]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - block/blk-core.c
block: fix __get_request documentation
[mirror_ubuntu-hirsute-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
30abb3a6 37#include <linux/bpf.h>
55782138
LZ
38
39#define CREATE_TRACE_POINTS
40#include <trace/events/block.h>
1da177e4 41
8324aa91 42#include "blk.h"
43a5e4e2 43#include "blk-mq.h"
bd166ef1 44#include "blk-mq-sched.h"
87760e5e 45#include "blk-wbt.h"
8324aa91 46
18fbda91
OS
47#ifdef CONFIG_DEBUG_FS
48struct dentry *blk_debugfs_root;
49#endif
50
d07335e5 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 55EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 56
a73f730d
TH
57DEFINE_IDA(blk_queue_ida);
58
1da177e4
LT
59/*
60 * For the allocated request tables
61 */
d674d414 62struct kmem_cache *request_cachep;
1da177e4
LT
63
64/*
65 * For queue allocation
66 */
6728cb0e 67struct kmem_cache *blk_requestq_cachep;
1da177e4 68
1da177e4
LT
69/*
70 * Controlling structure to kblockd
71 */
ff856bad 72static struct workqueue_struct *kblockd_workqueue;
1da177e4 73
8814ce8a
BVA
74/**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
78 */
79void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80{
81 unsigned long flags;
82
83 spin_lock_irqsave(q->queue_lock, flags);
84 queue_flag_set(flag, q);
85 spin_unlock_irqrestore(q->queue_lock, flags);
86}
87EXPORT_SYMBOL(blk_queue_flag_set);
88
89/**
90 * blk_queue_flag_clear - atomically clear a queue flag
91 * @flag: flag to be cleared
92 * @q: request queue
93 */
94void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
95{
96 unsigned long flags;
97
98 spin_lock_irqsave(q->queue_lock, flags);
99 queue_flag_clear(flag, q);
100 spin_unlock_irqrestore(q->queue_lock, flags);
101}
102EXPORT_SYMBOL(blk_queue_flag_clear);
103
104/**
105 * blk_queue_flag_test_and_set - atomically test and set a queue flag
106 * @flag: flag to be set
107 * @q: request queue
108 *
109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110 * the flag was already set.
111 */
112bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
113{
114 unsigned long flags;
115 bool res;
116
117 spin_lock_irqsave(q->queue_lock, flags);
118 res = queue_flag_test_and_set(flag, q);
119 spin_unlock_irqrestore(q->queue_lock, flags);
120
121 return res;
122}
123EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
124
125/**
126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127 * @flag: flag to be cleared
128 * @q: request queue
129 *
130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
131 * the flag was set.
132 */
133bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
134{
135 unsigned long flags;
136 bool res;
137
138 spin_lock_irqsave(q->queue_lock, flags);
139 res = queue_flag_test_and_clear(flag, q);
140 spin_unlock_irqrestore(q->queue_lock, flags);
141
142 return res;
143}
144EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
145
d40f75a0
TH
146static void blk_clear_congested(struct request_list *rl, int sync)
147{
d40f75a0
TH
148#ifdef CONFIG_CGROUP_WRITEBACK
149 clear_wb_congested(rl->blkg->wb_congested, sync);
150#else
482cf79c
TH
151 /*
152 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 * flip its congestion state for events on other blkcgs.
154 */
155 if (rl == &rl->q->root_rl)
dc3b17cc 156 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
157#endif
158}
159
160static void blk_set_congested(struct request_list *rl, int sync)
161{
d40f75a0
TH
162#ifdef CONFIG_CGROUP_WRITEBACK
163 set_wb_congested(rl->blkg->wb_congested, sync);
164#else
482cf79c
TH
165 /* see blk_clear_congested() */
166 if (rl == &rl->q->root_rl)
dc3b17cc 167 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
168#endif
169}
170
8324aa91 171void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
172{
173 int nr;
174
175 nr = q->nr_requests - (q->nr_requests / 8) + 1;
176 if (nr > q->nr_requests)
177 nr = q->nr_requests;
178 q->nr_congestion_on = nr;
179
180 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
181 if (nr < 1)
182 nr = 1;
183 q->nr_congestion_off = nr;
184}
185
2a4aa30c 186void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 187{
1afb20f3
FT
188 memset(rq, 0, sizeof(*rq));
189
1da177e4 190 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 191 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 192 rq->cpu = -1;
63a71386 193 rq->q = q;
a2dec7b3 194 rq->__sector = (sector_t) -1;
2e662b65
JA
195 INIT_HLIST_NODE(&rq->hash);
196 RB_CLEAR_NODE(&rq->rb_node);
63a71386 197 rq->tag = -1;
bd166ef1 198 rq->internal_tag = -1;
522a7775 199 rq->start_time_ns = ktime_get_ns();
09e099d4 200 rq->part = NULL;
1d9bd516
TH
201 seqcount_init(&rq->gstate_seq);
202 u64_stats_init(&rq->aborted_gstate_sync);
f4560231
JW
203 /*
204 * See comment of blk_mq_init_request
205 */
206 WRITE_ONCE(rq->gstate, MQ_RQ_GEN_INC);
1da177e4 207}
2a4aa30c 208EXPORT_SYMBOL(blk_rq_init);
1da177e4 209
2a842aca
CH
210static const struct {
211 int errno;
212 const char *name;
213} blk_errors[] = {
214 [BLK_STS_OK] = { 0, "" },
215 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
216 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
217 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
218 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
219 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
220 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
221 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
222 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
223 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 224 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 225 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 226
4e4cbee9
CH
227 /* device mapper special case, should not leak out: */
228 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
229
2a842aca
CH
230 /* everything else not covered above: */
231 [BLK_STS_IOERR] = { -EIO, "I/O" },
232};
233
234blk_status_t errno_to_blk_status(int errno)
235{
236 int i;
237
238 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
239 if (blk_errors[i].errno == errno)
240 return (__force blk_status_t)i;
241 }
242
243 return BLK_STS_IOERR;
244}
245EXPORT_SYMBOL_GPL(errno_to_blk_status);
246
247int blk_status_to_errno(blk_status_t status)
248{
249 int idx = (__force int)status;
250
34bd9c1c 251 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
252 return -EIO;
253 return blk_errors[idx].errno;
254}
255EXPORT_SYMBOL_GPL(blk_status_to_errno);
256
257static void print_req_error(struct request *req, blk_status_t status)
258{
259 int idx = (__force int)status;
260
34bd9c1c 261 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
262 return;
263
264 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
265 __func__, blk_errors[idx].name, req->rq_disk ?
266 req->rq_disk->disk_name : "?",
267 (unsigned long long)blk_rq_pos(req));
268}
269
5bb23a68 270static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 271 unsigned int nbytes, blk_status_t error)
1da177e4 272{
78d8e58a 273 if (error)
4e4cbee9 274 bio->bi_status = error;
797e7dbb 275
e8064021 276 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 277 bio_set_flag(bio, BIO_QUIET);
08bafc03 278
f79ea416 279 bio_advance(bio, nbytes);
7ba1ba12 280
143a87f4 281 /* don't actually finish bio if it's part of flush sequence */
e8064021 282 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 283 bio_endio(bio);
1da177e4 284}
1da177e4 285
1da177e4
LT
286void blk_dump_rq_flags(struct request *rq, char *msg)
287{
aebf526b
CH
288 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
289 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 290 (unsigned long long) rq->cmd_flags);
1da177e4 291
83096ebf
TH
292 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
293 (unsigned long long)blk_rq_pos(rq),
294 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
295 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
296 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 297}
1da177e4
LT
298EXPORT_SYMBOL(blk_dump_rq_flags);
299
3cca6dc1 300static void blk_delay_work(struct work_struct *work)
1da177e4 301{
3cca6dc1 302 struct request_queue *q;
1da177e4 303
3cca6dc1
JA
304 q = container_of(work, struct request_queue, delay_work.work);
305 spin_lock_irq(q->queue_lock);
24ecfbe2 306 __blk_run_queue(q);
3cca6dc1 307 spin_unlock_irq(q->queue_lock);
1da177e4 308}
1da177e4
LT
309
310/**
3cca6dc1
JA
311 * blk_delay_queue - restart queueing after defined interval
312 * @q: The &struct request_queue in question
313 * @msecs: Delay in msecs
1da177e4
LT
314 *
315 * Description:
3cca6dc1
JA
316 * Sometimes queueing needs to be postponed for a little while, to allow
317 * resources to come back. This function will make sure that queueing is
2fff8a92 318 * restarted around the specified time.
3cca6dc1
JA
319 */
320void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 321{
2fff8a92 322 lockdep_assert_held(q->queue_lock);
332ebbf7 323 WARN_ON_ONCE(q->mq_ops);
2fff8a92 324
70460571
BVA
325 if (likely(!blk_queue_dead(q)))
326 queue_delayed_work(kblockd_workqueue, &q->delay_work,
327 msecs_to_jiffies(msecs));
2ad8b1ef 328}
3cca6dc1 329EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 330
21491412
JA
331/**
332 * blk_start_queue_async - asynchronously restart a previously stopped queue
333 * @q: The &struct request_queue in question
334 *
335 * Description:
336 * blk_start_queue_async() will clear the stop flag on the queue, and
337 * ensure that the request_fn for the queue is run from an async
338 * context.
339 **/
340void blk_start_queue_async(struct request_queue *q)
341{
2fff8a92 342 lockdep_assert_held(q->queue_lock);
332ebbf7 343 WARN_ON_ONCE(q->mq_ops);
2fff8a92 344
21491412
JA
345 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
346 blk_run_queue_async(q);
347}
348EXPORT_SYMBOL(blk_start_queue_async);
349
1da177e4
LT
350/**
351 * blk_start_queue - restart a previously stopped queue
165125e1 352 * @q: The &struct request_queue in question
1da177e4
LT
353 *
354 * Description:
355 * blk_start_queue() will clear the stop flag on the queue, and call
356 * the request_fn for the queue if it was in a stopped state when
2fff8a92 357 * entered. Also see blk_stop_queue().
1da177e4 358 **/
165125e1 359void blk_start_queue(struct request_queue *q)
1da177e4 360{
2fff8a92 361 lockdep_assert_held(q->queue_lock);
332ebbf7 362 WARN_ON_ONCE(q->mq_ops);
a038e253 363
75ad23bc 364 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 365 __blk_run_queue(q);
1da177e4 366}
1da177e4
LT
367EXPORT_SYMBOL(blk_start_queue);
368
369/**
370 * blk_stop_queue - stop a queue
165125e1 371 * @q: The &struct request_queue in question
1da177e4
LT
372 *
373 * Description:
374 * The Linux block layer assumes that a block driver will consume all
375 * entries on the request queue when the request_fn strategy is called.
376 * Often this will not happen, because of hardware limitations (queue
377 * depth settings). If a device driver gets a 'queue full' response,
378 * or if it simply chooses not to queue more I/O at one point, it can
379 * call this function to prevent the request_fn from being called until
380 * the driver has signalled it's ready to go again. This happens by calling
2fff8a92 381 * blk_start_queue() to restart queue operations.
1da177e4 382 **/
165125e1 383void blk_stop_queue(struct request_queue *q)
1da177e4 384{
2fff8a92 385 lockdep_assert_held(q->queue_lock);
332ebbf7 386 WARN_ON_ONCE(q->mq_ops);
2fff8a92 387
136b5721 388 cancel_delayed_work(&q->delay_work);
75ad23bc 389 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
390}
391EXPORT_SYMBOL(blk_stop_queue);
392
393/**
394 * blk_sync_queue - cancel any pending callbacks on a queue
395 * @q: the queue
396 *
397 * Description:
398 * The block layer may perform asynchronous callback activity
399 * on a queue, such as calling the unplug function after a timeout.
400 * A block device may call blk_sync_queue to ensure that any
401 * such activity is cancelled, thus allowing it to release resources
59c51591 402 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
403 * that its ->make_request_fn will not re-add plugging prior to calling
404 * this function.
405 *
da527770 406 * This function does not cancel any asynchronous activity arising
da3dae54 407 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 408 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 409 *
1da177e4
LT
410 */
411void blk_sync_queue(struct request_queue *q)
412{
70ed28b9 413 del_timer_sync(&q->timeout);
4e9b6f20 414 cancel_work_sync(&q->timeout_work);
f04c1fe7
ML
415
416 if (q->mq_ops) {
417 struct blk_mq_hw_ctx *hctx;
418 int i;
419
aba7afc5 420 cancel_delayed_work_sync(&q->requeue_work);
21c6e939 421 queue_for_each_hw_ctx(q, hctx, i)
9f993737 422 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7
ML
423 } else {
424 cancel_delayed_work_sync(&q->delay_work);
425 }
1da177e4
LT
426}
427EXPORT_SYMBOL(blk_sync_queue);
428
c9254f2d
BVA
429/**
430 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
431 * @q: request queue pointer
432 *
433 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
434 * set and 1 if the flag was already set.
435 */
436int blk_set_preempt_only(struct request_queue *q)
437{
8814ce8a 438 return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
c9254f2d
BVA
439}
440EXPORT_SYMBOL_GPL(blk_set_preempt_only);
441
442void blk_clear_preempt_only(struct request_queue *q)
443{
8814ce8a 444 blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
3a0a5299 445 wake_up_all(&q->mq_freeze_wq);
c9254f2d
BVA
446}
447EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
448
c246e80d
BVA
449/**
450 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
451 * @q: The queue to run
452 *
453 * Description:
454 * Invoke request handling on a queue if there are any pending requests.
455 * May be used to restart request handling after a request has completed.
456 * This variant runs the queue whether or not the queue has been
457 * stopped. Must be called with the queue lock held and interrupts
458 * disabled. See also @blk_run_queue.
459 */
460inline void __blk_run_queue_uncond(struct request_queue *q)
461{
2fff8a92 462 lockdep_assert_held(q->queue_lock);
332ebbf7 463 WARN_ON_ONCE(q->mq_ops);
2fff8a92 464
c246e80d
BVA
465 if (unlikely(blk_queue_dead(q)))
466 return;
467
24faf6f6
BVA
468 /*
469 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
470 * the queue lock internally. As a result multiple threads may be
471 * running such a request function concurrently. Keep track of the
472 * number of active request_fn invocations such that blk_drain_queue()
473 * can wait until all these request_fn calls have finished.
474 */
475 q->request_fn_active++;
c246e80d 476 q->request_fn(q);
24faf6f6 477 q->request_fn_active--;
c246e80d 478}
a7928c15 479EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 480
1da177e4 481/**
80a4b58e 482 * __blk_run_queue - run a single device queue
1da177e4 483 * @q: The queue to run
80a4b58e
JA
484 *
485 * Description:
2fff8a92 486 * See @blk_run_queue.
1da177e4 487 */
24ecfbe2 488void __blk_run_queue(struct request_queue *q)
1da177e4 489{
2fff8a92 490 lockdep_assert_held(q->queue_lock);
332ebbf7 491 WARN_ON_ONCE(q->mq_ops);
2fff8a92 492
a538cd03
TH
493 if (unlikely(blk_queue_stopped(q)))
494 return;
495
c246e80d 496 __blk_run_queue_uncond(q);
75ad23bc
NP
497}
498EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 499
24ecfbe2
CH
500/**
501 * blk_run_queue_async - run a single device queue in workqueue context
502 * @q: The queue to run
503 *
504 * Description:
505 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
2fff8a92
BVA
506 * of us.
507 *
508 * Note:
509 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
510 * has canceled q->delay_work, callers must hold the queue lock to avoid
511 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
24ecfbe2
CH
512 */
513void blk_run_queue_async(struct request_queue *q)
514{
2fff8a92 515 lockdep_assert_held(q->queue_lock);
332ebbf7 516 WARN_ON_ONCE(q->mq_ops);
2fff8a92 517
70460571 518 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 519 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 520}
c21e6beb 521EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 522
75ad23bc
NP
523/**
524 * blk_run_queue - run a single device queue
525 * @q: The queue to run
80a4b58e
JA
526 *
527 * Description:
528 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 529 * May be used to restart queueing when a request has completed.
75ad23bc
NP
530 */
531void blk_run_queue(struct request_queue *q)
532{
533 unsigned long flags;
534
332ebbf7
BVA
535 WARN_ON_ONCE(q->mq_ops);
536
75ad23bc 537 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 538 __blk_run_queue(q);
1da177e4
LT
539 spin_unlock_irqrestore(q->queue_lock, flags);
540}
541EXPORT_SYMBOL(blk_run_queue);
542
165125e1 543void blk_put_queue(struct request_queue *q)
483f4afc
AV
544{
545 kobject_put(&q->kobj);
546}
d86e0e83 547EXPORT_SYMBOL(blk_put_queue);
483f4afc 548
e3c78ca5 549/**
807592a4 550 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 551 * @q: queue to drain
c9a929dd 552 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 553 *
c9a929dd
TH
554 * Drain requests from @q. If @drain_all is set, all requests are drained.
