]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - block/blk-core.c
block: remove the always unused name argument to elevator_init
[mirror_ubuntu-eoan-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
30abb3a6 37#include <linux/bpf.h>
55782138
LZ
38
39#define CREATE_TRACE_POINTS
40#include <trace/events/block.h>
1da177e4 41
8324aa91 42#include "blk.h"
43a5e4e2 43#include "blk-mq.h"
bd166ef1 44#include "blk-mq-sched.h"
87760e5e 45#include "blk-wbt.h"
8324aa91 46
18fbda91
OS
47#ifdef CONFIG_DEBUG_FS
48struct dentry *blk_debugfs_root;
49#endif
50
d07335e5 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 55EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 56
a73f730d
TH
57DEFINE_IDA(blk_queue_ida);
58
1da177e4
LT
59/*
60 * For the allocated request tables
61 */
d674d414 62struct kmem_cache *request_cachep;
1da177e4
LT
63
64/*
65 * For queue allocation
66 */
6728cb0e 67struct kmem_cache *blk_requestq_cachep;
1da177e4 68
1da177e4
LT
69/*
70 * Controlling structure to kblockd
71 */
ff856bad 72static struct workqueue_struct *kblockd_workqueue;
1da177e4 73
8814ce8a
BVA
74/**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
78 */
79void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80{
81 unsigned long flags;
82
83 spin_lock_irqsave(q->queue_lock, flags);
84 queue_flag_set(flag, q);
85 spin_unlock_irqrestore(q->queue_lock, flags);
86}
87EXPORT_SYMBOL(blk_queue_flag_set);
88
89/**
90 * blk_queue_flag_clear - atomically clear a queue flag
91 * @flag: flag to be cleared
92 * @q: request queue
93 */
94void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
95{
96 unsigned long flags;
97
98 spin_lock_irqsave(q->queue_lock, flags);
99 queue_flag_clear(flag, q);
100 spin_unlock_irqrestore(q->queue_lock, flags);
101}
102EXPORT_SYMBOL(blk_queue_flag_clear);
103
104/**
105 * blk_queue_flag_test_and_set - atomically test and set a queue flag
106 * @flag: flag to be set
107 * @q: request queue
108 *
109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110 * the flag was already set.
111 */
112bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
113{
114 unsigned long flags;
115 bool res;
116
117 spin_lock_irqsave(q->queue_lock, flags);
118 res = queue_flag_test_and_set(flag, q);
119 spin_unlock_irqrestore(q->queue_lock, flags);
120
121 return res;
122}
123EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
124
125/**
126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127 * @flag: flag to be cleared
128 * @q: request queue
129 *
130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
131 * the flag was set.
132 */
133bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
134{
135 unsigned long flags;
136 bool res;
137
138 spin_lock_irqsave(q->queue_lock, flags);
139 res = queue_flag_test_and_clear(flag, q);
140 spin_unlock_irqrestore(q->queue_lock, flags);
141
142 return res;
143}
144EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
145
d40f75a0
TH
146static void blk_clear_congested(struct request_list *rl, int sync)
147{
d40f75a0
TH
148#ifdef CONFIG_CGROUP_WRITEBACK
149 clear_wb_congested(rl->blkg->wb_congested, sync);
150#else
482cf79c
TH
151 /*
152 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 * flip its congestion state for events on other blkcgs.
154 */
155 if (rl == &rl->q->root_rl)
dc3b17cc 156 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
157#endif
158}
159
160static void blk_set_congested(struct request_list *rl, int sync)
161{
d40f75a0
TH
162#ifdef CONFIG_CGROUP_WRITEBACK
163 set_wb_congested(rl->blkg->wb_congested, sync);
164#else
482cf79c
TH
165 /* see blk_clear_congested() */
166 if (rl == &rl->q->root_rl)
dc3b17cc 167 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
168#endif
169}
170
8324aa91 171void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
172{
173 int nr;
174
175 nr = q->nr_requests - (q->nr_requests / 8) + 1;
176 if (nr > q->nr_requests)
177 nr = q->nr_requests;
178 q->nr_congestion_on = nr;
179
180 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
181 if (nr < 1)
182 nr = 1;
183 q->nr_congestion_off = nr;
184}
185
2a4aa30c 186void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 187{
1afb20f3
FT
188 memset(rq, 0, sizeof(*rq));
189
1da177e4 190 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 191 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 192 rq->cpu = -1;
63a71386 193 rq->q = q;
a2dec7b3 194 rq->__sector = (sector_t) -1;
2e662b65
JA
195 INIT_HLIST_NODE(&rq->hash);
196 RB_CLEAR_NODE(&rq->rb_node);
63a71386 197 rq->tag = -1;
bd166ef1 198 rq->internal_tag = -1;
522a7775 199 rq->start_time_ns = ktime_get_ns();
09e099d4 200 rq->part = NULL;
1da177e4 201}
2a4aa30c 202EXPORT_SYMBOL(blk_rq_init);
1da177e4 203
2a842aca
CH
204static const struct {
205 int errno;
206 const char *name;
207} blk_errors[] = {
208 [BLK_STS_OK] = { 0, "" },
209 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
210 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
211 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
212 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
213 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
214 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
215 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
216 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
217 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 218 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 219 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 220
4e4cbee9
CH
221 /* device mapper special case, should not leak out: */
222 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
223
2a842aca
CH
224 /* everything else not covered above: */
225 [BLK_STS_IOERR] = { -EIO, "I/O" },
226};
227
228blk_status_t errno_to_blk_status(int errno)
229{
230 int i;
231
232 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
233 if (blk_errors[i].errno == errno)
234 return (__force blk_status_t)i;
235 }
236
237 return BLK_STS_IOERR;
238}
239EXPORT_SYMBOL_GPL(errno_to_blk_status);
240
241int blk_status_to_errno(blk_status_t status)
242{
243 int idx = (__force int)status;
244
34bd9c1c 245 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
246 return -EIO;
247 return blk_errors[idx].errno;
248}
249EXPORT_SYMBOL_GPL(blk_status_to_errno);
250
251static void print_req_error(struct request *req, blk_status_t status)
252{
253 int idx = (__force int)status;
254
34bd9c1c 255 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
256 return;
257
258 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
259 __func__, blk_errors[idx].name, req->rq_disk ?
260 req->rq_disk->disk_name : "?",
261 (unsigned long long)blk_rq_pos(req));
262}
263
5bb23a68 264static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 265 unsigned int nbytes, blk_status_t error)
1da177e4 266{
78d8e58a 267 if (error)
4e4cbee9 268 bio->bi_status = error;
797e7dbb 269
e8064021 270 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 271 bio_set_flag(bio, BIO_QUIET);
08bafc03 272
f79ea416 273 bio_advance(bio, nbytes);
7ba1ba12 274
143a87f4 275 /* don't actually finish bio if it's part of flush sequence */
0ba99ca4
KO
276 /*
277 * XXX this code looks suspicious - it's not consistent with advancing
278 * req->bio in caller
279 */
e8064021 280 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 281 bio_endio(bio);
1da177e4 282}
1da177e4 283
1da177e4
LT
284void blk_dump_rq_flags(struct request *rq, char *msg)
285{
aebf526b
CH
286 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
287 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 288 (unsigned long long) rq->cmd_flags);
1da177e4 289
83096ebf
TH
290 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
291 (unsigned long long)blk_rq_pos(rq),
292 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
293 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
294 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 295}
1da177e4
LT
296EXPORT_SYMBOL(blk_dump_rq_flags);
297
3cca6dc1 298static void blk_delay_work(struct work_struct *work)
1da177e4 299{
3cca6dc1 300 struct request_queue *q;
1da177e4 301
3cca6dc1
JA
302 q = container_of(work, struct request_queue, delay_work.work);
303 spin_lock_irq(q->queue_lock);
24ecfbe2 304 __blk_run_queue(q);
3cca6dc1 305 spin_unlock_irq(q->queue_lock);
1da177e4 306}
1da177e4
LT
307
308/**
3cca6dc1
JA
309 * blk_delay_queue - restart queueing after defined interval
310 * @q: The &struct request_queue in question
311 * @msecs: Delay in msecs
1da177e4
LT
312 *
313 * Description:
3cca6dc1
JA
314 * Sometimes queueing needs to be postponed for a little while, to allow
315 * resources to come back. This function will make sure that queueing is
2fff8a92 316 * restarted around the specified time.
3cca6dc1
JA
317 */
318void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 319{
2fff8a92 320 lockdep_assert_held(q->queue_lock);
332ebbf7 321 WARN_ON_ONCE(q->mq_ops);
2fff8a92 322
70460571
BVA
323 if (likely(!blk_queue_dead(q)))
324 queue_delayed_work(kblockd_workqueue, &q->delay_work,
325 msecs_to_jiffies(msecs));
2ad8b1ef 326}
3cca6dc1 327EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 328
21491412
JA
329/**
330 * blk_start_queue_async - asynchronously restart a previously stopped queue
331 * @q: The &struct request_queue in question
332 *
333 * Description:
334 * blk_start_queue_async() will clear the stop flag on the queue, and
335 * ensure that the request_fn for the queue is run from an async
336 * context.
337 **/
338void blk_start_queue_async(struct request_queue *q)
339{
2fff8a92 340 lockdep_assert_held(q->queue_lock);
332ebbf7 341 WARN_ON_ONCE(q->mq_ops);
2fff8a92 342
21491412
JA
343 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
344 blk_run_queue_async(q);
345}
346EXPORT_SYMBOL(blk_start_queue_async);
347
1da177e4
LT
348/**
349 * blk_start_queue - restart a previously stopped queue
165125e1 350 * @q: The &struct request_queue in question
1da177e4
LT
351 *
352 * Description:
353 * blk_start_queue() will clear the stop flag on the queue, and call
354 * the request_fn for the queue if it was in a stopped state when
2fff8a92 355 * entered. Also see blk_stop_queue().
1da177e4 356 **/
165125e1 357void blk_start_queue(struct request_queue *q)
1da177e4 358{
2fff8a92 359 lockdep_assert_held(q->queue_lock);
332ebbf7 360 WARN_ON_ONCE(q->mq_ops);
a038e253 361
75ad23bc 362 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 363 __blk_run_queue(q);
1da177e4 364}
1da177e4
LT
365EXPORT_SYMBOL(blk_start_queue);
366
367/**
368 * blk_stop_queue - stop a queue
165125e1 369 * @q: The &struct request_queue in question
1da177e4
LT
370 *
371 * Description:
372 * The Linux block layer assumes that a block driver will consume all
373 * entries on the request queue when the request_fn strategy is called.
374 * Often this will not happen, because of hardware limitations (queue
375 * depth settings). If a device driver gets a 'queue full' response,
376 * or if it simply chooses not to queue more I/O at one point, it can
377 * call this function to prevent the request_fn from being called until
378 * the driver has signalled it's ready to go again. This happens by calling
2fff8a92 379 * blk_start_queue() to restart queue operations.
1da177e4 380 **/
165125e1 381void blk_stop_queue(struct request_queue *q)
1da177e4 382{
2fff8a92 383 lockdep_assert_held(q->queue_lock);
332ebbf7 384 WARN_ON_ONCE(q->mq_ops);
2fff8a92 385
136b5721 386 cancel_delayed_work(&q->delay_work);
75ad23bc 387 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
388}
389EXPORT_SYMBOL(blk_stop_queue);
390
391/**
392 * blk_sync_queue - cancel any pending callbacks on a queue
393 * @q: the queue
394 *
395 * Description:
396 * The block layer may perform asynchronous callback activity
397 * on a queue, such as calling the unplug function after a timeout.
398 * A block device may call blk_sync_queue to ensure that any
399 * such activity is cancelled, thus allowing it to release resources
59c51591 400 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
401 * that its ->make_request_fn will not re-add plugging prior to calling
402 * this function.
403 *
da527770 404 * This function does not cancel any asynchronous activity arising
da3dae54 405 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 406 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 407 *
1da177e4
LT
408 */
409void blk_sync_queue(struct request_queue *q)
410{
70ed28b9 411 del_timer_sync(&q->timeout);
4e9b6f20 412 cancel_work_sync(&q->timeout_work);
f04c1fe7
ML
413
414 if (q->mq_ops) {
415 struct blk_mq_hw_ctx *hctx;
416 int i;
417
aba7afc5 418 cancel_delayed_work_sync(&q->requeue_work);
21c6e939 419 queue_for_each_hw_ctx(q, hctx, i)
9f993737 420 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7
ML
421 } else {
422 cancel_delayed_work_sync(&q->delay_work);
423 }
1da177e4
LT
424}
425EXPORT_SYMBOL(blk_sync_queue);
426
c9254f2d
BVA
427/**
428 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
429 * @q: request queue pointer
430 *
431 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
432 * set and 1 if the flag was already set.
433 */
434int blk_set_preempt_only(struct request_queue *q)
435{
8814ce8a 436 return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
c9254f2d
BVA
437}
438EXPORT_SYMBOL_GPL(blk_set_preempt_only);
439
440void blk_clear_preempt_only(struct request_queue *q)
441{
8814ce8a 442 blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
3a0a5299 443 wake_up_all(&q->mq_freeze_wq);
c9254f2d
BVA
444}
445EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
446
c246e80d
BVA
447/**
448 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
449 * @q: The queue to run
450 *
451 * Description:
452 * Invoke request handling on a queue if there are any pending requests.
453 * May be used to restart request handling after a request has completed.
454 * This variant runs the queue whether or not the queue has been
455 * stopped. Must be called with the queue lock held and interrupts
456 * disabled. See also @blk_run_queue.
457 */
458inline void __blk_run_queue_uncond(struct request_queue *q)
459{
2fff8a92 460 lockdep_assert_held(q->queue_lock);
332ebbf7 461 WARN_ON_ONCE(q->mq_ops);
2fff8a92 462
c246e80d
BVA
463 if (unlikely(blk_queue_dead(q)))
464 return;
465
24faf6f6
BVA
466 /*
467 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
468 * the queue lock internally. As a result multiple threads may be
469 * running such a request function concurrently. Keep track of the
470 * number of active request_fn invocations such that blk_drain_queue()
471 * can wait until all these request_fn calls have finished.
472 */
473 q->request_fn_active++;
c246e80d 474 q->request_fn(q);
24faf6f6 475 q->request_fn_active--;
c246e80d 476}
a7928c15 477EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 478
1da177e4 479/**
80a4b58e 480 * __blk_run_queue - run a single device queue
1da177e4 481 * @q: The queue to run
80a4b58e
JA
482 *
483 * Description:
2fff8a92 484 * See @blk_run_queue.
