177e4 318
5f3ea37c 319 trace_block_unplug_timer(q);
18887ad9 320 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
321}
322
2ad8b1ef
AB
323void blk_unplug(struct request_queue *q)
324{
325 /*
326 * devices don't necessarily have an ->unplug_fn defined
327 */
328 if (q->unplug_fn) {
5f3ea37c 329 trace_block_unplug_io(q);
2ad8b1ef
AB
330 q->unplug_fn(q);
331 }
332}
333EXPORT_SYMBOL(blk_unplug);
334
1da177e4
LT
335/**
336 * blk_start_queue - restart a previously stopped queue
165125e1 337 * @q: The &struct request_queue in question
1da177e4
LT
338 *
339 * Description:
340 * blk_start_queue() will clear the stop flag on the queue, and call
341 * the request_fn for the queue if it was in a stopped state when
342 * entered. Also see blk_stop_queue(). Queue lock must be held.
343 **/
165125e1 344void blk_start_queue(struct request_queue *q)
1da177e4 345{
a038e253
PBG
346 WARN_ON(!irqs_disabled());
347
75ad23bc 348 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
a538cd03 349 __blk_run_queue(q);
1da177e4 350}
1da177e4
LT
351EXPORT_SYMBOL(blk_start_queue);
352
353/**
354 * blk_stop_queue - stop a queue
165125e1 355 * @q: The &struct request_queue in question
1da177e4
LT
356 *
357 * Description:
358 * The Linux block layer assumes that a block driver will consume all
359 * entries on the request queue when the request_fn strategy is called.
360 * Often this will not happen, because of hardware limitations (queue
361 * depth settings). If a device driver gets a 'queue full' response,
362 * or if it simply chooses not to queue more I/O at one point, it can
363 * call this function to prevent the request_fn from being called until
364 * the driver has signalled it's ready to go again. This happens by calling
365 * blk_start_queue() to restart queue operations. Queue lock must be held.
366 **/
165125e1 367void blk_stop_queue(struct request_queue *q)
1da177e4
LT
368{
369 blk_remove_plug(q);
75ad23bc 370 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
371}
372EXPORT_SYMBOL(blk_stop_queue);
373
374/**
375 * blk_sync_queue - cancel any pending callbacks on a queue
376 * @q: the queue
377 *
378 * Description:
379 * The block layer may perform asynchronous callback activity
380 * on a queue, such as calling the unplug function after a timeout.
381 * A block device may call blk_sync_queue to ensure that any
382 * such activity is cancelled, thus allowing it to release resources
59c51591 383 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
384 * that its ->make_request_fn will not re-add plugging prior to calling
385 * this function.
386 *
387 */
388void blk_sync_queue(struct request_queue *q)
389{
390 del_timer_sync(&q->unplug_timer);
70ed28b9 391 del_timer_sync(&q->timeout);
64d01dc9 392 cancel_work_sync(&q->unplug_work);
1da177e4
LT
393}
394EXPORT_SYMBOL(blk_sync_queue);
395
396/**
80a4b58e 397 * __blk_run_queue - run a single device queue
1da177e4 398 * @q: The queue to run
80a4b58e
JA
399 *
400 * Description:
401 * See @blk_run_queue. This variant must be called with the queue lock
402 * held and interrupts disabled.
403 *
1da177e4 404 */
75ad23bc 405void __blk_run_queue(struct request_queue *q)
1da177e4 406{
1da177e4 407 blk_remove_plug(q);
dac07ec1 408
a538cd03
TH
409 if (unlikely(blk_queue_stopped(q)))
410 return;
411
412 if (elv_queue_empty(q))
413 return;
414
dac07ec1
JA
415 /*
416 * Only recurse once to avoid overrunning the stack, let the unplug
417 * handling reinvoke the handler shortly if we already got there.
418 */
a538cd03
TH
419 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
420 q->request_fn(q);
421 queue_flag_clear(QUEUE_FLAG_REENTER, q);
422 } else {
423 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
424 kblockd_schedule_work(q, &q->unplug_work);
425 }
75ad23bc
NP
426}
427EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 428
75ad23bc
NP
429/**
430 * blk_run_queue - run a single device queue
431 * @q: The queue to run
80a4b58e
JA
432 *
433 * Description:
434 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 435 * May be used to restart queueing when a request has completed.
75ad23bc
NP
436 */
437void blk_run_queue(struct request_queue *q)
438{
439 unsigned long flags;
440
441 spin_lock_irqsave(q->queue_lock, flags);
442 __blk_run_queue(q);
1da177e4
LT
443 spin_unlock_irqrestore(q->queue_lock, flags);
444}
445EXPORT_SYMBOL(blk_run_queue);
446
165125e1 447void blk_put_queue(struct request_queue *q)
483f4afc
AV
448{
449 kobject_put(&q->kobj);
450}
483f4afc 451
6728cb0e 452void blk_cleanup_queue(struct request_queue *q)
483f4afc 453{
e3335de9
JA
454 /*
455 * We know we have process context here, so we can be a little
456 * cautious and ensure that pending block actions on this device
457 * are done before moving on. Going into this function, we should
458 * not have processes doing IO to this device.
459 */
460 blk_sync_queue(q);
461
483f4afc 462 mutex_lock(&q->sysfs_lock);
75ad23bc 463 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
464 mutex_unlock(&q->sysfs_lock);
465
466 if (q->elevator)
467 elevator_exit(q->elevator);
468
469 blk_put_queue(q);
470}
1da177e4
LT
471EXPORT_SYMBOL(blk_cleanup_queue);
472
165125e1 473static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
474{
475 struct request_list *rl = &q->rq;
476
1faa16d2
JA
477 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
478 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 479 rl->elvpriv = 0;
1faa16d2
JA
480 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
481 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 482
1946089a
CL
483 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
484 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
485
486 if (!rl->rq_pool)
487 return -ENOMEM;
488
489 return 0;
490}
491
165125e1 492struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 493{
1946089a
CL
494 return blk_alloc_queue_node(gfp_mask, -1);
495}
496EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 497
165125e1 498struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 499{
165125e1 500 struct request_queue *q;
e0bf68dd 501 int err;
1946089a 502
8324aa91 503 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 504 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
505 if (!q)
506 return NULL;
507
e0bf68dd
PZ
508 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
509 q->backing_dev_info.unplug_io_data = q;
510 err = bdi_init(&q->backing_dev_info);
511 if (err) {
8324aa91 512 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
513 return NULL;
514 }
515
1da177e4 516 init_timer(&q->unplug_timer);
242f9dcb
JA
517 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
518 INIT_LIST_HEAD(&q->timeout_list);
713ada9b 519 INIT_WORK(&q->unplug_work, blk_unplug_work);
483f4afc 520
8324aa91 521 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 522
483f4afc 523 mutex_init(&q->sysfs_lock);
e7e72bf6 524 spin_lock_init(&q->__queue_lock);
483f4afc 525
1da177e4
LT
526 return q;
527}
1946089a 528EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
529
530/**
531 * blk_init_queue - prepare a request queue for use with a block device
532 * @rfn: The function to be called to process requests that have been
533 * placed on the queue.
534 * @lock: Request queue spin lock
535 *
536 * Description:
537 * If a block device wishes to use the standard request handling procedures,
538 * which sorts requests and coalesces adjacent requests, then it must
539 * call blk_init_queue(). The function @rfn will be called when there
540 * are requests on the queue that need to be processed. If the device
541 * supports plugging, then @rfn may not be called immediately when requests
542 * are available on the queue, but may be called at some time later instead.
543 * Plugged queues are generally unplugged when a buffer belonging to one
544 * of the requests on the queue is needed, or due to memory pressure.