555 * If not, only ELVPRIV requests are drained. The caller is responsible
556 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 557 */
807592a4
BVA
558static void __blk_drain_queue(struct request_queue *q, bool drain_all)
559 __releases(q->queue_lock)
560 __acquires(q->queue_lock)
e3c78ca5 561{
458f27a9
AH
562 int i;
563
807592a4 564 lockdep_assert_held(q->queue_lock);
332ebbf7 565 WARN_ON_ONCE(q->mq_ops);
807592a4 566
e3c78ca5 567 while (true) {
481a7d64 568 bool drain = false;
e3c78ca5 569
b855b04a
TH
570 /*
571 * The caller might be trying to drain @q before its
572 * elevator is initialized.
573 */
574 if (q->elevator)
575 elv_drain_elevator(q);
576
5efd6113 577 blkcg_drain_queue(q);
e3c78ca5 578
4eabc941
TH
579 /*
580 * This function might be called on a queue which failed
b855b04a
TH
581 * driver init after queue creation or is not yet fully
582 * active yet. Some drivers (e.g. fd and loop) get unhappy
583 * in such cases. Kick queue iff dispatch queue has
584 * something on it and @q has request_fn set.
4eabc941 585 */
b855b04a 586 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 587 __blk_run_queue(q);
c9a929dd 588
8a5ecdd4 589 drain |= q->nr_rqs_elvpriv;
24faf6f6 590 drain |= q->request_fn_active;
481a7d64
TH
591
592 /*
593 * Unfortunately, requests are queued at and tracked from
594 * multiple places and there's no single counter which can
595 * be drained. Check all the queues and counters.
596 */
597 if (drain_all) {
e97c293c 598 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
599 drain |= !list_empty(&q->queue_head);
600 for (i = 0; i < 2; i++) {
8a5ecdd4 601 drain |= q->nr_rqs[i];
481a7d64 602 drain |= q->in_flight[i];
7c94e1c1
ML
603 if (fq)
604 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
605 }
606 }
e3c78ca5 607
481a7d64 608 if (!drain)
e3c78ca5 609 break;
807592a4
BVA
610
611 spin_unlock_irq(q->queue_lock);
612
e3c78ca5 613 msleep(10);
807592a4
BVA
614
615 spin_lock_irq(q->queue_lock);
e3c78ca5 616 }
458f27a9
AH
617
618 /*
619 * With queue marked dead, any woken up waiter will fail the
620 * allocation path, so the wakeup chaining is lost and we're
621 * left with hung waiters. We need to wake up those waiters.
622 */
623 if (q->request_fn) {
a051661c
TH
624 struct request_list *rl;
625
a051661c
TH
626 blk_queue_for_each_rl(rl, q)
627 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
628 wake_up_all(&rl->wait[i]);
458f27a9 629 }
e3c78ca5
TH
630}
631
454be724
ML
632void blk_drain_queue(struct request_queue *q)
633{
634 spin_lock_irq(q->queue_lock);
635 __blk_drain_queue(q, true);
636 spin_unlock_irq(q->queue_lock);
637}
638
d732580b
TH
639/**
640 * blk_queue_bypass_start - enter queue bypass mode
641 * @q: queue of interest
642 *
643 * In bypass mode, only the dispatch FIFO queue of @q is used. This
644 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 645 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
646 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
647 * inside queue or RCU read lock.
d732580b
TH
648 */
649void blk_queue_bypass_start(struct request_queue *q)
650{
332ebbf7
BVA
651 WARN_ON_ONCE(q->mq_ops);
652
d732580b 653 spin_lock_irq(q->queue_lock);
776687bc 654 q->bypass_depth++;
d732580b
TH
655 queue_flag_set(QUEUE_FLAG_BYPASS, q);
656 spin_unlock_irq(q->queue_lock);
657
776687bc
TH
658 /*
659 * Queues start drained. Skip actual draining till init is
660 * complete. This avoids lenghty delays during queue init which
661 * can happen many times during boot.
662 */
663 if (blk_queue_init_done(q)) {
807592a4
BVA
664 spin_lock_irq(q->queue_lock);
665 __blk_drain_queue(q, false);
666 spin_unlock_irq(q->queue_lock);
667
b82d4b19
TH
668 /* ensure blk_queue_bypass() is %true inside RCU read lock */
669 synchronize_rcu();
670 }
d732580b
TH
671}
672EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
673
674/**
675 * blk_queue_bypass_end - leave queue bypass mode
676 * @q: queue of interest
677 *
678 * Leave bypass mode and restore the normal queueing behavior.
332ebbf7
BVA
679 *
680 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
681 * this function is called for both blk-sq and blk-mq queues.
d732580b
TH
682 */
683void blk_queue_bypass_end(struct request_queue *q)
684{
685 spin_lock_irq(q->queue_lock);
686 if (!--q->bypass_depth)
687 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
688 WARN_ON_ONCE(q->bypass_depth < 0);
689 spin_unlock_irq(q->queue_lock);
690}
691EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
692
aed3ea94
JA
693void blk_set_queue_dying(struct request_queue *q)
694{
8814ce8a 695 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
aed3ea94 696
d3cfb2a0
ML
697 /*
698 * When queue DYING flag is set, we need to block new req
699 * entering queue, so we call blk_freeze_queue_start() to
700 * prevent I/O from crossing blk_queue_enter().
701 */
702 blk_freeze_queue_start(q);
703
aed3ea94
JA
704 if (q->mq_ops)
705 blk_mq_wake_waiters(q);
706 else {
707 struct request_list *rl;
708
bbfc3c5d 709 spin_lock_irq(q->queue_lock);
aed3ea94
JA
710 blk_queue_for_each_rl(rl, q) {
711 if (rl->rq_pool) {
34d9715a
ML
712 wake_up_all(&rl->wait[BLK_RW_SYNC]);
713 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
aed3ea94
JA
714 }
715 }
bbfc3c5d 716 spin_unlock_irq(q->queue_lock);
aed3ea94 717 }
055f6e18
ML
718
719 /* Make blk_queue_enter() reexamine the DYING flag. */
720 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
721}
722EXPORT_SYMBOL_GPL(blk_set_queue_dying);
723
c9a929dd
TH
724/**
725 * blk_cleanup_queue - shutdown a request queue
726 * @q: request queue to shutdown
727 *
c246e80d
BVA
728 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
729 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 730 */
6728cb0e 731void blk_cleanup_queue(struct request_queue *q)
483f4afc 732{
c9a929dd 733 spinlock_t *lock = q->queue_lock;
e3335de9 734
3f3299d5 735 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 736 mutex_lock(&q->sysfs_lock);
aed3ea94 737 blk_set_queue_dying(q);
c9a929dd 738 spin_lock_irq(lock);
6ecf23af 739
80fd9979 740 /*
3f3299d5 741 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
742 * that, unlike blk_queue_bypass_start(), we aren't performing
743 * synchronize_rcu() after entering bypass mode to avoid the delay
744 * as some drivers create and destroy a lot of queues while
745 * probing. This is still safe because blk_release_queue() will be
746 * called only after the queue refcnt drops to zero and nothing,
747 * RCU or not, would be traversing the queue by then.
748 */
6ecf23af
TH
749 q->bypass_depth++;
750 queue_flag_set(QUEUE_FLAG_BYPASS, q);
751
c9a929dd
TH
752 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
753 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 754 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
755 spin_unlock_irq(lock);
756 mutex_unlock(&q->sysfs_lock);
757
c246e80d
BVA
758 /*
759 * Drain all requests queued before DYING marking. Set DEAD flag to
760 * prevent that q->request_fn() gets invoked after draining finished.
761 */
3ef28e83 762 blk_freeze_queue(q);
9c1051aa 763 spin_lock_irq(lock);
c246e80d 764 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 765 spin_unlock_irq(lock);
c9a929dd 766
c2856ae2
ML
767 /*
768 * make sure all in-progress dispatch are completed because
769 * blk_freeze_queue() can only complete all requests, and
770 * dispatch may still be in-progress since we dispatch requests
771 * from more than one contexts
772 */
773 if (q->mq_ops)
774 blk_mq_quiesce_queue(q);
775
5a48fc14
DW
776 /* for synchronous bio-based driver finish in-flight integrity i/o */
777 blk_flush_integrity();
778
c9a929dd 779 /* @q won't process any more request, flush async actions */
dc3b17cc 780 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
781 blk_sync_queue(q);
782
a063057d
BVA
783 /*
784 * I/O scheduler exit is only safe after the sysfs scheduler attribute
785 * has been removed.
786 */
787 WARN_ON_ONCE(q->kobj.state_in_sysfs);
788
789 /*
790 * Since the I/O scheduler exit code may access cgroup information,
791 * perform I/O scheduler exit before disassociating from the block
792 * cgroup controller.
793 */
794 if (q->elevator) {
795 ioc_clear_queue(q);
796 elevator_exit(q, q->elevator);
797 q->elevator = NULL;
798 }
799
800 /*
801 * Remove all references to @q from the block cgroup controller before
802 * restoring @q->queue_lock to avoid that restoring this pointer causes
803 * e.g. blkcg_print_blkgs() to crash.
804 */
805 blkcg_exit_queue(q);
806
807 /*
808 * Since the cgroup code may dereference the @q->backing_dev_info
809 * pointer, only decrease its reference count after having removed the
810 * association with the block cgroup controller.
811 */
812 bdi_put(q->backing_dev_info);
813
45a9c9d9
BVA
814 if (q->mq_ops)
815 blk_mq_free_queue(q);
3ef28e83 816 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 817
5e5cfac0
AH
818 spin_lock_irq(lock);
819 if (q->queue_lock != &q->__queue_lock)
820 q->queue_lock = &q->__queue_lock;
821 spin_unlock_irq(lock);
822
c9a929dd 823 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
824 blk_put_queue(q);
825}
1da177e4
LT
826EXPORT_SYMBOL(blk_cleanup_queue);
827
271508db 828/* Allocate memory local to the request queue */
6d247d7f 829static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 830{
6d247d7f
CH
831 struct request_queue *q = data;
832
833 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
834}
835
6d247d7f 836static void free_request_simple(void *element, void *data)
271508db
DR
837{
838 kmem_cache_free(request_cachep, element);
839}
840
6d247d7f
CH
841static void *alloc_request_size(gfp_t gfp_mask, void *data)
842{
843 struct request_queue *q = data;
844 struct request *rq;
845
846 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
847 q->node);
848 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
849 kfree(rq);
850 rq = NULL;
851 }
852 return rq;
853}
854
855static void free_request_size(void *element, void *data)
856{
857 struct request_queue *q = data;
858
859 if (q->exit_rq_fn)
860 q->exit_rq_fn(q, element);
861 kfree(element);
862}
863
5b788ce3
TH
864int blk_init_rl(struct request_list *rl, struct request_queue *q,
865 gfp_t gfp_mask)
1da177e4 866{
85acb3ba 867 if (unlikely(rl->rq_pool) || q->mq_ops)
1abec4fd
MS
868 return 0;
869
5b788ce3 870 rl->q = q;
1faa16d2
JA
871 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
872 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
873 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
874 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 875
6d247d7f
CH
876 if (q->cmd_size) {
877 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
878 alloc_request_size, free_request_size,
879 q, gfp_mask, q->node);
880 } else {
881 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
882 alloc_request_simple, free_request_simple,
883 q, gfp_mask, q->node);
884 }
1da177e4
LT
885 if (!rl->rq_pool)
886 return -ENOMEM;
887
b425e504
BVA
888 if (rl != &q->root_rl)
889 WARN_ON_ONCE(!blk_get_queue(q));
890
1da177e4
LT
891 return 0;
892}
893
b425e504 894void blk_exit_rl(struct request_queue *q, struct request_list *rl)
5b788ce3 895{
b425e504 896 if (rl->rq_pool) {
5b788ce3 897 mempool_destroy(rl->rq_pool);
b425e504
BVA
898 if (rl != &q->root_rl)
899 blk_put_queue(q);
900 }
5b788ce3
TH
901}
902
165125e1 903struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 904{
5ee0524b 905 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
1946089a
CL
906}
907EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 908
3a0a5299
BVA
909/**
910 * blk_queue_enter() - try to increase q->q_usage_counter
911 * @q: request queue pointer
912 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
913 */
9a95e4ef 914int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 915{
3a0a5299
BVA
916 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
917
3ef28e83 918 while (true) {
3a0a5299 919 bool success = false;
3ef28e83 920
818e0fa2 921 rcu_read_lock();
3a0a5299
BVA
922 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
923 /*
924 * The code that sets the PREEMPT_ONLY flag is
925 * responsible for ensuring that that flag is globally
926 * visible before the queue is unfrozen.
927 */
928 if (preempt || !blk_queue_preempt_only(q)) {
929 success = true;
930 } else {
931 percpu_ref_put(&q->q_usage_counter);
932 }
933 }
818e0fa2 934 rcu_read_unlock();
3a0a5299
BVA
935
936 if (success)
3ef28e83
DW
937 return 0;
938
3a0a5299 939 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
940 return -EBUSY;
941
5ed61d3f 942 /*
1671d522 943 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 944 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
945 * .q_usage_counter and reading .mq_freeze_depth or
946 * queue dying flag, otherwise the following wait may
947 * never return if the two reads are reordered.
5ed61d3f
ML
948 */
949 smp_rmb();
950
1dc3039b
AJ
951 wait_event(q->mq_freeze_wq,
952 (atomic_read(&q->mq_freeze_depth) == 0 &&
953 (preempt || !blk_queue_preempt_only(q))) ||
954 blk_queue_dying(q));
3ef28e83
DW
955 if (blk_queue_dying(q))
956 return -ENODEV;
3ef28e83
DW
957 }
958}
959
960void blk_queue_exit(struct request_queue *q)
961{
962 percpu_ref_put(&q->q_usage_counter);
963}
964
965static void blk_queue_usage_counter_release(struct percpu_ref *ref)
966{
967 struct request_queue *q =
968 container_of(ref, struct request_queue, q_usage_counter);
969
970 wake_up_all(&q->mq_freeze_wq);
971}
972
bca237a5 973static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 974{
bca237a5 975 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
976
977 kblockd_schedule_work(&q->timeout_work);
978}
979
498f6650
BVA
980/**
981 * blk_alloc_queue_node - allocate a request queue
982 * @gfp_mask: memory allocation flags
983 * @node_id: NUMA node to allocate memory from
984 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
985 * serialize calls to the legacy .request_fn() callback. Ignored for
986 * blk-mq request queues.
987 *
988 * Note: pass the queue lock as the third argument to this function instead of
989 * setting the queue lock pointer explicitly to avoid triggering a sporadic
990 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
991 * the queue lock pointer must be set before blkcg_init_queue() is called.
992 */
5ee0524b
BVA
993struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
994 spinlock_t *lock)
1946089a 995{
165125e1 996 struct request_queue *q;
1946089a 997
8324aa91 998 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 999 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
1000 if (!q)
1001 return NULL;
1002
00380a40 1003 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 1004 if (q->id < 0)
3d2936f4 1005 goto fail_q;
a73f730d 1006
93b27e72 1007 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
54efd50b
KO
1008 if (!q->bio_split)
1009 goto fail_id;
1010
d03f6cdc
JK
1011 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1012 if (!q->backing_dev_info)
1013 goto fail_split;
1014
a83b576c
JA
1015 q->stats = blk_alloc_queue_stats();
1016 if (!q->stats)
1017 goto fail_stats;
1018
dc3b17cc 1019 q->backing_dev_info->ra_pages =
09cbfeaf 1020 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
1021 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1022 q->backing_dev_info->name = "block";
5151412d 1023 q->node = node_id;
0989a025 1024
bca237a5
KC
1025 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1026 laptop_mode_timer_fn, 0);
1027 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
4e9b6f20 1028 INIT_WORK(&q->timeout_work, NULL);
b855b04a 1029 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 1030 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 1031 INIT_LIST_HEAD(&q->icq_list);
4eef3049 1032#ifdef CONFIG_BLK_CGROUP
e8989fae 1033 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 1034#endif
3cca6dc1 1035 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 1036
8324aa91 1037 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 1038
5acb3cc2
WL
1039#ifdef CONFIG_BLK_DEV_IO_TRACE
1040 mutex_init(&q->blk_trace_mutex);
1041#endif
483f4afc 1042 mutex_init(&q->sysfs_lock);
e7e72bf6 1043 spin_lock_init(&q->__queue_lock);
483f4afc 1044
498f6650
BVA
1045 if (!q->mq_ops)
1046 q->queue_lock = lock ? : &q->__queue_lock;
c94a96ac 1047
b82d4b19
TH
1048 /*
1049 * A queue starts its life with bypass turned on to avoid
1050 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
1051 * init. The initial bypass will be finished when the queue is
1052 * registered by blk_register_queue().
b82d4b19
TH
1053 */
1054 q->bypass_depth = 1;
f78bac2c 1055 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
b82d4b19 1056
320ae51f
JA
1057 init_waitqueue_head(&q->mq_freeze_wq);
1058
3ef28e83
DW
1059 /*
1060 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1061 * See blk_register_queue() for details.
