]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - block/blk-core.c
blkcg: inline bio_blkcg() and friends
[mirror_ubuntu-jammy-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
aaf7c680 32#include <linux/ratelimit.h>
55782138
LZ
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/block.h>
1da177e4 36
8324aa91 37#include "blk.h"
5efd6113 38#include "blk-cgroup.h"
8324aa91 39
d07335e5 40EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 41EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 42EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 43
a73f730d
TH
44DEFINE_IDA(blk_queue_ida);
45
1da177e4
LT
46/*
47 * For the allocated request tables
48 */
5ece6c52 49static struct kmem_cache *request_cachep;
1da177e4
LT
50
51/*
52 * For queue allocation
53 */
6728cb0e 54struct kmem_cache *blk_requestq_cachep;
1da177e4 55
1da177e4
LT
56/*
57 * Controlling structure to kblockd
58 */
ff856bad 59static struct workqueue_struct *kblockd_workqueue;
1da177e4 60
26b8256e
JA
61static void drive_stat_acct(struct request *rq, int new_io)
62{
28f13702 63 struct hd_struct *part;
26b8256e 64 int rw = rq_data_dir(rq);
c9959059 65 int cpu;
26b8256e 66
c2553b58 67 if (!blk_do_io_stat(rq))
26b8256e
JA
68 return;
69
074a7aca 70 cpu = part_stat_lock();
c9959059 71
09e099d4
JM
72 if (!new_io) {
73 part = rq->part;
074a7aca 74 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
75 } else {
76 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 77 if (!hd_struct_try_get(part)) {
09e099d4
JM
78 /*
79 * The partition is already being removed,
80 * the request will be accounted on the disk only
81 *
82 * We take a reference on disk->part0 although that
83 * partition will never be deleted, so we can treat
84 * it as any other partition.
85 */
86 part = &rq->rq_disk->part0;
6c23a968 87 hd_struct_get(part);
09e099d4 88 }
074a7aca 89 part_round_stats(cpu, part);
316d315b 90 part_inc_in_flight(part, rw);
09e099d4 91 rq->part = part;
26b8256e 92 }
e71bf0d0 93
074a7aca 94 part_stat_unlock();
26b8256e
JA
95}
96
8324aa91 97void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
98{
99 int nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
105
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
110}
111
1da177e4
LT
112/**
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
115 *
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
118 *
119 * Will return NULL if the request queue cannot be located.
120 */
121struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122{
123 struct backing_dev_info *ret = NULL;
165125e1 124 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
125
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
129}
1da177e4
LT
130EXPORT_SYMBOL(blk_get_backing_dev_info);
131
2a4aa30c 132void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 133{
1afb20f3
FT
134 memset(rq, 0, sizeof(*rq));
135
1da177e4 136 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 137 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 138 rq->cpu = -1;
63a71386 139 rq->q = q;
a2dec7b3 140 rq->__sector = (sector_t) -1;
2e662b65
JA
141 INIT_HLIST_NODE(&rq->hash);
142 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 143 rq->cmd = rq->__cmd;
e2494e1b 144 rq->cmd_len = BLK_MAX_CDB;
63a71386 145 rq->tag = -1;
1da177e4 146 rq->ref_count = 1;
b243ddcb 147 rq->start_time = jiffies;
9195291e 148 set_start_time_ns(rq);
09e099d4 149 rq->part = NULL;
1da177e4 150}
2a4aa30c 151EXPORT_SYMBOL(blk_rq_init);
1da177e4 152
5bb23a68
N
153static void req_bio_endio(struct request *rq, struct bio *bio,
154 unsigned int nbytes, int error)
1da177e4 155{
143a87f4
TH
156 if (error)
157 clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
159 error = -EIO;
797e7dbb 160
143a87f4
TH
161 if (unlikely(nbytes > bio->bi_size)) {
162 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
163 __func__, nbytes, bio->bi_size);
164 nbytes = bio->bi_size;
5bb23a68 165 }
797e7dbb 166
143a87f4
TH
167 if (unlikely(rq->cmd_flags & REQ_QUIET))
168 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 169
143a87f4
TH
170 bio->bi_size -= nbytes;
171 bio->bi_sector += (nbytes >> 9);
7ba1ba12 172
143a87f4
TH
173 if (bio_integrity(bio))
174 bio_integrity_advance(bio, nbytes);
7ba1ba12 175
143a87f4
TH
176 /* don't actually finish bio if it's part of flush sequence */
177 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
178 bio_endio(bio, error);
1da177e4 179}
1da177e4 180
1da177e4
LT
181void blk_dump_rq_flags(struct request *rq, char *msg)
182{
183 int bit;
184
6728cb0e 185 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
186 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
187 rq->cmd_flags);
1da177e4 188
83096ebf
TH
189 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
190 (unsigned long long)blk_rq_pos(rq),
191 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 193 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 194
33659ebb 195 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 196 printk(KERN_INFO " cdb: ");
d34c87e4 197 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
198 printk("%02x ", rq->cmd[bit]);
199 printk("\n");
200 }
201}
1da177e4
LT
202EXPORT_SYMBOL(blk_dump_rq_flags);
203
3cca6dc1 204static void blk_delay_work(struct work_struct *work)
1da177e4 205{
3cca6dc1 206 struct request_queue *q;
1da177e4 207
3cca6dc1
JA
208 q = container_of(work, struct request_queue, delay_work.work);
209 spin_lock_irq(q->queue_lock);
24ecfbe2 210 __blk_run_queue(q);
3cca6dc1 211 spin_unlock_irq(q->queue_lock);
1da177e4 212}
1da177e4
LT
213
214/**
3cca6dc1
JA
215 * blk_delay_queue - restart queueing after defined interval
216 * @q: The &struct request_queue in question
217 * @msecs: Delay in msecs
1da177e4
LT
218 *
219 * Description:
3cca6dc1
JA
220 * Sometimes queueing needs to be postponed for a little while, to allow
221 * resources to come back. This function will make sure that queueing is
222 * restarted around the specified time.
223 */
224void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 225{
4521cc4e
JA
226 queue_delayed_work(kblockd_workqueue, &q->delay_work,
227 msecs_to_jiffies(msecs));
2ad8b1ef 228}
3cca6dc1 229EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 230
1da177e4
LT
231/**
232 * blk_start_queue - restart a previously stopped queue
165125e1 233 * @q: The &struct request_queue in question
1da177e4
LT
234 *
235 * Description:
236 * blk_start_queue() will clear the stop flag on the queue, and call
237 * the request_fn for the queue if it was in a stopped state when
238 * entered. Also see blk_stop_queue(). Queue lock must be held.
239 **/
165125e1 240void blk_start_queue(struct request_queue *q)
1da177e4 241{
a038e253
PBG
242 WARN_ON(!irqs_disabled());
243
75ad23bc 244 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 245 __blk_run_queue(q);
1da177e4 246}
1da177e4
LT
247EXPORT_SYMBOL(blk_start_queue);
248
249/**
250 * blk_stop_queue - stop a queue
165125e1 251 * @q: The &struct request_queue in question
1da177e4
LT
252 *
253 * Description:
254 * The Linux block layer assumes that a block driver will consume all
255 * entries on the request queue when the request_fn strategy is called.
256 * Often this will not happen, because of hardware limitations (queue
257 * depth settings). If a device driver gets a 'queue full' response,
258 * or if it simply chooses not to queue more I/O at one point, it can
259 * call this function to prevent the request_fn from being called until
260 * the driver has signalled it's ready to go again. This happens by calling
261 * blk_start_queue() to restart queue operations. Queue lock must be held.
262 **/
165125e1 263void blk_stop_queue(struct request_queue *q)
1da177e4 264{
ad3d9d7e 265 __cancel_delayed_work(&q->delay_work);
75ad23bc 266 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
267}
268EXPORT_SYMBOL(blk_stop_queue);
269
270/**
271 * blk_sync_queue - cancel any pending callbacks on a queue
272 * @q: the queue
273 *
274 * Description:
275 * The block layer may perform asynchronous callback activity
276 * on a queue, such as calling the unplug function after a timeout.
277 * A block device may call blk_sync_queue to ensure that any
278 * such activity is cancelled, thus allowing it to release resources
59c51591 279 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
280 * that its ->make_request_fn will not re-add plugging prior to calling
281 * this function.
282 *
da527770
VG
283 * This function does not cancel any asynchronous activity arising
284 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 285 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 286 *
1da177e4
LT
287 */
288void blk_sync_queue(struct request_queue *q)
289{
70ed28b9 290 del_timer_sync(&q->timeout);
3cca6dc1 291 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
292}
293EXPORT_SYMBOL(blk_sync_queue);
294
295/**
80a4b58e 296 * __blk_run_queue - run a single device queue
1da177e4 297 * @q: The queue to run
80a4b58e
JA
298 *
299 * Description:
300 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 301 * held and interrupts disabled.
1da177e4 302 */
24ecfbe2 303void __blk_run_queue(struct request_queue *q)
1da177e4 304{
a538cd03
TH
305 if (unlikely(blk_queue_stopped(q)))
306 return;
307
c21e6beb 308 q->request_fn(q);
75ad23bc
NP
309}
310EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 311
24ecfbe2
CH
312/**
313 * blk_run_queue_async - run a single device queue in workqueue context
314 * @q: The queue to run
315 *
316 * Description:
317 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
318 * of us.
319 */
320void blk_run_queue_async(struct request_queue *q)
321{
3ec717b7
SL
322 if (likely(!blk_queue_stopped(q))) {
323 __cancel_delayed_work(&q->delay_work);
24ecfbe2 324 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
3ec717b7 325 }
24ecfbe2 326}
c21e6beb 327EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 328
75ad23bc
NP
329/**
330 * blk_run_queue - run a single device queue
331 * @q: The queue to run
80a4b58e
JA
332 *
333 * Description:
334 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 335 * May be used to restart queueing when a request has completed.
75ad23bc
NP
336 */
337void blk_run_queue(struct request_queue *q)
338{
339 unsigned long flags;
340
341 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 342 __blk_run_queue(q);
1da177e4
LT
343 spin_unlock_irqrestore(q->queue_lock, flags);
344}
345EXPORT_SYMBOL(blk_run_queue);
346
165125e1 347void blk_put_queue(struct request_queue *q)
483f4afc
AV
348{
349 kobject_put(&q->kobj);
350}
d86e0e83 351EXPORT_SYMBOL(blk_put_queue);
483f4afc 352
e3c78ca5
TH
353/**
354 * blk_drain_queue - drain requests from request_queue
355 * @q: queue to drain
c9a929dd 356 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 357 *
c9a929dd
TH
358 * Drain requests from @q. If @drain_all is set, all requests are drained.
359 * If not, only ELVPRIV requests are drained. The caller is responsible
360 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 361 */
c9a929dd 362void blk_drain_queue(struct request_queue *q, bool drain_all)
e3c78ca5 363{
458f27a9
AH
364 int i;
365
e3c78ca5 366 while (true) {
481a7d64 367 bool drain = false;
e3c78ca5
TH
368
369 spin_lock_irq(q->queue_lock);
370
b855b04a
TH
371 /*
372 * The caller might be trying to drain @q before its
373 * elevator is initialized.
374 */
375 if (q->elevator)
376 elv_drain_elevator(q);
377
5efd6113 378 blkcg_drain_queue(q);
e3c78ca5 379
4eabc941
TH
380 /*
381 * This function might be called on a queue which failed
b855b04a
TH
382 * driver init after queue creation or is not yet fully
383 * active yet. Some drivers (e.g. fd and loop) get unhappy
384 * in such cases. Kick queue iff dispatch queue has
385 * something on it and @q has request_fn set.
4eabc941 386 */
b855b04a 387 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 388 __blk_run_queue(q);
c9a929dd 389
481a7d64
TH
390 drain |= q->rq.elvpriv;
391
392 /*
393 * Unfortunately, requests are queued at and tracked from
394 * multiple places and there's no single counter which can
395 * be drained. Check all the queues and counters.