1da177e4 485 */
24ecfbe2 486void __blk_run_queue(struct request_queue *q)
1da177e4 487{
2fff8a92 488 lockdep_assert_held(q->queue_lock);
332ebbf7 489 WARN_ON_ONCE(q->mq_ops);
2fff8a92 490
a538cd03
TH
491 if (unlikely(blk_queue_stopped(q)))
492 return;
493
c246e80d 494 __blk_run_queue_uncond(q);
75ad23bc
NP
495}
496EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 497
24ecfbe2
CH
498/**
499 * blk_run_queue_async - run a single device queue in workqueue context
500 * @q: The queue to run
501 *
502 * Description:
503 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
2fff8a92
BVA
504 * of us.
505 *
506 * Note:
507 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
508 * has canceled q->delay_work, callers must hold the queue lock to avoid
509 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
24ecfbe2
CH
510 */
511void blk_run_queue_async(struct request_queue *q)
512{
2fff8a92 513 lockdep_assert_held(q->queue_lock);
332ebbf7 514 WARN_ON_ONCE(q->mq_ops);
2fff8a92 515
70460571 516 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 517 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 518}
c21e6beb 519EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 520
75ad23bc
NP
521/**
522 * blk_run_queue - run a single device queue
523 * @q: The queue to run
80a4b58e
JA
524 *
525 * Description:
526 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 527 * May be used to restart queueing when a request has completed.
75ad23bc
NP
528 */
529void blk_run_queue(struct request_queue *q)
530{
531 unsigned long flags;
532
332ebbf7
BVA
533 WARN_ON_ONCE(q->mq_ops);
534
75ad23bc 535 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 536 __blk_run_queue(q);
1da177e4
LT
537 spin_unlock_irqrestore(q->queue_lock, flags);
538}
539EXPORT_SYMBOL(blk_run_queue);
540
165125e1 541void blk_put_queue(struct request_queue *q)
483f4afc
AV
542{
543 kobject_put(&q->kobj);
544}
d86e0e83 545EXPORT_SYMBOL(blk_put_queue);
483f4afc 546
e3c78ca5 547/**
807592a4 548 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 549 * @q: queue to drain
c9a929dd 550 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 551 *
c9a929dd
TH
552 * Drain requests from @q. If @drain_all is set, all requests are drained.
553 * If not, only ELVPRIV requests are drained. The caller is responsible
554 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 555 */
807592a4
BVA
556static void __blk_drain_queue(struct request_queue *q, bool drain_all)
557 __releases(q->queue_lock)
558 __acquires(q->queue_lock)
e3c78ca5 559{
458f27a9
AH
560 int i;
561
807592a4 562 lockdep_assert_held(q->queue_lock);
332ebbf7 563 WARN_ON_ONCE(q->mq_ops);
807592a4 564
e3c78ca5 565 while (true) {
481a7d64 566 bool drain = false;
e3c78ca5 567
b855b04a
TH
568 /*
569 * The caller might be trying to drain @q before its
570 * elevator is initialized.
571 */
572 if (q->elevator)
573 elv_drain_elevator(q);
574
5efd6113 575 blkcg_drain_queue(q);
e3c78ca5 576
4eabc941
TH
577 /*
578 * This function might be called on a queue which failed
b855b04a
TH
579 * driver init after queue creation or is not yet fully
580 * active yet. Some drivers (e.g. fd and loop) get unhappy
581 * in such cases. Kick queue iff dispatch queue has
582 * something on it and @q has request_fn set.
4eabc941 583 */
b855b04a 584 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 585 __blk_run_queue(q);
c9a929dd 586
8a5ecdd4 587 drain |= q->nr_rqs_elvpriv;
24faf6f6 588 drain |= q->request_fn_active;
481a7d64
TH
589
590 /*
591 * Unfortunately, requests are queued at and tracked from
592 * multiple places and there's no single counter which can
593 * be drained. Check all the queues and counters.
594 */
595 if (drain_all) {
e97c293c 596 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
597 drain |= !list_empty(&q->queue_head);
598 for (i = 0; i < 2; i++) {
8a5ecdd4 599 drain |= q->nr_rqs[i];
481a7d64 600 drain |= q->in_flight[i];
7c94e1c1
ML
601 if (fq)
602 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
603 }
604 }
e3c78ca5 605
481a7d64 606 if (!drain)
e3c78ca5 607 break;
807592a4
BVA
608
609 spin_unlock_irq(q->queue_lock);
610
e3c78ca5 611 msleep(10);
807592a4
BVA
612
613 spin_lock_irq(q->queue_lock);
e3c78ca5 614 }
458f27a9
AH
615
616 /*
617 * With queue marked dead, any woken up waiter will fail the
618 * allocation path, so the wakeup chaining is lost and we're
619 * left with hung waiters. We need to wake up those waiters.
620 */
621 if (q->request_fn) {
a051661c
TH
622 struct request_list *rl;
623
a051661c
TH
624 blk_queue_for_each_rl(rl, q)
625 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
626 wake_up_all(&rl->wait[i]);
458f27a9 627 }
e3c78ca5
TH
628}
629
454be724
ML
630void blk_drain_queue(struct request_queue *q)
631{
632 spin_lock_irq(q->queue_lock);
633 __blk_drain_queue(q, true);
634 spin_unlock_irq(q->queue_lock);
635}
636
d732580b
TH
637/**
638 * blk_queue_bypass_start - enter queue bypass mode
639 * @q: queue of interest
640 *
641 * In bypass mode, only the dispatch FIFO queue of @q is used. This
642 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 643 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
644 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
645 * inside queue or RCU read lock.
d732580b
TH
646 */
647void blk_queue_bypass_start(struct request_queue *q)
648{
332ebbf7
BVA
649 WARN_ON_ONCE(q->mq_ops);
650
d732580b 651 spin_lock_irq(q->queue_lock);
776687bc 652 q->bypass_depth++;
d732580b
TH
653 queue_flag_set(QUEUE_FLAG_BYPASS, q);
654 spin_unlock_irq(q->queue_lock);
655
776687bc
TH
656 /*
657 * Queues start drained. Skip actual draining till init is
658 * complete. This avoids lenghty delays during queue init which
659 * can happen many times during boot.
660 */
661 if (blk_queue_init_done(q)) {
807592a4
BVA
662 spin_lock_irq(q->queue_lock);
663 __blk_drain_queue(q, false);
664 spin_unlock_irq(q->queue_lock);
665
b82d4b19
TH
666 /* ensure blk_queue_bypass() is %true inside RCU read lock */
667 synchronize_rcu();
668 }
d732580b
TH
669}
670EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
671
672/**
673 * blk_queue_bypass_end - leave queue bypass mode
674 * @q: queue of interest
675 *
676 * Leave bypass mode and restore the normal queueing behavior.
332ebbf7
BVA
677 *
678 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
679 * this function is called for both blk-sq and blk-mq queues.
d732580b
TH
680 */
681void blk_queue_bypass_end(struct request_queue *q)
682{
683 spin_lock_irq(q->queue_lock);
684 if (!--q->bypass_depth)
685 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
686 WARN_ON_ONCE(q->bypass_depth < 0);
687 spin_unlock_irq(q->queue_lock);
688}
689EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
690
aed3ea94
JA
691void blk_set_queue_dying(struct request_queue *q)
692{
8814ce8a 693 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
aed3ea94 694
d3cfb2a0
ML
695 /*
696 * When queue DYING flag is set, we need to block new req
697 * entering queue, so we call blk_freeze_queue_start() to
698 * prevent I/O from crossing blk_queue_enter().
699 */
700 blk_freeze_queue_start(q);
701
aed3ea94
JA
702 if (q->mq_ops)
703 blk_mq_wake_waiters(q);
704 else {
705 struct request_list *rl;
706
bbfc3c5d 707 spin_lock_irq(q->queue_lock);
aed3ea94
JA
708 blk_queue_for_each_rl(rl, q) {
709 if (rl->rq_pool) {
34d9715a
ML
710 wake_up_all(&rl->wait[BLK_RW_SYNC]);
711 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
aed3ea94
JA
712 }
713 }
bbfc3c5d 714 spin_unlock_irq(q->queue_lock);
aed3ea94 715 }
055f6e18
ML
716
717 /* Make blk_queue_enter() reexamine the DYING flag. */
718 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
719}
720EXPORT_SYMBOL_GPL(blk_set_queue_dying);
721
c9a929dd
TH
722/**
723 * blk_cleanup_queue - shutdown a request queue
724 * @q: request queue to shutdown
725 *
c246e80d
BVA
726 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
727 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 728 */
6728cb0e 729void blk_cleanup_queue(struct request_queue *q)
483f4afc 730{
c9a929dd 731 spinlock_t *lock = q->queue_lock;
e3335de9 732
3f3299d5 733 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 734 mutex_lock(&q->sysfs_lock);
aed3ea94 735 blk_set_queue_dying(q);
c9a929dd 736 spin_lock_irq(lock);
6ecf23af 737
80fd9979 738 /*
3f3299d5 739 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
740 * that, unlike blk_queue_bypass_start(), we aren't performing
741 * synchronize_rcu() after entering bypass mode to avoid the delay
742 * as some drivers create and destroy a lot of queues while
743 * probing. This is still safe because blk_release_queue() will be
744 * called only after the queue refcnt drops to zero and nothing,
745 * RCU or not, would be traversing the queue by then.
746 */
6ecf23af
TH
747 q->bypass_depth++;
748 queue_flag_set(QUEUE_FLAG_BYPASS, q);
749
c9a929dd
TH
750 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
751 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 752 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
753 spin_unlock_irq(lock);
754 mutex_unlock(&q->sysfs_lock);
755
c246e80d
BVA
756 /*
757 * Drain all requests queued before DYING marking. Set DEAD flag to
758 * prevent that q->request_fn() gets invoked after draining finished.
759 */
3ef28e83 760 blk_freeze_queue(q);
9c1051aa 761 spin_lock_irq(lock);
c246e80d 762 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 763 spin_unlock_irq(lock);
c9a929dd 764
c2856ae2
ML
765 /*
766 * make sure all in-progress dispatch are completed because
767 * blk_freeze_queue() can only complete all requests, and
768 * dispatch may still be in-progress since we dispatch requests
769 * from more than one contexts
770 */
771 if (q->mq_ops)
772 blk_mq_quiesce_queue(q);
773
5a48fc14
DW
774 /* for synchronous bio-based driver finish in-flight integrity i/o */
775 blk_flush_integrity();
776
c9a929dd 777 /* @q won't process any more request, flush async actions */
dc3b17cc 778 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
779 blk_sync_queue(q);
780
a063057d
BVA
781 /*
782 * I/O scheduler exit is only safe after the sysfs scheduler attribute
783 * has been removed.
784 */
785 WARN_ON_ONCE(q->kobj.state_in_sysfs);
786
787 /*
788 * Since the I/O scheduler exit code may access cgroup information,
789 * perform I/O scheduler exit before disassociating from the block
790 * cgroup controller.
791 */
792 if (q->elevator) {
793 ioc_clear_queue(q);
794 elevator_exit(q, q->elevator);
795 q->elevator = NULL;
796 }
797
798 /*
799 * Remove all references to @q from the block cgroup controller before
800 * restoring @q->queue_lock to avoid that restoring this pointer causes
801 * e.g. blkcg_print_blkgs() to crash.
802 */
803 blkcg_exit_queue(q);
804
805 /*
806 * Since the cgroup code may dereference the @q->backing_dev_info
807 * pointer, only decrease its reference count after having removed the
808 * association with the block cgroup controller.
809 */
810 bdi_put(q->backing_dev_info);
811
45a9c9d9
BVA
812 if (q->mq_ops)
813 blk_mq_free_queue(q);
3ef28e83 814 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 815
5e5cfac0
AH
816 spin_lock_irq(lock);
817 if (q->queue_lock != &q->__queue_lock)
818 q->queue_lock = &q->__queue_lock;
819 spin_unlock_irq(lock);
820
c9a929dd 821 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
822 blk_put_queue(q);
823}
1da177e4
LT
824EXPORT_SYMBOL(blk_cleanup_queue);
825
271508db 826/* Allocate memory local to the request queue */
6d247d7f 827static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 828{
6d247d7f
CH
829 struct request_queue *q = data;
830
831 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
832}
833
6d247d7f 834static void free_request_simple(void *element, void *data)
271508db
DR
835{
836 kmem_cache_free(request_cachep, element);
837}
838
6d247d7f
CH
839static void *alloc_request_size(gfp_t gfp_mask, void *data)
840{
841 struct request_queue *q = data;
842 struct request *rq;
843
844 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
845 q->node);
846 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
847 kfree(rq);
848 rq = NULL;
849 }
850 return rq;
851}
852
853static void free_request_size(void *element, void *data)
854{
855 struct request_queue *q = data;
856
857 if (q->exit_rq_fn)
858 q->exit_rq_fn(q, element);
859 kfree(element);
860}
861
5b788ce3
TH
862int blk_init_rl(struct request_list *rl, struct request_queue *q,
863 gfp_t gfp_mask)
1da177e4 864{
85acb3ba 865 if (unlikely(rl->rq_pool) || q->mq_ops)
1abec4fd
MS
866 return 0;
867
5b788ce3 868 rl->q = q;
1faa16d2
JA
869 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
870 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
871 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
872 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 873
6d247d7f
CH
874 if (q->cmd_size) {
875 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
876 alloc_request_size, free_request_size,
877 q, gfp_mask, q->node);
878 } else {
879 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
880 alloc_request_simple, free_request_simple,
881 q, gfp_mask, q->node);
882 }
1da177e4
LT
883 if (!rl->rq_pool)
884 return -ENOMEM;
885
b425e504
BVA
886 if (rl != &q->root_rl)
887 WARN_ON_ONCE(!blk_get_queue(q));
888
1da177e4
LT
889 return 0;
890}
891
b425e504 892void blk_exit_rl(struct request_queue *q, struct request_list *rl)
5b788ce3 893{
b425e504 894 if (rl->rq_pool) {
5b788ce3 895 mempool_destroy(rl->rq_pool);
b425e504
BVA
896 if (rl != &q->root_rl)
897 blk_put_queue(q);
898 }
5b788ce3
TH
899}
900
165125e1 901struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 902{
5ee0524b 903 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
1946089a
CL
904}
905EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 906
3a0a5299
BVA
907/**
908 * blk_queue_enter() - try to increase q->q_usage_counter
909 * @q: request queue pointer
910 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
911 */
9a95e4ef 912int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 913{
3a0a5299
BVA
914 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
915
3ef28e83 916 while (true) {
3a0a5299 917 bool success = false;
3ef28e83 918
818e0fa2 919 rcu_read_lock();
3a0a5299
BVA
920 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
921 /*
922 * The code that sets the PREEMPT_ONLY flag is
923 * responsible for ensuring that that flag is globally
924 * visible before the queue is unfrozen.