1062 */
1063 if (percpu_ref_init(&q->q_usage_counter,
1064 blk_queue_usage_counter_release,
1065 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 1066 goto fail_bdi;
f51b802c 1067
3ef28e83
DW
1068 if (blkcg_init_queue(q))
1069 goto fail_ref;
1070
1da177e4 1071 return q;
a73f730d 1072
3ef28e83
DW
1073fail_ref:
1074 percpu_ref_exit(&q->q_usage_counter);
fff4996b 1075fail_bdi:
a83b576c
JA
1076 blk_free_queue_stats(q->stats);
1077fail_stats:
d03f6cdc 1078 bdi_put(q->backing_dev_info);
54efd50b
KO
1079fail_split:
1080 bioset_free(q->bio_split);
a73f730d
TH
1081fail_id:
1082 ida_simple_remove(&blk_queue_ida, q->id);
1083fail_q:
1084 kmem_cache_free(blk_requestq_cachep, q);
1085 return NULL;
1da177e4 1086}
1946089a 1087EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1088
1089/**
1090 * blk_init_queue - prepare a request queue for use with a block device
1091 * @rfn: The function to be called to process requests that have been
1092 * placed on the queue.
1093 * @lock: Request queue spin lock
1094 *
1095 * Description:
1096 * If a block device wishes to use the standard request handling procedures,
1097 * which sorts requests and coalesces adjacent requests, then it must
1098 * call blk_init_queue(). The function @rfn will be called when there
1099 * are requests on the queue that need to be processed. If the device
1100 * supports plugging, then @rfn may not be called immediately when requests
1101 * are available on the queue, but may be called at some time later instead.
1102 * Plugged queues are generally unplugged when a buffer belonging to one
1103 * of the requests on the queue is needed, or due to memory pressure.
1104 *
1105 * @rfn is not required, or even expected, to remove all requests off the
1106 * queue, but only as many as it can handle at a time. If it does leave
1107 * requests on the queue, it is responsible for arranging that the requests
1108 * get dealt with eventually.
1109 *
1110 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1111 * request queue; this lock will be taken also from interrupt context, so irq
1112 * disabling is needed for it.
1da177e4 1113 *
710027a4 1114 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
1115 * it didn't succeed.
1116 *
1117 * Note:
1118 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1119 * when the block device is deactivated (such as at module unload).
1120 **/
1946089a 1121
165125e1 1122struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1123{
c304a51b 1124 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
1125}
1126EXPORT_SYMBOL(blk_init_queue);
1127
165125e1 1128struct request_queue *
1946089a
CL
1129blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1130{
5ea708d1 1131 struct request_queue *q;
1da177e4 1132
498f6650 1133 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
5ea708d1 1134 if (!q)
c86d1b8a
MS
1135 return NULL;
1136
5ea708d1 1137 q->request_fn = rfn;
5ea708d1
CH
1138 if (blk_init_allocated_queue(q) < 0) {
1139 blk_cleanup_queue(q);
1140 return NULL;
1141 }
18741986 1142
7982e90c 1143 return q;
01effb0d
MS
1144}
1145EXPORT_SYMBOL(blk_init_queue_node);
1146
dece1635 1147static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 1148
1da177e4 1149
5ea708d1
CH
1150int blk_init_allocated_queue(struct request_queue *q)
1151{
332ebbf7
BVA
1152 WARN_ON_ONCE(q->mq_ops);
1153
6d247d7f 1154 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 1155 if (!q->fq)
5ea708d1 1156 return -ENOMEM;
7982e90c 1157
6d247d7f
CH
1158 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1159 goto out_free_flush_queue;
7982e90c 1160
a051661c 1161 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 1162 goto out_exit_flush_rq;
1da177e4 1163
287922eb 1164 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 1165 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 1166
f3b144aa
JA
1167 /*
1168 * This also sets hw/phys segments, boundary and size
1169 */
c20e8de2 1170 blk_queue_make_request(q, blk_queue_bio);
1da177e4 1171
44ec9542
AS
1172 q->sg_reserved_size = INT_MAX;
1173
eb1c160b
TS
1174 /* Protect q->elevator from elevator_change */
1175 mutex_lock(&q->sysfs_lock);
1176
b82d4b19 1177 /* init elevator */
eb1c160b
TS
1178 if (elevator_init(q, NULL)) {
1179 mutex_unlock(&q->sysfs_lock);
6d247d7f 1180 goto out_exit_flush_rq;
eb1c160b
TS
1181 }
1182
1183 mutex_unlock(&q->sysfs_lock);
5ea708d1 1184 return 0;
eb1c160b 1185
6d247d7f
CH
1186out_exit_flush_rq:
1187 if (q->exit_rq_fn)
1188 q->exit_rq_fn(q, q->fq->flush_rq);
1189out_free_flush_queue:
ba483388 1190 blk_free_flush_queue(q->fq);
5ea708d1 1191 return -ENOMEM;
1da177e4 1192}
5151412d 1193EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 1194
09ac46c4 1195bool blk_get_queue(struct request_queue *q)
1da177e4 1196{
3f3299d5 1197 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
1198 __blk_get_queue(q);
1199 return true;
1da177e4
LT
1200 }
1201
09ac46c4 1202 return false;
1da177e4 1203}
d86e0e83 1204EXPORT_SYMBOL(blk_get_queue);
1da177e4 1205
5b788ce3 1206static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 1207{
e8064021 1208 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 1209 elv_put_request(rl->q, rq);
f1f8cc94 1210 if (rq->elv.icq)
11a3122f 1211 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
1212 }
1213
5b788ce3 1214 mempool_free(rq, rl->rq_pool);
1da177e4
LT
1215}
1216
1da177e4
LT
1217/*
1218 * ioc_batching returns true if the ioc is a valid batching request and
1219 * should be given priority access to a request.
1220 */
165125e1 1221static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1222{
1223 if (!ioc)
1224 return 0;
1225
1226 /*
1227 * Make sure the process is able to allocate at least 1 request
1228 * even if the batch times out, otherwise we could theoretically
1229 * lose wakeups.
1230 */
1231 return ioc->nr_batch_requests == q->nr_batching ||
1232 (ioc->nr_batch_requests > 0
1233 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1234}
1235
1236/*
1237 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1238 * will cause the process to be a "batcher" on all queues in the system. This
1239 * is the behaviour we want though - once it gets a wakeup it should be given
1240 * a nice run.
1241 */
165125e1 1242static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1243{
1244 if (!ioc || ioc_batching(q, ioc))
1245 return;
1246
1247 ioc->nr_batch_requests = q->nr_batching;
1248 ioc->last_waited = jiffies;
1249}
1250
5b788ce3 1251static void __freed_request(struct request_list *rl, int sync)
1da177e4 1252{
5b788ce3 1253 struct request_queue *q = rl->q;
1da177e4 1254
d40f75a0
TH
1255 if (rl->count[sync] < queue_congestion_off_threshold(q))
1256 blk_clear_congested(rl, sync);
1da177e4 1257
1faa16d2
JA
1258 if (rl->count[sync] + 1 <= q->nr_requests) {
1259 if (waitqueue_active(&rl->wait[sync]))
1260 wake_up(&rl->wait[sync]);
1da177e4 1261
5b788ce3 1262 blk_clear_rl_full(rl, sync);
1da177e4
LT
1263 }
1264}
1265
1266/*
1267 * A request has just been released. Account for it, update the full and
1268 * congestion status, wake up any waiters. Called under q->queue_lock.
1269 */
e8064021
CH
1270static void freed_request(struct request_list *rl, bool sync,
1271 req_flags_t rq_flags)
1da177e4 1272{
5b788ce3 1273 struct request_queue *q = rl->q;
1da177e4 1274
8a5ecdd4 1275 q->nr_rqs[sync]--;
1faa16d2 1276 rl->count[sync]--;
e8064021 1277 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1278 q->nr_rqs_elvpriv--;
1da177e4 1279
5b788ce3 1280 __freed_request(rl, sync);
1da177e4 1281
1faa16d2 1282 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1283 __freed_request(rl, sync ^ 1);
1da177e4
LT
1284}
1285
e3a2b3f9
JA
1286int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1287{
1288 struct request_list *rl;
d40f75a0 1289 int on_thresh, off_thresh;
e3a2b3f9 1290
332ebbf7
BVA
1291 WARN_ON_ONCE(q->mq_ops);
1292
e3a2b3f9
JA
1293 spin_lock_irq(q->queue_lock);
1294 q->nr_requests = nr;
1295 blk_queue_congestion_threshold(q);
d40f75a0
TH
1296 on_thresh = queue_congestion_on_threshold(q);
1297 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1298
d40f75a0
TH
1299 blk_queue_for_each_rl(rl, q) {
1300 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1301 blk_set_congested(rl, BLK_RW_SYNC);
1302 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1303 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1304
d40f75a0
TH
1305 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1306 blk_set_congested(rl, BLK_RW_ASYNC);
1307 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1308 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1309
e3a2b3f9
JA
1310 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1311 blk_set_rl_full(rl, BLK_RW_SYNC);
1312 } else {
1313 blk_clear_rl_full(rl, BLK_RW_SYNC);
1314 wake_up(&rl->wait[BLK_RW_SYNC]);
1315 }
1316
1317 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1318 blk_set_rl_full(rl, BLK_RW_ASYNC);
1319 } else {
1320 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1321 wake_up(&rl->wait[BLK_RW_ASYNC]);
1322 }
1323 }
1324
1325 spin_unlock_irq(q->queue_lock);
1326 return 0;
1327}
1328
da8303c6 1329/**
a06e05e6 1330 * __get_request - get a free request
5b788ce3 1331 * @rl: request list to allocate from
ef295ecf 1332 * @op: operation and flags
da8303c6 1333 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1334 * @flags: BLQ_MQ_REQ_* flags
da8303c6
TH
1335 *
1336 * Get a free request from @q. This function may fail under memory
1337 * pressure or if @q is dead.
1338 *
da3dae54 1339 * Must be called with @q->queue_lock held and,
a492f075
JL
1340 * Returns ERR_PTR on failure, with @q->queue_lock held.
1341 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1342 */
ef295ecf 1343static struct request *__get_request(struct request_list *rl, unsigned int op,
9a95e4ef 1344 struct bio *bio, blk_mq_req_flags_t flags)
1da177e4 1345{
5b788ce3 1346 struct request_queue *q = rl->q;
b679281a 1347 struct request *rq;
7f4b35d1
TH
1348 struct elevator_type *et = q->elevator->type;
1349 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1350 struct io_cq *icq = NULL;
ef295ecf 1351 const bool is_sync = op_is_sync(op);
75eb6c37 1352 int may_queue;
6a15674d
BVA
1353 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1354 __GFP_DIRECT_RECLAIM;
e8064021 1355 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1356
2fff8a92
BVA
1357 lockdep_assert_held(q->queue_lock);
1358
3f3299d5 1359 if (unlikely(blk_queue_dying(q)))
a492f075 1360 return ERR_PTR(-ENODEV);
da8303c6 1361
ef295ecf 1362 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1363 if (may_queue == ELV_MQUEUE_NO)
1364 goto rq_starved;
1365
1faa16d2
JA
1366 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1367 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1368 /*
1369 * The queue will fill after this allocation, so set
1370 * it as full, and mark this process as "batching".
1371 * This process will be allowed to complete a batch of
1372 * requests, others will be blocked.
1373 */
5b788ce3 1374 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1375 ioc_set_batching(q, ioc);
5b788ce3 1376 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1377 } else {
1378 if (may_queue != ELV_MQUEUE_MUST
1379 && !ioc_batching(q, ioc)) {
1380 /*
1381 * The queue is full and the allocating
1382 * process is not a "batcher", and not
1383 * exempted by the IO scheduler
1384 */
a492f075 1385 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1386 }
1387 }
1da177e4 1388 }
d40f75a0 1389 blk_set_congested(rl, is_sync);
1da177e4
LT
1390 }
1391
082cf69e
JA
1392 /*
1393 * Only allow batching queuers to allocate up to 50% over the defined
1394 * limit of requests, otherwise we could have thousands of requests
1395 * allocated with any setting of ->nr_requests
1396 */
1faa16d2 1397 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1398 return ERR_PTR(-ENOMEM);
fd782a4a 1399
8a5ecdd4 1400 q->nr_rqs[is_sync]++;
1faa16d2
JA
1401 rl->count[is_sync]++;
1402 rl->starved[is_sync] = 0;
cb98fc8b 1403
f1f8cc94
TH
1404 /*
1405 * Decide whether the new request will be managed by elevator. If
e8064021 1406 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1407 * prevent the current elevator from being destroyed until the new
1408 * request is freed. This guarantees icq's won't be destroyed and
1409 * makes creating new ones safe.
1410 *
e6f7f93d
CH
1411 * Flush requests do not use the elevator so skip initialization.
1412 * This allows a request to share the flush and elevator data.
1413 *
f1f8cc94
TH
1414 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1415 * it will be created after releasing queue_lock.
1416 */
e6f7f93d 1417 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1418 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1419 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1420 if (et->icq_cache && ioc)
1421 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1422 }
cb98fc8b 1423
f253b86b 1424 if (blk_queue_io_stat(q))
e8064021 1425 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1426 spin_unlock_irq(q->queue_lock);
1427
29e2b09a 1428 /* allocate and init request */
5b788ce3 1429 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1430 if (!rq)
b679281a 1431 goto fail_alloc;
1da177e4 1432
29e2b09a 1433 blk_rq_init(q, rq);
a051661c 1434 blk_rq_set_rl(rq, rl);
ef295ecf 1435 rq->cmd_flags = op;
e8064021 1436 rq->rq_flags = rq_flags;
1b6d65a0
BVA
1437 if (flags & BLK_MQ_REQ_PREEMPT)
1438 rq->rq_flags |= RQF_PREEMPT;
29e2b09a 1439
aaf7c680 1440 /* init elvpriv */
e8064021 1441 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1442 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1443 if (ioc)
1444 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1445 if (!icq)
1446 goto fail_elvpriv;
29e2b09a 1447 }
aaf7c680
TH
1448
1449 rq->elv.icq = icq;
1450 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1451 goto fail_elvpriv;
1452
1453 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1454 if (icq)
1455 get_io_context(icq->ioc);
1456 }
aaf7c680 1457out:
88ee5ef1
JA
1458 /*
1459 * ioc may be NULL here, and ioc_batching will be false. That's
1460 * OK, if the queue is under the request limit then requests need
1461 * not count toward the nr_batch_requests limit. There will always
1462 * be some limit enforced by BLK_BATCH_TIME.
1463 */
1da177e4
LT
1464 if (ioc_batching(q, ioc))
1465 ioc->nr_batch_requests--;
6728cb0e 1466
e6a40b09 1467 trace_block_getrq(q, bio, op);
1da177e4 1468 return rq;
b679281a 1469
aaf7c680
TH
1470fail_elvpriv:
1471 /*
1472 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1473 * and may fail indefinitely under memory pressure and thus
1474 * shouldn't stall IO. Treat this request as !elvpriv. This will
1475 * disturb iosched and blkcg but weird is bettern than dead.
1476 */
7b2b10e0 1477 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1478 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1479
e8064021 1480 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1481 rq->elv.icq = NULL;
1482
1483 spin_lock_irq(q->queue_lock);
8a5ecdd4 1484 q->nr_rqs_elvpriv--;
aaf7c680
TH
1485 spin_unlock_irq(q->queue_lock);
1486 goto out;
1487
b679281a
TH
1488fail_alloc:
1489 /*
1490 * Allocation failed presumably due to memory. Undo anything we
1491 * might have messed up.
1492 *
1493 * Allocating task should really be put onto the front of the wait
1494 * queue, but this is pretty rare.
1495 */
1496 spin_lock_irq(q->queue_lock);
e8064021 1497 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1498
1499 /*
1500 * in the very unlikely event that allocation failed and no
1501 * requests for this direction was pending, mark us starved so that
1502 * freeing of a request in the other direction will notice
1503 * us. another possible fix would be to split the rq mempool into
1504 * READ and WRITE
1505 */
1506rq_starved:
1507 if (unlikely(rl->count[is_sync] == 0))
1508 rl->starved[is_sync] = 1;
a492f075 1509 return ERR_PTR(-ENOMEM);
1da177e4
LT
1510}
1511
da8303c6 1512/**
a06e05e6 1513 * get_request - get a free request
da8303c6 1514 * @q: request_queue to allocate request from
ef295ecf 1515 * @op: operation and flags
da8303c6 1516 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1517 * @flags: BLK_MQ_REQ_* flags.
da8303c6 1518 *
a9a14d36 1519 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags,
d0164adc 1520 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1521 *
da3dae54 1522 * Must be called with @q->queue_lock held and,
a492f075
JL
1523 * Returns ERR_PTR on failure, with @q->queue_lock held.