545 *
546 * @rfn is not required, or even expected, to remove all requests off the
547 * queue, but only as many as it can handle at a time. If it does leave
548 * requests on the queue, it is responsible for arranging that the requests
549 * get dealt with eventually.
550 *
551 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
552 * request queue; this lock will be taken also from interrupt context, so irq
553 * disabling is needed for it.
1da177e4 554 *
710027a4 555 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
556 * it didn't succeed.
557 *
558 * Note:
559 * blk_init_queue() must be paired with a blk_cleanup_queue() call
560 * when the block device is deactivated (such as at module unload).
561 **/
1946089a 562
165125e1 563struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 564{
1946089a
CL
565 return blk_init_queue_node(rfn, lock, -1);
566}
567EXPORT_SYMBOL(blk_init_queue);
568
165125e1 569struct request_queue *
1946089a
CL
570blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
571{
165125e1 572 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
573
574 if (!q)
575 return NULL;
576
1946089a 577 q->node = node_id;
8669aafd 578 if (blk_init_free_list(q)) {
8324aa91 579 kmem_cache_free(blk_requestq_cachep, q);
8669aafd
AV
580 return NULL;
581 }
1da177e4 582
152587de
JA
583 /*
584 * if caller didn't supply a lock, they get per-queue locking with
585 * our embedded lock
586 */
e7e72bf6 587 if (!lock)
152587de 588 lock = &q->__queue_lock;
152587de 589
1da177e4 590 q->request_fn = rfn;
1da177e4
LT
591 q->prep_rq_fn = NULL;
592 q->unplug_fn = generic_unplug_device;
bc58ba94 593 q->queue_flags = QUEUE_FLAG_DEFAULT;
1da177e4
LT
594 q->queue_lock = lock;
595
f3b144aa
JA
596 /*
597 * This also sets hw/phys segments, boundary and size
598 */
1da177e4 599 blk_queue_make_request(q, __make_request);
1da177e4 600
44ec9542
AS
601 q->sg_reserved_size = INT_MAX;
602
abf54393
FT
603 blk_set_cmd_filter_defaults(&q->cmd_filter);
604
1da177e4
LT
605 /*
606 * all done
607 */
608 if (!elevator_init(q, NULL)) {
609 blk_queue_congestion_threshold(q);
610 return q;
611 }
612
8669aafd 613 blk_put_queue(q);
1da177e4
LT
614 return NULL;
615}
1946089a 616EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 617
165125e1 618int blk_get_queue(struct request_queue *q)
1da177e4 619{
fde6ad22 620 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 621 kobject_get(&q->kobj);
1da177e4
LT
622 return 0;
623 }
624
625 return 1;
626}
1da177e4 627
165125e1 628static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 629{
4aff5e23 630 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 631 elv_put_request(q, rq);
1da177e4
LT
632 mempool_free(rq, q->rq.rq_pool);
633}
634
1ea25ecb 635static struct request *
42dad764 636blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
637{
638 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
639
640 if (!rq)
641 return NULL;
642
2a4aa30c 643 blk_rq_init(q, rq);
1afb20f3 644
42dad764 645 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 646
cb98fc8b 647 if (priv) {
cb78b285 648 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
649 mempool_free(rq, q->rq.rq_pool);
650 return NULL;
651 }
4aff5e23 652 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 653 }
1da177e4 654
cb98fc8b 655 return rq;
1da177e4
LT
656}
657
658/*
659 * ioc_batching returns true if the ioc is a valid batching request and
660 * should be given priority access to a request.
661 */
165125e1 662static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
663{
664 if (!ioc)
665 return 0;
666
667 /*
668 * Make sure the process is able to allocate at least 1 request
669 * even if the batch times out, otherwise we could theoretically
670 * lose wakeups.
671 */
672 return ioc->nr_batch_requests == q->nr_batching ||
673 (ioc->nr_batch_requests > 0
674 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
675}
676
677/*
678 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
679 * will cause the process to be a "batcher" on all queues in the system. This
680 * is the behaviour we want though - once it gets a wakeup it should be given
681 * a nice run.
682 */
165125e1 683static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
684{
685 if (!ioc || ioc_batching(q, ioc))
686 return;
687
688 ioc->nr_batch_requests = q->nr_batching;
689 ioc->last_waited = jiffies;
690}
691
1faa16d2 692static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
693{
694 struct request_list *rl = &q->rq;
695
1faa16d2
JA
696 if (rl->count[sync] < queue_congestion_off_threshold(q))
697 blk_clear_queue_congested(q, sync);
1da177e4 698
1faa16d2
JA
699 if (rl->count[sync] + 1 <= q->nr_requests) {
700 if (waitqueue_active(&rl->wait[sync]))
701 wake_up(&rl->wait[sync]);
1da177e4 702
1faa16d2 703 blk_clear_queue_full(q, sync);
1da177e4
LT
704 }
705}
706
707/*
708 * A request has just been released. Account for it, update the full and
709 * congestion status, wake up any waiters. Called under q->queue_lock.
710 */
1faa16d2 711static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
712{
713 struct request_list *rl = &q->rq;
714
1faa16d2 715 rl->count[sync]--;
cb98fc8b
TH
716 if (priv)
717 rl->elvpriv--;
1da177e4 718
1faa16d2 719 __freed_request(q, sync);
1da177e4 720
1faa16d2
JA
721 if (unlikely(rl->starved[sync ^ 1]))
722 __freed_request(q, sync ^ 1);
1da177e4
LT
723}
724
1da177e4 725/*
d6344532
NP
726 * Get a free request, queue_lock must be held.
727 * Returns NULL on failure, with queue_lock held.
728 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 729 */
165125e1 730static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 731 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
732{
733 struct request *rq = NULL;
734 struct request_list *rl = &q->rq;
88ee5ef1 735 struct io_context *ioc = NULL;
1faa16d2 736 const bool is_sync = rw_is_sync(rw_flags) != 0;
88ee5ef1
JA
737 int may_queue, priv;
738
7749a8d4 739 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
740 if (may_queue == ELV_MQUEUE_NO)
741 goto rq_starved;
742
1faa16d2
JA
743 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
744 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 745 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
746 /*
747 * The queue will fill after this allocation, so set
748 * it as full, and mark this process as "batching".
749 * This process will be allowed to complete a batch of
750 * requests, others will be blocked.
751 */
1faa16d2 752 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 753 ioc_set_batching(q, ioc);
1faa16d2 754 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
755 } else {
756 if (may_queue != ELV_MQUEUE_MUST
757 && !ioc_batching(q, ioc)) {
758 /*
759 * The queue is full and the allocating
760 * process is not a "batcher", and not
761 * exempted by the IO scheduler
762 */
763 goto out;
764 }
765 }
1da177e4 766 }
1faa16d2 767 blk_set_queue_congested(q, is_sync);
1da177e4
LT
768 }
769
082cf69e
JA
770 /*
771 * Only allow batching queuers to allocate up to 50% over the defined
772 * limit of requests, otherwise we could have thousands of requests
773 * allocated with any setting of ->nr_requests
774 */
1faa16d2 775 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 776 goto out;
fd782a4a 777
1faa16d2
JA
778 rl->count[is_sync]++;
779 rl->starved[is_sync] = 0;
cb98fc8b 780
64521d1a 781 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
782 if (priv)
783 rl->elvpriv++;
784
42dad764
JM
785 if (blk_queue_io_stat(q))
786 rw_flags |= REQ_IO_STAT;
1da177e4
LT
787 spin_unlock_irq(q->queue_lock);
788
7749a8d4 789 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 790 if (unlikely(!rq)) {
1da177e4
LT
791 /*
792 * Allocation failed presumably due to memory. Undo anything
793 * we might have messed up.
794 *
795 * Allocating task should really be put onto the front of the
796 * wait queue, but this is pretty rare.