925 */
926 if (preempt || !blk_queue_preempt_only(q)) {
927 success = true;
928 } else {
929 percpu_ref_put(&q->q_usage_counter);
930 }
931 }
818e0fa2 932 rcu_read_unlock();
3a0a5299
BVA
933
934 if (success)
3ef28e83
DW
935 return 0;
936
3a0a5299 937 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
938 return -EBUSY;
939
5ed61d3f 940 /*
1671d522 941 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 942 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
943 * .q_usage_counter and reading .mq_freeze_depth or
944 * queue dying flag, otherwise the following wait may
945 * never return if the two reads are reordered.
5ed61d3f
ML
946 */
947 smp_rmb();
948
1dc3039b
AJ
949 wait_event(q->mq_freeze_wq,
950 (atomic_read(&q->mq_freeze_depth) == 0 &&
951 (preempt || !blk_queue_preempt_only(q))) ||
952 blk_queue_dying(q));
3ef28e83
DW
953 if (blk_queue_dying(q))
954 return -ENODEV;
3ef28e83
DW
955 }
956}
957
958void blk_queue_exit(struct request_queue *q)
959{
960 percpu_ref_put(&q->q_usage_counter);
961}
962
963static void blk_queue_usage_counter_release(struct percpu_ref *ref)
964{
965 struct request_queue *q =
966 container_of(ref, struct request_queue, q_usage_counter);
967
968 wake_up_all(&q->mq_freeze_wq);
969}
970
bca237a5 971static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 972{
bca237a5 973 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
974
975 kblockd_schedule_work(&q->timeout_work);
976}
977
498f6650
BVA
978/**
979 * blk_alloc_queue_node - allocate a request queue
980 * @gfp_mask: memory allocation flags
981 * @node_id: NUMA node to allocate memory from
982 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
983 * serialize calls to the legacy .request_fn() callback. Ignored for
984 * blk-mq request queues.
985 *
986 * Note: pass the queue lock as the third argument to this function instead of
987 * setting the queue lock pointer explicitly to avoid triggering a sporadic
988 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
989 * the queue lock pointer must be set before blkcg_init_queue() is called.
990 */
5ee0524b
BVA
991struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
992 spinlock_t *lock)
1946089a 993{
165125e1 994 struct request_queue *q;
338aa96d 995 int ret;
1946089a 996
8324aa91 997 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 998 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
999 if (!q)
1000 return NULL;
1001
cbf62af3
CH
1002 INIT_LIST_HEAD(&q->queue_head);
1003 q->last_merge = NULL;
1004 q->end_sector = 0;
1005 q->boundary_rq = NULL;
1006
00380a40 1007 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 1008 if (q->id < 0)
3d2936f4 1009 goto fail_q;
a73f730d 1010
338aa96d
KO
1011 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1012 if (ret)
54efd50b
KO
1013 goto fail_id;
1014
d03f6cdc
JK
1015 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1016 if (!q->backing_dev_info)
1017 goto fail_split;
1018
a83b576c
JA
1019 q->stats = blk_alloc_queue_stats();
1020 if (!q->stats)
1021 goto fail_stats;
1022
dc3b17cc 1023 q->backing_dev_info->ra_pages =
09cbfeaf 1024 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
1025 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1026 q->backing_dev_info->name = "block";
5151412d 1027 q->node = node_id;
0989a025 1028
bca237a5
KC
1029 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1030 laptop_mode_timer_fn, 0);
1031 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
4e9b6f20 1032 INIT_WORK(&q->timeout_work, NULL);
b855b04a 1033 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 1034 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 1035 INIT_LIST_HEAD(&q->icq_list);
4eef3049 1036#ifdef CONFIG_BLK_CGROUP
e8989fae 1037 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 1038#endif
3cca6dc1 1039 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 1040
8324aa91 1041 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 1042
5acb3cc2
WL
1043#ifdef CONFIG_BLK_DEV_IO_TRACE
1044 mutex_init(&q->blk_trace_mutex);
1045#endif
483f4afc 1046 mutex_init(&q->sysfs_lock);
e7e72bf6 1047 spin_lock_init(&q->__queue_lock);
483f4afc 1048
498f6650
BVA
1049 if (!q->mq_ops)
1050 q->queue_lock = lock ? : &q->__queue_lock;
c94a96ac 1051
b82d4b19
TH
1052 /*
1053 * A queue starts its life with bypass turned on to avoid
1054 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
1055 * init. The initial bypass will be finished when the queue is
1056 * registered by blk_register_queue().
b82d4b19
TH
1057 */
1058 q->bypass_depth = 1;
f78bac2c 1059 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
b82d4b19 1060
320ae51f
JA
1061 init_waitqueue_head(&q->mq_freeze_wq);
1062
3ef28e83
DW
1063 /*
1064 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1065 * See blk_register_queue() for details.
1066 */
1067 if (percpu_ref_init(&q->q_usage_counter,
1068 blk_queue_usage_counter_release,
1069 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 1070 goto fail_bdi;
f51b802c 1071
3ef28e83
DW
1072 if (blkcg_init_queue(q))
1073 goto fail_ref;
1074
1da177e4 1075 return q;
a73f730d 1076
3ef28e83
DW
1077fail_ref:
1078 percpu_ref_exit(&q->q_usage_counter);
fff4996b 1079fail_bdi:
a83b576c
JA
1080 blk_free_queue_stats(q->stats);
1081fail_stats:
d03f6cdc 1082 bdi_put(q->backing_dev_info);
54efd50b 1083fail_split:
338aa96d 1084 bioset_exit(&q->bio_split);
a73f730d
TH
1085fail_id:
1086 ida_simple_remove(&blk_queue_ida, q->id);
1087fail_q:
1088 kmem_cache_free(blk_requestq_cachep, q);
1089 return NULL;
1da177e4 1090}
1946089a 1091EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1092
1093/**
1094 * blk_init_queue - prepare a request queue for use with a block device
1095 * @rfn: The function to be called to process requests that have been
1096 * placed on the queue.
1097 * @lock: Request queue spin lock
1098 *
1099 * Description:
1100 * If a block device wishes to use the standard request handling procedures,
1101 * which sorts requests and coalesces adjacent requests, then it must
1102 * call blk_init_queue(). The function @rfn will be called when there
1103 * are requests on the queue that need to be processed. If the device
1104 * supports plugging, then @rfn may not be called immediately when requests
1105 * are available on the queue, but may be called at some time later instead.
1106 * Plugged queues are generally unplugged when a buffer belonging to one
1107 * of the requests on the queue is needed, or due to memory pressure.
1108 *
1109 * @rfn is not required, or even expected, to remove all requests off the
1110 * queue, but only as many as it can handle at a time. If it does leave
1111 * requests on the queue, it is responsible for arranging that the requests
1112 * get dealt with eventually.
1113 *
1114 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1115 * request queue; this lock will be taken also from interrupt context, so irq
1116 * disabling is needed for it.
1da177e4 1117 *
710027a4 1118 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
1119 * it didn't succeed.
1120 *
1121 * Note:
1122 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1123 * when the block device is deactivated (such as at module unload).
1124 **/
1946089a 1125
165125e1 1126struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1127{
c304a51b 1128 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
1129}
1130EXPORT_SYMBOL(blk_init_queue);
1131
165125e1 1132struct request_queue *
1946089a
CL
1133blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1134{
5ea708d1 1135 struct request_queue *q;
1da177e4 1136
498f6650 1137 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
5ea708d1 1138 if (!q)
c86d1b8a
MS
1139 return NULL;
1140
5ea708d1 1141 q->request_fn = rfn;
5ea708d1
CH
1142 if (blk_init_allocated_queue(q) < 0) {
1143 blk_cleanup_queue(q);
1144 return NULL;
1145 }
18741986 1146
7982e90c 1147 return q;
01effb0d
MS
1148}
1149EXPORT_SYMBOL(blk_init_queue_node);
1150
dece1635 1151static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 1152
1da177e4 1153
5ea708d1
CH
1154int blk_init_allocated_queue(struct request_queue *q)
1155{
332ebbf7
BVA
1156 WARN_ON_ONCE(q->mq_ops);
1157
6d247d7f 1158 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 1159 if (!q->fq)
5ea708d1 1160 return -ENOMEM;
7982e90c 1161
6d247d7f
CH
1162 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1163 goto out_free_flush_queue;
7982e90c 1164
a051661c 1165 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 1166 goto out_exit_flush_rq;
1da177e4 1167
287922eb 1168 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 1169 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 1170
f3b144aa
JA
1171 /*
1172 * This also sets hw/phys segments, boundary and size
1173 */
c20e8de2 1174 blk_queue_make_request(q, blk_queue_bio);
1da177e4 1175
44ec9542
AS
1176 q->sg_reserved_size = INT_MAX;
1177
eb1c160b
TS
1178 /* Protect q->elevator from elevator_change */
1179 mutex_lock(&q->sysfs_lock);
1180
b82d4b19 1181 /* init elevator */
ddb72532 1182 if (elevator_init(q)) {
eb1c160b 1183 mutex_unlock(&q->sysfs_lock);
6d247d7f 1184 goto out_exit_flush_rq;
eb1c160b
TS
1185 }
1186
1187 mutex_unlock(&q->sysfs_lock);
5ea708d1 1188 return 0;
eb1c160b 1189
6d247d7f
CH
1190out_exit_flush_rq:
1191 if (q->exit_rq_fn)
1192 q->exit_rq_fn(q, q->fq->flush_rq);
1193out_free_flush_queue:
ba483388 1194 blk_free_flush_queue(q->fq);
5ea708d1 1195 return -ENOMEM;
1da177e4 1196}
5151412d 1197EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 1198
09ac46c4 1199bool blk_get_queue(struct request_queue *q)
1da177e4 1200{
3f3299d5 1201 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
1202 __blk_get_queue(q);
1203 return true;
1da177e4
LT
1204 }
1205
09ac46c4 1206 return false;
1da177e4 1207}
d86e0e83 1208EXPORT_SYMBOL(blk_get_queue);
1da177e4 1209
5b788ce3 1210static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 1211{
e8064021 1212 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 1213 elv_put_request(rl->q, rq);
f1f8cc94 1214 if (rq->elv.icq)
11a3122f 1215 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
1216 }
1217
5b788ce3 1218 mempool_free(rq, rl->rq_pool);
1da177e4
LT
1219}
1220
1da177e4
LT
1221/*
1222 * ioc_batching returns true if the ioc is a valid batching request and
1223 * should be given priority access to a request.
1224 */
165125e1 1225static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1226{
1227 if (!ioc)
1228 return 0;
1229
1230 /*
1231 * Make sure the process is able to allocate at least 1 request
1232 * even if the batch times out, otherwise we could theoretically
1233 * lose wakeups.
1234 */
1235 return ioc->nr_batch_requests == q->nr_batching ||
1236 (ioc->nr_batch_requests > 0
1237 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1238}
1239
1240/*
1241 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1242 * will cause the process to be a "batcher" on all queues in the system. This
1243 * is the behaviour we want though - once it gets a wakeup it should be given
1244 * a nice run.
1245 */
165125e1 1246static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1247{
1248 if (!ioc || ioc_batching(q, ioc))
1249 return;
1250
1251 ioc->nr_batch_requests = q->nr_batching;
1252 ioc->last_waited = jiffies;
1253}
1254
5b788ce3 1255static void __freed_request(struct request_list *rl, int sync)
1da177e4 1256{
5b788ce3 1257 struct request_queue *q = rl->q;
1da177e4 1258
d40f75a0
TH
1259 if (rl->count[sync] < queue_congestion_off_threshold(q))
1260 blk_clear_congested(rl, sync);
1da177e4 1261
1faa16d2
JA
1262 if (rl->count[sync] + 1 <= q->nr_requests) {
1263 if (waitqueue_active(&rl->wait[sync]))
1264 wake_up(&rl->wait[sync]);
1da177e4 1265
5b788ce3 1266 blk_clear_rl_full(rl, sync);
1da177e4
LT
1267 }
1268}
1269
1270/*
1271 * A request has just been released. Account for it, update the full and
1272 * congestion status, wake up any waiters. Called under q->queue_lock.
1273 */
e8064021
CH
1274static void freed_request(struct request_list *rl, bool sync,
1275 req_flags_t rq_flags)
1da177e4 1276{
5b788ce3 1277 struct request_queue *q = rl->q;
1da177e4 1278
8a5ecdd4 1279 q->nr_rqs[sync]--;
1faa16d2 1280 rl->count[sync]--;
e8064021 1281 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1282 q->nr_rqs_elvpriv--;
1da177e4 1283
5b788ce3 1284 __freed_request(rl, sync);
1da177e4 1285
1faa16d2 1286 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1287 __freed_request(rl, sync ^ 1);
1da177e4
LT
1288}
1289
e3a2b3f9
JA
1290int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1291{
1292 struct request_list *rl;
d40f75a0 1293 int on_thresh, off_thresh;
e3a2b3f9 1294
332ebbf7
BVA
1295 WARN_ON_ONCE(q->mq_ops);
1296
e3a2b3f9
JA
1297 spin_lock_irq(q->queue_lock);
1298 q->nr_requests = nr;
1299 blk_queue_congestion_threshold(q);
d40f75a0
TH
1300 on_thresh = queue_congestion_on_threshold(q);
1301 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1302
d40f75a0
TH
1303 blk_queue_for_each_rl(rl, q) {
1304 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1305 blk_set_congested(rl, BLK_RW_SYNC);
1306 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1307 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1308
d40f75a0
TH
1309 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1310 blk_set_congested(rl, BLK_RW_ASYNC);
1311 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1312 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1313
e3a2b3f9
JA
1314 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1315 blk_set_rl_full(rl, BLK_RW_SYNC);
1316 } else {
1317 blk_clear_rl_full(rl, BLK_RW_SYNC);
1318 wake_up(&rl->wait[BLK_RW_SYNC]);
1319 }
1320
1321 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1322 blk_set_rl_full(rl, BLK_RW_ASYNC);
1323 } else {
1324 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1325 wake_up(&rl->wait[BLK_RW_ASYNC]);
1326 }
1327 }
1328
1329 spin_unlock_irq(q->queue_lock);
1330 return 0;
1331}
1332
da8303c6 1333/**
a06e05e6 1334 * __get_request - get a free request
5b788ce3 1335 * @rl: request list to allocate from
ef295ecf 1336 * @op: operation and flags
da8303c6 1337 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1338 * @flags: BLQ_MQ_REQ_* flags
4accf5fc 1339 * @gfp_mask: allocator flags
da8303c6
TH
1340 *
1341 * Get a free request from @q. This function may fail under memory
1342 * pressure or if @q is dead.