396 */
397 if (drain_all) {
398 drain |= !list_empty(&q->queue_head);
399 for (i = 0; i < 2; i++) {
400 drain |= q->rq.count[i];
401 drain |= q->in_flight[i];
402 drain |= !list_empty(&q->flush_queue[i]);
403 }
404 }
e3c78ca5
TH
405
406 spin_unlock_irq(q->queue_lock);
407
481a7d64 408 if (!drain)
e3c78ca5
TH
409 break;
410 msleep(10);
411 }
458f27a9
AH
412
413 /*
414 * With queue marked dead, any woken up waiter will fail the
415 * allocation path, so the wakeup chaining is lost and we're
416 * left with hung waiters. We need to wake up those waiters.
417 */
418 if (q->request_fn) {
419 spin_lock_irq(q->queue_lock);
420 for (i = 0; i < ARRAY_SIZE(q->rq.wait); i++)
421 wake_up_all(&q->rq.wait[i]);
422 spin_unlock_irq(q->queue_lock);
423 }
e3c78ca5
TH
424}
425
d732580b
TH
426/**
427 * blk_queue_bypass_start - enter queue bypass mode
428 * @q: queue of interest
429 *
430 * In bypass mode, only the dispatch FIFO queue of @q is used. This
431 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 432 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
433 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
434 * inside queue or RCU read lock.
d732580b
TH
435 */
436void blk_queue_bypass_start(struct request_queue *q)
437{
b82d4b19
TH
438 bool drain;
439
d732580b 440 spin_lock_irq(q->queue_lock);
b82d4b19 441 drain = !q->bypass_depth++;
d732580b
TH
442 queue_flag_set(QUEUE_FLAG_BYPASS, q);
443 spin_unlock_irq(q->queue_lock);
444
b82d4b19
TH
445 if (drain) {
446 blk_drain_queue(q, false);
447 /* ensure blk_queue_bypass() is %true inside RCU read lock */
448 synchronize_rcu();
449 }
d732580b
TH
450}
451EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
452
453/**
454 * blk_queue_bypass_end - leave queue bypass mode
455 * @q: queue of interest
456 *
457 * Leave bypass mode and restore the normal queueing behavior.
458 */
459void blk_queue_bypass_end(struct request_queue *q)
460{
461 spin_lock_irq(q->queue_lock);
462 if (!--q->bypass_depth)
463 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
464 WARN_ON_ONCE(q->bypass_depth < 0);
465 spin_unlock_irq(q->queue_lock);
466}
467EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
468
c9a929dd
TH
469/**
470 * blk_cleanup_queue - shutdown a request queue
471 * @q: request queue to shutdown
472 *
473 * Mark @q DEAD, drain all pending requests, destroy and put it. All
474 * future requests will be failed immediately with -ENODEV.
c94a96ac 475 */
6728cb0e 476void blk_cleanup_queue(struct request_queue *q)
483f4afc 477{
c9a929dd 478 spinlock_t *lock = q->queue_lock;
e3335de9 479
c9a929dd 480 /* mark @q DEAD, no new request or merges will be allowed afterwards */
483f4afc 481 mutex_lock(&q->sysfs_lock);
75ad23bc 482 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
c9a929dd 483 spin_lock_irq(lock);
6ecf23af 484
80fd9979
TH
485 /*
486 * Dead queue is permanently in bypass mode till released. Note
487 * that, unlike blk_queue_bypass_start(), we aren't performing
488 * synchronize_rcu() after entering bypass mode to avoid the delay
489 * as some drivers create and destroy a lot of queues while
490 * probing. This is still safe because blk_release_queue() will be
491 * called only after the queue refcnt drops to zero and nothing,
492 * RCU or not, would be traversing the queue by then.
493 */
6ecf23af
TH
494 q->bypass_depth++;
495 queue_flag_set(QUEUE_FLAG_BYPASS, q);
496
c9a929dd
TH
497 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
498 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
499 queue_flag_set(QUEUE_FLAG_DEAD, q);
c9a929dd
TH
500 spin_unlock_irq(lock);
501 mutex_unlock(&q->sysfs_lock);
502
b855b04a
TH
503 /* drain all requests queued before DEAD marking */
504 blk_drain_queue(q, true);
c9a929dd
TH
505
506 /* @q won't process any more request, flush async actions */
507 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
508 blk_sync_queue(q);
509
5e5cfac0
AH
510 spin_lock_irq(lock);
511 if (q->queue_lock != &q->__queue_lock)
512 q->queue_lock = &q->__queue_lock;
513 spin_unlock_irq(lock);
514
c9a929dd 515 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
516 blk_put_queue(q);
517}
1da177e4
LT
518EXPORT_SYMBOL(blk_cleanup_queue);
519
165125e1 520static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
521{
522 struct request_list *rl = &q->rq;
523
1abec4fd
MS
524 if (unlikely(rl->rq_pool))
525 return 0;
526
1faa16d2
JA
527 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
528 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 529 rl->elvpriv = 0;
1faa16d2
JA
530 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
531 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 532
1946089a 533 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
a91a5ac6
TH
534 mempool_free_slab, request_cachep,
535 GFP_KERNEL, q->node);
1da177e4
LT
536 if (!rl->rq_pool)
537 return -ENOMEM;
538
539 return 0;
540}
541
165125e1 542struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 543{
1946089a
CL
544 return blk_alloc_queue_node(gfp_mask, -1);
545}
546EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 547
165125e1 548struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 549{
165125e1 550 struct request_queue *q;
e0bf68dd 551 int err;
1946089a 552
8324aa91 553 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 554 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
555 if (!q)
556 return NULL;
557
00380a40 558 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d
TH
559 if (q->id < 0)
560 goto fail_q;
561
0989a025
JA
562 q->backing_dev_info.ra_pages =
563 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
564 q->backing_dev_info.state = 0;
565 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 566 q->backing_dev_info.name = "block";
5151412d 567 q->node = node_id;
0989a025 568
e0bf68dd 569 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
570 if (err)
571 goto fail_id;
e0bf68dd 572
31373d09
MG
573 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
574 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 575 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 576 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 577 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 578 INIT_LIST_HEAD(&q->icq_list);
4eef3049 579#ifdef CONFIG_BLK_CGROUP
e8989fae 580 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 581#endif
ae1b1539
TH
582 INIT_LIST_HEAD(&q->flush_queue[0]);
583 INIT_LIST_HEAD(&q->flush_queue[1]);
584 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 585 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 586
8324aa91 587 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 588
483f4afc 589 mutex_init(&q->sysfs_lock);
e7e72bf6 590 spin_lock_init(&q->__queue_lock);
483f4afc 591
c94a96ac
VG
592 /*
593 * By default initialize queue_lock to internal lock and driver can
594 * override it later if need be.
595 */
596 q->queue_lock = &q->__queue_lock;
597
b82d4b19
TH
598 /*
599 * A queue starts its life with bypass turned on to avoid
600 * unnecessary bypass on/off overhead and nasty surprises during
601 * init. The initial bypass will be finished at the end of
602 * blk_init_allocated_queue().
603 */
604 q->bypass_depth = 1;
605 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
606
5efd6113 607 if (blkcg_init_queue(q))
f51b802c
TH
608 goto fail_id;
609
1da177e4 610 return q;
a73f730d
TH
611
612fail_id:
613 ida_simple_remove(&blk_queue_ida, q->id);
614fail_q:
615 kmem_cache_free(blk_requestq_cachep, q);
616 return NULL;
1da177e4 617}
1946089a 618EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
619
620/**
621 * blk_init_queue - prepare a request queue for use with a block device
622 * @rfn: The function to be called to process requests that have been
623 * placed on the queue.
624 * @lock: Request queue spin lock
625 *
626 * Description:
627 * If a block device wishes to use the standard request handling procedures,
628 * which sorts requests and coalesces adjacent requests, then it must
629 * call blk_init_queue(). The function @rfn will be called when there
630 * are requests on the queue that need to be processed. If the device
631 * supports plugging, then @rfn may not be called immediately when requests
632 * are available on the queue, but may be called at some time later instead.
633 * Plugged queues are generally unplugged when a buffer belonging to one
634 * of the requests on the queue is needed, or due to memory pressure.
635 *
636 * @rfn is not required, or even expected, to remove all requests off the
637 * queue, but only as many as it can handle at a time. If it does leave
638 * requests on the queue, it is responsible for arranging that the requests
639 * get dealt with eventually.
640 *
641 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
642 * request queue; this lock will be taken also from interrupt context, so irq
643 * disabling is needed for it.
1da177e4 644 *
710027a4 645 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
646 * it didn't succeed.
647 *
648 * Note:
649 * blk_init_queue() must be paired with a blk_cleanup_queue() call
650 * when the block device is deactivated (such as at module unload).
651 **/
1946089a 652
165125e1 653struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 654{
1946089a
CL
655 return blk_init_queue_node(rfn, lock, -1);
656}
657EXPORT_SYMBOL(blk_init_queue);
658
165125e1 659struct request_queue *
1946089a
CL
660blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
661{
c86d1b8a 662 struct request_queue *uninit_q, *q;
1da177e4 663
c86d1b8a
MS
664 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
665 if (!uninit_q)
666 return NULL;
667
5151412d 668 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a
MS
669 if (!q)
670 blk_cleanup_queue(uninit_q);
671
672 return q;
01effb0d
MS
673}
674EXPORT_SYMBOL(blk_init_queue_node);
675
676struct request_queue *
677blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
678 spinlock_t *lock)
01effb0d 679{
1da177e4
LT
680 if (!q)
681 return NULL;
682
c86d1b8a 683 if (blk_init_free_list(q))
8669aafd 684 return NULL;
1da177e4
LT
685
686 q->request_fn = rfn;
1da177e4 687 q->prep_rq_fn = NULL;
28018c24 688 q->unprep_rq_fn = NULL;
bc58ba94 689 q->queue_flags = QUEUE_FLAG_DEFAULT;
c94a96ac
VG
690
691 /* Override internal queue lock with supplied lock pointer */
692 if (lock)
693 q->queue_lock = lock;
1da177e4 694
f3b144aa
JA
695 /*
696 * This also sets hw/phys segments, boundary and size
697 */
c20e8de2 698 blk_queue_make_request(q, blk_queue_bio);
1da177e4 699
44ec9542
AS
700 q->sg_reserved_size = INT_MAX;
701
b82d4b19
TH
702 /* init elevator */
703 if (elevator_init(q, NULL))
704 return NULL;
1da177e4 705
b82d4b19
TH
706 blk_queue_congestion_threshold(q);
707
708 /* all done, end the initial bypass */
709 blk_queue_bypass_end(q);
710 return q;
1da177e4 711}
5151412d 712EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 713
09ac46c4 714bool blk_get_queue(struct request_queue *q)
1da177e4 715{
34f6055c 716 if (likely(!blk_queue_dead(q))) {
09ac46c4
TH
717 __blk_get_queue(q);
718 return true;
1da177e4
LT
719 }
720
09ac46c4 721 return false;
1da177e4 722}
d86e0e83 723EXPORT_SYMBOL(blk_get_queue);
1da177e4 724
165125e1 725static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 726{
f1f8cc94 727 if (rq->cmd_flags & REQ_ELVPRIV) {
cb98fc8b 728 elv_put_request(q, rq);
f1f8cc94 729 if (rq->elv.icq)
11a3122f 730 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
731 }
732
1da177e4
LT
733 mempool_free(rq, q->rq.rq_pool);
734}
735
1da177e4
LT
736/*
737 * ioc_batching returns true if the ioc is a valid batching request and
738 * should be given priority access to a request.
739 */
165125e1 740static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
741{
742 if (!ioc)
743 return 0;
744
745 /*
746 * Make sure the process is able to allocate at least 1 request
747 * even if the batch times out, otherwise we could theoretically
748 * lose wakeups.
749 */
750 return ioc->nr_batch_requests == q->nr_batching ||
751 (ioc->nr_batch_requests > 0
752 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
753}
754
755/*
756 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
757 * will cause the process to be a "batcher" on all queues in the system. This
758 * is the behaviour we want though - once it gets a wakeup it should be given
759 * a nice run.
760 */
165125e1 761static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
762{
763 if (!ioc || ioc_batching(q, ioc))
764 return;
765
766 ioc->nr_batch_requests = q->nr_batching;
767 ioc->last_waited = jiffies;
768}
769
1faa16d2 770static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
771{
772 struct request_list *rl = &q->rq;
773
1faa16d2
JA
774 if (rl->count[sync] < queue_congestion_off_threshold(q))
775 blk_clear_queue_congested(q, sync);
1da177e4 776
1faa16d2
JA
777 if (rl->count[sync] + 1 <= q->nr_requests) {
778 if (waitqueue_active(&rl->wait[sync]))
779 wake_up(&rl->wait[sync]);
1da177e4 780
1faa16d2 781 blk_clear_queue_full(q, sync);
1da177e4
LT
782 }
783}
784
785/*
786 * A request has just been released. Account for it, update the full and
787 * congestion status, wake up any waiters. Called under q->queue_lock.