1524 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1525 */
ef295ecf 1526static struct request *get_request(struct request_queue *q, unsigned int op,
9a95e4ef 1527 struct bio *bio, blk_mq_req_flags_t flags)
1da177e4 1528{
ef295ecf 1529 const bool is_sync = op_is_sync(op);
a06e05e6 1530 DEFINE_WAIT(wait);
a051661c 1531 struct request_list *rl;
1da177e4 1532 struct request *rq;
a051661c 1533
2fff8a92 1534 lockdep_assert_held(q->queue_lock);
332ebbf7 1535 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1536
a051661c 1537 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1538retry:
6a15674d 1539 rq = __get_request(rl, op, bio, flags);
a492f075 1540 if (!IS_ERR(rq))
a06e05e6 1541 return rq;
1da177e4 1542
03a07c92
GR
1543 if (op & REQ_NOWAIT) {
1544 blk_put_rl(rl);
1545 return ERR_PTR(-EAGAIN);
1546 }
1547
6a15674d 1548 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1549 blk_put_rl(rl);
a492f075 1550 return rq;
a051661c 1551 }
1da177e4 1552
a06e05e6
TH
1553 /* wait on @rl and retry */
1554 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1555 TASK_UNINTERRUPTIBLE);
1da177e4 1556
e6a40b09 1557 trace_block_sleeprq(q, bio, op);
1da177e4 1558
a06e05e6
TH
1559 spin_unlock_irq(q->queue_lock);
1560 io_schedule();
d6344532 1561
a06e05e6
TH
1562 /*
1563 * After sleeping, we become a "batching" process and will be able
1564 * to allocate at least one request, and up to a big batch of them
1565 * for a small period time. See ioc_batching, ioc_set_batching
1566 */
a06e05e6 1567 ioc_set_batching(q, current->io_context);
05caf8db 1568
a06e05e6
TH
1569 spin_lock_irq(q->queue_lock);
1570 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1571
a06e05e6 1572 goto retry;
1da177e4
LT
1573}
1574
6a15674d 1575/* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
cd6ce148 1576static struct request *blk_old_get_request(struct request_queue *q,
9a95e4ef 1577 unsigned int op, blk_mq_req_flags_t flags)
1da177e4
LT
1578{
1579 struct request *rq;
6a15674d
BVA
1580 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1581 __GFP_DIRECT_RECLAIM;
055f6e18 1582 int ret = 0;
1da177e4 1583
332ebbf7
BVA
1584 WARN_ON_ONCE(q->mq_ops);
1585
7f4b35d1
TH
1586 /* create ioc upfront */
1587 create_io_context(gfp_mask, q->node);
1588
3a0a5299 1589 ret = blk_queue_enter(q, flags);
055f6e18
ML
1590 if (ret)
1591 return ERR_PTR(ret);
d6344532 1592 spin_lock_irq(q->queue_lock);
6a15674d 1593 rq = get_request(q, op, NULL, flags);
0c4de0f3 1594 if (IS_ERR(rq)) {
da8303c6 1595 spin_unlock_irq(q->queue_lock);
055f6e18 1596 blk_queue_exit(q);
0c4de0f3
CH
1597 return rq;
1598 }
1da177e4 1599
0c4de0f3
CH
1600 /* q->queue_lock is unlocked at this point */
1601 rq->__data_len = 0;
1602 rq->__sector = (sector_t) -1;
1603 rq->bio = rq->biotail = NULL;
1da177e4
LT
1604 return rq;
1605}
320ae51f 1606
6a15674d
BVA
1607/**
1608 * blk_get_request_flags - allocate a request
1609 * @q: request queue to allocate a request for
1610 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1611 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1612 */
1613struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
9a95e4ef 1614 blk_mq_req_flags_t flags)
320ae51f 1615{
d280bab3
BVA
1616 struct request *req;
1617
6a15674d 1618 WARN_ON_ONCE(op & REQ_NOWAIT);
1b6d65a0 1619 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
6a15674d 1620
d280bab3 1621 if (q->mq_ops) {
6a15674d 1622 req = blk_mq_alloc_request(q, op, flags);
d280bab3
BVA
1623 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1624 q->mq_ops->initialize_rq_fn(req);
1625 } else {
6a15674d 1626 req = blk_old_get_request(q, op, flags);
d280bab3
BVA
1627 if (!IS_ERR(req) && q->initialize_rq_fn)
1628 q->initialize_rq_fn(req);
1629 }
1630
1631 return req;
320ae51f 1632}
6a15674d
BVA
1633EXPORT_SYMBOL(blk_get_request_flags);
1634
1635struct request *blk_get_request(struct request_queue *q, unsigned int op,
1636 gfp_t gfp_mask)
1637{
1638 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1639 0 : BLK_MQ_REQ_NOWAIT);
1640}
1da177e4
LT
1641EXPORT_SYMBOL(blk_get_request);
1642
1643/**
1644 * blk_requeue_request - put a request back on queue
1645 * @q: request queue where request should be inserted
1646 * @rq: request to be inserted
1647 *
1648 * Description:
1649 * Drivers often keep queueing requests until the hardware cannot accept
1650 * more, when that condition happens we need to put the request back
1651 * on the queue. Must be called with queue lock held.
1652 */
165125e1 1653void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1654{
2fff8a92 1655 lockdep_assert_held(q->queue_lock);
332ebbf7 1656 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1657
242f9dcb
JA
1658 blk_delete_timer(rq);
1659 blk_clear_rq_complete(rq);
5f3ea37c 1660 trace_block_rq_requeue(q, rq);
a8a45941 1661 wbt_requeue(q->rq_wb, rq);
2056a782 1662
e8064021 1663 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1664 blk_queue_end_tag(q, rq);
1665
ba396a6c
JB
1666 BUG_ON(blk_queued_rq(rq));
1667
1da177e4
LT
1668 elv_requeue_request(q, rq);
1669}
1da177e4
LT
1670EXPORT_SYMBOL(blk_requeue_request);
1671
73c10101
JA
1672static void add_acct_request(struct request_queue *q, struct request *rq,
1673 int where)
1674{
320ae51f 1675 blk_account_io_start(rq, true);
7eaceacc 1676 __elv_add_request(q, rq, where);
73c10101
JA
1677}
1678
d62e26b3 1679static void part_round_stats_single(struct request_queue *q, int cpu,
b8d62b3a
JA
1680 struct hd_struct *part, unsigned long now,
1681 unsigned int inflight)
074a7aca 1682{
b8d62b3a 1683 if (inflight) {
074a7aca 1684 __part_stat_add(cpu, part, time_in_queue,
b8d62b3a 1685 inflight * (now - part->stamp));
074a7aca
TH
1686 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1687 }
1688 part->stamp = now;
1689}
1690
1691/**
496aa8a9 1692 * part_round_stats() - Round off the performance stats on a struct disk_stats.
d62e26b3 1693 * @q: target block queue
496aa8a9
RD
1694 * @cpu: cpu number for stats access
1695 * @part: target partition
1da177e4
LT
1696 *
1697 * The average IO queue length and utilisation statistics are maintained
1698 * by observing the current state of the queue length and the amount of
1699 * time it has been in this state for.
1700 *
1701 * Normally, that accounting is done on IO completion, but that can result
1702 * in more than a second's worth of IO being accounted for within any one
1703 * second, leading to >100% utilisation. To deal with that, we call this
1704 * function to do a round-off before returning the results when reading
1705 * /proc/diskstats. This accounts immediately for all queue usage up to
1706 * the current jiffies and restarts the counters again.
1707 */
d62e26b3 1708void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
6f2576af 1709{
b8d62b3a 1710 struct hd_struct *part2 = NULL;
6f2576af 1711 unsigned long now = jiffies;
b8d62b3a
JA
1712 unsigned int inflight[2];
1713 int stats = 0;
1714
1715 if (part->stamp != now)
1716 stats |= 1;
1717
1718 if (part->partno) {
1719 part2 = &part_to_disk(part)->part0;
1720 if (part2->stamp != now)
1721 stats |= 2;
1722 }
1723
1724 if (!stats)
1725 return;
1726
1727 part_in_flight(q, part, inflight);
6f2576af 1728
b8d62b3a
JA
1729 if (stats & 2)
1730 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1731 if (stats & 1)
1732 part_round_stats_single(q, cpu, part, now, inflight[0]);
6f2576af 1733}
074a7aca 1734EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1735
47fafbc7 1736#ifdef CONFIG_PM
c8158819
LM
1737static void blk_pm_put_request(struct request *rq)
1738{
e8064021 1739 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1740 pm_runtime_mark_last_busy(rq->q->dev);
1741}
1742#else
1743static inline void blk_pm_put_request(struct request *rq) {}
1744#endif
1745
165125e1 1746void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1747{
e8064021
CH
1748 req_flags_t rq_flags = req->rq_flags;
1749
1da177e4
LT
1750 if (unlikely(!q))
1751 return;
1da177e4 1752
6f5ba581
CH
1753 if (q->mq_ops) {
1754 blk_mq_free_request(req);
1755 return;
1756 }
1757
2fff8a92
BVA
1758 lockdep_assert_held(q->queue_lock);
1759
6cc77e9c 1760 blk_req_zone_write_unlock(req);
c8158819
LM
1761 blk_pm_put_request(req);
1762
8922e16c
TH
1763 elv_completed_request(q, req);
1764
1cd96c24
BH
1765 /* this is a bio leak */
1766 WARN_ON(req->bio != NULL);
1767
a8a45941 1768 wbt_done(q->rq_wb, req);
87760e5e 1769
1da177e4
LT
1770 /*
1771 * Request may not have originated from ll_rw_blk. if not,
1772 * it didn't come out of our reserved rq pools
1773 */
e8064021 1774 if (rq_flags & RQF_ALLOCED) {
a051661c 1775 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1776 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1777
1da177e4 1778 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1779 BUG_ON(ELV_ON_HASH(req));
1da177e4 1780
a051661c 1781 blk_free_request(rl, req);
e8064021 1782 freed_request(rl, sync, rq_flags);
a051661c 1783 blk_put_rl(rl);
055f6e18 1784 blk_queue_exit(q);
1da177e4
LT
1785 }
1786}
6e39b69e
MC
1787EXPORT_SYMBOL_GPL(__blk_put_request);
1788
1da177e4
LT
1789void blk_put_request(struct request *req)
1790{
165125e1 1791 struct request_queue *q = req->q;
8922e16c 1792
320ae51f
JA
1793 if (q->mq_ops)
1794 blk_mq_free_request(req);
1795 else {
1796 unsigned long flags;
1797
1798 spin_lock_irqsave(q->queue_lock, flags);
1799 __blk_put_request(q, req);
1800 spin_unlock_irqrestore(q->queue_lock, flags);
1801 }
1da177e4 1802}
1da177e4
LT
1803EXPORT_SYMBOL(blk_put_request);
1804
320ae51f
JA
1805bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1806 struct bio *bio)
73c10101 1807{
1eff9d32 1808 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1809
73c10101
JA
1810 if (!ll_back_merge_fn(q, req, bio))
1811 return false;
1812
8c1cf6bb 1813 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1814
1815 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1816 blk_rq_set_mixed_merge(req);
1817
1818 req->biotail->bi_next = bio;
1819 req->biotail = bio;
4f024f37 1820 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1821 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1822
320ae51f 1823 blk_account_io_start(req, false);
73c10101
JA
1824 return true;
1825}
1826
320ae51f
JA
1827bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1828 struct bio *bio)
73c10101 1829{
1eff9d32 1830 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1831
73c10101
JA
1832 if (!ll_front_merge_fn(q, req, bio))
1833 return false;
1834
8c1cf6bb 1835 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1836
1837 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1838 blk_rq_set_mixed_merge(req);
1839
73c10101
JA
1840 bio->bi_next = req->bio;
1841 req->bio = bio;
1842
4f024f37
KO
1843 req->__sector = bio->bi_iter.bi_sector;
1844 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1845 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1846
320ae51f 1847 blk_account_io_start(req, false);
73c10101
JA
1848 return true;
1849}
1850
1e739730
CH
1851bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1852 struct bio *bio)
1853{
1854 unsigned short segments = blk_rq_nr_discard_segments(req);
1855
1856 if (segments >= queue_max_discard_segments(q))
1857 goto no_merge;
1858 if (blk_rq_sectors(req) + bio_sectors(bio) >
1859 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1860 goto no_merge;
1861
1862 req->biotail->bi_next = bio;
1863 req->biotail = bio;
1864 req->__data_len += bio->bi_iter.bi_size;
1865 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1866 req->nr_phys_segments = segments + 1;
1867
1868 blk_account_io_start(req, false);
1869 return true;
1870no_merge:
1871 req_set_nomerge(q, req);
1872 return false;
1873}
1874
bd87b589 1875/**
320ae51f 1876 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1877 * @q: request_queue new bio is being queued at
1878 * @bio: new bio being queued
1879 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1880 * @same_queue_rq: pointer to &struct request that gets filled in when
1881 * another request associated with @q is found on the plug list
1882 * (optional, may be %NULL)
bd87b589
TH
1883 *
1884 * Determine whether @bio being queued on @q can be merged with a request
1885 * on %current's plugged list. Returns %true if merge was successful,
1886 * otherwise %false.
1887 *
07c2bd37
TH
1888 * Plugging coalesces IOs from the same issuer for the same purpose without
1889 * going through @q->queue_lock. As such it's more of an issuing mechanism
1890 * than scheduling, and the request, while may have elvpriv data, is not
1891 * added on the elevator at this point. In addition, we don't have
1892 * reliable access to the elevator outside queue lock. Only check basic
1893 * merging parameters without querying the elevator.
da41a589
RE
1894 *
1895 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1896 */
320ae51f 1897bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1898 unsigned int *request_count,
1899 struct request **same_queue_rq)
73c10101
JA
1900{
1901 struct blk_plug *plug;
1902 struct request *rq;
92f399c7 1903 struct list_head *plug_list;
73c10101 1904
bd87b589 1905 plug = current->plug;
73c10101 1906 if (!plug)
34fe7c05 1907 return false;
56ebdaf2 1908 *request_count = 0;
73c10101 1909
92f399c7
SL
1910 if (q->mq_ops)
1911 plug_list = &plug->mq_list;
1912 else
1913 plug_list = &plug->list;
1914
1915 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1916 bool merged = false;
73c10101 1917
5b3f341f 1918 if (rq->q == q) {
1b2e19f1 1919 (*request_count)++;
5b3f341f
SL
1920 /*
1921 * Only blk-mq multiple hardware queues case checks the
1922 * rq in the same queue, there should be only one such
1923 * rq in a queue
1924 **/
1925 if (same_queue_rq)
1926 *same_queue_rq = rq;
1927 }
56ebdaf2 1928
07c2bd37 1929 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1930 continue;
1931
34fe7c05
CH
1932 switch (blk_try_merge(rq, bio)) {
1933 case ELEVATOR_BACK_MERGE:
1934 merged = bio_attempt_back_merge(q, rq, bio);
1935 break;
1936 case ELEVATOR_FRONT_MERGE:
1937 merged = bio_attempt_front_merge(q, rq, bio);
1938 break;
1e739730
CH
1939 case ELEVATOR_DISCARD_MERGE:
1940 merged = bio_attempt_discard_merge(q, rq, bio);
1941 break;
34fe7c05
CH
1942 default:
1943 break;
73c10101 1944 }
34fe7c05
CH
1945
1946 if (merged)
1947 return true;
73c10101 1948 }
34fe7c05
CH
1949
1950 return false;
73c10101
JA
1951}
1952
0809e3ac
JM
1953unsigned int blk_plug_queued_count(struct request_queue *q)
1954{
1955 struct blk_plug *plug;
1956 struct request *rq;
1957 struct list_head *plug_list;
1958 unsigned int ret = 0;
1959
1960 plug = current->plug;
1961 if (!plug)
1962 goto out;
1963
1964 if (q->mq_ops)
1965 plug_list = &plug->mq_list;
1966 else
1967 plug_list = &plug->list;
1968
1969 list_for_each_entry(rq, plug_list, queuelist) {
1970 if (rq->q == q)
1971 ret++;
1972 }
1973out:
1974 return ret;
1975}
1976
da8d7f07 1977void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1978{
0be0dee6
BVA
1979 struct io_context *ioc = rq_ioc(bio);
1980
1eff9d32 1981 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1982 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1983
4f024f37 1984 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1985 if (ioprio_valid(bio_prio(bio)))
1986 req->ioprio = bio_prio(bio);
0be0dee6
BVA
1987 else if (ioc)
1988 req->ioprio = ioc->ioprio;
1989 else
1990 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
cb6934f8 1991 req->write_hint = bio->bi_write_hint;
bc1c56fd 1992 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1993}
da8d7f07 1994EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1995
dece1635 1996static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1997{
73c10101 1998 struct blk_plug *plug;
34fe7c05 1999 int where = ELEVATOR_INSERT_SORT;
e4d750c9 2000 struct request *req, *free;
56ebdaf2 2001 unsigned int request_count = 0;
87760e5e 2002 unsigned int wb_acct;
1da177e4 2003
1da177e4
LT
2004 /*
2005 * low level driver can indicate that it wants pages above a
2006 * certain limit bounced to low memory (ie for highmem, or even
2007 * ISA dma in theory)
2008 */
2009 blk_queue_bounce(q, &bio);
2010
af67c31f 2011 blk_queue_split(q, &bio);
23688bf4 2012
e23947bd 2013 if (!bio_integrity_prep(bio))
dece1635 2014 return BLK_QC_T_NONE;
ffecfd1a 2015
f73f44eb 2016 if (op_is_flush(bio->bi_opf)) {
73c10101 2017 spin_lock_irq(q->queue_lock);
ae1b1539 2018 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
2019 goto get_rq;
2020 }
2021
73c10101
JA
2022 /*
2023 * Check if we can merge with the plugged list before grabbing
2024 * any locks.