1343 *
da3dae54 1344 * Must be called with @q->queue_lock held and,
a492f075
JL
1345 * Returns ERR_PTR on failure, with @q->queue_lock held.
1346 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1347 */
ef295ecf 1348static struct request *__get_request(struct request_list *rl, unsigned int op,
4accf5fc 1349 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
1da177e4 1350{
5b788ce3 1351 struct request_queue *q = rl->q;
b679281a 1352 struct request *rq;
7f4b35d1
TH
1353 struct elevator_type *et = q->elevator->type;
1354 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1355 struct io_cq *icq = NULL;
ef295ecf 1356 const bool is_sync = op_is_sync(op);
75eb6c37 1357 int may_queue;
e8064021 1358 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1359
2fff8a92
BVA
1360 lockdep_assert_held(q->queue_lock);
1361
3f3299d5 1362 if (unlikely(blk_queue_dying(q)))
a492f075 1363 return ERR_PTR(-ENODEV);
da8303c6 1364
ef295ecf 1365 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1366 if (may_queue == ELV_MQUEUE_NO)
1367 goto rq_starved;
1368
1faa16d2
JA
1369 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1370 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1371 /*
1372 * The queue will fill after this allocation, so set
1373 * it as full, and mark this process as "batching".
1374 * This process will be allowed to complete a batch of
1375 * requests, others will be blocked.
1376 */
5b788ce3 1377 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1378 ioc_set_batching(q, ioc);
5b788ce3 1379 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1380 } else {
1381 if (may_queue != ELV_MQUEUE_MUST
1382 && !ioc_batching(q, ioc)) {
1383 /*
1384 * The queue is full and the allocating
1385 * process is not a "batcher", and not
1386 * exempted by the IO scheduler
1387 */
a492f075 1388 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1389 }
1390 }
1da177e4 1391 }
d40f75a0 1392 blk_set_congested(rl, is_sync);
1da177e4
LT
1393 }
1394
082cf69e
JA
1395 /*
1396 * Only allow batching queuers to allocate up to 50% over the defined
1397 * limit of requests, otherwise we could have thousands of requests
1398 * allocated with any setting of ->nr_requests
1399 */
1faa16d2 1400 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1401 return ERR_PTR(-ENOMEM);
fd782a4a 1402
8a5ecdd4 1403 q->nr_rqs[is_sync]++;
1faa16d2
JA
1404 rl->count[is_sync]++;
1405 rl->starved[is_sync] = 0;
cb98fc8b 1406
f1f8cc94
TH
1407 /*
1408 * Decide whether the new request will be managed by elevator. If
e8064021 1409 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1410 * prevent the current elevator from being destroyed until the new
1411 * request is freed. This guarantees icq's won't be destroyed and
1412 * makes creating new ones safe.
1413 *
e6f7f93d
CH
1414 * Flush requests do not use the elevator so skip initialization.
1415 * This allows a request to share the flush and elevator data.
1416 *
f1f8cc94
TH
1417 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1418 * it will be created after releasing queue_lock.
1419 */
e6f7f93d 1420 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1421 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1422 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1423 if (et->icq_cache && ioc)
1424 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1425 }
cb98fc8b 1426
f253b86b 1427 if (blk_queue_io_stat(q))
e8064021 1428 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1429 spin_unlock_irq(q->queue_lock);
1430
29e2b09a 1431 /* allocate and init request */
5b788ce3 1432 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1433 if (!rq)
b679281a 1434 goto fail_alloc;
1da177e4 1435
29e2b09a 1436 blk_rq_init(q, rq);
a051661c 1437 blk_rq_set_rl(rq, rl);
ef295ecf 1438 rq->cmd_flags = op;
e8064021 1439 rq->rq_flags = rq_flags;
1b6d65a0
BVA
1440 if (flags & BLK_MQ_REQ_PREEMPT)
1441 rq->rq_flags |= RQF_PREEMPT;
29e2b09a 1442
aaf7c680 1443 /* init elvpriv */
e8064021 1444 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1445 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1446 if (ioc)
1447 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1448 if (!icq)
1449 goto fail_elvpriv;
29e2b09a 1450 }
aaf7c680
TH
1451
1452 rq->elv.icq = icq;
1453 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1454 goto fail_elvpriv;
1455
1456 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1457 if (icq)
1458 get_io_context(icq->ioc);
1459 }
aaf7c680 1460out:
88ee5ef1
JA
1461 /*
1462 * ioc may be NULL here, and ioc_batching will be false. That's
1463 * OK, if the queue is under the request limit then requests need
1464 * not count toward the nr_batch_requests limit. There will always
1465 * be some limit enforced by BLK_BATCH_TIME.
1466 */
1da177e4
LT
1467 if (ioc_batching(q, ioc))
1468 ioc->nr_batch_requests--;
6728cb0e 1469
e6a40b09 1470 trace_block_getrq(q, bio, op);
1da177e4 1471 return rq;
b679281a 1472
aaf7c680
TH
1473fail_elvpriv:
1474 /*
1475 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1476 * and may fail indefinitely under memory pressure and thus
1477 * shouldn't stall IO. Treat this request as !elvpriv. This will
1478 * disturb iosched and blkcg but weird is bettern than dead.
1479 */
7b2b10e0 1480 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1481 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1482
e8064021 1483 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1484 rq->elv.icq = NULL;
1485
1486 spin_lock_irq(q->queue_lock);
8a5ecdd4 1487 q->nr_rqs_elvpriv--;
aaf7c680
TH
1488 spin_unlock_irq(q->queue_lock);
1489 goto out;
1490
b679281a
TH
1491fail_alloc:
1492 /*
1493 * Allocation failed presumably due to memory. Undo anything we
1494 * might have messed up.
1495 *
1496 * Allocating task should really be put onto the front of the wait
1497 * queue, but this is pretty rare.
1498 */
1499 spin_lock_irq(q->queue_lock);
e8064021 1500 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1501
1502 /*
1503 * in the very unlikely event that allocation failed and no
1504 * requests for this direction was pending, mark us starved so that
1505 * freeing of a request in the other direction will notice
1506 * us. another possible fix would be to split the rq mempool into
1507 * READ and WRITE
1508 */
1509rq_starved:
1510 if (unlikely(rl->count[is_sync] == 0))
1511 rl->starved[is_sync] = 1;
a492f075 1512 return ERR_PTR(-ENOMEM);
1da177e4
LT
1513}
1514
da8303c6 1515/**
a06e05e6 1516 * get_request - get a free request
da8303c6 1517 * @q: request_queue to allocate request from
ef295ecf 1518 * @op: operation and flags
da8303c6 1519 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1520 * @flags: BLK_MQ_REQ_* flags.
4accf5fc 1521 * @gfp: allocator flags
da8303c6 1522 *
a9a14d36 1523 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags,
d0164adc 1524 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1525 *
da3dae54 1526 * Must be called with @q->queue_lock held and,
a492f075
JL
1527 * Returns ERR_PTR on failure, with @q->queue_lock held.
1528 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1529 */
ef295ecf 1530static struct request *get_request(struct request_queue *q, unsigned int op,
4accf5fc 1531 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
1da177e4 1532{
ef295ecf 1533 const bool is_sync = op_is_sync(op);
a06e05e6 1534 DEFINE_WAIT(wait);
a051661c 1535 struct request_list *rl;
1da177e4 1536 struct request *rq;
a051661c 1537
2fff8a92 1538 lockdep_assert_held(q->queue_lock);
332ebbf7 1539 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1540
a051661c 1541 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1542retry:
4accf5fc 1543 rq = __get_request(rl, op, bio, flags, gfp);
a492f075 1544 if (!IS_ERR(rq))
a06e05e6 1545 return rq;
1da177e4 1546
03a07c92
GR
1547 if (op & REQ_NOWAIT) {
1548 blk_put_rl(rl);
1549 return ERR_PTR(-EAGAIN);
1550 }
1551
6a15674d 1552 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1553 blk_put_rl(rl);
a492f075 1554 return rq;
a051661c 1555 }
1da177e4 1556
a06e05e6
TH
1557 /* wait on @rl and retry */
1558 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1559 TASK_UNINTERRUPTIBLE);
1da177e4 1560
e6a40b09 1561 trace_block_sleeprq(q, bio, op);
1da177e4 1562
a06e05e6
TH
1563 spin_unlock_irq(q->queue_lock);
1564 io_schedule();
d6344532 1565
a06e05e6
TH
1566 /*
1567 * After sleeping, we become a "batching" process and will be able
1568 * to allocate at least one request, and up to a big batch of them
1569 * for a small period time. See ioc_batching, ioc_set_batching
1570 */
a06e05e6 1571 ioc_set_batching(q, current->io_context);
05caf8db 1572
a06e05e6
TH
1573 spin_lock_irq(q->queue_lock);
1574 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1575
a06e05e6 1576 goto retry;
1da177e4
LT
1577}
1578
6a15674d 1579/* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
cd6ce148 1580static struct request *blk_old_get_request(struct request_queue *q,
9a95e4ef 1581 unsigned int op, blk_mq_req_flags_t flags)
1da177e4
LT
1582{
1583 struct request *rq;
c3036021 1584 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
055f6e18 1585 int ret = 0;
1da177e4 1586
332ebbf7
BVA
1587 WARN_ON_ONCE(q->mq_ops);
1588
7f4b35d1
TH
1589 /* create ioc upfront */
1590 create_io_context(gfp_mask, q->node);
1591
3a0a5299 1592 ret = blk_queue_enter(q, flags);
055f6e18
ML
1593 if (ret)
1594 return ERR_PTR(ret);
d6344532 1595 spin_lock_irq(q->queue_lock);
4accf5fc 1596 rq = get_request(q, op, NULL, flags, gfp_mask);
0c4de0f3 1597 if (IS_ERR(rq)) {
da8303c6 1598 spin_unlock_irq(q->queue_lock);
055f6e18 1599 blk_queue_exit(q);
0c4de0f3
CH
1600 return rq;
1601 }
1da177e4 1602
0c4de0f3
CH
1603 /* q->queue_lock is unlocked at this point */
1604 rq->__data_len = 0;
1605 rq->__sector = (sector_t) -1;
1606 rq->bio = rq->biotail = NULL;
1da177e4
LT
1607 return rq;
1608}
320ae51f 1609
6a15674d 1610/**
ff005a06 1611 * blk_get_request - allocate a request
6a15674d
BVA
1612 * @q: request queue to allocate a request for
1613 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1614 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1615 */
ff005a06
CH
1616struct request *blk_get_request(struct request_queue *q, unsigned int op,
1617 blk_mq_req_flags_t flags)
320ae51f 1618{
d280bab3
BVA
1619 struct request *req;
1620
6a15674d 1621 WARN_ON_ONCE(op & REQ_NOWAIT);
1b6d65a0 1622 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
6a15674d 1623
d280bab3 1624 if (q->mq_ops) {
6a15674d 1625 req = blk_mq_alloc_request(q, op, flags);
d280bab3
BVA
1626 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1627 q->mq_ops->initialize_rq_fn(req);
1628 } else {
6a15674d 1629 req = blk_old_get_request(q, op, flags);
d280bab3
BVA
1630 if (!IS_ERR(req) && q->initialize_rq_fn)
1631 q->initialize_rq_fn(req);
1632 }
1633
1634 return req;
320ae51f 1635}
1da177e4
LT
1636EXPORT_SYMBOL(blk_get_request);
1637
1638/**
1639 * blk_requeue_request - put a request back on queue
1640 * @q: request queue where request should be inserted
1641 * @rq: request to be inserted
1642 *
1643 * Description:
1644 * Drivers often keep queueing requests until the hardware cannot accept
1645 * more, when that condition happens we need to put the request back
1646 * on the queue. Must be called with queue lock held.
1647 */
165125e1 1648void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1649{
2fff8a92 1650 lockdep_assert_held(q->queue_lock);
332ebbf7 1651 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1652
242f9dcb
JA
1653 blk_delete_timer(rq);
1654 blk_clear_rq_complete(rq);
5f3ea37c 1655 trace_block_rq_requeue(q, rq);
a8a45941 1656 wbt_requeue(q->rq_wb, rq);
2056a782 1657
e8064021 1658 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1659 blk_queue_end_tag(q, rq);
1660
ba396a6c
JB
1661 BUG_ON(blk_queued_rq(rq));
1662
1da177e4
LT
1663 elv_requeue_request(q, rq);
1664}
1da177e4
LT
1665EXPORT_SYMBOL(blk_requeue_request);
1666
73c10101
JA
1667static void add_acct_request(struct request_queue *q, struct request *rq,
1668 int where)
1669{
320ae51f 1670 blk_account_io_start(rq, true);
7eaceacc 1671 __elv_add_request(q, rq, where);
73c10101
JA
1672}
1673
d62e26b3 1674static void part_round_stats_single(struct request_queue *q, int cpu,
b8d62b3a
JA
1675 struct hd_struct *part, unsigned long now,
1676 unsigned int inflight)
074a7aca 1677{
b8d62b3a 1678 if (inflight) {
074a7aca 1679 __part_stat_add(cpu, part, time_in_queue,
b8d62b3a 1680 inflight * (now - part->stamp));
074a7aca
TH
1681 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1682 }
1683 part->stamp = now;
1684}
1685
1686/**
496aa8a9 1687 * part_round_stats() - Round off the performance stats on a struct disk_stats.
d62e26b3 1688 * @q: target block queue
496aa8a9
RD
1689 * @cpu: cpu number for stats access
1690 * @part: target partition
1da177e4
LT
1691 *
1692 * The average IO queue length and utilisation statistics are maintained
1693 * by observing the current state of the queue length and the amount of
1694 * time it has been in this state for.
1695 *
1696 * Normally, that accounting is done on IO completion, but that can result
1697 * in more than a second's worth of IO being accounted for within any one
1698 * second, leading to >100% utilisation. To deal with that, we call this
1699 * function to do a round-off before returning the results when reading
1700 * /proc/diskstats. This accounts immediately for all queue usage up to
1701 * the current jiffies and restarts the counters again.