788 */
75eb6c37 789static void freed_request(struct request_queue *q, unsigned int flags)
1da177e4
LT
790{
791 struct request_list *rl = &q->rq;
75eb6c37 792 int sync = rw_is_sync(flags);
1da177e4 793
1faa16d2 794 rl->count[sync]--;
75eb6c37 795 if (flags & REQ_ELVPRIV)
cb98fc8b 796 rl->elvpriv--;
1da177e4 797
1faa16d2 798 __freed_request(q, sync);
1da177e4 799
1faa16d2
JA
800 if (unlikely(rl->starved[sync ^ 1]))
801 __freed_request(q, sync ^ 1);
1da177e4
LT
802}
803
9d5a4e94
MS
804/*
805 * Determine if elevator data should be initialized when allocating the
806 * request associated with @bio.
807 */
808static bool blk_rq_should_init_elevator(struct bio *bio)
809{
810 if (!bio)
811 return true;
812
813 /*
814 * Flush requests do not use the elevator so skip initialization.
815 * This allows a request to share the flush and elevator data.
816 */
817 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
818 return false;
819
820 return true;
821}
822
852c788f
TH
823/**
824 * rq_ioc - determine io_context for request allocation
825 * @bio: request being allocated is for this bio (can be %NULL)
826 *
827 * Determine io_context to use for request allocation for @bio. May return
828 * %NULL if %current->io_context doesn't exist.
829 */
830static struct io_context *rq_ioc(struct bio *bio)
831{
832#ifdef CONFIG_BLK_CGROUP
833 if (bio && bio->bi_ioc)
834 return bio->bi_ioc;
835#endif
836 return current->io_context;
837}
838
da8303c6 839/**
a06e05e6 840 * __get_request - get a free request
da8303c6
TH
841 * @q: request_queue to allocate request from
842 * @rw_flags: RW and SYNC flags
843 * @bio: bio to allocate request for (can be %NULL)
844 * @gfp_mask: allocation mask
845 *
846 * Get a free request from @q. This function may fail under memory
847 * pressure or if @q is dead.
848 *
849 * Must be callled with @q->queue_lock held and,
850 * Returns %NULL on failure, with @q->queue_lock held.
851 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 852 */
a06e05e6
TH
853static struct request *__get_request(struct request_queue *q, int rw_flags,
854 struct bio *bio, gfp_t gfp_mask)
1da177e4 855{
b679281a 856 struct request *rq;
1da177e4 857 struct request_list *rl = &q->rq;
7f4b35d1
TH
858 struct elevator_type *et = q->elevator->type;
859 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 860 struct io_cq *icq = NULL;
1faa16d2 861 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 862 int may_queue;
88ee5ef1 863
34f6055c 864 if (unlikely(blk_queue_dead(q)))
da8303c6
TH
865 return NULL;
866
7749a8d4 867 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
868 if (may_queue == ELV_MQUEUE_NO)
869 goto rq_starved;
870
1faa16d2
JA
871 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
872 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
873 /*
874 * The queue will fill after this allocation, so set
875 * it as full, and mark this process as "batching".
876 * This process will be allowed to complete a batch of
877 * requests, others will be blocked.
878 */
1faa16d2 879 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 880 ioc_set_batching(q, ioc);
1faa16d2 881 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
882 } else {
883 if (may_queue != ELV_MQUEUE_MUST
884 && !ioc_batching(q, ioc)) {
885 /*
886 * The queue is full and the allocating
887 * process is not a "batcher", and not
888 * exempted by the IO scheduler
889 */
b679281a 890 return NULL;
88ee5ef1
JA
891 }
892 }
1da177e4 893 }
1faa16d2 894 blk_set_queue_congested(q, is_sync);
1da177e4
LT
895 }
896
082cf69e
JA
897 /*
898 * Only allow batching queuers to allocate up to 50% over the defined
899 * limit of requests, otherwise we could have thousands of requests
900 * allocated with any setting of ->nr_requests
901 */
1faa16d2 902 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
b679281a 903 return NULL;
fd782a4a 904
1faa16d2
JA
905 rl->count[is_sync]++;
906 rl->starved[is_sync] = 0;
cb98fc8b 907
f1f8cc94
TH
908 /*
909 * Decide whether the new request will be managed by elevator. If
910 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
911 * prevent the current elevator from being destroyed until the new
912 * request is freed. This guarantees icq's won't be destroyed and
913 * makes creating new ones safe.
914 *
915 * Also, lookup icq while holding queue_lock. If it doesn't exist,
916 * it will be created after releasing queue_lock.
917 */
d732580b 918 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37
TH
919 rw_flags |= REQ_ELVPRIV;
920 rl->elvpriv++;
f1f8cc94
TH
921 if (et->icq_cache && ioc)
922 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 923 }
cb98fc8b 924
f253b86b
JA
925 if (blk_queue_io_stat(q))
926 rw_flags |= REQ_IO_STAT;
1da177e4
LT
927 spin_unlock_irq(q->queue_lock);
928
29e2b09a
TH
929 /* allocate and init request */
930 rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
931 if (!rq)
b679281a 932 goto fail_alloc;
1da177e4 933
29e2b09a
TH
934 blk_rq_init(q, rq);
935 rq->cmd_flags = rw_flags | REQ_ALLOCED;
936
aaf7c680 937 /* init elvpriv */
29e2b09a 938 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 939 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
940 if (ioc)
941 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
942 if (!icq)
943 goto fail_elvpriv;
29e2b09a 944 }
aaf7c680
TH
945
946 rq->elv.icq = icq;
947 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
948 goto fail_elvpriv;
949
950 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
951 if (icq)
952 get_io_context(icq->ioc);
953 }
aaf7c680 954out:
88ee5ef1
JA
955 /*
956 * ioc may be NULL here, and ioc_batching will be false. That's
957 * OK, if the queue is under the request limit then requests need
958 * not count toward the nr_batch_requests limit. There will always
959 * be some limit enforced by BLK_BATCH_TIME.
960 */
1da177e4
LT
961 if (ioc_batching(q, ioc))
962 ioc->nr_batch_requests--;
6728cb0e 963
1faa16d2 964 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 965 return rq;
b679281a 966
aaf7c680
TH
967fail_elvpriv:
968 /*
969 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
970 * and may fail indefinitely under memory pressure and thus
971 * shouldn't stall IO. Treat this request as !elvpriv. This will
972 * disturb iosched and blkcg but weird is bettern than dead.
973 */
974 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
975 dev_name(q->backing_dev_info.dev));
976
977 rq->cmd_flags &= ~REQ_ELVPRIV;
978 rq->elv.icq = NULL;
979
980 spin_lock_irq(q->queue_lock);
981 rl->elvpriv--;
982 spin_unlock_irq(q->queue_lock);
983 goto out;
984
b679281a
TH
985fail_alloc:
986 /*
987 * Allocation failed presumably due to memory. Undo anything we
988 * might have messed up.
989 *
990 * Allocating task should really be put onto the front of the wait
991 * queue, but this is pretty rare.
992 */
993 spin_lock_irq(q->queue_lock);
994 freed_request(q, rw_flags);
995
996 /*
997 * in the very unlikely event that allocation failed and no
998 * requests for this direction was pending, mark us starved so that
999 * freeing of a request in the other direction will notice
1000 * us. another possible fix would be to split the rq mempool into
1001 * READ and WRITE
1002 */
1003rq_starved:
1004 if (unlikely(rl->count[is_sync] == 0))
1005 rl->starved[is_sync] = 1;
1006 return NULL;
1da177e4
LT
1007}
1008
da8303c6 1009/**
a06e05e6 1010 * get_request - get a free request
da8303c6
TH
1011 * @q: request_queue to allocate request from
1012 * @rw_flags: RW and SYNC flags
1013 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1014 * @gfp_mask: allocation mask
da8303c6 1015 *
a06e05e6
TH
1016 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1017 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1018 *
da8303c6
TH
1019 * Must be callled with @q->queue_lock held and,
1020 * Returns %NULL on failure, with @q->queue_lock held.
1021 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 1022 */
a06e05e6
TH
1023static struct request *get_request(struct request_queue *q, int rw_flags,
1024 struct bio *bio, gfp_t gfp_mask)
1da177e4 1025{
1faa16d2 1026 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6
TH
1027 DEFINE_WAIT(wait);
1028 struct request_list *rl = &q->rq;
1da177e4 1029 struct request *rq;
a06e05e6
TH
1030retry:
1031 rq = __get_request(q, rw_flags, bio, gfp_mask);
1032 if (rq)
1033 return rq;
1da177e4 1034
a06e05e6
TH
1035 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dead(q)))
1036 return NULL;
1da177e4 1037
a06e05e6
TH
1038 /* wait on @rl and retry */
1039 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1040 TASK_UNINTERRUPTIBLE);
1da177e4 1041
a06e05e6 1042 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1043
a06e05e6
TH
1044 spin_unlock_irq(q->queue_lock);
1045 io_schedule();
d6344532 1046
a06e05e6
TH
1047 /*
1048 * After sleeping, we become a "batching" process and will be able
1049 * to allocate at least one request, and up to a big batch of them
1050 * for a small period time. See ioc_batching, ioc_set_batching
1051 */
a06e05e6 1052 ioc_set_batching(q, current->io_context);
05caf8db 1053
a06e05e6
TH
1054 spin_lock_irq(q->queue_lock);
1055 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1056
a06e05e6 1057 goto retry;
1da177e4
LT
1058}
1059
165125e1 1060struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
1061{
1062 struct request *rq;
1063
1064 BUG_ON(rw != READ && rw != WRITE);
1065
7f4b35d1
TH
1066 /* create ioc upfront */
1067 create_io_context(gfp_mask, q->node);
1068
d6344532 1069 spin_lock_irq(q->queue_lock);
a06e05e6 1070 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1071 if (!rq)
1072 spin_unlock_irq(q->queue_lock);
d6344532 1073 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1074
1075 return rq;
1076}
1da177e4
LT
1077EXPORT_SYMBOL(blk_get_request);
1078
dc72ef4a 1079/**
79eb63e9 1080 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1081 * @q: target request queue
79eb63e9
BH
1082 * @bio: The bio describing the memory mappings that will be submitted for IO.
1083 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1084 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1085 *
79eb63e9
BH
1086 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1087 * type commands. Where the struct request needs to be farther initialized by
1088 * the caller. It is passed a &struct bio, which describes the memory info of
1089 * the I/O transfer.
dc72ef4a 1090 *
79eb63e9
BH
1091 * The caller of blk_make_request must make sure that bi_io_vec
1092 * are set to describe the memory buffers. That bio_data_dir() will return
1093 * the needed direction of the request. (And all bio's in the passed bio-chain
1094 * are properly set accordingly)
1095 *
1096 * If called under none-sleepable conditions, mapped bio buffers must not
1097 * need bouncing, by calling the appropriate masked or flagged allocator,
1098 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1099 * BUG.
53674ac5
JA
1100 *
1101 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1102 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1103 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1104 * completion of a bio that hasn't been submitted yet, thus resulting in a
1105 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1106 * of bio_alloc(), as that avoids the mempool deadlock.
1107 * If possible a big IO should be split into smaller parts when allocation
1108 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1109 */
79eb63e9
BH
1110struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1111 gfp_t gfp_mask)
dc72ef4a 1112{
79eb63e9
BH
1113 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1114
1115 if (unlikely(!rq))
1116 return ERR_PTR(-ENOMEM);
1117
1118 for_each_bio(bio) {
1119 struct bio *bounce_bio = bio;
1120 int ret;
1121
1122 blk_queue_bounce(q, &bounce_bio);
1123 ret = blk_rq_append_bio(q, rq, bounce_bio);
1124 if (unlikely(ret)) {
1125 blk_put_request(rq);
1126 return ERR_PTR(ret);
1127 }
1128 }
1129
1130 return rq;
dc72ef4a 1131}
79eb63e9 1132EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1133
1da177e4
LT
1134/**
1135 * blk_requeue_request - put a request back on queue
1136 * @q: request queue where request should be inserted
1137 * @rq: request to be inserted
1138 *
1139 * Description:
1140 * Drivers often keep queueing requests until the hardware cannot accept
1141 * more, when that condition happens we need to put the request back
1142 * on the queue. Must be called with queue lock held.