2025 */
0809e3ac
JM
2026 if (!blk_queue_nomerges(q)) {
2027 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 2028 return BLK_QC_T_NONE;
0809e3ac
JM
2029 } else
2030 request_count = blk_plug_queued_count(q);
1da177e4 2031
73c10101 2032 spin_lock_irq(q->queue_lock);
2056a782 2033
34fe7c05
CH
2034 switch (elv_merge(q, &req, bio)) {
2035 case ELEVATOR_BACK_MERGE:
2036 if (!bio_attempt_back_merge(q, req, bio))
2037 break;
2038 elv_bio_merged(q, req, bio);
2039 free = attempt_back_merge(q, req);
2040 if (free)
2041 __blk_put_request(q, free);
2042 else
2043 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2044 goto out_unlock;
2045 case ELEVATOR_FRONT_MERGE:
2046 if (!bio_attempt_front_merge(q, req, bio))
2047 break;
2048 elv_bio_merged(q, req, bio);
2049 free = attempt_front_merge(q, req);
2050 if (free)
2051 __blk_put_request(q, free);
2052 else
2053 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2054 goto out_unlock;
2055 default:
2056 break;
1da177e4
LT
2057 }
2058
450991bc 2059get_rq:
87760e5e
JA
2060 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
2061
1da177e4 2062 /*
450991bc 2063 * Grab a free request. This is might sleep but can not fail.
d6344532 2064 * Returns with the queue unlocked.
450991bc 2065 */
055f6e18 2066 blk_queue_enter_live(q);
6a15674d 2067 req = get_request(q, bio->bi_opf, bio, 0);
a492f075 2068 if (IS_ERR(req)) {
055f6e18 2069 blk_queue_exit(q);
87760e5e 2070 __wbt_done(q->rq_wb, wb_acct);
4e4cbee9
CH
2071 if (PTR_ERR(req) == -ENOMEM)
2072 bio->bi_status = BLK_STS_RESOURCE;
2073 else
2074 bio->bi_status = BLK_STS_IOERR;
4246a0b6 2075 bio_endio(bio);
da8303c6
TH
2076 goto out_unlock;
2077 }
d6344532 2078
a8a45941 2079 wbt_track(req, wb_acct);
87760e5e 2080
450991bc
NP
2081 /*
2082 * After dropping the lock and possibly sleeping here, our request
2083 * may now be mergeable after it had proven unmergeable (above).
2084 * We don't worry about that case for efficiency. It won't happen
2085 * often, and the elevators are able to handle it.
1da177e4 2086 */
da8d7f07 2087 blk_init_request_from_bio(req, bio);
1da177e4 2088
9562ad9a 2089 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 2090 req->cpu = raw_smp_processor_id();
73c10101
JA
2091
2092 plug = current->plug;
721a9602 2093 if (plug) {
dc6d36c9
JA
2094 /*
2095 * If this is the first request added after a plug, fire
7aef2e78 2096 * of a plug trace.
0a6219a9
ML
2097 *
2098 * @request_count may become stale because of schedule
2099 * out, so check plug list again.
dc6d36c9 2100 */
0a6219a9 2101 if (!request_count || list_empty(&plug->list))
dc6d36c9 2102 trace_block_plug(q);
3540d5e8 2103 else {
50d24c34
SL
2104 struct request *last = list_entry_rq(plug->list.prev);
2105 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2106 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 2107 blk_flush_plug_list(plug, false);
019ceb7d
SL
2108 trace_block_plug(q);
2109 }
73c10101 2110 }
73c10101 2111 list_add_tail(&req->queuelist, &plug->list);
320ae51f 2112 blk_account_io_start(req, true);
73c10101
JA
2113 } else {
2114 spin_lock_irq(q->queue_lock);
2115 add_acct_request(q, req, where);
24ecfbe2 2116 __blk_run_queue(q);
73c10101
JA
2117out_unlock:
2118 spin_unlock_irq(q->queue_lock);
2119 }
dece1635
JA
2120
2121 return BLK_QC_T_NONE;
1da177e4
LT
2122}
2123
52c5e62d 2124static void handle_bad_sector(struct bio *bio, sector_t maxsector)
1da177e4
LT
2125{
2126 char b[BDEVNAME_SIZE];
2127
2128 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 2129 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 2130 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 2131 (unsigned long long)bio_end_sector(bio),
52c5e62d 2132 (long long)maxsector);
1da177e4
LT
2133}
2134
c17bb495
AM
2135#ifdef CONFIG_FAIL_MAKE_REQUEST
2136
2137static DECLARE_FAULT_ATTR(fail_make_request);
2138
2139static int __init setup_fail_make_request(char *str)
2140{
2141 return setup_fault_attr(&fail_make_request, str);
2142}
2143__setup("fail_make_request=", setup_fail_make_request);
2144
b2c9cd37 2145static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 2146{
b2c9cd37 2147 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
2148}
2149
2150static int __init fail_make_request_debugfs(void)
2151{
dd48c085
AM
2152 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2153 NULL, &fail_make_request);
2154
21f9fcd8 2155 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
2156}
2157
2158late_initcall(fail_make_request_debugfs);
2159
2160#else /* CONFIG_FAIL_MAKE_REQUEST */
2161
b2c9cd37
AM
2162static inline bool should_fail_request(struct hd_struct *part,
2163 unsigned int bytes)
c17bb495 2164{
b2c9cd37 2165 return false;
c17bb495
AM
2166}
2167
2168#endif /* CONFIG_FAIL_MAKE_REQUEST */
2169
721c7fc7
ID
2170static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2171{
2172 if (part->policy && op_is_write(bio_op(bio))) {
2173 char b[BDEVNAME_SIZE];
2174
2175 printk(KERN_ERR
2176 "generic_make_request: Trying to write "
2177 "to read-only block-device %s (partno %d)\n",
2178 bio_devname(bio, b), part->partno);
2179 return true;
2180 }
2181
2182 return false;
2183}
2184
30abb3a6
HM
2185static noinline int should_fail_bio(struct bio *bio)
2186{
2187 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2188 return -EIO;
2189 return 0;
2190}
2191ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2192
52c5e62d
CH
2193/*
2194 * Check whether this bio extends beyond the end of the device or partition.
2195 * This may well happen - the kernel calls bread() without checking the size of
2196 * the device, e.g., when mounting a file system.
2197 */
2198static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2199{
2200 unsigned int nr_sectors = bio_sectors(bio);
2201
2202 if (nr_sectors && maxsector &&
2203 (nr_sectors > maxsector ||
2204 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2205 handle_bad_sector(bio, maxsector);
2206 return -EIO;
2207 }
2208 return 0;
2209}
2210
74d46992
CH
2211/*
2212 * Remap block n of partition p to block n+start(p) of the disk.
2213 */
2214static inline int blk_partition_remap(struct bio *bio)
2215{
2216 struct hd_struct *p;
52c5e62d 2217 int ret = -EIO;
74d46992 2218
721c7fc7
ID
2219 rcu_read_lock();
2220 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
52c5e62d
CH
2221 if (unlikely(!p))
2222 goto out;
2223 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2224 goto out;
2225 if (unlikely(bio_check_ro(bio, p)))
721c7fc7 2226 goto out;
721c7fc7 2227
74d46992
CH
2228 /*
2229 * Zone reset does not include bi_size so bio_sectors() is always 0.
2230 * Include a test for the reset op code and perform the remap if needed.
2231 */
52c5e62d
CH
2232 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2233 if (bio_check_eod(bio, part_nr_sects_read(p)))
2234 goto out;
2235 bio->bi_iter.bi_sector += p->start_sect;
2236 bio->bi_partno = 0;
2237 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2238 bio->bi_iter.bi_sector - p->start_sect);
2239 }
2240 ret = 0;
721c7fc7
ID
2241out:
2242 rcu_read_unlock();
74d46992
CH
2243 return ret;
2244}
2245
27a84d54
CH
2246static noinline_for_stack bool
2247generic_make_request_checks(struct bio *bio)
1da177e4 2248{
165125e1 2249 struct request_queue *q;
5a7bbad2 2250 int nr_sectors = bio_sectors(bio);
4e4cbee9 2251 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 2252 char b[BDEVNAME_SIZE];
1da177e4
LT
2253
2254 might_sleep();
1da177e4 2255
74d46992 2256 q = bio->bi_disk->queue;
5a7bbad2
CH
2257 if (unlikely(!q)) {
2258 printk(KERN_ERR
2259 "generic_make_request: Trying to access "
2260 "nonexistent block-device %s (%Lu)\n",
74d46992 2261 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
2262 goto end_io;
2263 }
c17bb495 2264
03a07c92
GR
2265 /*
2266 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2267 * if queue is not a request based queue.
2268 */
03a07c92
GR
2269 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2270 goto not_supported;
2271
30abb3a6 2272 if (should_fail_bio(bio))
5a7bbad2 2273 goto end_io;
2056a782 2274
52c5e62d
CH
2275 if (bio->bi_partno) {
2276 if (unlikely(blk_partition_remap(bio)))
721c7fc7
ID
2277 goto end_io;
2278 } else {
52c5e62d
CH
2279 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2280 goto end_io;
2281 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
721c7fc7
ID
2282 goto end_io;
2283 }
2056a782 2284
5a7bbad2
CH
2285 /*
2286 * Filter flush bio's early so that make_request based
2287 * drivers without flush support don't have to worry
2288 * about them.
2289 */
f3a8ab7d 2290 if (op_is_flush(bio->bi_opf) &&
c888a8f9 2291 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 2292 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 2293 if (!nr_sectors) {
4e4cbee9 2294 status = BLK_STS_OK;
51fd77bd
JA
2295 goto end_io;
2296 }
5a7bbad2 2297 }
5ddfe969 2298
288dab8a
CH
2299 switch (bio_op(bio)) {
2300 case REQ_OP_DISCARD:
2301 if (!blk_queue_discard(q))
2302 goto not_supported;
2303 break;
2304 case REQ_OP_SECURE_ERASE:
2305 if (!blk_queue_secure_erase(q))
2306 goto not_supported;
2307 break;
2308 case REQ_OP_WRITE_SAME:
74d46992 2309 if (!q->limits.max_write_same_sectors)
288dab8a 2310 goto not_supported;
58886785 2311 break;
2d253440
ST
2312 case REQ_OP_ZONE_REPORT:
2313 case REQ_OP_ZONE_RESET:
74d46992 2314 if (!blk_queue_is_zoned(q))
2d253440 2315 goto not_supported;
288dab8a 2316 break;
a6f0788e 2317 case REQ_OP_WRITE_ZEROES:
74d46992 2318 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
2319 goto not_supported;
2320 break;
288dab8a
CH
2321 default:
2322 break;
5a7bbad2 2323 }
01edede4 2324
7f4b35d1
TH
2325 /*
2326 * Various block parts want %current->io_context and lazy ioc
2327 * allocation ends up trading a lot of pain for a small amount of
2328 * memory. Just allocate it upfront. This may fail and block
2329 * layer knows how to live with it.
2330 */
2331 create_io_context(GFP_ATOMIC, q->node);
2332
ae118896
TH
2333 if (!blkcg_bio_issue_check(q, bio))
2334 return false;
27a84d54 2335
fbbaf700
N
2336 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2337 trace_block_bio_queue(q, bio);
2338 /* Now that enqueuing has been traced, we need to trace
2339 * completion as well.
2340 */
2341 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2342 }
27a84d54 2343 return true;
a7384677 2344
288dab8a 2345not_supported:
4e4cbee9 2346 status = BLK_STS_NOTSUPP;
a7384677 2347end_io:
4e4cbee9 2348 bio->bi_status = status;
4246a0b6 2349 bio_endio(bio);
27a84d54 2350 return false;
1da177e4
LT
2351}
2352
27a84d54
CH
2353/**
2354 * generic_make_request - hand a buffer to its device driver for I/O
2355 * @bio: The bio describing the location in memory and on the device.
2356 *
2357 * generic_make_request() is used to make I/O requests of block
2358 * devices. It is passed a &struct bio, which describes the I/O that needs
2359 * to be done.
2360 *
2361 * generic_make_request() does not return any status. The
2362 * success/failure status of the request, along with notification of
2363 * completion, is delivered asynchronously through the bio->bi_end_io
2364 * function described (one day) else where.
2365 *
2366 * The caller of generic_make_request must make sure that bi_io_vec
2367 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2368 * set to describe the device address, and the
2369 * bi_end_io and optionally bi_private are set to describe how
2370 * completion notification should be signaled.
2371 *
2372 * generic_make_request and the drivers it calls may use bi_next if this
2373 * bio happens to be merged with someone else, and may resubmit the bio to
2374 * a lower device by calling into generic_make_request recursively, which
2375 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2376 */
dece1635 2377blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2378{
f5fe1b51
N
2379 /*
2380 * bio_list_on_stack[0] contains bios submitted by the current
2381 * make_request_fn.
2382 * bio_list_on_stack[1] contains bios that were submitted before
2383 * the current make_request_fn, but that haven't been processed
2384 * yet.
2385 */
2386 struct bio_list bio_list_on_stack[2];
37f9579f
BVA
2387 blk_mq_req_flags_t flags = 0;
2388 struct request_queue *q = bio->bi_disk->queue;
dece1635 2389 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2390
37f9579f
BVA
2391 if (bio->bi_opf & REQ_NOWAIT)
2392 flags = BLK_MQ_REQ_NOWAIT;
2393 if (blk_queue_enter(q, flags) < 0) {
2394 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2395 bio_wouldblock_error(bio);
2396 else
2397 bio_io_error(bio);
2398 return ret;
2399 }
2400
27a84d54 2401 if (!generic_make_request_checks(bio))
dece1635 2402 goto out;
27a84d54
CH
2403
2404 /*
2405 * We only want one ->make_request_fn to be active at a time, else
2406 * stack usage with stacked devices could be a problem. So use
2407 * current->bio_list to keep a list of requests submited by a
2408 * make_request_fn function. current->bio_list is also used as a
2409 * flag to say if generic_make_request is currently active in this
2410 * task or not. If it is NULL, then no make_request is active. If
2411 * it is non-NULL, then a make_request is active, and new requests
2412 * should be added at the tail
2413 */
bddd87c7 2414 if (current->bio_list) {
f5fe1b51 2415 bio_list_add(&current->bio_list[0], bio);
dece1635 2416 goto out;
d89d8796 2417 }
27a84d54 2418
d89d8796
NB
2419 /* following loop may be a bit non-obvious, and so deserves some
2420 * explanation.
2421 * Before entering the loop, bio->bi_next is NULL (as all callers
2422 * ensure that) so we have a list with a single bio.
2423 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2424 * we assign bio_list to a pointer to the bio_list_on_stack,
2425 * thus initialising the bio_list of new bios to be
27a84d54 2426 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2427 * through a recursive call to generic_make_request. If it
2428 * did, we find a non-NULL value in bio_list and re-enter the loop
2429 * from the top. In this case we really did just take the bio
bddd87c7 2430 * of the top of the list (no pretending) and so remove it from
27a84d54 2431 * bio_list, and call into ->make_request() again.
d89d8796
NB
2432 */
2433 BUG_ON(bio->bi_next);
f5fe1b51
N
2434 bio_list_init(&bio_list_on_stack[0]);
2435 current->bio_list = bio_list_on_stack;
d89d8796 2436 do {
37f9579f
BVA
2437 bool enter_succeeded = true;
2438
2439 if (unlikely(q != bio->bi_disk->queue)) {
2440 if (q)
2441 blk_queue_exit(q);
2442 q = bio->bi_disk->queue;
2443 flags = 0;
2444 if (bio->bi_opf & REQ_NOWAIT)
2445 flags = BLK_MQ_REQ_NOWAIT;
2446 if (blk_queue_enter(q, flags) < 0) {
2447 enter_succeeded = false;
2448 q = NULL;
2449 }
2450 }
27a84d54 2451
37f9579f 2452 if (enter_succeeded) {
79bd9959
N
2453 struct bio_list lower, same;
2454
2455 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2456 bio_list_on_stack[1] = bio_list_on_stack[0];
2457 bio_list_init(&bio_list_on_stack[0]);
dece1635 2458 ret = q->make_request_fn(q, bio);
3ef28e83 2459
79bd9959
N
2460 /* sort new bios into those for a lower level
2461 * and those for the same level
2462 */
2463 bio_list_init(&lower);
2464 bio_list_init(&same);
f5fe1b51 2465 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 2466 if (q == bio->bi_disk->queue)
79bd9959
N
2467 bio_list_add(&same, bio);
2468 else
2469 bio_list_add(&lower, bio);
2470 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2471 bio_list_merge(&bio_list_on_stack[0], &lower);
2472 bio_list_merge(&bio_list_on_stack[0], &same);
2473 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2474 } else {
03a07c92
GR
2475 if (unlikely(!blk_queue_dying(q) &&
2476 (bio->bi_opf & REQ_NOWAIT)))
2477 bio_wouldblock_error(bio);
2478 else
2479 bio_io_error(bio);
3ef28e83 2480 }
f5fe1b51 2481 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2482 } while (bio);
bddd87c7 2483 current->bio_list = NULL; /* deactivate */
dece1635
JA
2484
2485out:
37f9579f
BVA
2486 if (q)
2487 blk_queue_exit(q);
dece1635 2488 return ret;
d89d8796 2489}
1da177e4
LT
2490EXPORT_SYMBOL(generic_make_request);
2491
f421e1d9
CH
2492/**
2493 * direct_make_request - hand a buffer directly to its device driver for I/O
2494 * @bio: The bio describing the location in memory and on the device.