1702 */
d62e26b3 1703void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
6f2576af 1704{
b8d62b3a 1705 struct hd_struct *part2 = NULL;
6f2576af 1706 unsigned long now = jiffies;
b8d62b3a
JA
1707 unsigned int inflight[2];
1708 int stats = 0;
1709
1710 if (part->stamp != now)
1711 stats |= 1;
1712
1713 if (part->partno) {
1714 part2 = &part_to_disk(part)->part0;
1715 if (part2->stamp != now)
1716 stats |= 2;
1717 }
1718
1719 if (!stats)
1720 return;
1721
1722 part_in_flight(q, part, inflight);
6f2576af 1723
b8d62b3a
JA
1724 if (stats & 2)
1725 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1726 if (stats & 1)
1727 part_round_stats_single(q, cpu, part, now, inflight[0]);
6f2576af 1728}
074a7aca 1729EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1730
47fafbc7 1731#ifdef CONFIG_PM
c8158819
LM
1732static void blk_pm_put_request(struct request *rq)
1733{
e8064021 1734 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1735 pm_runtime_mark_last_busy(rq->q->dev);
1736}
1737#else
1738static inline void blk_pm_put_request(struct request *rq) {}
1739#endif
1740
165125e1 1741void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1742{
e8064021
CH
1743 req_flags_t rq_flags = req->rq_flags;
1744
1da177e4
LT
1745 if (unlikely(!q))
1746 return;
1da177e4 1747
6f5ba581
CH
1748 if (q->mq_ops) {
1749 blk_mq_free_request(req);
1750 return;
1751 }
1752
2fff8a92
BVA
1753 lockdep_assert_held(q->queue_lock);
1754
6cc77e9c 1755 blk_req_zone_write_unlock(req);
c8158819
LM
1756 blk_pm_put_request(req);
1757
8922e16c
TH
1758 elv_completed_request(q, req);
1759
1cd96c24
BH
1760 /* this is a bio leak */
1761 WARN_ON(req->bio != NULL);
1762
a8a45941 1763 wbt_done(q->rq_wb, req);
87760e5e 1764
1da177e4
LT
1765 /*
1766 * Request may not have originated from ll_rw_blk. if not,
1767 * it didn't come out of our reserved rq pools
1768 */
e8064021 1769 if (rq_flags & RQF_ALLOCED) {
a051661c 1770 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1771 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1772
1da177e4 1773 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1774 BUG_ON(ELV_ON_HASH(req));
1da177e4 1775
a051661c 1776 blk_free_request(rl, req);
e8064021 1777 freed_request(rl, sync, rq_flags);
a051661c 1778 blk_put_rl(rl);
055f6e18 1779 blk_queue_exit(q);
1da177e4
LT
1780 }
1781}
6e39b69e
MC
1782EXPORT_SYMBOL_GPL(__blk_put_request);
1783
1da177e4
LT
1784void blk_put_request(struct request *req)
1785{
165125e1 1786 struct request_queue *q = req->q;
8922e16c 1787
320ae51f
JA
1788 if (q->mq_ops)
1789 blk_mq_free_request(req);
1790 else {
1791 unsigned long flags;
1792
1793 spin_lock_irqsave(q->queue_lock, flags);
1794 __blk_put_request(q, req);
1795 spin_unlock_irqrestore(q->queue_lock, flags);
1796 }
1da177e4 1797}
1da177e4
LT
1798EXPORT_SYMBOL(blk_put_request);
1799
320ae51f
JA
1800bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1801 struct bio *bio)
73c10101 1802{
1eff9d32 1803 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1804
73c10101
JA
1805 if (!ll_back_merge_fn(q, req, bio))
1806 return false;
1807
8c1cf6bb 1808 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1809
1810 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1811 blk_rq_set_mixed_merge(req);
1812
1813 req->biotail->bi_next = bio;
1814 req->biotail = bio;
4f024f37 1815 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1816 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1817
320ae51f 1818 blk_account_io_start(req, false);
73c10101
JA
1819 return true;
1820}
1821
320ae51f
JA
1822bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1823 struct bio *bio)
73c10101 1824{
1eff9d32 1825 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1826
73c10101
JA
1827 if (!ll_front_merge_fn(q, req, bio))
1828 return false;
1829
8c1cf6bb 1830 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1831
1832 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1833 blk_rq_set_mixed_merge(req);
1834
73c10101
JA
1835 bio->bi_next = req->bio;
1836 req->bio = bio;
1837
4f024f37
KO
1838 req->__sector = bio->bi_iter.bi_sector;
1839 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1840 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1841
320ae51f 1842 blk_account_io_start(req, false);
73c10101
JA
1843 return true;
1844}
1845
1e739730
CH
1846bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1847 struct bio *bio)
1848{
1849 unsigned short segments = blk_rq_nr_discard_segments(req);
1850
1851 if (segments >= queue_max_discard_segments(q))
1852 goto no_merge;
1853 if (blk_rq_sectors(req) + bio_sectors(bio) >
1854 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1855 goto no_merge;
1856
1857 req->biotail->bi_next = bio;
1858 req->biotail = bio;
1859 req->__data_len += bio->bi_iter.bi_size;
1860 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1861 req->nr_phys_segments = segments + 1;
1862
1863 blk_account_io_start(req, false);
1864 return true;
1865no_merge:
1866 req_set_nomerge(q, req);
1867 return false;
1868}
1869
bd87b589 1870/**
320ae51f 1871 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1872 * @q: request_queue new bio is being queued at
1873 * @bio: new bio being queued
1874 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1875 * @same_queue_rq: pointer to &struct request that gets filled in when
1876 * another request associated with @q is found on the plug list
1877 * (optional, may be %NULL)
bd87b589
TH
1878 *
1879 * Determine whether @bio being queued on @q can be merged with a request
1880 * on %current's plugged list. Returns %true if merge was successful,
1881 * otherwise %false.
1882 *
07c2bd37
TH
1883 * Plugging coalesces IOs from the same issuer for the same purpose without
1884 * going through @q->queue_lock. As such it's more of an issuing mechanism
1885 * than scheduling, and the request, while may have elvpriv data, is not
1886 * added on the elevator at this point. In addition, we don't have
1887 * reliable access to the elevator outside queue lock. Only check basic
1888 * merging parameters without querying the elevator.
da41a589
RE
1889 *
1890 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1891 */
320ae51f 1892bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1893 unsigned int *request_count,
1894 struct request **same_queue_rq)
73c10101
JA
1895{
1896 struct blk_plug *plug;
1897 struct request *rq;
92f399c7 1898 struct list_head *plug_list;
73c10101 1899
bd87b589 1900 plug = current->plug;
73c10101 1901 if (!plug)
34fe7c05 1902 return false;
56ebdaf2 1903 *request_count = 0;
73c10101 1904
92f399c7
SL
1905 if (q->mq_ops)
1906 plug_list = &plug->mq_list;
1907 else
1908 plug_list = &plug->list;
1909
1910 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1911 bool merged = false;
73c10101 1912
5b3f341f 1913 if (rq->q == q) {
1b2e19f1 1914 (*request_count)++;
5b3f341f
SL
1915 /*
1916 * Only blk-mq multiple hardware queues case checks the
1917 * rq in the same queue, there should be only one such
1918 * rq in a queue
1919 **/
1920 if (same_queue_rq)
1921 *same_queue_rq = rq;
1922 }
56ebdaf2 1923
07c2bd37 1924 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1925 continue;
1926
34fe7c05
CH
1927 switch (blk_try_merge(rq, bio)) {
1928 case ELEVATOR_BACK_MERGE:
1929 merged = bio_attempt_back_merge(q, rq, bio);
1930 break;
1931 case ELEVATOR_FRONT_MERGE:
1932 merged = bio_attempt_front_merge(q, rq, bio);
1933 break;
1e739730
CH
1934 case ELEVATOR_DISCARD_MERGE:
1935 merged = bio_attempt_discard_merge(q, rq, bio);
1936 break;
34fe7c05
CH
1937 default:
1938 break;
73c10101 1939 }
34fe7c05
CH
1940
1941 if (merged)
1942 return true;
73c10101 1943 }
34fe7c05
CH
1944
1945 return false;
73c10101
JA
1946}
1947
0809e3ac
JM
1948unsigned int blk_plug_queued_count(struct request_queue *q)
1949{
1950 struct blk_plug *plug;
1951 struct request *rq;
1952 struct list_head *plug_list;
1953 unsigned int ret = 0;
1954
1955 plug = current->plug;
1956 if (!plug)
1957 goto out;
1958
1959 if (q->mq_ops)
1960 plug_list = &plug->mq_list;
1961 else
1962 plug_list = &plug->list;
1963
1964 list_for_each_entry(rq, plug_list, queuelist) {
1965 if (rq->q == q)
1966 ret++;
1967 }
1968out:
1969 return ret;
1970}
1971
da8d7f07 1972void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1973{
0be0dee6
BVA
1974 struct io_context *ioc = rq_ioc(bio);
1975
1eff9d32 1976 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1977 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1978
4f024f37 1979 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1980 if (ioprio_valid(bio_prio(bio)))
1981 req->ioprio = bio_prio(bio);
0be0dee6
BVA
1982 else if (ioc)
1983 req->ioprio = ioc->ioprio;
1984 else
1985 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
cb6934f8 1986 req->write_hint = bio->bi_write_hint;
bc1c56fd 1987 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1988}
da8d7f07 1989EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1990
dece1635 1991static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1992{
73c10101 1993 struct blk_plug *plug;
34fe7c05 1994 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1995 struct request *req, *free;
56ebdaf2 1996 unsigned int request_count = 0;
87760e5e 1997 unsigned int wb_acct;
1da177e4 1998
1da177e4
LT
1999 /*
2000 * low level driver can indicate that it wants pages above a
2001 * certain limit bounced to low memory (ie for highmem, or even
2002 * ISA dma in theory)
2003 */
2004 blk_queue_bounce(q, &bio);
2005
af67c31f 2006 blk_queue_split(q, &bio);
23688bf4 2007
e23947bd 2008 if (!bio_integrity_prep(bio))
dece1635 2009 return BLK_QC_T_NONE;
ffecfd1a 2010
f73f44eb 2011 if (op_is_flush(bio->bi_opf)) {
73c10101 2012 spin_lock_irq(q->queue_lock);
ae1b1539 2013 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
2014 goto get_rq;
2015 }
2016
73c10101
JA
2017 /*
2018 * Check if we can merge with the plugged list before grabbing
2019 * any locks.
2020 */
0809e3ac
JM
2021 if (!blk_queue_nomerges(q)) {
2022 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 2023 return BLK_QC_T_NONE;
0809e3ac
JM
2024 } else
2025 request_count = blk_plug_queued_count(q);
1da177e4 2026
73c10101 2027 spin_lock_irq(q->queue_lock);
2056a782 2028
34fe7c05
CH
2029 switch (elv_merge(q, &req, bio)) {
2030 case ELEVATOR_BACK_MERGE:
2031 if (!bio_attempt_back_merge(q, req, bio))
2032 break;
2033 elv_bio_merged(q, req, bio);
2034 free = attempt_back_merge(q, req);
2035 if (free)
2036 __blk_put_request(q, free);
2037 else
2038 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2039 goto out_unlock;
2040 case ELEVATOR_FRONT_MERGE:
2041 if (!bio_attempt_front_merge(q, req, bio))
2042 break;
2043 elv_bio_merged(q, req, bio);
2044 free = attempt_front_merge(q, req);
2045 if (free)
2046 __blk_put_request(q, free);
2047 else
2048 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2049 goto out_unlock;
2050 default:
2051 break;
1da177e4
LT
2052 }
2053
450991bc 2054get_rq:
87760e5e
JA
2055 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
2056
1da177e4 2057 /*
450991bc 2058 * Grab a free request. This is might sleep but can not fail.
d6344532 2059 * Returns with the queue unlocked.
450991bc 2060 */
055f6e18 2061 blk_queue_enter_live(q);
c3036021 2062 req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
a492f075 2063 if (IS_ERR(req)) {
055f6e18 2064 blk_queue_exit(q);
87760e5e 2065 __wbt_done(q->rq_wb, wb_acct);
4e4cbee9
CH
2066 if (PTR_ERR(req) == -ENOMEM)
2067 bio->bi_status = BLK_STS_RESOURCE;
2068 else
2069 bio->bi_status = BLK_STS_IOERR;
4246a0b6 2070 bio_endio(bio);
da8303c6
TH
2071 goto out_unlock;
2072 }
d6344532 2073
a8a45941 2074 wbt_track(req, wb_acct);
87760e5e 2075
450991bc
NP
2076 /*
2077 * After dropping the lock and possibly sleeping here, our request
2078 * may now be mergeable after it had proven unmergeable (above).
2079 * We don't worry about that case for efficiency. It won't happen
2080 * often, and the elevators are able to handle it.
1da177e4 2081 */
da8d7f07 2082 blk_init_request_from_bio(req, bio);
1da177e4 2083
9562ad9a 2084 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 2085 req->cpu = raw_smp_processor_id();
73c10101
JA
2086
2087 plug = current->plug;
721a9602 2088 if (plug) {
dc6d36c9
JA
2089 /*
2090 * If this is the first request added after a plug, fire
7aef2e78 2091 * of a plug trace.