797 */
798 spin_lock_irq(q->queue_lock);
1faa16d2 799 freed_request(q, is_sync, priv);
1da177e4
LT
800
801 /*
802 * in the very unlikely event that allocation failed and no
803 * requests for this direction was pending, mark us starved
804 * so that freeing of a request in the other direction will
805 * notice us. another possible fix would be to split the
806 * rq mempool into READ and WRITE
807 */
808rq_starved:
1faa16d2
JA
809 if (unlikely(rl->count[is_sync] == 0))
810 rl->starved[is_sync] = 1;
1da177e4 811
1da177e4
LT
812 goto out;
813 }
814
88ee5ef1
JA
815 /*
816 * ioc may be NULL here, and ioc_batching will be false. That's
817 * OK, if the queue is under the request limit then requests need
818 * not count toward the nr_batch_requests limit. There will always
819 * be some limit enforced by BLK_BATCH_TIME.
820 */
1da177e4
LT
821 if (ioc_batching(q, ioc))
822 ioc->nr_batch_requests--;
6728cb0e 823
1faa16d2 824 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 825out:
1da177e4
LT
826 return rq;
827}
828
829/*
830 * No available requests for this queue, unplug the device and wait for some
831 * requests to become available.
d6344532
NP
832 *
833 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 834 */
165125e1 835static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 836 struct bio *bio)
1da177e4 837{
1faa16d2 838 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
839 struct request *rq;
840
7749a8d4 841 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
842 while (!rq) {
843 DEFINE_WAIT(wait);
05caf8db 844 struct io_context *ioc;
1da177e4
LT
845 struct request_list *rl = &q->rq;
846
1faa16d2 847 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
848 TASK_UNINTERRUPTIBLE);
849
1faa16d2 850 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 851
05caf8db
ZY
852 __generic_unplug_device(q);
853 spin_unlock_irq(q->queue_lock);
854 io_schedule();
1da177e4 855
05caf8db
ZY
856 /*
857 * After sleeping, we become a "batching" process and
858 * will be able to allocate at least one request, and
859 * up to a big batch of them for a small period time.
860 * See ioc_batching, ioc_set_batching
861 */
862 ioc = current_io_context(GFP_NOIO, q->node);
863 ioc_set_batching(q, ioc);
d6344532 864
05caf8db 865 spin_lock_irq(q->queue_lock);
1faa16d2 866 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
867
868 rq = get_request(q, rw_flags, bio, GFP_NOIO);
869 };
1da177e4
LT
870
871 return rq;
872}
873
165125e1 874struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
875{
876 struct request *rq;
877
878 BUG_ON(rw != READ && rw != WRITE);
879
d6344532
NP
880 spin_lock_irq(q->queue_lock);
881 if (gfp_mask & __GFP_WAIT) {
22e2c507 882 rq = get_request_wait(q, rw, NULL);
d6344532 883 } else {
22e2c507 884 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
885 if (!rq)
886 spin_unlock_irq(q->queue_lock);
887 }
888 /* q->queue_lock is unlocked at this point */
1da177e4
LT
889
890 return rq;
891}
1da177e4
LT
892EXPORT_SYMBOL(blk_get_request);
893
894/**
895 * blk_requeue_request - put a request back on queue
896 * @q: request queue where request should be inserted
897 * @rq: request to be inserted
898 *
899 * Description:
900 * Drivers often keep queueing requests until the hardware cannot accept
901 * more, when that condition happens we need to put the request back
902 * on the queue. Must be called with queue lock held.
903 */
165125e1 904void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 905{
242f9dcb
JA
906 blk_delete_timer(rq);
907 blk_clear_rq_complete(rq);
5f3ea37c 908 trace_block_rq_requeue(q, rq);
2056a782 909
1da177e4
LT
910 if (blk_rq_tagged(rq))
911 blk_queue_end_tag(q, rq);
912
913 elv_requeue_request(q, rq);
914}
1da177e4
LT
915EXPORT_SYMBOL(blk_requeue_request);
916
917/**
710027a4 918 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
919 * @q: request queue where request should be inserted
920 * @rq: request to be inserted
921 * @at_head: insert request at head or tail of queue
922 * @data: private data
1da177e4
LT
923 *
924 * Description:
925 * Many block devices need to execute commands asynchronously, so they don't
926 * block the whole kernel from preemption during request execution. This is
927 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
928 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
929 * be scheduled for actual execution by the request queue.
1da177e4
LT
930 *
931 * We have the option of inserting the head or the tail of the queue.
932 * Typically we use the tail for new ioctls and so forth. We use the head
933 * of the queue for things like a QUEUE_FULL message from a device, or a
934 * host that is unable to accept a particular command.
935 */
165125e1 936void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 937 int at_head, void *data)
1da177e4 938{
867d1191 939 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
940 unsigned long flags;
941
942 /*
943 * tell I/O scheduler that this isn't a regular read/write (ie it
944 * must not attempt merges on this) and that it acts as a soft
945 * barrier
946 */
4aff5e23 947 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
948
949 rq->special = data;
950
951 spin_lock_irqsave(q->queue_lock, flags);
952
953 /*
954 * If command is tagged, release the tag
955 */
867d1191
TH
956 if (blk_rq_tagged(rq))
957 blk_queue_end_tag(q, rq);
1da177e4 958
b238b3d4 959 drive_stat_acct(rq, 1);
867d1191 960 __elv_add_request(q, rq, where, 0);
a7f55792 961 __blk_run_queue(q);
1da177e4
LT
962 spin_unlock_irqrestore(q->queue_lock, flags);
963}
1da177e4
LT
964EXPORT_SYMBOL(blk_insert_request);
965
1da177e4
LT
966/*
967 * add-request adds a request to the linked list.
968 * queue lock is held and interrupts disabled, as we muck with the
969 * request queue list.
970 */
6728cb0e 971static inline void add_request(struct request_queue *q, struct request *req)
1da177e4 972{
b238b3d4 973 drive_stat_acct(req, 1);
1da177e4 974
1da177e4
LT
975 /*
976 * elevator indicated where it wants this request to be
977 * inserted at elevator_merge time
978 */
979 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
980}
6728cb0e 981
074a7aca
TH
982static void part_round_stats_single(int cpu, struct hd_struct *part,
983 unsigned long now)
984{
985 if (now == part->stamp)
986 return;
987
988 if (part->in_flight) {
989 __part_stat_add(cpu, part, time_in_queue,
990 part->in_flight * (now - part->stamp));
991 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
992 }
993 part->stamp = now;
994}
995
996/**
496aa8a9
RD
997 * part_round_stats() - Round off the performance stats on a struct disk_stats.
998 * @cpu: cpu number for stats access
999 * @part: target partition
1da177e4
LT
1000 *
1001 * The average IO queue length and utilisation statistics are maintained
1002 * by observing the current state of the queue length and the amount of
1003 * time it has been in this state for.
1004 *
1005 * Normally, that accounting is done on IO completion, but that can result
1006 * in more than a second's worth of IO being accounted for within any one
1007 * second, leading to >100% utilisation. To deal with that, we call this
1008 * function to do a round-off before returning the results when reading
1009 * /proc/diskstats. This accounts immediately for all queue usage up to
1010 * the current jiffies and restarts the counters again.