2495 *
2496 * This function behaves like generic_make_request(), but does not protect
2497 * against recursion. Must only be used if the called driver is known
2498 * to not call generic_make_request (or direct_make_request) again from
2499 * its make_request function. (Calling direct_make_request again from
2500 * a workqueue is perfectly fine as that doesn't recurse).
2501 */
2502blk_qc_t direct_make_request(struct bio *bio)
2503{
2504 struct request_queue *q = bio->bi_disk->queue;
2505 bool nowait = bio->bi_opf & REQ_NOWAIT;
2506 blk_qc_t ret;
2507
2508 if (!generic_make_request_checks(bio))
2509 return BLK_QC_T_NONE;
2510
3a0a5299 2511 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
f421e1d9
CH
2512 if (nowait && !blk_queue_dying(q))
2513 bio->bi_status = BLK_STS_AGAIN;
2514 else
2515 bio->bi_status = BLK_STS_IOERR;
2516 bio_endio(bio);
2517 return BLK_QC_T_NONE;
2518 }
2519
2520 ret = q->make_request_fn(q, bio);
2521 blk_queue_exit(q);
2522 return ret;
2523}
2524EXPORT_SYMBOL_GPL(direct_make_request);
2525
1da177e4 2526/**
710027a4 2527 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2528 * @bio: The &struct bio which describes the I/O
2529 *
2530 * submit_bio() is very similar in purpose to generic_make_request(), and
2531 * uses that function to do most of the work. Both are fairly rough
710027a4 2532 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2533 *
2534 */
4e49ea4a 2535blk_qc_t submit_bio(struct bio *bio)
1da177e4 2536{
bf2de6f5
JA
2537 /*
2538 * If it's a regular read/write or a barrier with data attached,
2539 * go through the normal accounting stuff before submission.
2540 */
e2a60da7 2541 if (bio_has_data(bio)) {
4363ac7c
MP
2542 unsigned int count;
2543
95fe6c1a 2544 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
7c5a0dcf 2545 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
4363ac7c
MP
2546 else
2547 count = bio_sectors(bio);
2548
a8ebb056 2549 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2550 count_vm_events(PGPGOUT, count);
2551 } else {
4f024f37 2552 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2553 count_vm_events(PGPGIN, count);
2554 }
2555
2556 if (unlikely(block_dump)) {
2557 char b[BDEVNAME_SIZE];
8dcbdc74 2558 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2559 current->comm, task_pid_nr(current),
a8ebb056 2560 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2561 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 2562 bio_devname(bio, b), count);
bf2de6f5 2563 }
1da177e4
LT
2564 }
2565
dece1635 2566 return generic_make_request(bio);
1da177e4 2567}
1da177e4
LT
2568EXPORT_SYMBOL(submit_bio);
2569
ea435e1b
CH
2570bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2571{
2572 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2573 return false;
2574
2575 if (current->plug)
2576 blk_flush_plug_list(current->plug, false);
2577 return q->poll_fn(q, cookie);
2578}
2579EXPORT_SYMBOL_GPL(blk_poll);
2580
82124d60 2581/**
bf4e6b4e
HR
2582 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2583 * for new the queue limits
82124d60
KU
2584 * @q: the queue
2585 * @rq: the request being checked
2586 *
2587 * Description:
2588 * @rq may have been made based on weaker limitations of upper-level queues
2589 * in request stacking drivers, and it may violate the limitation of @q.
2590 * Since the block layer and the underlying device driver trust @rq
2591 * after it is inserted to @q, it should be checked against @q before
2592 * the insertion using this generic function.
2593 *
82124d60 2594 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2595 * limits when retrying requests on other queues. Those requests need
2596 * to be checked against the new queue limits again during dispatch.
82124d60 2597 */
bf4e6b4e
HR
2598static int blk_cloned_rq_check_limits(struct request_queue *q,
2599 struct request *rq)
82124d60 2600{
8fe0d473 2601 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2602 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2603 return -EIO;
2604 }
2605
2606 /*
2607 * queue's settings related to segment counting like q->bounce_pfn
2608 * may differ from that of other stacking queues.
2609 * Recalculate it to check the request correctly on this queue's
2610 * limitation.
2611 */
2612 blk_recalc_rq_segments(rq);
8a78362c 2613 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2614 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2615 return -EIO;
2616 }
2617
2618 return 0;
2619}
82124d60
KU
2620
2621/**
2622 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2623 * @q: the queue to submit the request
2624 * @rq: the request being queued
2625 */
2a842aca 2626blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60
KU
2627{
2628 unsigned long flags;
4853abaa 2629 int where = ELEVATOR_INSERT_BACK;
82124d60 2630
bf4e6b4e 2631 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 2632 return BLK_STS_IOERR;
82124d60 2633
b2c9cd37
AM
2634 if (rq->rq_disk &&
2635 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 2636 return BLK_STS_IOERR;
82124d60 2637
7fb4898e
KB
2638 if (q->mq_ops) {
2639 if (blk_queue_io_stat(q))
2640 blk_account_io_start(rq, true);
157f377b
JA
2641 /*
2642 * Since we have a scheduler attached on the top device,
2643 * bypass a potential scheduler on the bottom device for
2644 * insert.
2645 */
c77ff7fd 2646 return blk_mq_request_issue_directly(rq);
7fb4898e
KB
2647 }
2648
82124d60 2649 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2650 if (unlikely(blk_queue_dying(q))) {
8ba61435 2651 spin_unlock_irqrestore(q->queue_lock, flags);
2a842aca 2652 return BLK_STS_IOERR;
8ba61435 2653 }
82124d60
KU
2654
2655 /*
2656 * Submitting request must be dequeued before calling this function
2657 * because it will be linked to another request_queue
2658 */
2659 BUG_ON(blk_queued_rq(rq));
2660
f73f44eb 2661 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2662 where = ELEVATOR_INSERT_FLUSH;
2663
2664 add_acct_request(q, rq, where);
e67b77c7
JM
2665 if (where == ELEVATOR_INSERT_FLUSH)
2666 __blk_run_queue(q);
82124d60
KU
2667 spin_unlock_irqrestore(q->queue_lock, flags);
2668
2a842aca 2669 return BLK_STS_OK;
82124d60
KU
2670}
2671EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2672
80a761fd
TH
2673/**
2674 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2675 * @rq: request to examine
2676 *
2677 * Description:
2678 * A request could be merge of IOs which require different failure
2679 * handling. This function determines the number of bytes which
2680 * can be failed from the beginning of the request without
2681 * crossing into area which need to be retried further.
2682 *
2683 * Return:
2684 * The number of bytes to fail.
80a761fd
TH
2685 */
2686unsigned int blk_rq_err_bytes(const struct request *rq)
2687{
2688 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2689 unsigned int bytes = 0;
2690 struct bio *bio;
2691
e8064021 2692 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2693 return blk_rq_bytes(rq);
2694
2695 /*
2696 * Currently the only 'mixing' which can happen is between
2697 * different fastfail types. We can safely fail portions
2698 * which have all the failfast bits that the first one has -
2699 * the ones which are at least as eager to fail as the first
2700 * one.
2701 */
2702 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2703 if ((bio->bi_opf & ff) != ff)
80a761fd 2704 break;
4f024f37 2705 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2706 }
2707
2708 /* this could lead to infinite loop */
2709 BUG_ON(blk_rq_bytes(rq) && !bytes);
2710 return bytes;
2711}
2712EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2713
320ae51f 2714void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2715{
c2553b58 2716 if (blk_do_io_stat(req)) {
bc58ba94
JA
2717 const int rw = rq_data_dir(req);
2718 struct hd_struct *part;
2719 int cpu;
2720
2721 cpu = part_stat_lock();
09e099d4 2722 part = req->part;
bc58ba94
JA
2723 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2724 part_stat_unlock();
2725 }
2726}
2727
522a7775 2728void blk_account_io_done(struct request *req, u64 now)
bc58ba94 2729{
bc58ba94 2730 /*
dd4c133f
TH
2731 * Account IO completion. flush_rq isn't accounted as a
2732 * normal IO on queueing nor completion. Accounting the
2733 * containing request is enough.
bc58ba94 2734 */
e8064021 2735 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
522a7775 2736 unsigned long duration;
bc58ba94
JA
2737 const int rw = rq_data_dir(req);
2738 struct hd_struct *part;
2739 int cpu;
2740
522a7775 2741 duration = nsecs_to_jiffies(now - req->start_time_ns);
bc58ba94 2742 cpu = part_stat_lock();
09e099d4 2743 part = req->part;
bc58ba94
JA
2744
2745 part_stat_inc(cpu, part, ios[rw]);
2746 part_stat_add(cpu, part, ticks[rw], duration);
d62e26b3
JA
2747 part_round_stats(req->q, cpu, part);
2748 part_dec_in_flight(req->q, part, rw);
bc58ba94 2749
6c23a968 2750 hd_struct_put(part);
bc58ba94
JA
2751 part_stat_unlock();
2752 }
2753}
2754
47fafbc7 2755#ifdef CONFIG_PM
c8158819
LM
2756/*
2757 * Don't process normal requests when queue is suspended
2758 * or in the process of suspending/resuming
2759 */
e4f36b24 2760static bool blk_pm_allow_request(struct request *rq)
c8158819 2761{
e4f36b24
CH
2762 switch (rq->q->rpm_status) {
2763 case RPM_RESUMING:
2764 case RPM_SUSPENDING:
2765 return rq->rq_flags & RQF_PM;
2766 case RPM_SUSPENDED:
2767 return false;
2768 }
2769
2770 return true;
c8158819
LM
2771}
2772#else
e4f36b24 2773static bool blk_pm_allow_request(struct request *rq)
c8158819 2774{
e4f36b24 2775 return true;
c8158819
LM
2776}
2777#endif
2778
320ae51f
JA
2779void blk_account_io_start(struct request *rq, bool new_io)
2780{
2781 struct hd_struct *part;
2782 int rw = rq_data_dir(rq);
2783 int cpu;
2784
2785 if (!blk_do_io_stat(rq))
2786 return;
2787
2788 cpu = part_stat_lock();
2789
2790 if (!new_io) {
2791 part = rq->part;
2792 part_stat_inc(cpu, part, merges[rw]);
2793 } else {
2794 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2795 if (!hd_struct_try_get(part)) {
2796 /*
2797 * The partition is already being removed,
2798 * the request will be accounted on the disk only
2799 *
2800 * We take a reference on disk->part0 although that
2801 * partition will never be deleted, so we can treat
2802 * it as any other partition.
2803 */
2804 part = &rq->rq_disk->part0;
2805 hd_struct_get(part);
2806 }
d62e26b3
JA
2807 part_round_stats(rq->q, cpu, part);
2808 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
2809 rq->part = part;
2810 }
2811
2812 part_stat_unlock();
2813}
2814
9c988374
CH
2815static struct request *elv_next_request(struct request_queue *q)
2816{
2817 struct request *rq;
2818 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2819
2820 WARN_ON_ONCE(q->mq_ops);
2821
2822 while (1) {
e4f36b24
CH
2823 list_for_each_entry(rq, &q->queue_head, queuelist) {
2824 if (blk_pm_allow_request(rq))
2825 return rq;
2826
2827 if (rq->rq_flags & RQF_SOFTBARRIER)
2828 break;
9c988374
CH
2829 }
2830
2831 /*
2832 * Flush request is running and flush request isn't queueable
2833 * in the drive, we can hold the queue till flush request is
2834 * finished. Even we don't do this, driver can't dispatch next
2835 * requests and will requeue them. And this can improve
2836 * throughput too. For example, we have request flush1, write1,
2837 * flush 2. flush1 is dispatched, then queue is hold, write1
2838 * isn't inserted to queue. After flush1 is finished, flush2
2839 * will be dispatched. Since disk cache is already clean,
2840 * flush2 will be finished very soon, so looks like flush2 is
2841 * folded to flush1.
2842 * Since the queue is hold, a flag is set to indicate the queue
2843 * should be restarted later. Please see flush_end_io() for
2844 * details.
2845 */
2846 if (fq->flush_pending_idx != fq->flush_running_idx &&
2847 !queue_flush_queueable(q)) {
2848 fq->flush_queue_delayed = 1;
2849 return NULL;
2850 }
2851 if (unlikely(blk_queue_bypass(q)) ||
2852 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2853 return NULL;
2854 }
2855}
2856
3bcddeac 2857/**
9934c8c0
TH
2858 * blk_peek_request - peek at the top of a request queue
2859 * @q: request queue to peek at
2860 *
2861 * Description:
2862 * Return the request at the top of @q. The returned request
2863 * should be started using blk_start_request() before LLD starts
2864 * processing it.
2865 *
2866 * Return:
2867 * Pointer to the request at the top of @q if available. Null
2868 * otherwise.
9934c8c0
TH
2869 */
2870struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2871{
2872 struct request *rq;
2873 int ret;
2874
2fff8a92 2875 lockdep_assert_held(q->queue_lock);
332ebbf7 2876 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2877
9c988374 2878 while ((rq = elv_next_request(q)) != NULL) {
e8064021 2879 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2880 /*
2881 * This is the first time the device driver
2882 * sees this request (possibly after
2883 * requeueing). Notify IO scheduler.
2884 */
e8064021 2885 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2886 elv_activate_rq(q, rq);
2887
2888 /*
2889 * just mark as started even if we don't start
2890 * it, a request that has been delayed should
2891 * not be passed by new incoming requests
2892 */
e8064021 2893 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2894 trace_block_rq_issue(q, rq);
2895 }
2896
2897 if (!q->boundary_rq || q->boundary_rq == rq) {
2898 q->end_sector = rq_end_sector(rq);
2899 q->boundary_rq = NULL;
2900 }
2901
e8064021 2902 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2903 break;
2904
2e46e8b2 2905 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2906 /*
2907 * make sure space for the drain appears we
2908 * know we can do this because max_hw_segments
2909 * has been adjusted to be one fewer than the
2910 * device can handle
2911 */
2912 rq->nr_phys_segments++;
2913 }
2914
2915 if (!q->prep_rq_fn)
2916 break;
2917
2918 ret = q->prep_rq_fn(q, rq);
2919 if (ret == BLKPREP_OK) {
2920 break;
2921 } else if (ret == BLKPREP_DEFER) {
2922 /*
2923 * the request may have been (partially) prepped.
2924 * we need to keep this request in the front to
e8064021 2925 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2926 * prevent other fs requests from passing this one.
2927 */
2e46e8b2 2928 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2929 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2930 /*
2931 * remove the space for the drain we added
2932 * so that we don't add it again
2933 */
2934 --rq->nr_phys_segments;
2935 }
2936
2937 rq = NULL;
2938 break;
0fb5b1fb 2939 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
e8064021 2940 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2941 /*
2942 * Mark this request as started so we don't trigger
2943 * any debug logic in the end I/O path.
2944 */
2945 blk_start_request(rq);
2a842aca
CH
2946 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2947 BLK_STS_TARGET : BLK_STS_IOERR);
158dbda0
TH
2948 } else {
2949 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2950 break;
2951 }
2952 }
2953
2954 return rq;
2955}
9934c8c0 2956EXPORT_SYMBOL(blk_peek_request);
158dbda0 2957
5034435c 2958static void blk_dequeue_request(struct request *rq)
158dbda0 2959{
9934c8c0
TH
2960 struct request_queue *q = rq->q;
2961
158dbda0
TH
2962 BUG_ON(list_empty(&rq->queuelist));
2963 BUG_ON(ELV_ON_HASH(rq));
2964
2965 list_del_init(&rq->queuelist);
2966
2967 /*
2968 * the time frame between a request being removed from the lists
2969 * and to it is freed is accounted as io that is in progress at
2970 * the driver side.
2971 */
522a7775 2972 if (blk_account_rq(rq))
0a7ae2ff 2973 q->in_flight[rq_is_sync(rq)]++;
158dbda0
TH
2974}
2975
9934c8c0
TH
2976/**
2977 * blk_start_request - start request processing on the driver
2978 * @req: request to dequeue
2979 *
2980 * Description:
2981 * Dequeue @req and start timeout timer on it. This hands off the
2982 * request to the driver.