0a6219a9
ML
2092 *
2093 * @request_count may become stale because of schedule
2094 * out, so check plug list again.
dc6d36c9 2095 */
0a6219a9 2096 if (!request_count || list_empty(&plug->list))
dc6d36c9 2097 trace_block_plug(q);
3540d5e8 2098 else {
50d24c34
SL
2099 struct request *last = list_entry_rq(plug->list.prev);
2100 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2101 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 2102 blk_flush_plug_list(plug, false);
019ceb7d
SL
2103 trace_block_plug(q);
2104 }
73c10101 2105 }
73c10101 2106 list_add_tail(&req->queuelist, &plug->list);
320ae51f 2107 blk_account_io_start(req, true);
73c10101
JA
2108 } else {
2109 spin_lock_irq(q->queue_lock);
2110 add_acct_request(q, req, where);
24ecfbe2 2111 __blk_run_queue(q);
73c10101
JA
2112out_unlock:
2113 spin_unlock_irq(q->queue_lock);
2114 }
dece1635
JA
2115
2116 return BLK_QC_T_NONE;
1da177e4
LT
2117}
2118
52c5e62d 2119static void handle_bad_sector(struct bio *bio, sector_t maxsector)
1da177e4
LT
2120{
2121 char b[BDEVNAME_SIZE];
2122
2123 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 2124 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 2125 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 2126 (unsigned long long)bio_end_sector(bio),
52c5e62d 2127 (long long)maxsector);
1da177e4
LT
2128}
2129
c17bb495
AM
2130#ifdef CONFIG_FAIL_MAKE_REQUEST
2131
2132static DECLARE_FAULT_ATTR(fail_make_request);
2133
2134static int __init setup_fail_make_request(char *str)
2135{
2136 return setup_fault_attr(&fail_make_request, str);
2137}
2138__setup("fail_make_request=", setup_fail_make_request);
2139
b2c9cd37 2140static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 2141{
b2c9cd37 2142 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
2143}
2144
2145static int __init fail_make_request_debugfs(void)
2146{
dd48c085
AM
2147 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2148 NULL, &fail_make_request);
2149
21f9fcd8 2150 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
2151}
2152
2153late_initcall(fail_make_request_debugfs);
2154
2155#else /* CONFIG_FAIL_MAKE_REQUEST */
2156
b2c9cd37
AM
2157static inline bool should_fail_request(struct hd_struct *part,
2158 unsigned int bytes)
c17bb495 2159{
b2c9cd37 2160 return false;
c17bb495
AM
2161}
2162
2163#endif /* CONFIG_FAIL_MAKE_REQUEST */
2164
721c7fc7
ID
2165static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2166{
2167 if (part->policy && op_is_write(bio_op(bio))) {
2168 char b[BDEVNAME_SIZE];
2169
2170 printk(KERN_ERR
2171 "generic_make_request: Trying to write "
2172 "to read-only block-device %s (partno %d)\n",
2173 bio_devname(bio, b), part->partno);
2174 return true;
2175 }
2176
2177 return false;
2178}
2179
30abb3a6
HM
2180static noinline int should_fail_bio(struct bio *bio)
2181{
2182 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2183 return -EIO;
2184 return 0;
2185}
2186ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2187
52c5e62d
CH
2188/*
2189 * Check whether this bio extends beyond the end of the device or partition.
2190 * This may well happen - the kernel calls bread() without checking the size of
2191 * the device, e.g., when mounting a file system.
2192 */
2193static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2194{
2195 unsigned int nr_sectors = bio_sectors(bio);
2196
2197 if (nr_sectors && maxsector &&
2198 (nr_sectors > maxsector ||
2199 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2200 handle_bad_sector(bio, maxsector);
2201 return -EIO;
2202 }
2203 return 0;
2204}
2205
74d46992
CH
2206/*
2207 * Remap block n of partition p to block n+start(p) of the disk.
2208 */
2209static inline int blk_partition_remap(struct bio *bio)
2210{
2211 struct hd_struct *p;
52c5e62d 2212 int ret = -EIO;
74d46992 2213
721c7fc7
ID
2214 rcu_read_lock();
2215 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
52c5e62d
CH
2216 if (unlikely(!p))
2217 goto out;
2218 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2219 goto out;
2220 if (unlikely(bio_check_ro(bio, p)))
721c7fc7 2221 goto out;
721c7fc7 2222
74d46992
CH
2223 /*
2224 * Zone reset does not include bi_size so bio_sectors() is always 0.
2225 * Include a test for the reset op code and perform the remap if needed.
2226 */
52c5e62d
CH
2227 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2228 if (bio_check_eod(bio, part_nr_sects_read(p)))
2229 goto out;
2230 bio->bi_iter.bi_sector += p->start_sect;
2231 bio->bi_partno = 0;
2232 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2233 bio->bi_iter.bi_sector - p->start_sect);
2234 }
2235 ret = 0;
721c7fc7
ID
2236out:
2237 rcu_read_unlock();
74d46992
CH
2238 return ret;
2239}
2240
27a84d54
CH
2241static noinline_for_stack bool
2242generic_make_request_checks(struct bio *bio)
1da177e4 2243{
165125e1 2244 struct request_queue *q;
5a7bbad2 2245 int nr_sectors = bio_sectors(bio);
4e4cbee9 2246 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 2247 char b[BDEVNAME_SIZE];
1da177e4
LT
2248
2249 might_sleep();
1da177e4 2250
74d46992 2251 q = bio->bi_disk->queue;
5a7bbad2
CH
2252 if (unlikely(!q)) {
2253 printk(KERN_ERR
2254 "generic_make_request: Trying to access "
2255 "nonexistent block-device %s (%Lu)\n",
74d46992 2256 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
2257 goto end_io;
2258 }
c17bb495 2259
03a07c92
GR
2260 /*
2261 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2262 * if queue is not a request based queue.
2263 */
03a07c92
GR
2264 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2265 goto not_supported;
2266
30abb3a6 2267 if (should_fail_bio(bio))
5a7bbad2 2268 goto end_io;
2056a782 2269
52c5e62d
CH
2270 if (bio->bi_partno) {
2271 if (unlikely(blk_partition_remap(bio)))
721c7fc7
ID
2272 goto end_io;
2273 } else {
52c5e62d
CH
2274 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2275 goto end_io;
2276 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
721c7fc7
ID
2277 goto end_io;
2278 }
2056a782 2279
5a7bbad2
CH
2280 /*
2281 * Filter flush bio's early so that make_request based
2282 * drivers without flush support don't have to worry
2283 * about them.
2284 */
f3a8ab7d 2285 if (op_is_flush(bio->bi_opf) &&
c888a8f9 2286 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 2287 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 2288 if (!nr_sectors) {
4e4cbee9 2289 status = BLK_STS_OK;
51fd77bd
JA
2290 goto end_io;
2291 }
5a7bbad2 2292 }
5ddfe969 2293
288dab8a
CH
2294 switch (bio_op(bio)) {
2295 case REQ_OP_DISCARD:
2296 if (!blk_queue_discard(q))
2297 goto not_supported;
2298 break;
2299 case REQ_OP_SECURE_ERASE:
2300 if (!blk_queue_secure_erase(q))
2301 goto not_supported;
2302 break;
2303 case REQ_OP_WRITE_SAME:
74d46992 2304 if (!q->limits.max_write_same_sectors)
288dab8a 2305 goto not_supported;
58886785 2306 break;
2d253440
ST
2307 case REQ_OP_ZONE_REPORT:
2308 case REQ_OP_ZONE_RESET:
74d46992 2309 if (!blk_queue_is_zoned(q))
2d253440 2310 goto not_supported;
288dab8a 2311 break;
a6f0788e 2312 case REQ_OP_WRITE_ZEROES:
74d46992 2313 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
2314 goto not_supported;
2315 break;
288dab8a
CH
2316 default:
2317 break;
5a7bbad2 2318 }
01edede4 2319
7f4b35d1
TH
2320 /*
2321 * Various block parts want %current->io_context and lazy ioc
2322 * allocation ends up trading a lot of pain for a small amount of
2323 * memory. Just allocate it upfront. This may fail and block
2324 * layer knows how to live with it.
2325 */
2326 create_io_context(GFP_ATOMIC, q->node);
2327
ae118896
TH
2328 if (!blkcg_bio_issue_check(q, bio))
2329 return false;
27a84d54 2330
fbbaf700
N
2331 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2332 trace_block_bio_queue(q, bio);
2333 /* Now that enqueuing has been traced, we need to trace
2334 * completion as well.
2335 */
2336 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2337 }
27a84d54 2338 return true;
a7384677 2339
288dab8a 2340not_supported:
4e4cbee9 2341 status = BLK_STS_NOTSUPP;
a7384677 2342end_io:
4e4cbee9 2343 bio->bi_status = status;
4246a0b6 2344 bio_endio(bio);
27a84d54 2345 return false;
1da177e4
LT
2346}
2347
27a84d54
CH
2348/**
2349 * generic_make_request - hand a buffer to its device driver for I/O
2350 * @bio: The bio describing the location in memory and on the device.
2351 *
2352 * generic_make_request() is used to make I/O requests of block
2353 * devices. It is passed a &struct bio, which describes the I/O that needs
2354 * to be done.
2355 *
2356 * generic_make_request() does not return any status. The
2357 * success/failure status of the request, along with notification of
2358 * completion, is delivered asynchronously through the bio->bi_end_io
2359 * function described (one day) else where.
2360 *
2361 * The caller of generic_make_request must make sure that bi_io_vec
2362 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2363 * set to describe the device address, and the
2364 * bi_end_io and optionally bi_private are set to describe how
2365 * completion notification should be signaled.
2366 *
2367 * generic_make_request and the drivers it calls may use bi_next if this
2368 * bio happens to be merged with someone else, and may resubmit the bio to
2369 * a lower device by calling into generic_make_request recursively, which
2370 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2371 */
dece1635 2372blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2373{
f5fe1b51
N
2374 /*
2375 * bio_list_on_stack[0] contains bios submitted by the current
2376 * make_request_fn.
2377 * bio_list_on_stack[1] contains bios that were submitted before
2378 * the current make_request_fn, but that haven't been processed
2379 * yet.
2380 */
2381 struct bio_list bio_list_on_stack[2];
37f9579f
BVA
2382 blk_mq_req_flags_t flags = 0;
2383 struct request_queue *q = bio->bi_disk->queue;
dece1635 2384 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2385
37f9579f
BVA
2386 if (bio->bi_opf & REQ_NOWAIT)
2387 flags = BLK_MQ_REQ_NOWAIT;
2388 if (blk_queue_enter(q, flags) < 0) {
2389 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2390 bio_wouldblock_error(bio);
2391 else
2392 bio_io_error(bio);
2393 return ret;
2394 }
2395
27a84d54 2396 if (!generic_make_request_checks(bio))
dece1635 2397 goto out;
27a84d54
CH
2398
2399 /*
2400 * We only want one ->make_request_fn to be active at a time, else
2401 * stack usage with stacked devices could be a problem. So use
2402 * current->bio_list to keep a list of requests submited by a
2403 * make_request_fn function. current->bio_list is also used as a
2404 * flag to say if generic_make_request is currently active in this
2405 * task or not. If it is NULL, then no make_request is active. If
2406 * it is non-NULL, then a make_request is active, and new requests
2407 * should be added at the tail
2408 */
bddd87c7 2409 if (current->bio_list) {
f5fe1b51 2410 bio_list_add(&current->bio_list[0], bio);
dece1635 2411 goto out;
d89d8796 2412 }
27a84d54 2413
d89d8796
NB
2414 /* following loop may be a bit non-obvious, and so deserves some
2415 * explanation.
2416 * Before entering the loop, bio->bi_next is NULL (as all callers
2417 * ensure that) so we have a list with a single bio.
2418 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2419 * we assign bio_list to a pointer to the bio_list_on_stack,
2420 * thus initialising the bio_list of new bios to be
27a84d54 2421 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2422 * through a recursive call to generic_make_request. If it
2423 * did, we find a non-NULL value in bio_list and re-enter the loop
2424 * from the top. In this case we really did just take the bio
bddd87c7 2425 * of the top of the list (no pretending) and so remove it from
27a84d54 2426 * bio_list, and call into ->make_request() again.
d89d8796
NB
2427 */
2428 BUG_ON(bio->bi_next);
f5fe1b51
N
2429 bio_list_init(&bio_list_on_stack[0]);
2430 current->bio_list = bio_list_on_stack;
d89d8796 2431 do {
37f9579f
BVA
2432 bool enter_succeeded = true;
2433
2434 if (unlikely(q != bio->bi_disk->queue)) {
2435 if (q)
2436 blk_queue_exit(q);
2437 q = bio->bi_disk->queue;
2438 flags = 0;
2439 if (bio->bi_opf & REQ_NOWAIT)
2440 flags = BLK_MQ_REQ_NOWAIT;
2441 if (blk_queue_enter(q, flags) < 0) {
2442 enter_succeeded = false;
2443 q = NULL;
2444 }
2445 }
27a84d54 2446
37f9579f 2447 if (enter_succeeded) {
79bd9959
N
2448 struct bio_list lower, same;
2449
2450 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2451 bio_list_on_stack[1] = bio_list_on_stack[0];
2452 bio_list_init(&bio_list_on_stack[0]);
dece1635 2453 ret = q->make_request_fn(q, bio);
3ef28e83 2454
79bd9959
N
2455 /* sort new bios into those for a lower level
2456 * and those for the same level
2457 */
2458 bio_list_init(&lower);
2459 bio_list_init(&same);
f5fe1b51 2460 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 2461 if (q == bio->bi_disk->queue)
79bd9959
N
2462 bio_list_add(&same, bio);
2463 else
2464 bio_list_add(&lower, bio);
2465 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2466 bio_list_merge(&bio_list_on_stack[0], &lower);
2467 bio_list_merge(&bio_list_on_stack[0], &same);
2468 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2469 } else {
03a07c92
GR
2470 if (unlikely(!blk_queue_dying(q) &&
2471 (bio->bi_opf & REQ_NOWAIT)))
2472 bio_wouldblock_error(bio);
2473 else
2474 bio_io_error(bio);
3ef28e83 2475 }
f5fe1b51 2476 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2477 } while (bio);
bddd87c7 2478 current->bio_list = NULL; /* deactivate */
dece1635
JA
2479
2480out:
37f9579f
BVA
2481 if (q)
2482 blk_queue_exit(q);
dece1635 2483 return ret;
d89d8796 2484}
1da177e4
LT
2485EXPORT_SYMBOL(generic_make_request);
2486
f421e1d9
CH
2487/**
2488 * direct_make_request - hand a buffer directly to its device driver for I/O
2489 * @bio: The bio describing the location in memory and on the device.
2490 *
2491 * This function behaves like generic_make_request(), but does not protect
2492 * against recursion. Must only be used if the called driver is known
2493 * to not call generic_make_request (or direct_make_request) again from
2494 * its make_request function. (Calling direct_make_request again from
2495 * a workqueue is perfectly fine as that doesn't recurse).
2496 */
2497blk_qc_t direct_make_request(struct bio *bio)
2498{
2499 struct request_queue *q = bio->bi_disk->queue;
2500 bool nowait = bio->bi_opf & REQ_NOWAIT;
2501 blk_qc_t ret;
2502
2503 if (!generic_make_request_checks(bio))
2504 return BLK_QC_T_NONE;
2505
3a0a5299 2506 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
f421e1d9
CH
2507 if (nowait && !blk_queue_dying(q))
2508 bio->bi_status = BLK_STS_AGAIN;
2509 else
2510 bio->bi_status = BLK_STS_IOERR;
2511 bio_endio(bio);
2512 return BLK_QC_T_NONE;
2513 }
2514
2515 ret = q->make_request_fn(q, bio);
2516 blk_queue_exit(q);
2517 return ret;
2518}
2519EXPORT_SYMBOL_GPL(direct_make_request);
2520
1da177e4 2521/**
710027a4 2522 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2523 * @bio: The &struct bio which describes the I/O
2524 *
2525 * submit_bio() is very similar in purpose to generic_make_request(), and
2526 * uses that function to do most of the work. Both are fairly rough
710027a4 2527 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2528 *
2529 */
4e49ea4a 2530blk_qc_t submit_bio(struct bio *bio)
1da177e4 2531{
bf2de6f5
JA
2532 /*
2533 * If it's a regular read/write or a barrier with data attached,
2534 * go through the normal accounting stuff before submission.