1143 */
165125e1 1144void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1145{
242f9dcb
JA
1146 blk_delete_timer(rq);
1147 blk_clear_rq_complete(rq);
5f3ea37c 1148 trace_block_rq_requeue(q, rq);
2056a782 1149
1da177e4
LT
1150 if (blk_rq_tagged(rq))
1151 blk_queue_end_tag(q, rq);
1152
ba396a6c
JB
1153 BUG_ON(blk_queued_rq(rq));
1154
1da177e4
LT
1155 elv_requeue_request(q, rq);
1156}
1da177e4
LT
1157EXPORT_SYMBOL(blk_requeue_request);
1158
73c10101
JA
1159static void add_acct_request(struct request_queue *q, struct request *rq,
1160 int where)
1161{
1162 drive_stat_acct(rq, 1);
7eaceacc 1163 __elv_add_request(q, rq, where);
73c10101
JA
1164}
1165
074a7aca
TH
1166static void part_round_stats_single(int cpu, struct hd_struct *part,
1167 unsigned long now)
1168{
1169 if (now == part->stamp)
1170 return;
1171
316d315b 1172 if (part_in_flight(part)) {
074a7aca 1173 __part_stat_add(cpu, part, time_in_queue,
316d315b 1174 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1175 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1176 }
1177 part->stamp = now;
1178}
1179
1180/**
496aa8a9
RD
1181 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1182 * @cpu: cpu number for stats access
1183 * @part: target partition
1da177e4
LT
1184 *
1185 * The average IO queue length and utilisation statistics are maintained
1186 * by observing the current state of the queue length and the amount of
1187 * time it has been in this state for.
1188 *
1189 * Normally, that accounting is done on IO completion, but that can result
1190 * in more than a second's worth of IO being accounted for within any one
1191 * second, leading to >100% utilisation. To deal with that, we call this
1192 * function to do a round-off before returning the results when reading
1193 * /proc/diskstats. This accounts immediately for all queue usage up to
1194 * the current jiffies and restarts the counters again.
1195 */
c9959059 1196void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1197{
1198 unsigned long now = jiffies;
1199
074a7aca
TH
1200 if (part->partno)
1201 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1202 part_round_stats_single(cpu, part, now);
6f2576af 1203}
074a7aca 1204EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1205
1da177e4
LT
1206/*
1207 * queue lock must be held
1208 */
165125e1 1209void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1210{
1da177e4
LT
1211 if (unlikely(!q))
1212 return;
1213 if (unlikely(--req->ref_count))
1214 return;
1215
8922e16c
TH
1216 elv_completed_request(q, req);
1217
1cd96c24
BH
1218 /* this is a bio leak */
1219 WARN_ON(req->bio != NULL);
1220
1da177e4
LT
1221 /*
1222 * Request may not have originated from ll_rw_blk. if not,
1223 * it didn't come out of our reserved rq pools
1224 */
49171e5c 1225 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1226 unsigned int flags = req->cmd_flags;
1da177e4 1227
1da177e4 1228 BUG_ON(!list_empty(&req->queuelist));
9817064b 1229 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1230
1231 blk_free_request(q, req);
75eb6c37 1232 freed_request(q, flags);
1da177e4
LT
1233 }
1234}
6e39b69e
MC
1235EXPORT_SYMBOL_GPL(__blk_put_request);
1236
1da177e4
LT
1237void blk_put_request(struct request *req)
1238{
8922e16c 1239 unsigned long flags;
165125e1 1240 struct request_queue *q = req->q;
8922e16c 1241
52a93ba8
FT
1242 spin_lock_irqsave(q->queue_lock, flags);
1243 __blk_put_request(q, req);
1244 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1245}
1da177e4
LT
1246EXPORT_SYMBOL(blk_put_request);
1247
66ac0280
CH
1248/**
1249 * blk_add_request_payload - add a payload to a request
1250 * @rq: request to update
1251 * @page: page backing the payload
1252 * @len: length of the payload.
1253 *
1254 * This allows to later add a payload to an already submitted request by
1255 * a block driver. The driver needs to take care of freeing the payload
1256 * itself.
1257 *
1258 * Note that this is a quite horrible hack and nothing but handling of
1259 * discard requests should ever use it.
1260 */
1261void blk_add_request_payload(struct request *rq, struct page *page,
1262 unsigned int len)
1263{
1264 struct bio *bio = rq->bio;
1265
1266 bio->bi_io_vec->bv_page = page;
1267 bio->bi_io_vec->bv_offset = 0;
1268 bio->bi_io_vec->bv_len = len;
1269
1270 bio->bi_size = len;
1271 bio->bi_vcnt = 1;
1272 bio->bi_phys_segments = 1;
1273
1274 rq->__data_len = rq->resid_len = len;
1275 rq->nr_phys_segments = 1;
1276 rq->buffer = bio_data(bio);
1277}
1278EXPORT_SYMBOL_GPL(blk_add_request_payload);
1279
73c10101
JA
1280static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1281 struct bio *bio)
1282{
1283 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1284
73c10101
JA
1285 if (!ll_back_merge_fn(q, req, bio))
1286 return false;
1287
1288 trace_block_bio_backmerge(q, bio);
1289
1290 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1291 blk_rq_set_mixed_merge(req);
1292
1293 req->biotail->bi_next = bio;
1294 req->biotail = bio;
1295 req->__data_len += bio->bi_size;
1296 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1297
1298 drive_stat_acct(req, 0);
1299 return true;
1300}
1301
1302static bool bio_attempt_front_merge(struct request_queue *q,
1303 struct request *req, struct bio *bio)
1304{
1305 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1306
73c10101
JA
1307 if (!ll_front_merge_fn(q, req, bio))
1308 return false;
1309
1310 trace_block_bio_frontmerge(q, bio);
1311
1312 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1313 blk_rq_set_mixed_merge(req);
1314
73c10101
JA
1315 bio->bi_next = req->bio;
1316 req->bio = bio;
1317
1318 /*
1319 * may not be valid. if the low level driver said
1320 * it didn't need a bounce buffer then it better
1321 * not touch req->buffer either...
1322 */
1323 req->buffer = bio_data(bio);
1324 req->__sector = bio->bi_sector;
1325 req->__data_len += bio->bi_size;
1326 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1327
1328 drive_stat_acct(req, 0);
1329 return true;
1330}
1331
bd87b589
TH
1332/**
1333 * attempt_plug_merge - try to merge with %current's plugged list
1334 * @q: request_queue new bio is being queued at
1335 * @bio: new bio being queued
1336 * @request_count: out parameter for number of traversed plugged requests
1337 *
1338 * Determine whether @bio being queued on @q can be merged with a request
1339 * on %current's plugged list. Returns %true if merge was successful,
1340 * otherwise %false.
1341 *
07c2bd37
TH
1342 * Plugging coalesces IOs from the same issuer for the same purpose without
1343 * going through @q->queue_lock. As such it's more of an issuing mechanism
1344 * than scheduling, and the request, while may have elvpriv data, is not
1345 * added on the elevator at this point. In addition, we don't have
1346 * reliable access to the elevator outside queue lock. Only check basic
1347 * merging parameters without querying the elevator.
73c10101 1348 */
bd87b589
TH
1349static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1350 unsigned int *request_count)
73c10101
JA
1351{
1352 struct blk_plug *plug;
1353 struct request *rq;
1354 bool ret = false;
1355
bd87b589 1356 plug = current->plug;
73c10101
JA
1357 if (!plug)
1358 goto out;
56ebdaf2 1359 *request_count = 0;
73c10101
JA
1360
1361 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1362 int el_ret;
1363
1b2e19f1
SL
1364 if (rq->q == q)
1365 (*request_count)++;
56ebdaf2 1366
07c2bd37 1367 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1368 continue;
1369
050c8ea8 1370 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1371 if (el_ret == ELEVATOR_BACK_MERGE) {
1372 ret = bio_attempt_back_merge(q, rq, bio);
1373 if (ret)
1374 break;
1375 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1376 ret = bio_attempt_front_merge(q, rq, bio);
1377 if (ret)
1378 break;
1379 }
1380 }
1381out:
1382 return ret;
1383}
1384
86db1e29 1385void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1386{
4aff5e23 1387 req->cmd_type = REQ_TYPE_FS;
52d9e675 1388
7b6d91da
CH
1389 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1390 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1391 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1392
52d9e675 1393 req->errors = 0;
a2dec7b3 1394 req->__sector = bio->bi_sector;
52d9e675 1395 req->ioprio = bio_prio(bio);
bc1c56fd 1396 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1397}
1398
5a7bbad2 1399void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1400{
5e00d1b5 1401 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1402 struct blk_plug *plug;
1403 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1404 struct request *req;
56ebdaf2 1405 unsigned int request_count = 0;
1da177e4 1406
1da177e4
LT
1407 /*
1408 * low level driver can indicate that it wants pages above a
1409 * certain limit bounced to low memory (ie for highmem, or even
1410 * ISA dma in theory)
1411 */
1412 blk_queue_bounce(q, &bio);
1413
4fed947c 1414 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1415 spin_lock_irq(q->queue_lock);
ae1b1539 1416 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1417 goto get_rq;
1418 }
1419
73c10101
JA
1420 /*
1421 * Check if we can merge with the plugged list before grabbing
1422 * any locks.
1423 */
bd87b589 1424 if (attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1425 return;
1da177e4 1426
73c10101 1427 spin_lock_irq(q->queue_lock);
2056a782 1428
73c10101
JA
1429 el_ret = elv_merge(q, &req, bio);
1430 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1431 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1432 elv_bio_merged(q, req, bio);
73c10101
JA
1433 if (!attempt_back_merge(q, req))
1434 elv_merged_request(q, req, el_ret);
1435 goto out_unlock;
1436 }
1437 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1438 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1439 elv_bio_merged(q, req, bio);
73c10101
JA
1440 if (!attempt_front_merge(q, req))
1441 elv_merged_request(q, req, el_ret);
1442 goto out_unlock;
80a761fd 1443 }
1da177e4
LT
1444 }
1445
450991bc 1446get_rq:
7749a8d4
JA
1447 /*
1448 * This sync check and mask will be re-done in init_request_from_bio(),
1449 * but we need to set it earlier to expose the sync flag to the
1450 * rq allocator and io schedulers.
1451 */
1452 rw_flags = bio_data_dir(bio);
1453 if (sync)
7b6d91da 1454 rw_flags |= REQ_SYNC;
7749a8d4 1455
1da177e4 1456 /*
450991bc 1457 * Grab a free request. This is might sleep but can not fail.
d6344532 1458 * Returns with the queue unlocked.
450991bc 1459 */
a06e05e6 1460 req = get_request(q, rw_flags, bio, GFP_NOIO);
da8303c6
TH
1461 if (unlikely(!req)) {
1462 bio_endio(bio, -ENODEV); /* @q is dead */
1463 goto out_unlock;
1464 }
d6344532 1465
450991bc
NP
1466 /*
1467 * After dropping the lock and possibly sleeping here, our request
1468 * may now be mergeable after it had proven unmergeable (above).
1469 * We don't worry about that case for efficiency. It won't happen
1470 * often, and the elevators are able to handle it.
1da177e4 1471 */
52d9e675 1472 init_request_from_bio(req, bio);
1da177e4 1473
9562ad9a 1474 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1475 req->cpu = raw_smp_processor_id();
73c10101
JA
1476
1477 plug = current->plug;
721a9602 1478 if (plug) {
dc6d36c9
JA
1479 /*
1480 * If this is the first request added after a plug, fire
1481 * of a plug trace. If others have been added before, check
1482 * if we have multiple devices in this plug. If so, make a
1483 * note to sort the list before dispatch.