1011 */
c9959059 1012void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1013{
1014 unsigned long now = jiffies;
1015
074a7aca
TH
1016 if (part->partno)
1017 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1018 part_round_stats_single(cpu, part, now);
6f2576af 1019}
074a7aca 1020EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1021
1da177e4
LT
1022/*
1023 * queue lock must be held
1024 */
165125e1 1025void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1026{
1da177e4
LT
1027 if (unlikely(!q))
1028 return;
1029 if (unlikely(--req->ref_count))
1030 return;
1031
8922e16c
TH
1032 elv_completed_request(q, req);
1033
1cd96c24
BH
1034 /* this is a bio leak */
1035 WARN_ON(req->bio != NULL);
1036
1da177e4
LT
1037 /*
1038 * Request may not have originated from ll_rw_blk. if not,
1039 * it didn't come out of our reserved rq pools
1040 */
49171e5c 1041 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1042 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1043 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1044
1da177e4 1045 BUG_ON(!list_empty(&req->queuelist));
9817064b 1046 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1047
1048 blk_free_request(q, req);
1faa16d2 1049 freed_request(q, is_sync, priv);
1da177e4
LT
1050 }
1051}
6e39b69e
MC
1052EXPORT_SYMBOL_GPL(__blk_put_request);
1053
1da177e4
LT
1054void blk_put_request(struct request *req)
1055{
8922e16c 1056 unsigned long flags;
165125e1 1057 struct request_queue *q = req->q;
8922e16c 1058
52a93ba8
FT
1059 spin_lock_irqsave(q->queue_lock, flags);
1060 __blk_put_request(q, req);
1061 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1062}
1da177e4
LT
1063EXPORT_SYMBOL(blk_put_request);
1064
86db1e29 1065void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1066{
c7c22e4d 1067 req->cpu = bio->bi_comp_cpu;
4aff5e23 1068 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
1069
1070 /*
1071 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1072 */
6000a368
MC
1073 if (bio_rw_ahead(bio))
1074 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
1075 REQ_FAILFAST_DRIVER);
1076 if (bio_failfast_dev(bio))
1077 req->cmd_flags |= REQ_FAILFAST_DEV;
1078 if (bio_failfast_transport(bio))
1079 req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
1080 if (bio_failfast_driver(bio))
1081 req->cmd_flags |= REQ_FAILFAST_DRIVER;
52d9e675 1082
fb2dce86 1083 if (unlikely(bio_discard(bio))) {
e17fc0a1
DW
1084 req->cmd_flags |= REQ_DISCARD;
1085 if (bio_barrier(bio))
1086 req->cmd_flags |= REQ_SOFTBARRIER;
fb2dce86 1087 req->q->prepare_discard_fn(req->q, req);
e17fc0a1 1088 } else if (unlikely(bio_barrier(bio)))
e4025f6c 1089 req->cmd_flags |= REQ_HARDBARRIER;
52d9e675 1090
b31dc66a 1091 if (bio_sync(bio))
4aff5e23 1092 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
1093 if (bio_rw_meta(bio))
1094 req->cmd_flags |= REQ_RW_META;
aeb6fafb
JA
1095 if (bio_noidle(bio))
1096 req->cmd_flags |= REQ_NOIDLE;
b31dc66a 1097
52d9e675
TH
1098 req->errors = 0;
1099 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 1100 req->ioprio = bio_prio(bio);
bc1c56fd 1101 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1102}
1103
644b2d99
JA
1104/*
1105 * Only disabling plugging for non-rotational devices if it does tagging
1106 * as well, otherwise we do need the proper merging
1107 */
1108static inline bool queue_should_plug(struct request_queue *q)
1109{
1110 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1111}
1112
165125e1 1113static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1114{
450991bc 1115 struct request *req;
a7384677 1116 int el_ret, nr_sectors;
51da90fc
JA
1117 const unsigned short prio = bio_prio(bio);
1118 const int sync = bio_sync(bio);
213d9417 1119 const int unplug = bio_unplug(bio);
7749a8d4 1120 int rw_flags;
1da177e4 1121
1da177e4 1122 nr_sectors = bio_sectors(bio);
1da177e4
LT
1123
1124 /*
1125 * low level driver can indicate that it wants pages above a
1126 * certain limit bounced to low memory (ie for highmem, or even
1127 * ISA dma in theory)
1128 */
1129 blk_queue_bounce(q, &bio);
1130
1da177e4
LT
1131 spin_lock_irq(q->queue_lock);
1132
a7384677 1133 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q))
1da177e4
LT
1134 goto get_rq;
1135
1136 el_ret = elv_merge(q, &req, bio);
1137 switch (el_ret) {
6728cb0e
JA
1138 case ELEVATOR_BACK_MERGE:
1139 BUG_ON(!rq_mergeable(req));
1da177e4 1140
6728cb0e
JA
1141 if (!ll_back_merge_fn(q, req, bio))
1142 break;
1da177e4 1143
5f3ea37c 1144 trace_block_bio_backmerge(q, bio);
2056a782 1145
6728cb0e
JA
1146 req->biotail->bi_next = bio;
1147 req->biotail = bio;
1148 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1149 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1150 if (!blk_rq_cpu_valid(req))
1151 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1152 drive_stat_acct(req, 0);
1153 if (!attempt_back_merge(q, req))
1154 elv_merged_request(q, req, el_ret);
1155 goto out;
1da177e4 1156
6728cb0e
JA
1157 case ELEVATOR_FRONT_MERGE:
1158 BUG_ON(!rq_mergeable(req));
1da177e4 1159
6728cb0e
JA
1160 if (!ll_front_merge_fn(q, req, bio))
1161 break;
1da177e4 1162
5f3ea37c 1163 trace_block_bio_frontmerge(q, bio);
2056a782 1164
6728cb0e
JA
1165 bio->bi_next = req->bio;
1166 req->bio = bio;
1da177e4 1167
6728cb0e
JA
1168 /*
1169 * may not be valid. if the low level driver said
1170 * it didn't need a bounce buffer then it better
1171 * not touch req->buffer either...
1172 */
1173 req->buffer = bio_data(bio);
1174 req->current_nr_sectors = bio_cur_sectors(bio);
1175 req->hard_cur_sectors = req->current_nr_sectors;
1176 req->sector = req->hard_sector = bio->bi_sector;
1177 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1178 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1179 if (!blk_rq_cpu_valid(req))
1180 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1181 drive_stat_acct(req, 0);
1182 if (!attempt_front_merge(q, req))
1183 elv_merged_request(q, req, el_ret);
1184 goto out;
1185
1186 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1187 default:
1188 ;
1da177e4
LT
1189 }
1190
450991bc 1191get_rq:
7749a8d4
JA
1192 /*
1193 * This sync check and mask will be re-done in init_request_from_bio(),
1194 * but we need to set it earlier to expose the sync flag to the
1195 * rq allocator and io schedulers.
1196 */
1197 rw_flags = bio_data_dir(bio);
1198 if (sync)
1199 rw_flags |= REQ_RW_SYNC;
1200
1da177e4 1201 /*
450991bc 1202 * Grab a free request. This is might sleep but can not fail.
d6344532 1203 * Returns with the queue unlocked.
450991bc 1204 */
7749a8d4 1205 req = get_request_wait(q, rw_flags, bio);
d6344532 1206
450991bc
NP
1207 /*
1208 * After dropping the lock and possibly sleeping here, our request
1209 * may now be mergeable after it had proven unmergeable (above).
1210 * We don't worry about that case for efficiency. It won't happen
1211 * often, and the elevators are able to handle it.