2535 */
e2a60da7 2536 if (bio_has_data(bio)) {
4363ac7c
MP
2537 unsigned int count;
2538
95fe6c1a 2539 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
7c5a0dcf 2540 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
4363ac7c
MP
2541 else
2542 count = bio_sectors(bio);
2543
a8ebb056 2544 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2545 count_vm_events(PGPGOUT, count);
2546 } else {
4f024f37 2547 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2548 count_vm_events(PGPGIN, count);
2549 }
2550
2551 if (unlikely(block_dump)) {
2552 char b[BDEVNAME_SIZE];
8dcbdc74 2553 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2554 current->comm, task_pid_nr(current),
a8ebb056 2555 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2556 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 2557 bio_devname(bio, b), count);
bf2de6f5 2558 }
1da177e4
LT
2559 }
2560
dece1635 2561 return generic_make_request(bio);
1da177e4 2562}
1da177e4
LT
2563EXPORT_SYMBOL(submit_bio);
2564
ea435e1b
CH
2565bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2566{
2567 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2568 return false;
2569
2570 if (current->plug)
2571 blk_flush_plug_list(current->plug, false);
2572 return q->poll_fn(q, cookie);
2573}
2574EXPORT_SYMBOL_GPL(blk_poll);
2575
82124d60 2576/**
bf4e6b4e
HR
2577 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2578 * for new the queue limits
82124d60
KU
2579 * @q: the queue
2580 * @rq: the request being checked
2581 *
2582 * Description:
2583 * @rq may have been made based on weaker limitations of upper-level queues
2584 * in request stacking drivers, and it may violate the limitation of @q.
2585 * Since the block layer and the underlying device driver trust @rq
2586 * after it is inserted to @q, it should be checked against @q before
2587 * the insertion using this generic function.
2588 *
82124d60 2589 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2590 * limits when retrying requests on other queues. Those requests need
2591 * to be checked against the new queue limits again during dispatch.
82124d60 2592 */
bf4e6b4e
HR
2593static int blk_cloned_rq_check_limits(struct request_queue *q,
2594 struct request *rq)
82124d60 2595{
8fe0d473 2596 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2597 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2598 return -EIO;
2599 }
2600
2601 /*
2602 * queue's settings related to segment counting like q->bounce_pfn
2603 * may differ from that of other stacking queues.
2604 * Recalculate it to check the request correctly on this queue's
2605 * limitation.
2606 */
2607 blk_recalc_rq_segments(rq);
8a78362c 2608 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2609 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2610 return -EIO;
2611 }
2612
2613 return 0;
2614}
82124d60
KU
2615
2616/**
2617 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2618 * @q: the queue to submit the request
2619 * @rq: the request being queued
2620 */
2a842aca 2621blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60
KU
2622{
2623 unsigned long flags;
4853abaa 2624 int where = ELEVATOR_INSERT_BACK;
82124d60 2625
bf4e6b4e 2626 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 2627 return BLK_STS_IOERR;
82124d60 2628
b2c9cd37
AM
2629 if (rq->rq_disk &&
2630 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 2631 return BLK_STS_IOERR;
82124d60 2632
7fb4898e
KB
2633 if (q->mq_ops) {
2634 if (blk_queue_io_stat(q))
2635 blk_account_io_start(rq, true);
157f377b
JA
2636 /*
2637 * Since we have a scheduler attached on the top device,
2638 * bypass a potential scheduler on the bottom device for
2639 * insert.
2640 */
c77ff7fd 2641 return blk_mq_request_issue_directly(rq);
7fb4898e
KB
2642 }
2643
82124d60 2644 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2645 if (unlikely(blk_queue_dying(q))) {
8ba61435 2646 spin_unlock_irqrestore(q->queue_lock, flags);
2a842aca 2647 return BLK_STS_IOERR;
8ba61435 2648 }
82124d60
KU
2649
2650 /*
2651 * Submitting request must be dequeued before calling this function
2652 * because it will be linked to another request_queue
2653 */
2654 BUG_ON(blk_queued_rq(rq));
2655
f73f44eb 2656 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2657 where = ELEVATOR_INSERT_FLUSH;
2658
2659 add_acct_request(q, rq, where);
e67b77c7
JM
2660 if (where == ELEVATOR_INSERT_FLUSH)
2661 __blk_run_queue(q);
82124d60
KU
2662 spin_unlock_irqrestore(q->queue_lock, flags);
2663
2a842aca 2664 return BLK_STS_OK;
82124d60
KU
2665}
2666EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2667
80a761fd
TH
2668/**
2669 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2670 * @rq: request to examine
2671 *
2672 * Description:
2673 * A request could be merge of IOs which require different failure
2674 * handling. This function determines the number of bytes which
2675 * can be failed from the beginning of the request without
2676 * crossing into area which need to be retried further.
2677 *
2678 * Return:
2679 * The number of bytes to fail.
80a761fd
TH
2680 */
2681unsigned int blk_rq_err_bytes(const struct request *rq)
2682{
2683 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2684 unsigned int bytes = 0;
2685 struct bio *bio;
2686
e8064021 2687 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2688 return blk_rq_bytes(rq);
2689
2690 /*
2691 * Currently the only 'mixing' which can happen is between
2692 * different fastfail types. We can safely fail portions
2693 * which have all the failfast bits that the first one has -
2694 * the ones which are at least as eager to fail as the first
2695 * one.
2696 */
2697 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2698 if ((bio->bi_opf & ff) != ff)
80a761fd 2699 break;
4f024f37 2700 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2701 }
2702
2703 /* this could lead to infinite loop */
2704 BUG_ON(blk_rq_bytes(rq) && !bytes);
2705 return bytes;
2706}
2707EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2708
320ae51f 2709void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2710{
c2553b58 2711 if (blk_do_io_stat(req)) {
bc58ba94
JA
2712 const int rw = rq_data_dir(req);
2713 struct hd_struct *part;
2714 int cpu;
2715
2716 cpu = part_stat_lock();
09e099d4 2717 part = req->part;
bc58ba94
JA
2718 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2719 part_stat_unlock();
2720 }
2721}
2722
522a7775 2723void blk_account_io_done(struct request *req, u64 now)
bc58ba94 2724{
bc58ba94 2725 /*
dd4c133f
TH
2726 * Account IO completion. flush_rq isn't accounted as a
2727 * normal IO on queueing nor completion. Accounting the
2728 * containing request is enough.
bc58ba94 2729 */
e8064021 2730 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
522a7775 2731 unsigned long duration;
bc58ba94
JA
2732 const int rw = rq_data_dir(req);
2733 struct hd_struct *part;
2734 int cpu;
2735
522a7775 2736 duration = nsecs_to_jiffies(now - req->start_time_ns);
bc58ba94 2737 cpu = part_stat_lock();
09e099d4 2738 part = req->part;
bc58ba94
JA
2739
2740 part_stat_inc(cpu, part, ios[rw]);
2741 part_stat_add(cpu, part, ticks[rw], duration);
d62e26b3
JA
2742 part_round_stats(req->q, cpu, part);
2743 part_dec_in_flight(req->q, part, rw);
bc58ba94 2744
6c23a968 2745 hd_struct_put(part);
bc58ba94
JA
2746 part_stat_unlock();
2747 }
2748}
2749
47fafbc7 2750#ifdef CONFIG_PM
c8158819
LM
2751/*
2752 * Don't process normal requests when queue is suspended
2753 * or in the process of suspending/resuming
2754 */
e4f36b24 2755static bool blk_pm_allow_request(struct request *rq)
c8158819 2756{
e4f36b24
CH
2757 switch (rq->q->rpm_status) {
2758 case RPM_RESUMING:
2759 case RPM_SUSPENDING:
2760 return rq->rq_flags & RQF_PM;
2761 case RPM_SUSPENDED:
2762 return false;
2763 }
2764
2765 return true;
c8158819
LM
2766}
2767#else
e4f36b24 2768static bool blk_pm_allow_request(struct request *rq)
c8158819 2769{
e4f36b24 2770 return true;
c8158819
LM
2771}
2772#endif
2773
320ae51f
JA
2774void blk_account_io_start(struct request *rq, bool new_io)
2775{
2776 struct hd_struct *part;
2777 int rw = rq_data_dir(rq);
2778 int cpu;
2779
2780 if (!blk_do_io_stat(rq))
2781 return;
2782
2783 cpu = part_stat_lock();
2784
2785 if (!new_io) {
2786 part = rq->part;
2787 part_stat_inc(cpu, part, merges[rw]);
2788 } else {
2789 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2790 if (!hd_struct_try_get(part)) {
2791 /*
2792 * The partition is already being removed,
2793 * the request will be accounted on the disk only
2794 *
2795 * We take a reference on disk->part0 although that
2796 * partition will never be deleted, so we can treat
2797 * it as any other partition.
2798 */
2799 part = &rq->rq_disk->part0;
2800 hd_struct_get(part);
2801 }
d62e26b3
JA
2802 part_round_stats(rq->q, cpu, part);
2803 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
2804 rq->part = part;
2805 }
2806
2807 part_stat_unlock();
2808}
2809
9c988374
CH
2810static struct request *elv_next_request(struct request_queue *q)
2811{
2812 struct request *rq;
2813 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2814
2815 WARN_ON_ONCE(q->mq_ops);
2816
2817 while (1) {
e4f36b24
CH
2818 list_for_each_entry(rq, &q->queue_head, queuelist) {
2819 if (blk_pm_allow_request(rq))
2820 return rq;
2821
2822 if (rq->rq_flags & RQF_SOFTBARRIER)
2823 break;
9c988374
CH
2824 }
2825
2826 /*
2827 * Flush request is running and flush request isn't queueable
2828 * in the drive, we can hold the queue till flush request is
2829 * finished. Even we don't do this, driver can't dispatch next
2830 * requests and will requeue them. And this can improve
2831 * throughput too. For example, we have request flush1, write1,
2832 * flush 2. flush1 is dispatched, then queue is hold, write1
2833 * isn't inserted to queue. After flush1 is finished, flush2
2834 * will be dispatched. Since disk cache is already clean,
2835 * flush2 will be finished very soon, so looks like flush2 is
2836 * folded to flush1.
2837 * Since the queue is hold, a flag is set to indicate the queue
2838 * should be restarted later. Please see flush_end_io() for
2839 * details.
2840 */
2841 if (fq->flush_pending_idx != fq->flush_running_idx &&
2842 !queue_flush_queueable(q)) {
2843 fq->flush_queue_delayed = 1;
2844 return NULL;
2845 }
2846 if (unlikely(blk_queue_bypass(q)) ||
2847 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2848 return NULL;
2849 }
2850}
2851
3bcddeac 2852/**
9934c8c0
TH
2853 * blk_peek_request - peek at the top of a request queue
2854 * @q: request queue to peek at
2855 *
2856 * Description:
2857 * Return the request at the top of @q. The returned request
2858 * should be started using blk_start_request() before LLD starts
2859 * processing it.
2860 *
2861 * Return:
2862 * Pointer to the request at the top of @q if available. Null
2863 * otherwise.
9934c8c0
TH
2864 */
2865struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2866{
2867 struct request *rq;
2868 int ret;
2869
2fff8a92 2870 lockdep_assert_held(q->queue_lock);
332ebbf7 2871 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2872
9c988374 2873 while ((rq = elv_next_request(q)) != NULL) {
e8064021 2874 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2875 /*
2876 * This is the first time the device driver
2877 * sees this request (possibly after
2878 * requeueing). Notify IO scheduler.
2879 */
e8064021 2880 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2881 elv_activate_rq(q, rq);
2882
2883 /*
2884 * just mark as started even if we don't start
2885 * it, a request that has been delayed should
2886 * not be passed by new incoming requests
2887 */
e8064021 2888 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2889 trace_block_rq_issue(q, rq);
2890 }
2891
2892 if (!q->boundary_rq || q->boundary_rq == rq) {
2893 q->end_sector = rq_end_sector(rq);
2894 q->boundary_rq = NULL;
2895 }
2896
e8064021 2897 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2898 break;
2899
2e46e8b2 2900 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2901 /*
2902 * make sure space for the drain appears we
2903 * know we can do this because max_hw_segments
2904 * has been adjusted to be one fewer than the
2905 * device can handle
2906 */
2907 rq->nr_phys_segments++;
2908 }
2909
2910 if (!q->prep_rq_fn)
2911 break;
2912
2913 ret = q->prep_rq_fn(q, rq);
2914 if (ret == BLKPREP_OK) {
2915 break;
2916 } else if (ret == BLKPREP_DEFER) {
2917 /*
2918 * the request may have been (partially) prepped.
2919 * we need to keep this request in the front to
e8064021 2920 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2921 * prevent other fs requests from passing this one.
2922 */
2e46e8b2 2923 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2924 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2925 /*
2926 * remove the space for the drain we added
2927 * so that we don't add it again
2928 */
2929 --rq->nr_phys_segments;
2930 }
2931
2932 rq = NULL;
2933 break;
0fb5b1fb 2934 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
e8064021 2935 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2936 /*
2937 * Mark this request as started so we don't trigger
2938 * any debug logic in the end I/O path.
2939 */
2940 blk_start_request(rq);
2a842aca
CH
2941 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2942 BLK_STS_TARGET : BLK_STS_IOERR);
158dbda0
TH
2943 } else {
2944 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2945 break;
2946 }
2947 }
2948
2949 return rq;
2950}
9934c8c0 2951EXPORT_SYMBOL(blk_peek_request);
158dbda0 2952
5034435c 2953static void blk_dequeue_request(struct request *rq)
158dbda0 2954{
9934c8c0
TH
2955 struct request_queue *q = rq->q;
2956
158dbda0
TH
2957 BUG_ON(list_empty(&rq->queuelist));
2958 BUG_ON(ELV_ON_HASH(rq));
2959
2960 list_del_init(&rq->queuelist);
2961
2962 /*
2963 * the time frame between a request being removed from the lists
2964 * and to it is freed is accounted as io that is in progress at
2965 * the driver side.