9934c8c0
TH
2983 */
2984void blk_start_request(struct request *req)
2985{
2fff8a92 2986 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2987 WARN_ON_ONCE(req->q->mq_ops);
2fff8a92 2988
9934c8c0
TH
2989 blk_dequeue_request(req);
2990
cf43e6be 2991 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
544ccc8d
OS
2992 req->io_start_time_ns = ktime_get_ns();
2993#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2994 req->throtl_size = blk_rq_sectors(req);
2995#endif
cf43e6be 2996 req->rq_flags |= RQF_STATS;
a8a45941 2997 wbt_issue(req->q->rq_wb, req);
cf43e6be
JA
2998 }
2999
e14575b3 3000 BUG_ON(blk_rq_is_complete(req));
9934c8c0
TH
3001 blk_add_timer(req);
3002}
3003EXPORT_SYMBOL(blk_start_request);
3004
3005/**
3006 * blk_fetch_request - fetch a request from a request queue
3007 * @q: request queue to fetch a request from
3008 *
3009 * Description:
3010 * Return the request at the top of @q. The request is started on
3011 * return and LLD can start processing it immediately.
3012 *
3013 * Return:
3014 * Pointer to the request at the top of @q if available. Null
3015 * otherwise.
9934c8c0
TH
3016 */
3017struct request *blk_fetch_request(struct request_queue *q)
3018{
3019 struct request *rq;
3020
2fff8a92 3021 lockdep_assert_held(q->queue_lock);
332ebbf7 3022 WARN_ON_ONCE(q->mq_ops);
2fff8a92 3023
9934c8c0
TH
3024 rq = blk_peek_request(q);
3025 if (rq)
3026 blk_start_request(rq);
3027 return rq;
3028}
3029EXPORT_SYMBOL(blk_fetch_request);
3030
ef71de8b
CH
3031/*
3032 * Steal bios from a request and add them to a bio list.
3033 * The request must not have been partially completed before.
3034 */
3035void blk_steal_bios(struct bio_list *list, struct request *rq)
3036{
3037 if (rq->bio) {
3038 if (list->tail)
3039 list->tail->bi_next = rq->bio;
3040 else
3041 list->head = rq->bio;
3042 list->tail = rq->biotail;
3043
3044 rq->bio = NULL;
3045 rq->biotail = NULL;
3046 }
3047
3048 rq->__data_len = 0;
3049}
3050EXPORT_SYMBOL_GPL(blk_steal_bios);
3051
3bcddeac 3052/**
2e60e022 3053 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 3054 * @req: the request being processed
2a842aca 3055 * @error: block status code
8ebf9756 3056 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
3057 *
3058 * Description:
8ebf9756
RD
3059 * Ends I/O on a number of bytes attached to @req, but doesn't complete
3060 * the request structure even if @req doesn't have leftover.
3061 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
3062 *
3063 * This special helper function is only for request stacking drivers
3064 * (e.g. request-based dm) so that they can handle partial completion.
3065 * Actual device drivers should use blk_end_request instead.
3066 *
3067 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3068 * %false return from this function.
3bcddeac
KU
3069 *
3070 * Return:
2e60e022
TH
3071 * %false - this request doesn't have any more data
3072 * %true - this request has more data
3bcddeac 3073 **/
2a842aca
CH
3074bool blk_update_request(struct request *req, blk_status_t error,
3075 unsigned int nr_bytes)
1da177e4 3076{
f79ea416 3077 int total_bytes;
1da177e4 3078
2a842aca 3079 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 3080
2e60e022
TH
3081 if (!req->bio)
3082 return false;
3083
2a842aca
CH
3084 if (unlikely(error && !blk_rq_is_passthrough(req) &&
3085 !(req->rq_flags & RQF_QUIET)))
3086 print_req_error(req, error);
1da177e4 3087
bc58ba94 3088 blk_account_io_completion(req, nr_bytes);
d72d904a 3089
f79ea416
KO
3090 total_bytes = 0;
3091 while (req->bio) {
3092 struct bio *bio = req->bio;
4f024f37 3093 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 3094
4f024f37 3095 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 3096 req->bio = bio->bi_next;
1da177e4 3097
fbbaf700
N
3098 /* Completion has already been traced */
3099 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 3100 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 3101
f79ea416
KO
3102 total_bytes += bio_bytes;
3103 nr_bytes -= bio_bytes;
1da177e4 3104
f79ea416
KO
3105 if (!nr_bytes)
3106 break;
1da177e4
LT
3107 }
3108
3109 /*
3110 * completely done
3111 */
2e60e022
TH
3112 if (!req->bio) {
3113 /*
3114 * Reset counters so that the request stacking driver
3115 * can find how many bytes remain in the request
3116 * later.
3117 */
a2dec7b3 3118 req->__data_len = 0;
2e60e022
TH
3119 return false;
3120 }
1da177e4 3121
a2dec7b3 3122 req->__data_len -= total_bytes;
2e46e8b2
TH
3123
3124 /* update sector only for requests with clear definition of sector */
57292b58 3125 if (!blk_rq_is_passthrough(req))
a2dec7b3 3126 req->__sector += total_bytes >> 9;
2e46e8b2 3127
80a761fd 3128 /* mixed attributes always follow the first bio */
e8064021 3129 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 3130 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 3131 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
3132 }
3133
ed6565e7
CH
3134 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3135 /*
3136 * If total number of sectors is less than the first segment
3137 * size, something has gone terribly wrong.
3138 */
3139 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3140 blk_dump_rq_flags(req, "request botched");
3141 req->__data_len = blk_rq_cur_bytes(req);
3142 }
2e46e8b2 3143
ed6565e7
CH
3144 /* recalculate the number of segments */
3145 blk_recalc_rq_segments(req);
3146 }
2e46e8b2 3147
2e60e022 3148 return true;
1da177e4 3149}
2e60e022 3150EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 3151
2a842aca 3152static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2e60e022
TH
3153 unsigned int nr_bytes,
3154 unsigned int bidi_bytes)
5efccd17 3155{
2e60e022
TH
3156 if (blk_update_request(rq, error, nr_bytes))
3157 return true;
5efccd17 3158
2e60e022
TH
3159 /* Bidi request must be completed as a whole */
3160 if (unlikely(blk_bidi_rq(rq)) &&
3161 blk_update_request(rq->next_rq, error, bidi_bytes))
3162 return true;
5efccd17 3163
e2e1a148
JA
3164 if (blk_queue_add_random(rq->q))
3165 add_disk_randomness(rq->rq_disk);
2e60e022
TH
3166
3167 return false;
1da177e4
LT
3168}
3169
28018c24
JB
3170/**
3171 * blk_unprep_request - unprepare a request
3172 * @req: the request
3173 *
3174 * This function makes a request ready for complete resubmission (or
3175 * completion). It happens only after all error handling is complete,
3176 * so represents the appropriate moment to deallocate any resources
3177 * that were allocated to the request in the prep_rq_fn. The queue
3178 * lock is held when calling this.
3179 */
3180void blk_unprep_request(struct request *req)
3181{
3182 struct request_queue *q = req->q;
3183
e8064021 3184 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
3185 if (q->unprep_rq_fn)
3186 q->unprep_rq_fn(q, req);
3187}
3188EXPORT_SYMBOL_GPL(blk_unprep_request);
3189
2a842aca 3190void blk_finish_request(struct request *req, blk_status_t error)
1da177e4 3191{
cf43e6be 3192 struct request_queue *q = req->q;
522a7775 3193 u64 now = ktime_get_ns();
cf43e6be 3194
2fff8a92 3195 lockdep_assert_held(req->q->queue_lock);
332ebbf7 3196 WARN_ON_ONCE(q->mq_ops);
2fff8a92 3197
cf43e6be 3198 if (req->rq_flags & RQF_STATS)
522a7775 3199 blk_stat_add(req, now);
cf43e6be 3200
e8064021 3201 if (req->rq_flags & RQF_QUEUED)
cf43e6be 3202 blk_queue_end_tag(q, req);
b8286239 3203
ba396a6c 3204 BUG_ON(blk_queued_rq(req));
1da177e4 3205
57292b58 3206 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 3207 laptop_io_completion(req->q->backing_dev_info);
1da177e4 3208
e78042e5
MA
3209 blk_delete_timer(req);
3210
e8064021 3211 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
3212 blk_unprep_request(req);
3213
522a7775 3214 blk_account_io_done(req, now);
b8286239 3215
87760e5e 3216 if (req->end_io) {
a8a45941 3217 wbt_done(req->q->rq_wb, req);
8ffdc655 3218 req->end_io(req, error);
87760e5e 3219 } else {
b8286239
KU
3220 if (blk_bidi_rq(req))
3221 __blk_put_request(req->next_rq->q, req->next_rq);
3222
cf43e6be 3223 __blk_put_request(q, req);
b8286239 3224 }
1da177e4 3225}
12120077 3226EXPORT_SYMBOL(blk_finish_request);
1da177e4 3227
3b11313a 3228/**
2e60e022
TH
3229 * blk_end_bidi_request - Complete a bidi request
3230 * @rq: the request to complete
2a842aca 3231 * @error: block status code
2e60e022
TH
3232 * @nr_bytes: number of bytes to complete @rq
3233 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
3234 *
3235 * Description:
e3a04fe3 3236 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
3237 * Drivers that supports bidi can safely call this member for any
3238 * type of request, bidi or uni. In the later case @bidi_bytes is
3239 * just ignored.
336cdb40
KU
3240 *
3241 * Return:
2e60e022
TH
3242 * %false - we are done with this request
3243 * %true - still buffers pending for this request
a0cd1285 3244 **/
2a842aca 3245static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
32fab448
KU
3246 unsigned int nr_bytes, unsigned int bidi_bytes)
3247{
336cdb40 3248 struct request_queue *q = rq->q;
2e60e022 3249 unsigned long flags;
32fab448 3250
332ebbf7
BVA
3251 WARN_ON_ONCE(q->mq_ops);
3252
2e60e022
TH
3253 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3254 return true;
32fab448 3255
336cdb40 3256 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 3257 blk_finish_request(rq, error);
336cdb40
KU
3258 spin_unlock_irqrestore(q->queue_lock, flags);
3259
2e60e022 3260 return false;
32fab448
KU
3261}
3262
336cdb40 3263/**
2e60e022
TH
3264 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3265 * @rq: the request to complete
2a842aca 3266 * @error: block status code
e3a04fe3
KU
3267 * @nr_bytes: number of bytes to complete @rq
3268 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
3269 *
3270 * Description:
2e60e022
TH
3271 * Identical to blk_end_bidi_request() except that queue lock is
3272 * assumed to be locked on entry and remains so on return.
336cdb40
KU
3273 *
3274 * Return:
2e60e022
TH
3275 * %false - we are done with this request
3276 * %true - still buffers pending for this request
336cdb40 3277 **/
2a842aca 3278static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
b1f74493 3279 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 3280{
2fff8a92 3281 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3282 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3283
2e60e022
TH
3284 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3285 return true;
336cdb40 3286
2e60e022 3287 blk_finish_request(rq, error);
336cdb40 3288
2e60e022 3289 return false;
336cdb40 3290}
e19a3ab0
KU
3291
3292/**
3293 * blk_end_request - Helper function for drivers to complete the request.
3294 * @rq: the request being processed
2a842aca 3295 * @error: block status code
e19a3ab0
KU
3296 * @nr_bytes: number of bytes to complete
3297 *
3298 * Description:
3299 * Ends I/O on a number of bytes attached to @rq.
3300 * If @rq has leftover, sets it up for the next range of segments.
3301 *
3302 * Return:
b1f74493
FT
3303 * %false - we are done with this request
3304 * %true - still buffers pending for this request
e19a3ab0 3305 **/
2a842aca
CH
3306bool blk_end_request(struct request *rq, blk_status_t error,
3307 unsigned int nr_bytes)
e19a3ab0 3308{
332ebbf7 3309 WARN_ON_ONCE(rq->q->mq_ops);
b1f74493 3310 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 3311}
56ad1740 3312EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
3313
3314/**
b1f74493
FT
3315 * blk_end_request_all - Helper function for drives to finish the request.
3316 * @rq: the request to finish
2a842aca 3317 * @error: block status code
336cdb40
KU
3318 *
3319 * Description:
b1f74493
FT
3320 * Completely finish @rq.
3321 */
2a842aca 3322void blk_end_request_all(struct request *rq, blk_status_t error)
336cdb40 3323{
b1f74493
FT
3324 bool pending;
3325 unsigned int bidi_bytes = 0;
336cdb40 3326
b1f74493
FT
3327 if (unlikely(blk_bidi_rq(rq)))
3328 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 3329
b1f74493
FT
3330 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3331 BUG_ON(pending);
3332}
56ad1740 3333EXPORT_SYMBOL(blk_end_request_all);
336cdb40 3334
e3a04fe3 3335/**
b1f74493
FT
3336 * __blk_end_request - Helper function for drivers to complete the request.
3337 * @rq: the request being processed
2a842aca 3338 * @error: block status code
b1f74493 3339 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
3340 *
3341 * Description:
b1f74493 3342 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
3343 *
3344 * Return:
b1f74493
FT
3345 * %false - we are done with this request
3346 * %true - still buffers pending for this request
e3a04fe3 3347 **/
2a842aca
CH
3348bool __blk_end_request(struct request *rq, blk_status_t error,
3349 unsigned int nr_bytes)
e3a04fe3 3350{
2fff8a92 3351 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3352 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3353
b1f74493 3354 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 3355}
56ad1740 3356EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 3357
32fab448 3358/**
b1f74493
FT
3359 * __blk_end_request_all - Helper function for drives to finish the request.
3360 * @rq: the request to finish
2a842aca 3361 * @error: block status code
32fab448
KU
3362 *
3363 * Description:
b1f74493 3364 * Completely finish @rq. Must be called with queue lock held.
32fab448 3365 */
2a842aca 3366void __blk_end_request_all(struct request *rq, blk_status_t error)
32fab448 3367{
b1f74493
FT
3368 bool pending;
3369 unsigned int bidi_bytes = 0;
3370
2fff8a92 3371 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3372 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3373
b1f74493
FT
3374 if (unlikely(blk_bidi_rq(rq)))
3375 bidi_bytes = blk_rq_bytes(rq->next_rq);
3376
3377 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3378 BUG_ON(pending);
32fab448 3379}
56ad1740 3380EXPORT_SYMBOL(__blk_end_request_all);
32fab448 3381
e19a3ab0 3382/**
b1f74493
FT
3383 * __blk_end_request_cur - Helper function to finish the current request chunk.
3384 * @rq: the request to finish the current chunk for
2a842aca 3385 * @error: block status code
e19a3ab0
KU
3386 *
3387 * Description:
b1f74493
FT
3388 * Complete the current consecutively mapped chunk from @rq. Must
3389 * be called with queue lock held.
e19a3ab0
KU
3390 *
3391 * Return:
b1f74493
FT
3392 * %false - we are done with this request
3393 * %true - still buffers pending for this request
3394 */
2a842aca 3395bool __blk_end_request_cur(struct request *rq, blk_status_t error)
e19a3ab0 3396{
b1f74493 3397 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 3398}
56ad1740 3399EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 3400
86db1e29
JA
3401void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3402 struct bio *bio)
1da177e4 3403{
b4f42e28 3404 if (bio_has_data(bio))
fb2dce86 3405 rq->nr_phys_segments = bio_phys_segments(q, bio);
445251d0
JA
3406 else if (bio_op(bio) == REQ_OP_DISCARD)
3407 rq->nr_phys_segments = 1;
b4f42e28 3408
4f024f37 3409 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 3410 rq->bio = rq->biotail = bio;
1da177e4 3411
74d46992
CH
3412 if (bio->bi_disk)
3413 rq->rq_disk = bio->bi_disk;
66846572 3414}
1da177e4 3415
2d4dc890
IL
3416#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3417/**
3418 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3419 * @rq: the request to be flushed
3420 *
3421 * Description:
3422 * Flush all pages in @rq.
3423 */
3424void rq_flush_dcache_pages(struct request *rq)
3425{
3426 struct req_iterator iter;
7988613b 3427 struct bio_vec bvec;
2d4dc890
IL
3428
3429 rq_for_each_segment(bvec, rq, iter)
7988613b 3430 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3431}
3432EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3433#endif
3434
ef9e3fac
KU
3435/**
3436 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3437 * @q : the queue of the device being checked
3438 *
3439 * Description:
3440 * Check if underlying low-level drivers of a device are busy.
3441 * If the drivers want to export their busy state, they must set own
3442 * exporting function using blk_queue_lld_busy() first.
3443 *
3444 * Basically, this function is used only by request stacking drivers
3445 * to stop dispatching requests to underlying devices when underlying
3446 * devices are busy. This behavior helps more I/O merging on the queue
3447 * of the request stacking driver and prevents I/O throughput regression
3448 * on burst I/O load.