1da177e4 1212 */
52d9e675 1213 init_request_from_bio(req, bio);
1da177e4 1214
450991bc 1215 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1216 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1217 bio_flagged(bio, BIO_CPU_AFFINE))
1218 req->cpu = blk_cpu_to_group(smp_processor_id());
644b2d99 1219 if (queue_should_plug(q) && elv_queue_empty(q))
450991bc 1220 blk_plug_device(q);
1da177e4
LT
1221 add_request(q, req);
1222out:
644b2d99 1223 if (unplug || !queue_should_plug(q))
1da177e4 1224 __generic_unplug_device(q);
1da177e4
LT
1225 spin_unlock_irq(q->queue_lock);
1226 return 0;
1da177e4
LT
1227}
1228
1229/*
1230 * If bio->bi_dev is a partition, remap the location
1231 */
1232static inline void blk_partition_remap(struct bio *bio)
1233{
1234 struct block_device *bdev = bio->bi_bdev;
1235
bf2de6f5 1236 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1237 struct hd_struct *p = bdev->bd_part;
1238
1da177e4
LT
1239 bio->bi_sector += p->start_sect;
1240 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1241
5f3ea37c 1242 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
c7149d6b
AB
1243 bdev->bd_dev, bio->bi_sector,
1244 bio->bi_sector - p->start_sect);
1da177e4
LT
1245 }
1246}
1247
1da177e4
LT
1248static void handle_bad_sector(struct bio *bio)
1249{
1250 char b[BDEVNAME_SIZE];
1251
1252 printk(KERN_INFO "attempt to access beyond end of device\n");
1253 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1254 bdevname(bio->bi_bdev, b),
1255 bio->bi_rw,
1256 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1257 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1258
1259 set_bit(BIO_EOF, &bio->bi_flags);
1260}
1261
c17bb495
AM
1262#ifdef CONFIG_FAIL_MAKE_REQUEST
1263
1264static DECLARE_FAULT_ATTR(fail_make_request);
1265
1266static int __init setup_fail_make_request(char *str)
1267{
1268 return setup_fault_attr(&fail_make_request, str);
1269}
1270__setup("fail_make_request=", setup_fail_make_request);
1271
1272static int should_fail_request(struct bio *bio)
1273{
eddb2e26
TH
1274 struct hd_struct *part = bio->bi_bdev->bd_part;
1275
1276 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1277 return should_fail(&fail_make_request, bio->bi_size);
1278
1279 return 0;
1280}
1281
1282static int __init fail_make_request_debugfs(void)
1283{
1284 return init_fault_attr_dentries(&fail_make_request,
1285 "fail_make_request");
1286}
1287
1288late_initcall(fail_make_request_debugfs);
1289
1290#else /* CONFIG_FAIL_MAKE_REQUEST */
1291
1292static inline int should_fail_request(struct bio *bio)
1293{
1294 return 0;
1295}
1296
1297#endif /* CONFIG_FAIL_MAKE_REQUEST */
1298
c07e2b41
JA
1299/*
1300 * Check whether this bio extends beyond the end of the device.
1301 */
1302static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1303{
1304 sector_t maxsector;
1305
1306 if (!nr_sectors)
1307 return 0;
1308
1309 /* Test device or partition size, when known. */
1310 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1311 if (maxsector) {
1312 sector_t sector = bio->bi_sector;
1313
1314 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1315 /*
1316 * This may well happen - the kernel calls bread()
1317 * without checking the size of the device, e.g., when
1318 * mounting a device.
1319 */
1320 handle_bad_sector(bio);
1321 return 1;
1322 }
1323 }
1324
1325 return 0;
1326}
1327
1da177e4 1328/**
710027a4 1329 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1330 * @bio: The bio describing the location in memory and on the device.
1331 *
1332 * generic_make_request() is used to make I/O requests of block
1333 * devices. It is passed a &struct bio, which describes the I/O that needs
1334 * to be done.
1335 *
1336 * generic_make_request() does not return any status. The
1337 * success/failure status of the request, along with notification of
1338 * completion, is delivered asynchronously through the bio->bi_end_io
1339 * function described (one day) else where.
1340 *
1341 * The caller of generic_make_request must make sure that bi_io_vec
1342 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1343 * set to describe the device address, and the
1344 * bi_end_io and optionally bi_private are set to describe how
1345 * completion notification should be signaled.
1346 *
1347 * generic_make_request and the drivers it calls may use bi_next if this
1348 * bio happens to be merged with someone else, and may change bi_dev and
1349 * bi_sector for remaps as it sees fit. So the values of these fields
1350 * should NOT be depended on after the call to generic_make_request.
1351 */
d89d8796 1352static inline void __generic_make_request(struct bio *bio)
1da177e4 1353{
165125e1 1354 struct request_queue *q;
5ddfe969 1355 sector_t old_sector;
1da177e4 1356 int ret, nr_sectors = bio_sectors(bio);
2056a782 1357 dev_t old_dev;
51fd77bd 1358 int err = -EIO;
1da177e4
LT
1359
1360 might_sleep();
1da177e4 1361
c07e2b41
JA
1362 if (bio_check_eod(bio, nr_sectors))
1363 goto end_io;
1da177e4
LT
1364
1365 /*
1366 * Resolve the mapping until finished. (drivers are
1367 * still free to implement/resolve their own stacking
1368 * by explicitly returning 0)
1369 *
1370 * NOTE: we don't repeat the blk_size check for each new device.
1371 * Stacking drivers are expected to know what they are doing.
1372 */
5ddfe969 1373 old_sector = -1;
2056a782 1374 old_dev = 0;
1da177e4
LT
1375 do {
1376 char b[BDEVNAME_SIZE];
1377
1378 q = bdev_get_queue(bio->bi_bdev);
a7384677 1379 if (unlikely(!q)) {
1da177e4
LT
1380 printk(KERN_ERR
1381 "generic_make_request: Trying to access "
1382 "nonexistent block-device %s (%Lu)\n",
1383 bdevname(bio->bi_bdev, b),
1384 (long long) bio->bi_sector);
a7384677 1385 goto end_io;
1da177e4
LT
1386 }
1387
4fa253f3 1388 if (unlikely(nr_sectors > q->max_hw_sectors)) {
6728cb0e 1389 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1da177e4
LT
1390 bdevname(bio->bi_bdev, b),
1391 bio_sectors(bio),
1392 q->max_hw_sectors);
1393 goto end_io;
1394 }
1395
fde6ad22 1396 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1397 goto end_io;
1398
c17bb495
AM
1399 if (should_fail_request(bio))
1400 goto end_io;
1401
1da177e4
LT
1402 /*
1403 * If this device has partitions, remap block n
1404 * of partition p to block n+start(p) of the disk.
1405 */
1406 blk_partition_remap(bio);
1407
7ba1ba12
MP
1408 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1409 goto end_io;
1410
5ddfe969 1411 if (old_sector != -1)
5f3ea37c 1412 trace_block_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 1413 old_sector);
2056a782 1414
5f3ea37c 1415 trace_block_bio_queue(q, bio);
2056a782 1416
5ddfe969 1417 old_sector = bio->bi_sector;
2056a782
JA
1418 old_dev = bio->bi_bdev->bd_dev;
1419
c07e2b41
JA
1420 if (bio_check_eod(bio, nr_sectors))
1421 goto end_io;
a7384677
TH
1422
1423 if (bio_discard(bio) && !q->prepare_discard_fn) {
51fd77bd
JA
1424 err = -EOPNOTSUPP;
1425 goto end_io;
1426 }
cec0707e
JA
1427 if (bio_barrier(bio) && bio_has_data(bio) &&
1428 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1429 err = -EOPNOTSUPP;
1430 goto end_io;
1431 }
5ddfe969 1432
1da177e4
LT
1433 ret = q->make_request_fn(q, bio);
1434 } while (ret);
a7384677
TH
1435
1436 return;
1437
1438end_io:
1439 bio_endio(bio, err);
1da177e4
LT
1440}
1441
d89d8796
NB
1442/*
1443 * We only want one ->make_request_fn to be active at a time,
1444 * else stack usage with stacked devices could be a problem.
1445 * So use current->bio_{list,tail} to keep a list of requests
1446 * submited by a make_request_fn function.
1447 * current->bio_tail is also used as a flag to say if
1448 * generic_make_request is currently active in this task or not.