1484 */
1485 if (list_empty(&plug->list))
1486 trace_block_plug(q);
3540d5e8
SL
1487 else {
1488 if (!plug->should_sort) {
1489 struct request *__rq;
73c10101 1490
3540d5e8
SL
1491 __rq = list_entry_rq(plug->list.prev);
1492 if (__rq->q != q)
1493 plug->should_sort = 1;
1494 }
019ceb7d 1495 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1496 blk_flush_plug_list(plug, false);
019ceb7d
SL
1497 trace_block_plug(q);
1498 }
73c10101 1499 }
73c10101
JA
1500 list_add_tail(&req->queuelist, &plug->list);
1501 drive_stat_acct(req, 1);
1502 } else {
1503 spin_lock_irq(q->queue_lock);
1504 add_acct_request(q, req, where);
24ecfbe2 1505 __blk_run_queue(q);
73c10101
JA
1506out_unlock:
1507 spin_unlock_irq(q->queue_lock);
1508 }
1da177e4 1509}
c20e8de2 1510EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1511
1512/*
1513 * If bio->bi_dev is a partition, remap the location
1514 */
1515static inline void blk_partition_remap(struct bio *bio)
1516{
1517 struct block_device *bdev = bio->bi_bdev;
1518
bf2de6f5 1519 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1520 struct hd_struct *p = bdev->bd_part;
1521
1da177e4
LT
1522 bio->bi_sector += p->start_sect;
1523 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1524
d07335e5
MS
1525 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1526 bdev->bd_dev,
1527 bio->bi_sector - p->start_sect);
1da177e4
LT
1528 }
1529}
1530
1da177e4
LT
1531static void handle_bad_sector(struct bio *bio)
1532{
1533 char b[BDEVNAME_SIZE];
1534
1535 printk(KERN_INFO "attempt to access beyond end of device\n");
1536 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1537 bdevname(bio->bi_bdev, b),
1538 bio->bi_rw,
1539 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1540 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1541
1542 set_bit(BIO_EOF, &bio->bi_flags);
1543}
1544
c17bb495
AM
1545#ifdef CONFIG_FAIL_MAKE_REQUEST
1546
1547static DECLARE_FAULT_ATTR(fail_make_request);
1548
1549static int __init setup_fail_make_request(char *str)
1550{
1551 return setup_fault_attr(&fail_make_request, str);
1552}
1553__setup("fail_make_request=", setup_fail_make_request);
1554
b2c9cd37 1555static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1556{
b2c9cd37 1557 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1558}
1559
1560static int __init fail_make_request_debugfs(void)
1561{
dd48c085
AM
1562 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1563 NULL, &fail_make_request);
1564
1565 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1566}
1567
1568late_initcall(fail_make_request_debugfs);
1569
1570#else /* CONFIG_FAIL_MAKE_REQUEST */
1571
b2c9cd37
AM
1572static inline bool should_fail_request(struct hd_struct *part,
1573 unsigned int bytes)
c17bb495 1574{
b2c9cd37 1575 return false;
c17bb495
AM
1576}
1577
1578#endif /* CONFIG_FAIL_MAKE_REQUEST */
1579
c07e2b41
JA
1580/*
1581 * Check whether this bio extends beyond the end of the device.
1582 */
1583static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1584{
1585 sector_t maxsector;
1586
1587 if (!nr_sectors)
1588 return 0;
1589
1590 /* Test device or partition size, when known. */
77304d2a 1591 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1592 if (maxsector) {
1593 sector_t sector = bio->bi_sector;
1594
1595 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1596 /*
1597 * This may well happen - the kernel calls bread()
1598 * without checking the size of the device, e.g., when
1599 * mounting a device.
1600 */
1601 handle_bad_sector(bio);
1602 return 1;
1603 }
1604 }
1605
1606 return 0;
1607}
1608
27a84d54
CH
1609static noinline_for_stack bool
1610generic_make_request_checks(struct bio *bio)
1da177e4 1611{
165125e1 1612 struct request_queue *q;
5a7bbad2 1613 int nr_sectors = bio_sectors(bio);
51fd77bd 1614 int err = -EIO;
5a7bbad2
CH
1615 char b[BDEVNAME_SIZE];
1616 struct hd_struct *part;
1da177e4
LT
1617
1618 might_sleep();
1da177e4 1619
c07e2b41
JA
1620 if (bio_check_eod(bio, nr_sectors))
1621 goto end_io;
1da177e4 1622
5a7bbad2
CH
1623 q = bdev_get_queue(bio->bi_bdev);
1624 if (unlikely(!q)) {
1625 printk(KERN_ERR
1626 "generic_make_request: Trying to access "
1627 "nonexistent block-device %s (%Lu)\n",
1628 bdevname(bio->bi_bdev, b),
1629 (long long) bio->bi_sector);
1630 goto end_io;
1631 }
c17bb495 1632
5a7bbad2
CH
1633 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1634 nr_sectors > queue_max_hw_sectors(q))) {
1635 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1636 bdevname(bio->bi_bdev, b),
1637 bio_sectors(bio),
1638 queue_max_hw_sectors(q));
1639 goto end_io;
1640 }
1da177e4 1641
5a7bbad2
CH
1642 part = bio->bi_bdev->bd_part;
1643 if (should_fail_request(part, bio->bi_size) ||
1644 should_fail_request(&part_to_disk(part)->part0,
1645 bio->bi_size))
1646 goto end_io;
2056a782 1647
5a7bbad2
CH
1648 /*
1649 * If this device has partitions, remap block n
1650 * of partition p to block n+start(p) of the disk.
1651 */
1652 blk_partition_remap(bio);
2056a782 1653
5a7bbad2
CH
1654 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1655 goto end_io;
a7384677 1656
5a7bbad2
CH
1657 if (bio_check_eod(bio, nr_sectors))
1658 goto end_io;
1e87901e 1659
5a7bbad2
CH
1660 /*
1661 * Filter flush bio's early so that make_request based
1662 * drivers without flush support don't have to worry
1663 * about them.
1664 */
1665 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1666 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1667 if (!nr_sectors) {
1668 err = 0;
51fd77bd
JA
1669 goto end_io;
1670 }
5a7bbad2 1671 }
5ddfe969 1672
5a7bbad2
CH
1673 if ((bio->bi_rw & REQ_DISCARD) &&
1674 (!blk_queue_discard(q) ||
1675 ((bio->bi_rw & REQ_SECURE) &&
1676 !blk_queue_secdiscard(q)))) {
1677 err = -EOPNOTSUPP;
1678 goto end_io;
1679 }
01edede4 1680
7f4b35d1
TH
1681 /*
1682 * Various block parts want %current->io_context and lazy ioc
1683 * allocation ends up trading a lot of pain for a small amount of
1684 * memory. Just allocate it upfront. This may fail and block
1685 * layer knows how to live with it.
1686 */
1687 create_io_context(GFP_ATOMIC, q->node);
1688
bc16a4f9
TH
1689 if (blk_throtl_bio(q, bio))
1690 return false; /* throttled, will be resubmitted later */
27a84d54 1691
5a7bbad2 1692 trace_block_bio_queue(q, bio);
27a84d54 1693 return true;
a7384677
TH
1694
1695end_io:
1696 bio_endio(bio, err);
27a84d54 1697 return false;
1da177e4
LT
1698}
1699
27a84d54
CH
1700/**
1701 * generic_make_request - hand a buffer to its device driver for I/O
1702 * @bio: The bio describing the location in memory and on the device.
1703 *
1704 * generic_make_request() is used to make I/O requests of block
1705 * devices. It is passed a &struct bio, which describes the I/O that needs
1706 * to be done.
1707 *
1708 * generic_make_request() does not return any status. The
1709 * success/failure status of the request, along with notification of
1710 * completion, is delivered asynchronously through the bio->bi_end_io
1711 * function described (one day) else where.
1712 *
1713 * The caller of generic_make_request must make sure that bi_io_vec
1714 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1715 * set to describe the device address, and the
1716 * bi_end_io and optionally bi_private are set to describe how
1717 * completion notification should be signaled.
1718 *
1719 * generic_make_request and the drivers it calls may use bi_next if this
1720 * bio happens to be merged with someone else, and may resubmit the bio to
1721 * a lower device by calling into generic_make_request recursively, which
1722 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1723 */
1724void generic_make_request(struct bio *bio)
1725{
bddd87c7
AM
1726 struct bio_list bio_list_on_stack;
1727
27a84d54
CH
1728 if (!generic_make_request_checks(bio))
1729 return;
1730
1731 /*
1732 * We only want one ->make_request_fn to be active at a time, else
1733 * stack usage with stacked devices could be a problem. So use
1734 * current->bio_list to keep a list of requests submited by a
1735 * make_request_fn function. current->bio_list is also used as a
1736 * flag to say if generic_make_request is currently active in this
1737 * task or not. If it is NULL, then no make_request is active. If
1738 * it is non-NULL, then a make_request is active, and new requests
1739 * should be added at the tail
1740 */
bddd87c7 1741 if (current->bio_list) {
bddd87c7 1742 bio_list_add(current->bio_list, bio);
d89d8796
NB
1743 return;
1744 }
27a84d54 1745
d89d8796
NB
1746 /* following loop may be a bit non-obvious, and so deserves some
1747 * explanation.
1748 * Before entering the loop, bio->bi_next is NULL (as all callers
1749 * ensure that) so we have a list with a single bio.
1750 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1751 * we assign bio_list to a pointer to the bio_list_on_stack,
1752 * thus initialising the bio_list of new bios to be
27a84d54 1753 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1754 * through a recursive call to generic_make_request. If it
1755 * did, we find a non-NULL value in bio_list and re-enter the loop
1756 * from the top. In this case we really did just take the bio
bddd87c7 1757 * of the top of the list (no pretending) and so remove it from
27a84d54 1758 * bio_list, and call into ->make_request() again.
d89d8796
NB
1759 */
1760 BUG_ON(bio->bi_next);
bddd87c7
AM
1761 bio_list_init(&bio_list_on_stack);
1762 current->bio_list = &bio_list_on_stack;
d89d8796 1763 do {
27a84d54
CH
1764 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1765
1766 q->make_request_fn(q, bio);
1767
bddd87c7 1768 bio = bio_list_pop(current->bio_list);
d89d8796 1769 } while (bio);
bddd87c7 1770 current->bio_list = NULL; /* deactivate */
d89d8796 1771}
1da177e4
LT
1772EXPORT_SYMBOL(generic_make_request);
1773
1774/**
710027a4 1775 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1776 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1777 * @bio: The &struct bio which describes the I/O
1778 *
1779 * submit_bio() is very similar in purpose to generic_make_request(), and
1780 * uses that function to do most of the work. Both are fairly rough
710027a4 1781 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1782 *
1783 */
1784void submit_bio(int rw, struct bio *bio)
1785{
1786 int count = bio_sectors(bio);
1787
22e2c507 1788 bio->bi_rw |= rw;
1da177e4 1789
bf2de6f5
JA
1790 /*
1791 * If it's a regular read/write or a barrier with data attached,
1792 * go through the normal accounting stuff before submission.
1793 */
3ffb52e7 1794 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1795 if (rw & WRITE) {
1796 count_vm_events(PGPGOUT, count);
1797 } else {
1798 task_io_account_read(bio->bi_size);
1799 count_vm_events(PGPGIN, count);
1800 }
1801
1802 if (unlikely(block_dump)) {
1803 char b[BDEVNAME_SIZE];
8dcbdc74 1804 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1805 current->comm, task_pid_nr(current),
bf2de6f5
JA
1806 (rw & WRITE) ? "WRITE" : "READ",
1807 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1808 bdevname(bio->bi_bdev, b),
1809 count);
bf2de6f5 1810 }
1da177e4
LT
1811 }
1812
1813 generic_make_request(bio);
1814}
1da177e4
LT
1815EXPORT_SYMBOL(submit_bio);
1816
82124d60
KU
1817/**
1818 * blk_rq_check_limits - Helper function to check a request for the queue limit
1819 * @q: the queue
1820 * @rq: the request being checked
1821 *
1822 * Description:
1823 * @rq may have been made based on weaker limitations of upper-level queues
1824 * in request stacking drivers, and it may violate the limitation of @q.
1825 * Since the block layer and the underlying device driver trust @rq
1826 * after it is inserted to @q, it should be checked against @q before
1827 * the insertion using this generic function.
1828 *
1829 * This function should also be useful for request stacking drivers
eef35c2d 1830 * in some cases below, so export this function.
82124d60
KU
1831 * Request stacking drivers like request-based dm may change the queue
1832 * limits while requests are in the queue (e.g. dm's table swapping).