3449 *
3450 * Return:
3451 * 0 - Not busy (The request stacking driver should dispatch request)
3452 * 1 - Busy (The request stacking driver should stop dispatching request)
3453 */
3454int blk_lld_busy(struct request_queue *q)
3455{
3456 if (q->lld_busy_fn)
3457 return q->lld_busy_fn(q);
3458
3459 return 0;
3460}
3461EXPORT_SYMBOL_GPL(blk_lld_busy);
3462
78d8e58a
MS
3463/**
3464 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3465 * @rq: the clone request to be cleaned up
3466 *
3467 * Description:
3468 * Free all bios in @rq for a cloned request.
3469 */
3470void blk_rq_unprep_clone(struct request *rq)
3471{
3472 struct bio *bio;
3473
3474 while ((bio = rq->bio) != NULL) {
3475 rq->bio = bio->bi_next;
3476
3477 bio_put(bio);
3478 }
3479}
3480EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3481
3482/*
3483 * Copy attributes of the original request to the clone request.
3484 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3485 */
3486static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3487{
3488 dst->cpu = src->cpu;
b0fd271d
KU
3489 dst->__sector = blk_rq_pos(src);
3490 dst->__data_len = blk_rq_bytes(src);
3491 dst->nr_phys_segments = src->nr_phys_segments;
3492 dst->ioprio = src->ioprio;
3493 dst->extra_len = src->extra_len;
78d8e58a
MS
3494}
3495
3496/**
3497 * blk_rq_prep_clone - Helper function to setup clone request
3498 * @rq: the request to be setup
3499 * @rq_src: original request to be cloned
3500 * @bs: bio_set that bios for clone are allocated from
3501 * @gfp_mask: memory allocation mask for bio
3502 * @bio_ctr: setup function to be called for each clone bio.
3503 * Returns %0 for success, non %0 for failure.
3504 * @data: private data to be passed to @bio_ctr
3505 *
3506 * Description:
3507 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3508 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3509 * are not copied, and copying such parts is the caller's responsibility.
3510 * Also, pages which the original bios are pointing to are not copied
3511 * and the cloned bios just point same pages.
3512 * So cloned bios must be completed before original bios, which means
3513 * the caller must complete @rq before @rq_src.
3514 */
3515int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3516 struct bio_set *bs, gfp_t gfp_mask,
3517 int (*bio_ctr)(struct bio *, struct bio *, void *),
3518 void *data)
3519{
3520 struct bio *bio, *bio_src;
3521
3522 if (!bs)
3523 bs = fs_bio_set;
3524
3525 __rq_for_each_bio(bio_src, rq_src) {
3526 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3527 if (!bio)
3528 goto free_and_out;
3529
3530 if (bio_ctr && bio_ctr(bio, bio_src, data))
3531 goto free_and_out;
3532
3533 if (rq->bio) {
3534 rq->biotail->bi_next = bio;
3535 rq->biotail = bio;
3536 } else
3537 rq->bio = rq->biotail = bio;
3538 }
3539
3540 __blk_rq_prep_clone(rq, rq_src);
3541
3542 return 0;
3543
3544free_and_out:
3545 if (bio)
3546 bio_put(bio);
3547 blk_rq_unprep_clone(rq);
3548
3549 return -ENOMEM;
b0fd271d
KU
3550}
3551EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3552
59c3d45e 3553int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3554{
3555 return queue_work(kblockd_workqueue, work);
3556}
1da177e4
LT
3557EXPORT_SYMBOL(kblockd_schedule_work);
3558
ee63cfa7
JA
3559int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3560{
3561 return queue_work_on(cpu, kblockd_workqueue, work);
3562}
3563EXPORT_SYMBOL(kblockd_schedule_work_on);
3564
818cd1cb
JA
3565int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3566 unsigned long delay)
3567{
3568 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3569}
3570EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3571
75df7136
SJ
3572/**
3573 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3574 * @plug: The &struct blk_plug that needs to be initialized
3575 *
3576 * Description:
3577 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3578 * pending I/O should the task end up blocking between blk_start_plug() and
3579 * blk_finish_plug(). This is important from a performance perspective, but
3580 * also ensures that we don't deadlock. For instance, if the task is blocking
3581 * for a memory allocation, memory reclaim could end up wanting to free a
3582 * page belonging to that request that is currently residing in our private
3583 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3584 * this kind of deadlock.
3585 */
73c10101
JA
3586void blk_start_plug(struct blk_plug *plug)
3587{
3588 struct task_struct *tsk = current;
3589
dd6cf3e1
SL
3590 /*
3591 * If this is a nested plug, don't actually assign it.
3592 */
3593 if (tsk->plug)
3594 return;
3595
73c10101 3596 INIT_LIST_HEAD(&plug->list);
320ae51f 3597 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3598 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3599 /*
dd6cf3e1
SL
3600 * Store ordering should not be needed here, since a potential
3601 * preempt will imply a full memory barrier
73c10101 3602 */
dd6cf3e1 3603 tsk->plug = plug;
73c10101
JA
3604}
3605EXPORT_SYMBOL(blk_start_plug);
3606
3607static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3608{
3609 struct request *rqa = container_of(a, struct request, queuelist);
3610 struct request *rqb = container_of(b, struct request, queuelist);
3611
975927b9
JM
3612 return !(rqa->q < rqb->q ||
3613 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3614}
3615
49cac01e
JA
3616/*
3617 * If 'from_schedule' is true, then postpone the dispatch of requests
3618 * until a safe kblockd context. We due this to avoid accidental big
3619 * additional stack usage in driver dispatch, in places where the originally
3620 * plugger did not intend it.
3621 */
f6603783 3622static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3623 bool from_schedule)
99e22598 3624 __releases(q->queue_lock)
94b5eb28 3625{
2fff8a92
BVA
3626 lockdep_assert_held(q->queue_lock);
3627
49cac01e 3628 trace_block_unplug(q, depth, !from_schedule);
99e22598 3629
70460571 3630 if (from_schedule)
24ecfbe2 3631 blk_run_queue_async(q);
70460571 3632 else
24ecfbe2 3633 __blk_run_queue(q);
50864670 3634 spin_unlock_irq(q->queue_lock);
94b5eb28
JA
3635}
3636
74018dc3 3637static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3638{
3639 LIST_HEAD(callbacks);
3640
2a7d5559
SL
3641 while (!list_empty(&plug->cb_list)) {
3642 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3643
2a7d5559
SL
3644 while (!list_empty(&callbacks)) {
3645 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3646 struct blk_plug_cb,
3647 list);
2a7d5559 3648 list_del(&cb->list);
74018dc3 3649 cb->callback(cb, from_schedule);
2a7d5559 3650 }
048c9374
N
3651 }
3652}
3653
9cbb1750
N
3654struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3655 int size)
3656{
3657 struct blk_plug *plug = current->plug;
3658 struct blk_plug_cb *cb;
3659
3660 if (!plug)
3661 return NULL;
3662
3663 list_for_each_entry(cb, &plug->cb_list, list)
3664 if (cb->callback == unplug && cb->data == data)
3665 return cb;
3666
3667 /* Not currently on the callback list */
3668 BUG_ON(size < sizeof(*cb));
3669 cb = kzalloc(size, GFP_ATOMIC);
3670 if (cb) {
3671 cb->data = data;
3672 cb->callback = unplug;
3673 list_add(&cb->list, &plug->cb_list);
3674 }
3675 return cb;
3676}
3677EXPORT_SYMBOL(blk_check_plugged);
3678
49cac01e 3679void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3680{
3681 struct request_queue *q;
73c10101 3682 struct request *rq;
109b8129 3683 LIST_HEAD(list);
94b5eb28 3684 unsigned int depth;
73c10101 3685
74018dc3 3686 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3687
3688 if (!list_empty(&plug->mq_list))
3689 blk_mq_flush_plug_list(plug, from_schedule);
3690
73c10101
JA
3691 if (list_empty(&plug->list))
3692 return;
3693
109b8129
N
3694 list_splice_init(&plug->list, &list);
3695
422765c2 3696 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3697
3698 q = NULL;
94b5eb28 3699 depth = 0;
18811272 3700
109b8129
N
3701 while (!list_empty(&list)) {
3702 rq = list_entry_rq(list.next);
73c10101 3703 list_del_init(&rq->queuelist);
73c10101
JA
3704 BUG_ON(!rq->q);
3705 if (rq->q != q) {
99e22598
JA
3706 /*
3707 * This drops the queue lock
3708 */
3709 if (q)
49cac01e 3710 queue_unplugged(q, depth, from_schedule);
73c10101 3711 q = rq->q;
94b5eb28 3712 depth = 0;
50864670 3713 spin_lock_irq(q->queue_lock);
73c10101 3714 }
8ba61435
TH
3715
3716 /*
3717 * Short-circuit if @q is dead
3718 */
3f3299d5 3719 if (unlikely(blk_queue_dying(q))) {
2a842aca 3720 __blk_end_request_all(rq, BLK_STS_IOERR);
8ba61435
TH
3721 continue;
3722 }
3723
73c10101
JA
3724 /*
3725 * rq is already accounted, so use raw insert
3726 */
f73f44eb 3727 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3728 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3729 else
3730 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3731
3732 depth++;
73c10101
JA
3733 }
3734
99e22598
JA
3735 /*
3736 * This drops the queue lock
3737 */
3738 if (q)
49cac01e 3739 queue_unplugged(q, depth, from_schedule);
73c10101 3740}
73c10101
JA
3741
3742void blk_finish_plug(struct blk_plug *plug)
3743{
dd6cf3e1
SL
3744 if (plug != current->plug)
3745 return;
f6603783 3746 blk_flush_plug_list(plug, false);
73c10101 3747
dd6cf3e1 3748 current->plug = NULL;
73c10101 3749}
88b996cd 3750EXPORT_SYMBOL(blk_finish_plug);
73c10101 3751
47fafbc7 3752#ifdef CONFIG_PM
6c954667
LM
3753/**
3754 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3755 * @q: the queue of the device
3756 * @dev: the device the queue belongs to
3757 *
3758 * Description:
3759 * Initialize runtime-PM-related fields for @q and start auto suspend for
3760 * @dev. Drivers that want to take advantage of request-based runtime PM
3761 * should call this function after @dev has been initialized, and its
3762 * request queue @q has been allocated, and runtime PM for it can not happen
3763 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3764 * cases, driver should call this function before any I/O has taken place.
3765 *
3766 * This function takes care of setting up using auto suspend for the device,
3767 * the autosuspend delay is set to -1 to make runtime suspend impossible
3768 * until an updated value is either set by user or by driver. Drivers do
3769 * not need to touch other autosuspend settings.
3770 *
3771 * The block layer runtime PM is request based, so only works for drivers
3772 * that use request as their IO unit instead of those directly use bio's.
3773 */
3774void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3775{
765e40b6
CH
3776 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3777 if (q->mq_ops)
3778 return;
3779
6c954667
LM
3780 q->dev = dev;
3781 q->rpm_status = RPM_ACTIVE;
3782 pm_runtime_set_autosuspend_delay(q->dev, -1);
3783 pm_runtime_use_autosuspend(q->dev);
3784}
3785EXPORT_SYMBOL(blk_pm_runtime_init);
3786
3787/**
3788 * blk_pre_runtime_suspend - Pre runtime suspend check
3789 * @q: the queue of the device
3790 *
3791 * Description:
3792 * This function will check if runtime suspend is allowed for the device
3793 * by examining if there are any requests pending in the queue. If there
3794 * are requests pending, the device can not be runtime suspended; otherwise,
3795 * the queue's status will be updated to SUSPENDING and the driver can
3796 * proceed to suspend the device.
3797 *
3798 * For the not allowed case, we mark last busy for the device so that
3799 * runtime PM core will try to autosuspend it some time later.
3800 *
3801 * This function should be called near the start of the device's
3802 * runtime_suspend callback.
3803 *
3804 * Return:
3805 * 0 - OK to runtime suspend the device
3806 * -EBUSY - Device should not be runtime suspended
3807 */
3808int blk_pre_runtime_suspend(struct request_queue *q)
3809{
3810 int ret = 0;
3811
4fd41a85
KX
3812 if (!q->dev)
3813 return ret;
3814
6c954667
LM
3815 spin_lock_irq(q->queue_lock);
3816 if (q->nr_pending) {
3817 ret = -EBUSY;
3818 pm_runtime_mark_last_busy(q->dev);
3819 } else {
3820 q->rpm_status = RPM_SUSPENDING;
3821 }
3822 spin_unlock_irq(q->queue_lock);
3823 return ret;
3824}
3825EXPORT_SYMBOL(blk_pre_runtime_suspend);
3826
3827/**
3828 * blk_post_runtime_suspend - Post runtime suspend processing
3829 * @q: the queue of the device
3830 * @err: return value of the device's runtime_suspend function
3831 *
3832 * Description:
3833 * Update the queue's runtime status according to the return value of the
3834 * device's runtime suspend function and mark last busy for the device so
3835 * that PM core will try to auto suspend the device at a later time.
3836 *
3837 * This function should be called near the end of the device's
3838 * runtime_suspend callback.
3839 */
3840void blk_post_runtime_suspend(struct request_queue *q, int err)
3841{
4fd41a85
KX
3842 if (!q->dev)
3843 return;
3844
6c954667
LM
3845 spin_lock_irq(q->queue_lock);
3846 if (!err) {
3847 q->rpm_status = RPM_SUSPENDED;
3848 } else {
3849 q->rpm_status = RPM_ACTIVE;
3850 pm_runtime_mark_last_busy(q->dev);
3851 }
3852 spin_unlock_irq(q->queue_lock);
3853}
3854EXPORT_SYMBOL(blk_post_runtime_suspend);
3855
3856/**
3857 * blk_pre_runtime_resume - Pre runtime resume processing
3858 * @q: the queue of the device
3859 *
3860 * Description:
3861 * Update the queue's runtime status to RESUMING in preparation for the
3862 * runtime resume of the device.
3863 *
3864 * This function should be called near the start of the device's
3865 * runtime_resume callback.
3866 */
3867void blk_pre_runtime_resume(struct request_queue *q)
3868{
4fd41a85
KX
3869 if (!q->dev)
3870 return;
3871
6c954667
LM
3872 spin_lock_irq(q->queue_lock);
3873 q->rpm_status = RPM_RESUMING;
3874 spin_unlock_irq(q->queue_lock);
3875}
3876EXPORT_SYMBOL(blk_pre_runtime_resume);
3877
3878/**
3879 * blk_post_runtime_resume - Post runtime resume processing
3880 * @q: the queue of the device
3881 * @err: return value of the device's runtime_resume function
3882 *
3883 * Description:
3884 * Update the queue's runtime status according to the return value of the
3885 * device's runtime_resume function. If it is successfully resumed, process
3886 * the requests that are queued into the device's queue when it is resuming
3887 * and then mark last busy and initiate autosuspend for it.
3888 *
3889 * This function should be called near the end of the device's
3890 * runtime_resume callback.
3891 */
3892void blk_post_runtime_resume(struct request_queue *q, int err)
3893{
4fd41a85
KX
3894 if (!q->dev)
3895 return;
3896
6c954667
LM
3897 spin_lock_irq(q->queue_lock);
3898 if (!err) {
3899 q->rpm_status = RPM_ACTIVE;
3900 __blk_run_queue(q);
3901 pm_runtime_mark_last_busy(q->dev);
c60855cd 3902 pm_request_autosuspend(q->dev);
6c954667
LM
3903 } else {
3904 q->rpm_status = RPM_SUSPENDED;
3905 }
3906 spin_unlock_irq(q->queue_lock);
3907}
3908EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3909
3910/**
3911 * blk_set_runtime_active - Force runtime status of the queue to be active
3912 * @q: the queue of the device
3913 *
3914 * If the device is left runtime suspended during system suspend the resume
3915 * hook typically resumes the device and corrects runtime status
3916 * accordingly. However, that does not affect the queue runtime PM status
3917 * which is still "suspended". This prevents processing requests from the
3918 * queue.
3919 *
3920 * This function can be used in driver's resume hook to correct queue
3921 * runtime PM status and re-enable peeking requests from the queue. It
3922 * should be called before first request is added to the queue.
3923 */
3924void blk_set_runtime_active(struct request_queue *q)
3925{
3926 spin_lock_irq(q->queue_lock);
3927 q->rpm_status = RPM_ACTIVE;
3928 pm_runtime_mark_last_busy(q->dev);
3929 pm_request_autosuspend(q->dev);
3930 spin_unlock_irq(q->queue_lock);
3931}
3932EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3933#endif
3934
1da177e4
LT
3935int __init blk_dev_init(void)
3936{
ef295ecf
CH
3937 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3938 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3939 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3940 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3941 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3942
89b90be2
TH
3943 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3944 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3945 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3946 if (!kblockd_workqueue)
3947 panic("Failed to create kblockd\n");
3948
3949 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3950 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3951
c2789bd4 3952 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3953 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3954
18fbda91
OS
3955#ifdef CONFIG_DEBUG_FS
3956 blk_debugfs_root = debugfs_create_dir("block", NULL);
3957#endif
3958
d38ecf93 3959 return 0;
1da177e4 3960}