1449 * If it is NULL, then no make_request is active. If it is non-NULL,
1450 * then a make_request is active, and new requests should be added
1451 * at the tail
1452 */
1453void generic_make_request(struct bio *bio)
1454{
1455 if (current->bio_tail) {
1456 /* make_request is active */
1457 *(current->bio_tail) = bio;
1458 bio->bi_next = NULL;
1459 current->bio_tail = &bio->bi_next;
1460 return;
1461 }
1462 /* following loop may be a bit non-obvious, and so deserves some
1463 * explanation.
1464 * Before entering the loop, bio->bi_next is NULL (as all callers
1465 * ensure that) so we have a list with a single bio.
1466 * We pretend that we have just taken it off a longer list, so
1467 * we assign bio_list to the next (which is NULL) and bio_tail
1468 * to &bio_list, thus initialising the bio_list of new bios to be
1469 * added. __generic_make_request may indeed add some more bios
1470 * through a recursive call to generic_make_request. If it
1471 * did, we find a non-NULL value in bio_list and re-enter the loop
1472 * from the top. In this case we really did just take the bio
1473 * of the top of the list (no pretending) and so fixup bio_list and
1474 * bio_tail or bi_next, and call into __generic_make_request again.
1475 *
1476 * The loop was structured like this to make only one call to
1477 * __generic_make_request (which is important as it is large and
1478 * inlined) and to keep the structure simple.
1479 */
1480 BUG_ON(bio->bi_next);
1481 do {
1482 current->bio_list = bio->bi_next;
1483 if (bio->bi_next == NULL)
1484 current->bio_tail = &current->bio_list;
1485 else
1486 bio->bi_next = NULL;
1487 __generic_make_request(bio);
1488 bio = current->bio_list;
1489 } while (bio);
1490 current->bio_tail = NULL; /* deactivate */
1491}
1da177e4
LT
1492EXPORT_SYMBOL(generic_make_request);
1493
1494/**
710027a4 1495 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1496 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1497 * @bio: The &struct bio which describes the I/O
1498 *
1499 * submit_bio() is very similar in purpose to generic_make_request(), and
1500 * uses that function to do most of the work. Both are fairly rough
710027a4 1501 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1502 *
1503 */
1504void submit_bio(int rw, struct bio *bio)
1505{
1506 int count = bio_sectors(bio);
1507
22e2c507 1508 bio->bi_rw |= rw;
1da177e4 1509
bf2de6f5
JA
1510 /*
1511 * If it's a regular read/write or a barrier with data attached,
1512 * go through the normal accounting stuff before submission.
1513 */
a9c701e5 1514 if (bio_has_data(bio)) {
bf2de6f5
JA
1515 if (rw & WRITE) {
1516 count_vm_events(PGPGOUT, count);
1517 } else {
1518 task_io_account_read(bio->bi_size);
1519 count_vm_events(PGPGIN, count);
1520 }
1521
1522 if (unlikely(block_dump)) {
1523 char b[BDEVNAME_SIZE];
1524 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1525 current->comm, task_pid_nr(current),
bf2de6f5
JA
1526 (rw & WRITE) ? "WRITE" : "READ",
1527 (unsigned long long)bio->bi_sector,
6728cb0e 1528 bdevname(bio->bi_bdev, b));
bf2de6f5 1529 }
1da177e4
LT
1530 }
1531
1532 generic_make_request(bio);
1533}
1da177e4
LT
1534EXPORT_SYMBOL(submit_bio);
1535
82124d60
KU
1536/**
1537 * blk_rq_check_limits - Helper function to check a request for the queue limit
1538 * @q: the queue
1539 * @rq: the request being checked
1540 *
1541 * Description:
1542 * @rq may have been made based on weaker limitations of upper-level queues
1543 * in request stacking drivers, and it may violate the limitation of @q.
1544 * Since the block layer and the underlying device driver trust @rq
1545 * after it is inserted to @q, it should be checked against @q before
1546 * the insertion using this generic function.
1547 *
1548 * This function should also be useful for request stacking drivers
1549 * in some cases below, so export this fuction.
1550 * Request stacking drivers like request-based dm may change the queue
1551 * limits while requests are in the queue (e.g. dm's table swapping).
1552 * Such request stacking drivers should check those requests agaist
1553 * the new queue limits again when they dispatch those requests,
1554 * although such checkings are also done against the old queue limits
1555 * when submitting requests.
1556 */
1557int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1558{
83096ebf 1559 if (blk_rq_sectors(rq) > q->max_sectors ||
82124d60
KU
1560 rq->data_len > q->max_hw_sectors << 9) {
1561 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1562 return -EIO;
1563 }
1564
1565 /*
1566 * queue's settings related to segment counting like q->bounce_pfn
1567 * may differ from that of other stacking queues.
1568 * Recalculate it to check the request correctly on this queue's
1569 * limitation.
1570 */
1571 blk_recalc_rq_segments(rq);
1572 if (rq->nr_phys_segments > q->max_phys_segments ||
1573 rq->nr_phys_segments > q->max_hw_segments) {
1574 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1575 return -EIO;
1576 }
1577
1578 return 0;
1579}
1580EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1581
1582/**
1583 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1584 * @q: the queue to submit the request
1585 * @rq: the request being queued
1586 */
1587int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1588{
1589 unsigned long flags;
1590
1591 if (blk_rq_check_limits(q, rq))
1592 return -EIO;
1593
1594#ifdef CONFIG_FAIL_MAKE_REQUEST
1595 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1596 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1597 return -EIO;
1598#endif
1599
1600 spin_lock_irqsave(q->queue_lock, flags);
1601
1602 /*
1603 * Submitting request must be dequeued before calling this function
1604 * because it will be linked to another request_queue
1605 */
1606 BUG_ON(blk_queued_rq(rq));
1607
1608 drive_stat_acct(rq, 1);
1609 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1610
1611 spin_unlock_irqrestore(q->queue_lock, flags);
1612
1613 return 0;
1614}
1615EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1616
53a08807
TH
1617/**
1618 * blkdev_dequeue_request - dequeue request and start timeout timer
1619 * @req: request to dequeue
1620 *
1621 * Dequeue @req and start timeout timer on it. This hands off the
1622 * request to the driver.
1623 *
1624 * Block internal functions which don't want to start timer should
1625 * call elv_dequeue_request().
1626 */
1627void blkdev_dequeue_request(struct request *req)
1628{
1629 elv_dequeue_request(req->q, req);
1630
1631 /*
1632 * We are now handing the request to the hardware, add the
1633 * timeout handler.
1634 */
1635 blk_add_timer(req);
1636}
1637EXPORT_SYMBOL(blkdev_dequeue_request);
1638
bc58ba94
JA
1639static void blk_account_io_completion(struct request *req, unsigned int bytes)
1640{
c2553b58 1641 if (blk_do_io_stat(req)) {
bc58ba94
JA
1642 const int rw = rq_data_dir(req);
1643 struct hd_struct *part;
1644 int cpu;
1645
1646 cpu = part_stat_lock();
83096ebf 1647 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
bc58ba94
JA
1648 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1649 part_stat_unlock();
1650 }
1651}
1652
1653static void blk_account_io_done(struct request *req)
1654{
bc58ba94
JA
1655 /*
1656 * Account IO completion. bar_rq isn't accounted as a normal
1657 * IO on queueing nor completion. Accounting the containing
1658 * request is enough.