1833 * Such request stacking drivers should check those requests agaist
1834 * the new queue limits again when they dispatch those requests,
1835 * although such checkings are also done against the old queue limits
1836 * when submitting requests.
1837 */
1838int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1839{
3383977f
S
1840 if (rq->cmd_flags & REQ_DISCARD)
1841 return 0;
1842
ae03bf63
MP
1843 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1844 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1845 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1846 return -EIO;
1847 }
1848
1849 /*
1850 * queue's settings related to segment counting like q->bounce_pfn
1851 * may differ from that of other stacking queues.
1852 * Recalculate it to check the request correctly on this queue's
1853 * limitation.
1854 */
1855 blk_recalc_rq_segments(rq);
8a78362c 1856 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1857 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1858 return -EIO;
1859 }
1860
1861 return 0;
1862}
1863EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1864
1865/**
1866 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1867 * @q: the queue to submit the request
1868 * @rq: the request being queued
1869 */
1870int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1871{
1872 unsigned long flags;
4853abaa 1873 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1874
1875 if (blk_rq_check_limits(q, rq))
1876 return -EIO;
1877
b2c9cd37
AM
1878 if (rq->rq_disk &&
1879 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1880 return -EIO;
82124d60
KU
1881
1882 spin_lock_irqsave(q->queue_lock, flags);
8ba61435
TH
1883 if (unlikely(blk_queue_dead(q))) {
1884 spin_unlock_irqrestore(q->queue_lock, flags);
1885 return -ENODEV;
1886 }
82124d60
KU
1887
1888 /*
1889 * Submitting request must be dequeued before calling this function
1890 * because it will be linked to another request_queue
1891 */
1892 BUG_ON(blk_queued_rq(rq));
1893
4853abaa
JM
1894 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1895 where = ELEVATOR_INSERT_FLUSH;
1896
1897 add_acct_request(q, rq, where);
e67b77c7
JM
1898 if (where == ELEVATOR_INSERT_FLUSH)
1899 __blk_run_queue(q);
82124d60
KU
1900 spin_unlock_irqrestore(q->queue_lock, flags);
1901
1902 return 0;
1903}
1904EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1905
80a761fd
TH
1906/**
1907 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1908 * @rq: request to examine
1909 *
1910 * Description:
1911 * A request could be merge of IOs which require different failure
1912 * handling. This function determines the number of bytes which
1913 * can be failed from the beginning of the request without
1914 * crossing into area which need to be retried further.
1915 *
1916 * Return:
1917 * The number of bytes to fail.
1918 *
1919 * Context:
1920 * queue_lock must be held.
1921 */
1922unsigned int blk_rq_err_bytes(const struct request *rq)
1923{
1924 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1925 unsigned int bytes = 0;
1926 struct bio *bio;
1927
1928 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1929 return blk_rq_bytes(rq);
1930
1931 /*
1932 * Currently the only 'mixing' which can happen is between
1933 * different fastfail types. We can safely fail portions
1934 * which have all the failfast bits that the first one has -
1935 * the ones which are at least as eager to fail as the first
1936 * one.
1937 */
1938 for (bio = rq->bio; bio; bio = bio->bi_next) {
1939 if ((bio->bi_rw & ff) != ff)
1940 break;
1941 bytes += bio->bi_size;
1942 }
1943
1944 /* this could lead to infinite loop */
1945 BUG_ON(blk_rq_bytes(rq) && !bytes);
1946 return bytes;
1947}
1948EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1949
bc58ba94
JA
1950static void blk_account_io_completion(struct request *req, unsigned int bytes)
1951{
c2553b58 1952 if (blk_do_io_stat(req)) {
bc58ba94
JA
1953 const int rw = rq_data_dir(req);
1954 struct hd_struct *part;
1955 int cpu;
1956
1957 cpu = part_stat_lock();
09e099d4 1958 part = req->part;
bc58ba94
JA
1959 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1960 part_stat_unlock();
1961 }
1962}
1963
1964static void blk_account_io_done(struct request *req)
1965{
bc58ba94 1966 /*
dd4c133f
TH
1967 * Account IO completion. flush_rq isn't accounted as a
1968 * normal IO on queueing nor completion. Accounting the
1969 * containing request is enough.
bc58ba94 1970 */
414b4ff5 1971 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1972 unsigned long duration = jiffies - req->start_time;
1973 const int rw = rq_data_dir(req);
1974 struct hd_struct *part;
1975 int cpu;
1976
1977 cpu = part_stat_lock();
09e099d4 1978 part = req->part;
bc58ba94
JA
1979
1980 part_stat_inc(cpu, part, ios[rw]);
1981 part_stat_add(cpu, part, ticks[rw], duration);
1982 part_round_stats(cpu, part);
316d315b 1983 part_dec_in_flight(part, rw);
bc58ba94 1984
6c23a968 1985 hd_struct_put(part);
bc58ba94
JA
1986 part_stat_unlock();
1987 }
1988}
1989
3bcddeac 1990/**
9934c8c0
TH
1991 * blk_peek_request - peek at the top of a request queue
1992 * @q: request queue to peek at
1993 *
1994 * Description:
1995 * Return the request at the top of @q. The returned request
1996 * should be started using blk_start_request() before LLD starts
1997 * processing it.
1998 *
1999 * Return:
2000 * Pointer to the request at the top of @q if available. Null
2001 * otherwise.
2002 *
2003 * Context:
2004 * queue_lock must be held.
2005 */
2006struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2007{
2008 struct request *rq;
2009 int ret;
2010
2011 while ((rq = __elv_next_request(q)) != NULL) {
2012 if (!(rq->cmd_flags & REQ_STARTED)) {
2013 /*
2014 * This is the first time the device driver
2015 * sees this request (possibly after
2016 * requeueing). Notify IO scheduler.
2017 */
33659ebb 2018 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2019 elv_activate_rq(q, rq);
2020
2021 /*
2022 * just mark as started even if we don't start
2023 * it, a request that has been delayed should
2024 * not be passed by new incoming requests
2025 */
2026 rq->cmd_flags |= REQ_STARTED;
2027 trace_block_rq_issue(q, rq);
2028 }
2029
2030 if (!q->boundary_rq || q->boundary_rq == rq) {
2031 q->end_sector = rq_end_sector(rq);
2032 q->boundary_rq = NULL;
2033 }
2034
2035 if (rq->cmd_flags & REQ_DONTPREP)
2036 break;
2037
2e46e8b2 2038 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2039 /*
2040 * make sure space for the drain appears we
2041 * know we can do this because max_hw_segments
2042 * has been adjusted to be one fewer than the
2043 * device can handle
2044 */
2045 rq->nr_phys_segments++;
2046 }
2047
2048 if (!q->prep_rq_fn)
2049 break;
2050
2051 ret = q->prep_rq_fn(q, rq);
2052 if (ret == BLKPREP_OK) {
2053 break;
2054 } else if (ret == BLKPREP_DEFER) {
2055 /*
2056 * the request may have been (partially) prepped.
2057 * we need to keep this request in the front to
2058 * avoid resource deadlock. REQ_STARTED will
2059 * prevent other fs requests from passing this one.
2060 */
2e46e8b2 2061 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2062 !(rq->cmd_flags & REQ_DONTPREP)) {
2063 /*
2064 * remove the space for the drain we added
2065 * so that we don't add it again
2066 */
2067 --rq->nr_phys_segments;
2068 }
2069
2070 rq = NULL;
2071 break;
2072 } else if (ret == BLKPREP_KILL) {
2073 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2074 /*
2075 * Mark this request as started so we don't trigger
2076 * any debug logic in the end I/O path.
2077 */
2078 blk_start_request(rq);
40cbbb78 2079 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2080 } else {
2081 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2082 break;
2083 }
2084 }
2085
2086 return rq;
2087}
9934c8c0 2088EXPORT_SYMBOL(blk_peek_request);
158dbda0 2089
9934c8c0 2090void blk_dequeue_request(struct request *rq)
158dbda0 2091{
9934c8c0
TH
2092 struct request_queue *q = rq->q;
2093
158dbda0
TH
2094 BUG_ON(list_empty(&rq->queuelist));
2095 BUG_ON(ELV_ON_HASH(rq));
2096
2097 list_del_init(&rq->queuelist);
2098
2099 /*
2100 * the time frame between a request being removed from the lists
2101 * and to it is freed is accounted as io that is in progress at
2102 * the driver side.
2103 */
9195291e 2104 if (blk_account_rq(rq)) {
0a7ae2ff 2105 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2106 set_io_start_time_ns(rq);
2107 }
158dbda0
TH
2108}
2109
9934c8c0
TH
2110/**
2111 * blk_start_request - start request processing on the driver
2112 * @req: request to dequeue
2113 *
2114 * Description:
2115 * Dequeue @req and start timeout timer on it. This hands off the
2116 * request to the driver.
2117 *
2118 * Block internal functions which don't want to start timer should
2119 * call blk_dequeue_request().
2120 *
2121 * Context:
2122 * queue_lock must be held.
2123 */
2124void blk_start_request(struct request *req)
2125{
2126 blk_dequeue_request(req);
2127
2128 /*
5f49f631
TH
2129 * We are now handing the request to the hardware, initialize
2130 * resid_len to full count and add the timeout handler.
9934c8c0 2131 */
5f49f631 2132 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2133 if (unlikely(blk_bidi_rq(req)))
2134 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2135
9934c8c0
TH
2136 blk_add_timer(req);
2137}
2138EXPORT_SYMBOL(blk_start_request);
2139
2140/**
2141 * blk_fetch_request - fetch a request from a request queue
2142 * @q: request queue to fetch a request from
2143 *
2144 * Description:
2145 * Return the request at the top of @q. The request is started on
2146 * return and LLD can start processing it immediately.
2147 *
2148 * Return:
2149 * Pointer to the request at the top of @q if available. Null
2150 * otherwise.
2151 *
2152 * Context:
2153 * queue_lock must be held.
2154 */
2155struct request *blk_fetch_request(struct request_queue *q)
2156{
2157 struct request *rq;
2158
2159 rq = blk_peek_request(q);
2160 if (rq)
2161 blk_start_request(rq);
2162 return rq;
2163}
2164EXPORT_SYMBOL(blk_fetch_request);
2165
3bcddeac 2166/**
2e60e022 2167 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2168 * @req: the request being processed
710027a4 2169 * @error: %0 for success, < %0 for error
8ebf9756 2170 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2171 *
2172 * Description:
8ebf9756
RD
2173 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2174 * the request structure even if @req doesn't have leftover.
2175 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2176 *
2177 * This special helper function is only for request stacking drivers
2178 * (e.g. request-based dm) so that they can handle partial completion.
2179 * Actual device drivers should use blk_end_request instead.
2180 *
2181 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2182 * %false return from this function.
3bcddeac
KU
2183 *
2184 * Return:
2e60e022
TH
2185 * %false - this request doesn't have any more data
2186 * %true - this request has more data
3bcddeac 2187 **/
2e60e022 2188bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2189{
5450d3e1 2190 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2191 struct bio *bio;
2192
2e60e022
TH
2193 if (!req->bio)
2194 return false;
2195
5f3ea37c 2196 trace_block_rq_complete(req->q, req);
2056a782 2197
1da177e4 2198 /*
6f41469c
TH
2199 * For fs requests, rq is just carrier of independent bio's
2200 * and each partial completion should be handled separately.
2201 * Reset per-request error on each partial completion.
2202 *
2203 * TODO: tj: This is too subtle. It would be better to let
2204 * low level drivers do what they see fit.