1659 */
c2553b58 1660 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
bc58ba94
JA
1661 unsigned long duration = jiffies - req->start_time;
1662 const int rw = rq_data_dir(req);
1663 struct hd_struct *part;
1664 int cpu;
1665
1666 cpu = part_stat_lock();
83096ebf 1667 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
bc58ba94
JA
1668
1669 part_stat_inc(cpu, part, ios[rw]);
1670 part_stat_add(cpu, part, ticks[rw], duration);
1671 part_round_stats(cpu, part);
1672 part_dec_in_flight(part);
1673
1674 part_stat_unlock();
1675 }
1676}
1677
5efccd17
TH
1678/**
1679 * blk_rq_bytes - Returns bytes left to complete in the entire request
1680 * @rq: the request being processed
1681 **/
1682unsigned int blk_rq_bytes(struct request *rq)
1683{
1684 if (blk_fs_request(rq))
5b93629b 1685 return blk_rq_sectors(rq) << 9;
5efccd17
TH
1686
1687 return rq->data_len;
1688}
1689EXPORT_SYMBOL_GPL(blk_rq_bytes);
1690
1691/**
1692 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1693 * @rq: the request being processed
1694 **/
1695unsigned int blk_rq_cur_bytes(struct request *rq)
1696{
1697 if (blk_fs_request(rq))
1698 return rq->current_nr_sectors << 9;
1699
1700 if (rq->bio)
1701 return rq->bio->bi_size;
1702
1703 return rq->data_len;
1704}
1705EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1706
158dbda0
TH
1707struct request *elv_next_request(struct request_queue *q)
1708{
1709 struct request *rq;
1710 int ret;
1711
1712 while ((rq = __elv_next_request(q)) != NULL) {
1713 if (!(rq->cmd_flags & REQ_STARTED)) {
1714 /*
1715 * This is the first time the device driver
1716 * sees this request (possibly after
1717 * requeueing). Notify IO scheduler.
1718 */
1719 if (blk_sorted_rq(rq))
1720 elv_activate_rq(q, rq);
1721
1722 /*
1723 * just mark as started even if we don't start
1724 * it, a request that has been delayed should
1725 * not be passed by new incoming requests
1726 */
1727 rq->cmd_flags |= REQ_STARTED;
1728 trace_block_rq_issue(q, rq);
1729 }
1730
1731 if (!q->boundary_rq || q->boundary_rq == rq) {
1732 q->end_sector = rq_end_sector(rq);
1733 q->boundary_rq = NULL;
1734 }
1735
1736 if (rq->cmd_flags & REQ_DONTPREP)
1737 break;
1738
1739 if (q->dma_drain_size && rq->data_len) {
1740 /*
1741 * make sure space for the drain appears we
1742 * know we can do this because max_hw_segments
1743 * has been adjusted to be one fewer than the
1744 * device can handle
1745 */
1746 rq->nr_phys_segments++;
1747 }
1748
1749 if (!q->prep_rq_fn)
1750 break;
1751
1752 ret = q->prep_rq_fn(q, rq);
1753 if (ret == BLKPREP_OK) {
1754 break;
1755 } else if (ret == BLKPREP_DEFER) {
1756 /*
1757 * the request may have been (partially) prepped.
1758 * we need to keep this request in the front to
1759 * avoid resource deadlock. REQ_STARTED will
1760 * prevent other fs requests from passing this one.
1761 */
1762 if (q->dma_drain_size && rq->data_len &&
1763 !(rq->cmd_flags & REQ_DONTPREP)) {
1764 /*
1765 * remove the space for the drain we added
1766 * so that we don't add it again
1767 */
1768 --rq->nr_phys_segments;
1769 }
1770
1771 rq = NULL;
1772 break;
1773 } else if (ret == BLKPREP_KILL) {
1774 rq->cmd_flags |= REQ_QUIET;
40cbbb78 1775 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1776 } else {
1777 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1778 break;
1779 }
1780 }
1781
1782 return rq;
1783}
1784EXPORT_SYMBOL(elv_next_request);
1785
1786void elv_dequeue_request(struct request_queue *q, struct request *rq)
1787{
1788 BUG_ON(list_empty(&rq->queuelist));
1789 BUG_ON(ELV_ON_HASH(rq));
1790
1791 list_del_init(&rq->queuelist);
1792
1793 /*
1794 * the time frame between a request being removed from the lists
1795 * and to it is freed is accounted as io that is in progress at
1796 * the driver side.
1797 */
1798 if (blk_account_rq(rq))
1799 q->in_flight++;
1800}
1801
3bcddeac 1802/**
2e60e022
TH
1803 * blk_update_request - Special helper function for request stacking drivers
1804 * @rq: the request being processed
710027a4 1805 * @error: %0 for success, < %0 for error
2e60e022 1806 * @nr_bytes: number of bytes to complete @rq
3bcddeac
KU
1807 *
1808 * Description:
2e60e022
TH
1809 * Ends I/O on a number of bytes attached to @rq, but doesn't complete
1810 * the request structure even if @rq doesn't have leftover.
1811 * If @rq has leftover, sets it up for the next range of segments.
1812 *
1813 * This special helper function is only for request stacking drivers
1814 * (e.g. request-based dm) so that they can handle partial completion.
1815 * Actual device drivers should use blk_end_request instead.
1816 *
1817 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1818 * %false return from this function.
3bcddeac
KU
1819 *
1820 * Return:
2e60e022
TH
1821 * %false - this request doesn't have any more data
1822 * %true - this request has more data
3bcddeac 1823 **/
2e60e022 1824bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 1825{
5450d3e1 1826 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1827 struct bio *bio;
1828
2e60e022
TH
1829 if (!req->bio)
1830 return false;
1831
5f3ea37c 1832 trace_block_rq_complete(req->q, req);
2056a782 1833
1da177e4 1834 /*
924cec77
TH
1835 * For fs requests, rq is just carrier of independent bio's
1836 * and each partial completion should be handled separately.
1837 * Reset per-request error on each partial completion.
1838 *
1839 * TODO: tj: This is too subtle. It would be better to let
1840 * low level drivers do what they see fit.
1da177e4 1841 */
924cec77 1842 if (blk_fs_request(req))
1da177e4
LT
1843 req->errors = 0;
1844
6728cb0e
JA
1845 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1846 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4 1847 req->rq_disk ? req->rq_disk->disk_name : "?",
83096ebf 1848 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
1849 }
1850
bc58ba94 1851 blk_account_io_completion(req, nr_bytes);
d72d904a 1852
1da177e4
LT
1853 total_bytes = bio_nbytes = 0;
1854 while ((bio = req->bio) != NULL) {
1855 int nbytes;
1856
1857 if (nr_bytes >= bio->bi_size) {
1858 req->bio = bio->bi_next;
1859 nbytes = bio->bi_size;
5bb23a68 1860 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
1861 next_idx = 0;
1862 bio_nbytes = 0;
1863 } else {
1864 int idx = bio->bi_idx + next_idx;
1865
1866 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1867 blk_dump_rq_flags(req, "__end_that");
6728cb0e 1868 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
24c03d47 1869 __func__, bio->bi_idx, bio->bi_vcnt);
1da177e4
LT
1870 break;
1871 }
1872
1873 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1874 BIO_BUG_ON(nbytes > bio->bi_size);
1875
1876 /*
1877 * not a complete bvec done
1878 */
1879 if (unlikely(nbytes > nr_bytes)) {
1880 bio_nbytes += nr_bytes;
1881 total_bytes += nr_bytes;
1882 break;
1883 }
1884
1885 /*
1886 * advance to the next vector
1887 */
1888 next_idx++;
1889 bio_nbytes += nbytes;
1890 }
1891
1892 total_bytes += nbytes;
1893 nr_bytes -= nbytes;
1894
6728cb0e
JA
1895 bio = req->bio;
1896 if (bio) {
1da177e4
LT
1897 /*
1898 * end more in this run, or just return 'not-done'
1899 */
1900 if (unlikely(nr_bytes <= 0))
1901 break;
1902 }
1903 }
1904
1905 /*
1906 * completely done
1907 */
2e60e022
TH
1908 if (!req->bio) {
1909 /*
1910 * Reset counters so that the request stacking driver
1911 * can find how many bytes remain in the request
1912 * later.