1da177e4 2205 */
33659ebb 2206 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2207 req->errors = 0;
2208
33659ebb
CH
2209 if (error && req->cmd_type == REQ_TYPE_FS &&
2210 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2211 char *error_type;
2212
2213 switch (error) {
2214 case -ENOLINK:
2215 error_type = "recoverable transport";
2216 break;
2217 case -EREMOTEIO:
2218 error_type = "critical target";
2219 break;
2220 case -EBADE:
2221 error_type = "critical nexus";
2222 break;
2223 case -EIO:
2224 default:
2225 error_type = "I/O";
2226 break;
2227 }
2228 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2229 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2230 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2231 }
2232
bc58ba94 2233 blk_account_io_completion(req, nr_bytes);
d72d904a 2234
1da177e4
LT
2235 total_bytes = bio_nbytes = 0;
2236 while ((bio = req->bio) != NULL) {
2237 int nbytes;
2238
2239 if (nr_bytes >= bio->bi_size) {
2240 req->bio = bio->bi_next;
2241 nbytes = bio->bi_size;
5bb23a68 2242 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2243 next_idx = 0;
2244 bio_nbytes = 0;
2245 } else {
2246 int idx = bio->bi_idx + next_idx;
2247
af498d7f 2248 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2249 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2250 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2251 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2252 break;
2253 }
2254
2255 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2256 BIO_BUG_ON(nbytes > bio->bi_size);
2257
2258 /*
2259 * not a complete bvec done
2260 */
2261 if (unlikely(nbytes > nr_bytes)) {
2262 bio_nbytes += nr_bytes;
2263 total_bytes += nr_bytes;
2264 break;
2265 }
2266
2267 /*
2268 * advance to the next vector
2269 */
2270 next_idx++;
2271 bio_nbytes += nbytes;
2272 }
2273
2274 total_bytes += nbytes;
2275 nr_bytes -= nbytes;
2276
6728cb0e
JA
2277 bio = req->bio;
2278 if (bio) {
1da177e4
LT
2279 /*
2280 * end more in this run, or just return 'not-done'
2281 */
2282 if (unlikely(nr_bytes <= 0))
2283 break;
2284 }
2285 }
2286
2287 /*
2288 * completely done
2289 */
2e60e022
TH
2290 if (!req->bio) {
2291 /*
2292 * Reset counters so that the request stacking driver
2293 * can find how many bytes remain in the request
2294 * later.
2295 */
a2dec7b3 2296 req->__data_len = 0;
2e60e022
TH
2297 return false;
2298 }
1da177e4
LT
2299
2300 /*
2301 * if the request wasn't completed, update state
2302 */
2303 if (bio_nbytes) {
5bb23a68 2304 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2305 bio->bi_idx += next_idx;
2306 bio_iovec(bio)->bv_offset += nr_bytes;
2307 bio_iovec(bio)->bv_len -= nr_bytes;
2308 }
2309
a2dec7b3 2310 req->__data_len -= total_bytes;
2e46e8b2
TH
2311 req->buffer = bio_data(req->bio);
2312
2313 /* update sector only for requests with clear definition of sector */
33659ebb 2314 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2315 req->__sector += total_bytes >> 9;
2e46e8b2 2316
80a761fd
TH
2317 /* mixed attributes always follow the first bio */
2318 if (req->cmd_flags & REQ_MIXED_MERGE) {
2319 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2320 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2321 }
2322
2e46e8b2
TH
2323 /*
2324 * If total number of sectors is less than the first segment
2325 * size, something has gone terribly wrong.
2326 */
2327 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2328 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2329 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2330 }
2331
2332 /* recalculate the number of segments */
1da177e4 2333 blk_recalc_rq_segments(req);
2e46e8b2 2334
2e60e022 2335 return true;
1da177e4 2336}
2e60e022 2337EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2338
2e60e022
TH
2339static bool blk_update_bidi_request(struct request *rq, int error,
2340 unsigned int nr_bytes,
2341 unsigned int bidi_bytes)
5efccd17 2342{
2e60e022
TH
2343 if (blk_update_request(rq, error, nr_bytes))
2344 return true;
5efccd17 2345
2e60e022
TH
2346 /* Bidi request must be completed as a whole */
2347 if (unlikely(blk_bidi_rq(rq)) &&
2348 blk_update_request(rq->next_rq, error, bidi_bytes))
2349 return true;
5efccd17 2350
e2e1a148
JA
2351 if (blk_queue_add_random(rq->q))
2352 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2353
2354 return false;
1da177e4
LT
2355}
2356
28018c24
JB
2357/**
2358 * blk_unprep_request - unprepare a request
2359 * @req: the request
2360 *
2361 * This function makes a request ready for complete resubmission (or
2362 * completion). It happens only after all error handling is complete,
2363 * so represents the appropriate moment to deallocate any resources
2364 * that were allocated to the request in the prep_rq_fn. The queue
2365 * lock is held when calling this.
2366 */
2367void blk_unprep_request(struct request *req)
2368{
2369 struct request_queue *q = req->q;
2370
2371 req->cmd_flags &= ~REQ_DONTPREP;
2372 if (q->unprep_rq_fn)
2373 q->unprep_rq_fn(q, req);
2374}
2375EXPORT_SYMBOL_GPL(blk_unprep_request);
2376
1da177e4
LT
2377/*
2378 * queue lock must be held
2379 */
2e60e022 2380static void blk_finish_request(struct request *req, int error)
1da177e4 2381{
b8286239
KU
2382 if (blk_rq_tagged(req))
2383 blk_queue_end_tag(req->q, req);
2384
ba396a6c 2385 BUG_ON(blk_queued_rq(req));
1da177e4 2386
33659ebb 2387 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2388 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2389
e78042e5
MA
2390 blk_delete_timer(req);
2391
28018c24
JB
2392 if (req->cmd_flags & REQ_DONTPREP)
2393 blk_unprep_request(req);
2394
2395
bc58ba94 2396 blk_account_io_done(req);
b8286239 2397
1da177e4 2398 if (req->end_io)
8ffdc655 2399 req->end_io(req, error);
b8286239
KU
2400 else {
2401 if (blk_bidi_rq(req))
2402 __blk_put_request(req->next_rq->q, req->next_rq);
2403
1da177e4 2404 __blk_put_request(req->q, req);
b8286239 2405 }
1da177e4
LT
2406}
2407
3b11313a 2408/**
2e60e022
TH
2409 * blk_end_bidi_request - Complete a bidi request
2410 * @rq: the request to complete
2411 * @error: %0 for success, < %0 for error
2412 * @nr_bytes: number of bytes to complete @rq
2413 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2414 *
2415 * Description:
e3a04fe3 2416 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2417 * Drivers that supports bidi can safely call this member for any
2418 * type of request, bidi or uni. In the later case @bidi_bytes is
2419 * just ignored.
336cdb40
KU
2420 *
2421 * Return:
2e60e022
TH
2422 * %false - we are done with this request
2423 * %true - still buffers pending for this request
a0cd1285 2424 **/
b1f74493 2425static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2426 unsigned int nr_bytes, unsigned int bidi_bytes)
2427{
336cdb40 2428 struct request_queue *q = rq->q;
2e60e022 2429 unsigned long flags;
32fab448 2430
2e60e022
TH
2431 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2432 return true;
32fab448 2433
336cdb40 2434 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2435 blk_finish_request(rq, error);
336cdb40
KU
2436 spin_unlock_irqrestore(q->queue_lock, flags);
2437
2e60e022 2438 return false;
32fab448
KU
2439}
2440
336cdb40 2441/**
2e60e022
TH
2442 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2443 * @rq: the request to complete
710027a4 2444 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2445 * @nr_bytes: number of bytes to complete @rq
2446 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2447 *
2448 * Description:
2e60e022
TH
2449 * Identical to blk_end_bidi_request() except that queue lock is
2450 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2451 *
2452 * Return:
2e60e022
TH
2453 * %false - we are done with this request
2454 * %true - still buffers pending for this request
336cdb40 2455 **/
4853abaa 2456bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2457 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2458{
2e60e022
TH
2459 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2460 return true;
336cdb40 2461
2e60e022 2462 blk_finish_request(rq, error);
336cdb40 2463
2e60e022 2464 return false;
336cdb40 2465}
e19a3ab0
KU
2466
2467/**
2468 * blk_end_request - Helper function for drivers to complete the request.
2469 * @rq: the request being processed
710027a4 2470 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2471 * @nr_bytes: number of bytes to complete
2472 *
2473 * Description:
2474 * Ends I/O on a number of bytes attached to @rq.
2475 * If @rq has leftover, sets it up for the next range of segments.
2476 *
2477 * Return:
b1f74493
FT
2478 * %false - we are done with this request
2479 * %true - still buffers pending for this request
e19a3ab0 2480 **/
b1f74493 2481bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2482{
b1f74493 2483 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2484}
56ad1740 2485EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2486
2487/**
b1f74493
FT
2488 * blk_end_request_all - Helper function for drives to finish the request.
2489 * @rq: the request to finish
8ebf9756 2490 * @error: %0 for success, < %0 for error
336cdb40
KU
2491 *
2492 * Description:
b1f74493
FT
2493 * Completely finish @rq.
2494 */
2495void blk_end_request_all(struct request *rq, int error)
336cdb40 2496{
b1f74493
FT
2497 bool pending;
2498 unsigned int bidi_bytes = 0;
336cdb40 2499
b1f74493
FT
2500 if (unlikely(blk_bidi_rq(rq)))
2501 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2502
b1f74493
FT
2503 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2504 BUG_ON(pending);
2505}
56ad1740 2506EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2507
b1f74493
FT
2508/**
2509 * blk_end_request_cur - Helper function to finish the current request chunk.
2510 * @rq: the request to finish the current chunk for
8ebf9756 2511 * @error: %0 for success, < %0 for error
b1f74493
FT
2512 *
2513 * Description:
2514 * Complete the current consecutively mapped chunk from @rq.
2515 *
2516 * Return:
2517 * %false - we are done with this request
2518 * %true - still buffers pending for this request
2519 */
2520bool blk_end_request_cur(struct request *rq, int error)
2521{
2522 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2523}
56ad1740 2524EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2525
80a761fd
TH
2526/**
2527 * blk_end_request_err - Finish a request till the next failure boundary.
2528 * @rq: the request to finish till the next failure boundary for
2529 * @error: must be negative errno
2530 *
2531 * Description:
2532 * Complete @rq till the next failure boundary.
2533 *
2534 * Return:
2535 * %false - we are done with this request
2536 * %true - still buffers pending for this request
2537 */
2538bool blk_end_request_err(struct request *rq, int error)
2539{
2540 WARN_ON(error >= 0);
2541 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2542}
2543EXPORT_SYMBOL_GPL(blk_end_request_err);
2544
e3a04fe3 2545/**
b1f74493
FT
2546 * __blk_end_request - Helper function for drivers to complete the request.
2547 * @rq: the request being processed
2548 * @error: %0 for success, < %0 for error
2549 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2550 *
2551 * Description:
b1f74493 2552 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2553 *
2554 * Return:
b1f74493
FT
2555 * %false - we are done with this request
2556 * %true - still buffers pending for this request
e3a04fe3 2557 **/
b1f74493 2558bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2559{
b1f74493 2560 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2561}
56ad1740 2562EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2563
32fab448 2564/**
b1f74493
FT
2565 * __blk_end_request_all - Helper function for drives to finish the request.
2566 * @rq: the request to finish
8ebf9756 2567 * @error: %0 for success, < %0 for error
32fab448
KU
2568 *
2569 * Description:
b1f74493 2570 * Completely finish @rq. Must be called with queue lock held.
32fab448 2571 */
b1f74493 2572void __blk_end_request_all(struct request *rq, int error)
32fab448 2573{
b1f74493
FT
2574 bool pending;
2575 unsigned int bidi_bytes = 0;
2576
2577 if (unlikely(blk_bidi_rq(rq)))
2578 bidi_bytes = blk_rq_bytes(rq->next_rq);
2579
2580 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2581 BUG_ON(pending);
32fab448 2582}
56ad1740 2583EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2584
e19a3ab0 2585/**
b1f74493
FT
2586 * __blk_end_request_cur - Helper function to finish the current request chunk.
2587 * @rq: the request to finish the current chunk for
8ebf9756 2588 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2589 *
2590 * Description:
b1f74493
FT
2591 * Complete the current consecutively mapped chunk from @rq. Must
2592 * be called with queue lock held.
e19a3ab0
KU
2593 *
2594 * Return:
b1f74493
FT
2595 * %false - we are done with this request
2596 * %true - still buffers pending for this request
2597 */
2598bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2599{
b1f74493 2600 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2601}
56ad1740 2602EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2603
80a761fd
TH
2604/**
2605 * __blk_end_request_err - Finish a request till the next failure boundary.
2606 * @rq: the request to finish till the next failure boundary for
2607 * @error: must be negative errno
2608 *
2609 * Description:
2610 * Complete @rq till the next failure boundary. Must be called
2611 * with queue lock held.
2612 *
2613 * Return:
2614 * %false - we are done with this request
2615 * %true - still buffers pending for this request
2616 */
2617bool __blk_end_request_err(struct request *rq, int error)
2618{
2619 WARN_ON(error >= 0);
2620 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2621}
2622EXPORT_SYMBOL_GPL(__blk_end_request_err);
2623
86db1e29
JA
2624void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2625 struct bio *bio)
1da177e4 2626{
a82afdfc 2627 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2628 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2629
fb2dce86
DW
2630 if (bio_has_data(bio)) {
2631 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2632 rq->buffer = bio_data(bio);
2633 }
a2dec7b3 2634 rq->__data_len = bio->bi_size;
1da177e4 2635 rq->bio = rq->biotail = bio;
1da177e4 2636
66846572
N
2637 if (bio->bi_bdev)
2638 rq->rq_disk = bio->bi_bdev->bd_disk;
2639}
1da177e4 2640
2d4dc890
IL
2641#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2642/**
2643 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2644 * @rq: the request to be flushed
2645 *
2646 * Description:
2647 * Flush all pages in @rq.
2648 */
2649void rq_flush_dcache_pages(struct request *rq)
2650{
2651 struct req_iterator iter;
2652 struct bio_vec *bvec;
2653
2654 rq_for_each_segment(bvec, rq, iter)
2655 flush_dcache_page(bvec->bv_page);
2656}
2657EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2658#endif
2659
ef9e3fac
KU
2660/**
2661 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2662 * @q : the queue of the device being checked
2663 *
2664 * Description:
2665 * Check if underlying low-level drivers of a device are busy.
2666 * If the drivers want to export their busy state, they must set own
2667 * exporting function using blk_queue_lld_busy() first.
2668 *
2669 * Basically, this function is used only by request stacking drivers
2670 * to stop dispatching requests to underlying devices when underlying
2671 * devices are busy. This behavior helps more I/O merging on the queue
2672 * of the request stacking driver and prevents I/O throughput regression
2673 * on burst I/O load.
2674 *
2675 * Return:
2676 * 0 - Not busy (The request stacking driver should dispatch request)
2677 * 1 - Busy (The request stacking driver should stop dispatching request)
2678 */
2679int blk_lld_busy(struct request_queue *q)
2680{
2681 if (q->lld_busy_fn)
2682 return q->lld_busy_fn(q);
2683
2684 return 0;
2685}
2686EXPORT_SYMBOL_GPL(blk_lld_busy);
2687
b0fd271d
KU
2688/**
2689 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2690 * @rq: the clone request to be cleaned up
2691 *
2692 * Description:
2693 * Free all bios in @rq for a cloned request.
2694 */
2695void blk_rq_unprep_clone(struct request *rq)
2696{
2697 struct bio *bio;
2698
2699 while ((bio = rq->bio) != NULL) {
2700 rq->bio = bio->bi_next;
2701
2702 bio_put(bio);
2703 }
2704}
2705EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2706
2707/*
2708 * Copy attributes of the original request to the clone request.
2709 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2710 */
2711static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2712{
2713 dst->cpu = src->cpu;
3a2edd0d 2714 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2715 dst->cmd_type = src->cmd_type;
2716 dst->__sector = blk_rq_pos(src);
2717 dst->__data_len = blk_rq_bytes(src);
2718 dst->nr_phys_segments = src->nr_phys_segments;
2719 dst->ioprio = src->ioprio;
2720 dst->extra_len = src->extra_len;
2721}
2722
2723/**
2724 * blk_rq_prep_clone - Helper function to setup clone request
2725 * @rq: the request to be setup
2726 * @rq_src: original request to be cloned
2727 * @bs: bio_set that bios for clone are allocated from
2728 * @gfp_mask: memory allocation mask for bio
2729 * @bio_ctr: setup function to be called for each clone bio.
2730 * Returns %0 for success, non %0 for failure.
2731 * @data: private data to be passed to @bio_ctr
2732 *
2733 * Description:
2734 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2735 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2736 * are not copied, and copying such parts is the caller's responsibility.
2737 * Also, pages which the original bios are pointing to are not copied
2738 * and the cloned bios just point same pages.
2739 * So cloned bios must be completed before original bios, which means
2740 * the caller must complete @rq before @rq_src.
2741 */
2742int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2743 struct bio_set *bs, gfp_t gfp_mask,
2744 int (*bio_ctr)(struct bio *, struct bio *, void *),
2745 void *data)
2746{
2747 struct bio *bio, *bio_src;
2748
2749 if (!bs)
2750 bs = fs_bio_set;
2751
2752 blk_rq_init(NULL, rq);
2753
2754 __rq_for_each_bio(bio_src, rq_src) {
2755 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2756 if (!bio)
2757 goto free_and_out;
2758
2759 __bio_clone(bio, bio_src);
2760
2761 if (bio_integrity(bio_src) &&
7878cba9 2762 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2763 goto free_and_out;
2764
2765 if (bio_ctr && bio_ctr(bio, bio_src, data))
2766 goto free_and_out;
2767
2768 if (rq->bio) {
2769 rq->biotail->bi_next = bio;
2770 rq->biotail = bio;
2771 } else
2772 rq->bio = rq->biotail = bio;
2773 }
2774
2775 __blk_rq_prep_clone(rq, rq_src);
2776
2777 return 0;
2778
2779free_and_out:
2780 if (bio)
2781 bio_free(bio, bs);
2782 blk_rq_unprep_clone(rq);
2783
2784 return -ENOMEM;
2785}
2786EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2787
18887ad9 2788int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2789{
2790 return queue_work(kblockd_workqueue, work);
2791}
1da177e4
LT
2792EXPORT_SYMBOL(kblockd_schedule_work);
2793
e43473b7
VG
2794int kblockd_schedule_delayed_work(struct request_queue *q,
2795 struct delayed_work *dwork, unsigned long delay)
2796{
2797 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2798}
2799EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2800
73c10101
JA
2801#define PLUG_MAGIC 0x91827364
2802
75df7136
SJ
2803/**
2804 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2805 * @plug: The &struct blk_plug that needs to be initialized
2806 *
2807 * Description:
2808 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2809 * pending I/O should the task end up blocking between blk_start_plug() and
2810 * blk_finish_plug(). This is important from a performance perspective, but
2811 * also ensures that we don't deadlock. For instance, if the task is blocking
2812 * for a memory allocation, memory reclaim could end up wanting to free a
2813 * page belonging to that request that is currently residing in our private
2814 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2815 * this kind of deadlock.
2816 */
73c10101
JA
2817void blk_start_plug(struct blk_plug *plug)
2818{
2819 struct task_struct *tsk = current;
2820
2821 plug->magic = PLUG_MAGIC;
2822 INIT_LIST_HEAD(&plug->list);
048c9374 2823 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2824 plug->should_sort = 0;
2825
2826 /*
2827 * If this is a nested plug, don't actually assign it. It will be
2828 * flushed on its own.
2829 */
2830 if (!tsk->plug) {
2831 /*
2832 * Store ordering should not be needed here, since a potential
2833 * preempt will imply a full memory barrier
2834 */
2835 tsk->plug = plug;
2836 }
2837}
2838EXPORT_SYMBOL(blk_start_plug);
2839
2840static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2841{
2842 struct request *rqa = container_of(a, struct request, queuelist);
2843 struct request *rqb = container_of(b, struct request, queuelist);
2844
f83e8261 2845 return !(rqa->q <= rqb->q);
73c10101
JA
2846}
2847
49cac01e
JA
2848/*
2849 * If 'from_schedule' is true, then postpone the dispatch of requests
2850 * until a safe kblockd context. We due this to avoid accidental big
2851 * additional stack usage in driver dispatch, in places where the originally
2852 * plugger did not intend it.
2853 */
f6603783 2854static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2855 bool from_schedule)
99e22598 2856 __releases(q->queue_lock)
94b5eb28 2857{
49cac01e 2858 trace_block_unplug(q, depth, !from_schedule);
99e22598 2859
8ba61435
TH
2860 /*
2861 * Don't mess with dead queue.
2862 */
2863 if (unlikely(blk_queue_dead(q))) {
2864 spin_unlock(q->queue_lock);
2865 return;
2866 }
2867
99e22598
JA
2868 /*
2869 * If we are punting this to kblockd, then we can safely drop
2870 * the queue_lock before waking kblockd (which needs to take
2871 * this lock).
2872 */
2873 if (from_schedule) {
2874 spin_unlock(q->queue_lock);
24ecfbe2 2875 blk_run_queue_async(q);
99e22598 2876 } else {
24ecfbe2 2877 __blk_run_queue(q);
99e22598
JA
2878 spin_unlock(q->queue_lock);
2879 }
2880
94b5eb28
JA
2881}
2882
048c9374
N
2883static void flush_plug_callbacks(struct blk_plug *plug)
2884{
2885 LIST_HEAD(callbacks);
2886
2887 if (list_empty(&plug->cb_list))
2888 return;
2889
2890 list_splice_init(&plug->cb_list, &callbacks);
2891
2892 while (!list_empty(&callbacks)) {
2893 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2894 struct blk_plug_cb,
2895 list);
2896 list_del(&cb->list);
2897 cb->callback(cb);
2898 }
2899}
2900
49cac01e 2901void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2902{
2903 struct request_queue *q;
2904 unsigned long flags;
2905 struct request *rq;
109b8129 2906 LIST_HEAD(list);
94b5eb28 2907 unsigned int depth;
73c10101
JA
2908
2909 BUG_ON(plug->magic != PLUG_MAGIC);
2910
048c9374 2911 flush_plug_callbacks(plug);
73c10101
JA
2912 if (list_empty(&plug->list))
2913 return;
2914
109b8129
N
2915 list_splice_init(&plug->list, &list);
2916
2917 if (plug->should_sort) {
2918 list_sort(NULL, &list, plug_rq_cmp);
2919 plug->should_sort = 0;
2920 }
73c10101
JA
2921
2922 q = NULL;
94b5eb28 2923 depth = 0;
18811272
JA
2924
2925 /*
2926 * Save and disable interrupts here, to avoid doing it for every
2927 * queue lock we have to take.
2928 */
73c10101 2929 local_irq_save(flags);
109b8129
N
2930 while (!list_empty(&list)) {
2931 rq = list_entry_rq(list.next);
73c10101 2932 list_del_init(&rq->queuelist);
73c10101
JA
2933 BUG_ON(!rq->q);
2934 if (rq->q != q) {
99e22598
JA
2935 /*
2936 * This drops the queue lock
2937 */
2938 if (q)
49cac01e 2939 queue_unplugged(q, depth, from_schedule);
73c10101 2940 q = rq->q;
94b5eb28 2941 depth = 0;
73c10101
JA
2942 spin_lock(q->queue_lock);
2943 }
8ba61435
TH
2944
2945 /*
2946 * Short-circuit if @q is dead
2947 */
2948 if (unlikely(blk_queue_dead(q))) {
2949 __blk_end_request_all(rq, -ENODEV);
2950 continue;
2951 }
2952
73c10101
JA
2953 /*
2954 * rq is already accounted, so use raw insert
2955 */
401a18e9
JA
2956 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2957 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2958 else
2959 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
2960
2961 depth++;
73c10101
JA
2962 }
2963
99e22598
JA
2964 /*
2965 * This drops the queue lock
2966 */
2967 if (q)
49cac01e 2968 queue_unplugged(q, depth, from_schedule);
73c10101 2969
73c10101
JA
2970 local_irq_restore(flags);
2971}
73c10101
JA
2972
2973void blk_finish_plug(struct blk_plug *plug)
2974{
f6603783 2975 blk_flush_plug_list(plug, false);
73c10101 2976
88b996cd
CH
2977 if (plug == current->plug)
2978 current->plug = NULL;
73c10101 2979}
88b996cd 2980EXPORT_SYMBOL(blk_finish_plug);
73c10101 2981
1da177e4
LT
2982int __init blk_dev_init(void)
2983{
9eb55b03
NK
2984 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2985 sizeof(((struct request *)0)->cmd_flags));
2986
89b90be2
TH
2987 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2988 kblockd_workqueue = alloc_workqueue("kblockd",
2989 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2990 if (!kblockd_workqueue)
2991 panic("Failed to create kblockd\n");
2992
2993 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2994 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2995
8324aa91 2996 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2997 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2998
d38ecf93 2999 return 0;
1da177e4 3000}