1913 */
1914 req->nr_sectors = req->hard_nr_sectors = 0;
1915 req->current_nr_sectors = req->hard_cur_sectors = 0;
1916 return false;
1917 }
1da177e4
LT
1918
1919 /*
1920 * if the request wasn't completed, update state
1921 */
1922 if (bio_nbytes) {
5bb23a68 1923 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
1924 bio->bi_idx += next_idx;
1925 bio_iovec(bio)->bv_offset += nr_bytes;
1926 bio_iovec(bio)->bv_len -= nr_bytes;
1927 }
1928
1929 blk_recalc_rq_sectors(req, total_bytes >> 9);
1930 blk_recalc_rq_segments(req);
2e60e022 1931 return true;
1da177e4 1932}
2e60e022 1933EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 1934
2e60e022
TH
1935static bool blk_update_bidi_request(struct request *rq, int error,
1936 unsigned int nr_bytes,
1937 unsigned int bidi_bytes)
5efccd17 1938{
2e60e022
TH
1939 if (blk_update_request(rq, error, nr_bytes))
1940 return true;
5efccd17 1941
2e60e022
TH
1942 /* Bidi request must be completed as a whole */
1943 if (unlikely(blk_bidi_rq(rq)) &&
1944 blk_update_request(rq->next_rq, error, bidi_bytes))
1945 return true;
5efccd17 1946
2e60e022
TH
1947 add_disk_randomness(rq->rq_disk);
1948
1949 return false;
5efccd17
TH
1950}
1951
1da177e4
LT
1952/*
1953 * queue lock must be held
1954 */
2e60e022 1955static void blk_finish_request(struct request *req, int error)
1da177e4 1956{
b8286239
KU
1957 if (blk_rq_tagged(req))
1958 blk_queue_end_tag(req->q, req);
1959
1960 if (blk_queued_rq(req))
53a08807 1961 elv_dequeue_request(req->q, req);
1da177e4
LT
1962
1963 if (unlikely(laptop_mode) && blk_fs_request(req))
1964 laptop_io_completion();
1965
e78042e5
MA
1966 blk_delete_timer(req);
1967
bc58ba94 1968 blk_account_io_done(req);
b8286239 1969
1da177e4 1970 if (req->end_io)
8ffdc655 1971 req->end_io(req, error);
b8286239
KU
1972 else {
1973 if (blk_bidi_rq(req))
1974 __blk_put_request(req->next_rq->q, req->next_rq);
1975
1da177e4 1976 __blk_put_request(req->q, req);
b8286239 1977 }
1da177e4
LT
1978}
1979
336cdb40 1980/**
2e60e022
TH
1981 * blk_end_bidi_request - Complete a bidi request
1982 * @rq: the request to complete
1983 * @error: %0 for success, < %0 for error
1984 * @nr_bytes: number of bytes to complete @rq
1985 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
1986 *
1987 * Description:
e3a04fe3 1988 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
1989 * Drivers that supports bidi can safely call this member for any
1990 * type of request, bidi or uni. In the later case @bidi_bytes is
1991 * just ignored.
336cdb40
KU
1992 *
1993 * Return:
2e60e022
TH
1994 * %false - we are done with this request
1995 * %true - still buffers pending for this request
336cdb40 1996 **/
2e60e022
TH
1997bool blk_end_bidi_request(struct request *rq, int error,
1998 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40
KU
1999{
2000 struct request_queue *q = rq->q;
2e60e022 2001 unsigned long flags;
336cdb40 2002
2e60e022
TH
2003 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2004 return true;
336cdb40
KU
2005
2006 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2007 blk_finish_request(rq, error);
336cdb40
KU
2008 spin_unlock_irqrestore(q->queue_lock, flags);
2009
2e60e022 2010 return false;
336cdb40 2011}
2e60e022 2012EXPORT_SYMBOL_GPL(blk_end_bidi_request);
336cdb40 2013
e3a04fe3 2014/**
2e60e022
TH
2015 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2016 * @rq: the request to complete
710027a4 2017 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2018 * @nr_bytes: number of bytes to complete @rq
2019 * @bidi_bytes: number of bytes to complete @rq->next_rq
2020 *
2021 * Description:
2e60e022
TH
2022 * Identical to blk_end_bidi_request() except that queue lock is
2023 * assumed to be locked on entry and remains so on return.
e3a04fe3
KU
2024 *
2025 * Return:
2e60e022
TH
2026 * %false - we are done with this request
2027 * %true - still buffers pending for this request
5efccd17 2028 **/
2e60e022
TH
2029bool __blk_end_bidi_request(struct request *rq, int error,
2030 unsigned int nr_bytes, unsigned int bidi_bytes)
5efccd17 2031{
2e60e022
TH
2032 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2033 return true;
5efccd17 2034
2e60e022 2035 blk_finish_request(rq, error);
5efccd17 2036
2e60e022 2037 return false;
32fab448 2038}
2e60e022 2039EXPORT_SYMBOL_GPL(__blk_end_bidi_request);
32fab448 2040
86db1e29
JA
2041void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2042 struct bio *bio)
1da177e4 2043{
d628eaef
DW
2044 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2045 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
4aff5e23 2046 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4 2047
fb2dce86
DW
2048 if (bio_has_data(bio)) {
2049 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2050 rq->buffer = bio_data(bio);
2051 }
1da177e4
LT
2052 rq->current_nr_sectors = bio_cur_sectors(bio);
2053 rq->hard_cur_sectors = rq->current_nr_sectors;
2054 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
0e75f906 2055 rq->data_len = bio->bi_size;
1da177e4
LT
2056
2057 rq->bio = rq->biotail = bio;
1da177e4 2058
66846572
N
2059 if (bio->bi_bdev)
2060 rq->rq_disk = bio->bi_bdev->bd_disk;
2061}
1da177e4 2062
ef9e3fac
KU
2063/**
2064 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2065 * @q : the queue of the device being checked
2066 *
2067 * Description:
2068 * Check if underlying low-level drivers of a device are busy.
2069 * If the drivers want to export their busy state, they must set own
2070 * exporting function using blk_queue_lld_busy() first.
2071 *
2072 * Basically, this function is used only by request stacking drivers
2073 * to stop dispatching requests to underlying devices when underlying
2074 * devices are busy. This behavior helps more I/O merging on the queue
2075 * of the request stacking driver and prevents I/O throughput regression
2076 * on burst I/O load.
2077 *
2078 * Return:
2079 * 0 - Not busy (The request stacking driver should dispatch request)
2080 * 1 - Busy (The request stacking driver should stop dispatching request)
2081 */
2082int blk_lld_busy(struct request_queue *q)
2083{
2084 if (q->lld_busy_fn)
2085 return q->lld_busy_fn(q);
2086
2087 return 0;
2088}
2089EXPORT_SYMBOL_GPL(blk_lld_busy);
2090
18887ad9 2091int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2092{
2093 return queue_work(kblockd_workqueue, work);
2094}
1da177e4
LT
2095EXPORT_SYMBOL(kblockd_schedule_work);
2096
1da177e4
LT
2097int __init blk_dev_init(void)
2098{
9eb55b03
NK
2099 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2100 sizeof(((struct request *)0)->cmd_flags));
2101
1da177e4
LT
2102 kblockd_workqueue = create_workqueue("kblockd");
2103 if (!kblockd_workqueue)
2104 panic("Failed to create kblockd\n");
2105
2106 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2107 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2108
8324aa91 2109 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2110 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2111
d38ecf93 2112 return 0;
1da177e4 2113}
1da177e4 2114