2966 */
522a7775 2967 if (blk_account_rq(rq))
0a7ae2ff 2968 q->in_flight[rq_is_sync(rq)]++;
158dbda0
TH
2969}
2970
9934c8c0
TH
2971/**
2972 * blk_start_request - start request processing on the driver
2973 * @req: request to dequeue
2974 *
2975 * Description:
2976 * Dequeue @req and start timeout timer on it. This hands off the
2977 * request to the driver.
9934c8c0
TH
2978 */
2979void blk_start_request(struct request *req)
2980{
2fff8a92 2981 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2982 WARN_ON_ONCE(req->q->mq_ops);
2fff8a92 2983
9934c8c0
TH
2984 blk_dequeue_request(req);
2985
cf43e6be 2986 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
544ccc8d
OS
2987 req->io_start_time_ns = ktime_get_ns();
2988#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2989 req->throtl_size = blk_rq_sectors(req);
2990#endif
cf43e6be 2991 req->rq_flags |= RQF_STATS;
a8a45941 2992 wbt_issue(req->q->rq_wb, req);
cf43e6be
JA
2993 }
2994
e14575b3 2995 BUG_ON(blk_rq_is_complete(req));
9934c8c0
TH
2996 blk_add_timer(req);
2997}
2998EXPORT_SYMBOL(blk_start_request);
2999
3000/**
3001 * blk_fetch_request - fetch a request from a request queue
3002 * @q: request queue to fetch a request from
3003 *
3004 * Description:
3005 * Return the request at the top of @q. The request is started on
3006 * return and LLD can start processing it immediately.
3007 *
3008 * Return:
3009 * Pointer to the request at the top of @q if available. Null
3010 * otherwise.
9934c8c0
TH
3011 */
3012struct request *blk_fetch_request(struct request_queue *q)
3013{
3014 struct request *rq;
3015
2fff8a92 3016 lockdep_assert_held(q->queue_lock);
332ebbf7 3017 WARN_ON_ONCE(q->mq_ops);
2fff8a92 3018
9934c8c0
TH
3019 rq = blk_peek_request(q);
3020 if (rq)
3021 blk_start_request(rq);
3022 return rq;
3023}
3024EXPORT_SYMBOL(blk_fetch_request);
3025
ef71de8b
CH
3026/*
3027 * Steal bios from a request and add them to a bio list.
3028 * The request must not have been partially completed before.
3029 */
3030void blk_steal_bios(struct bio_list *list, struct request *rq)
3031{
3032 if (rq->bio) {
3033 if (list->tail)
3034 list->tail->bi_next = rq->bio;
3035 else
3036 list->head = rq->bio;
3037 list->tail = rq->biotail;
3038
3039 rq->bio = NULL;
3040 rq->biotail = NULL;
3041 }
3042
3043 rq->__data_len = 0;
3044}
3045EXPORT_SYMBOL_GPL(blk_steal_bios);
3046
3bcddeac 3047/**
2e60e022 3048 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 3049 * @req: the request being processed
2a842aca 3050 * @error: block status code
8ebf9756 3051 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
3052 *
3053 * Description:
8ebf9756
RD
3054 * Ends I/O on a number of bytes attached to @req, but doesn't complete
3055 * the request structure even if @req doesn't have leftover.
3056 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
3057 *
3058 * This special helper function is only for request stacking drivers
3059 * (e.g. request-based dm) so that they can handle partial completion.
3060 * Actual device drivers should use blk_end_request instead.
3061 *
3062 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3063 * %false return from this function.
3bcddeac
KU
3064 *
3065 * Return:
2e60e022
TH
3066 * %false - this request doesn't have any more data
3067 * %true - this request has more data
3bcddeac 3068 **/
2a842aca
CH
3069bool blk_update_request(struct request *req, blk_status_t error,
3070 unsigned int nr_bytes)
1da177e4 3071{
f79ea416 3072 int total_bytes;
1da177e4 3073
2a842aca 3074 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 3075
2e60e022
TH
3076 if (!req->bio)
3077 return false;
3078
2a842aca
CH
3079 if (unlikely(error && !blk_rq_is_passthrough(req) &&
3080 !(req->rq_flags & RQF_QUIET)))
3081 print_req_error(req, error);
1da177e4 3082
bc58ba94 3083 blk_account_io_completion(req, nr_bytes);
d72d904a 3084
f79ea416
KO
3085 total_bytes = 0;
3086 while (req->bio) {
3087 struct bio *bio = req->bio;
4f024f37 3088 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 3089
0ba99ca4 3090 if (bio_bytes == bio->bi_iter.bi_size) {
1da177e4 3091 req->bio = bio->bi_next;
0ba99ca4
KO
3092 bio->bi_next = NULL;
3093 }
1da177e4 3094
fbbaf700
N
3095 /* Completion has already been traced */
3096 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 3097 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 3098
f79ea416
KO
3099 total_bytes += bio_bytes;
3100 nr_bytes -= bio_bytes;
1da177e4 3101
f79ea416
KO
3102 if (!nr_bytes)
3103 break;
1da177e4
LT
3104 }
3105
3106 /*
3107 * completely done
3108 */
2e60e022
TH
3109 if (!req->bio) {
3110 /*
3111 * Reset counters so that the request stacking driver
3112 * can find how many bytes remain in the request
3113 * later.
3114 */
a2dec7b3 3115 req->__data_len = 0;
2e60e022
TH
3116 return false;
3117 }
1da177e4 3118
a2dec7b3 3119 req->__data_len -= total_bytes;
2e46e8b2
TH
3120
3121 /* update sector only for requests with clear definition of sector */
57292b58 3122 if (!blk_rq_is_passthrough(req))
a2dec7b3 3123 req->__sector += total_bytes >> 9;
2e46e8b2 3124
80a761fd 3125 /* mixed attributes always follow the first bio */
e8064021 3126 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 3127 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 3128 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
3129 }
3130
ed6565e7
CH
3131 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3132 /*
3133 * If total number of sectors is less than the first segment
3134 * size, something has gone terribly wrong.
3135 */
3136 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3137 blk_dump_rq_flags(req, "request botched");
3138 req->__data_len = blk_rq_cur_bytes(req);
3139 }
2e46e8b2 3140
ed6565e7
CH
3141 /* recalculate the number of segments */
3142 blk_recalc_rq_segments(req);
3143 }
2e46e8b2 3144
2e60e022 3145 return true;
1da177e4 3146}
2e60e022 3147EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 3148
2a842aca 3149static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2e60e022
TH
3150 unsigned int nr_bytes,
3151 unsigned int bidi_bytes)
5efccd17 3152{
2e60e022
TH
3153 if (blk_update_request(rq, error, nr_bytes))
3154 return true;
5efccd17 3155
2e60e022
TH
3156 /* Bidi request must be completed as a whole */
3157 if (unlikely(blk_bidi_rq(rq)) &&
3158 blk_update_request(rq->next_rq, error, bidi_bytes))
3159 return true;
5efccd17 3160
e2e1a148
JA
3161 if (blk_queue_add_random(rq->q))
3162 add_disk_randomness(rq->rq_disk);
2e60e022
TH
3163
3164 return false;
1da177e4
LT
3165}
3166
28018c24
JB
3167/**
3168 * blk_unprep_request - unprepare a request
3169 * @req: the request
3170 *
3171 * This function makes a request ready for complete resubmission (or
3172 * completion). It happens only after all error handling is complete,
3173 * so represents the appropriate moment to deallocate any resources
3174 * that were allocated to the request in the prep_rq_fn. The queue
3175 * lock is held when calling this.
3176 */
3177void blk_unprep_request(struct request *req)
3178{
3179 struct request_queue *q = req->q;
3180
e8064021 3181 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
3182 if (q->unprep_rq_fn)
3183 q->unprep_rq_fn(q, req);
3184}
3185EXPORT_SYMBOL_GPL(blk_unprep_request);
3186
2a842aca 3187void blk_finish_request(struct request *req, blk_status_t error)
1da177e4 3188{
cf43e6be 3189 struct request_queue *q = req->q;
522a7775 3190 u64 now = ktime_get_ns();
cf43e6be 3191
2fff8a92 3192 lockdep_assert_held(req->q->queue_lock);
332ebbf7 3193 WARN_ON_ONCE(q->mq_ops);
2fff8a92 3194
cf43e6be 3195 if (req->rq_flags & RQF_STATS)
522a7775 3196 blk_stat_add(req, now);
cf43e6be 3197
e8064021 3198 if (req->rq_flags & RQF_QUEUED)
cf43e6be 3199 blk_queue_end_tag(q, req);
b8286239 3200
ba396a6c 3201 BUG_ON(blk_queued_rq(req));
1da177e4 3202
57292b58 3203 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 3204 laptop_io_completion(req->q->backing_dev_info);
1da177e4 3205
e78042e5
MA
3206 blk_delete_timer(req);
3207
e8064021 3208 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
3209 blk_unprep_request(req);
3210
522a7775 3211 blk_account_io_done(req, now);
b8286239 3212
87760e5e 3213 if (req->end_io) {
a8a45941 3214 wbt_done(req->q->rq_wb, req);
8ffdc655 3215 req->end_io(req, error);
87760e5e 3216 } else {
b8286239
KU
3217 if (blk_bidi_rq(req))
3218 __blk_put_request(req->next_rq->q, req->next_rq);
3219
cf43e6be 3220 __blk_put_request(q, req);
b8286239 3221 }
1da177e4 3222}
12120077 3223EXPORT_SYMBOL(blk_finish_request);
1da177e4 3224
3b11313a 3225/**
2e60e022
TH
3226 * blk_end_bidi_request - Complete a bidi request
3227 * @rq: the request to complete
2a842aca 3228 * @error: block status code
2e60e022
TH
3229 * @nr_bytes: number of bytes to complete @rq
3230 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
3231 *
3232 * Description:
e3a04fe3 3233 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
3234 * Drivers that supports bidi can safely call this member for any
3235 * type of request, bidi or uni. In the later case @bidi_bytes is
3236 * just ignored.
336cdb40
KU
3237 *
3238 * Return:
2e60e022
TH
3239 * %false - we are done with this request
3240 * %true - still buffers pending for this request
a0cd1285 3241 **/
2a842aca 3242static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
32fab448
KU
3243 unsigned int nr_bytes, unsigned int bidi_bytes)
3244{
336cdb40 3245 struct request_queue *q = rq->q;
2e60e022 3246 unsigned long flags;
32fab448 3247
332ebbf7
BVA
3248 WARN_ON_ONCE(q->mq_ops);
3249
2e60e022
TH
3250 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3251 return true;
32fab448 3252
336cdb40 3253 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 3254 blk_finish_request(rq, error);
336cdb40
KU
3255 spin_unlock_irqrestore(q->queue_lock, flags);
3256
2e60e022 3257 return false;
32fab448
KU
3258}
3259
336cdb40 3260/**
2e60e022
TH
3261 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3262 * @rq: the request to complete
2a842aca 3263 * @error: block status code
e3a04fe3
KU
3264 * @nr_bytes: number of bytes to complete @rq
3265 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
3266 *
3267 * Description:
2e60e022
TH
3268 * Identical to blk_end_bidi_request() except that queue lock is
3269 * assumed to be locked on entry and remains so on return.
336cdb40
KU
3270 *
3271 * Return:
2e60e022
TH
3272 * %false - we are done with this request
3273 * %true - still buffers pending for this request
336cdb40 3274 **/
2a842aca 3275static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
b1f74493 3276 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 3277{
2fff8a92 3278 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3279 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3280
2e60e022
TH
3281 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3282 return true;
336cdb40 3283
2e60e022 3284 blk_finish_request(rq, error);
336cdb40 3285
2e60e022 3286 return false;
336cdb40 3287}
e19a3ab0
KU
3288
3289/**
3290 * blk_end_request - Helper function for drivers to complete the request.
3291 * @rq: the request being processed
2a842aca 3292 * @error: block status code
e19a3ab0
KU
3293 * @nr_bytes: number of bytes to complete
3294 *
3295 * Description:
3296 * Ends I/O on a number of bytes attached to @rq.
3297 * If @rq has leftover, sets it up for the next range of segments.
3298 *
3299 * Return:
b1f74493
FT
3300 * %false - we are done with this request
3301 * %true - still buffers pending for this request
e19a3ab0 3302 **/
2a842aca
CH
3303bool blk_end_request(struct request *rq, blk_status_t error,
3304 unsigned int nr_bytes)
e19a3ab0 3305{
332ebbf7 3306 WARN_ON_ONCE(rq->q->mq_ops);
b1f74493 3307 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 3308}
56ad1740 3309EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
3310
3311/**
b1f74493
FT
3312 * blk_end_request_all - Helper function for drives to finish the request.
3313 * @rq: the request to finish
2a842aca 3314 * @error: block status code
336cdb40
KU
3315 *
3316 * Description:
b1f74493
FT
3317 * Completely finish @rq.
3318 */
2a842aca 3319void blk_end_request_all(struct request *rq, blk_status_t error)
336cdb40 3320{
b1f74493
FT
3321 bool pending;
3322 unsigned int bidi_bytes = 0;
336cdb40 3323
b1f74493
FT
3324 if (unlikely(blk_bidi_rq(rq)))
3325 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 3326
b1f74493
FT
3327 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3328 BUG_ON(pending);
3329}
56ad1740 3330EXPORT_SYMBOL(blk_end_request_all);
336cdb40 3331
e3a04fe3 3332/**
b1f74493
FT
3333 * __blk_end_request - Helper function for drivers to complete the request.
3334 * @rq: the request being processed
2a842aca 3335 * @error: block status code
b1f74493 3336 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
3337 *
3338 * Description:
b1f74493 3339 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
3340 *
3341 * Return:
b1f74493
FT
3342 * %false - we are done with this request
3343 * %true - still buffers pending for this request
e3a04fe3 3344 **/
2a842aca
CH
3345bool __blk_end_request(struct request *rq, blk_status_t error,
3346 unsigned int nr_bytes)
e3a04fe3 3347{
2fff8a92 3348 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3349 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3350
b1f74493 3351 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 3352}
56ad1740 3353EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 3354
32fab448 3355/**
b1f74493
FT
3356 * __blk_end_request_all - Helper function for drives to finish the request.
3357 * @rq: the request to finish
2a842aca 3358 * @error: block status code
32fab448
KU
3359 *
3360 * Description:
b1f74493 3361 * Completely finish @rq. Must be called with queue lock held.
32fab448 3362 */
2a842aca 3363void __blk_end_request_all(struct request *rq, blk_status_t error)
32fab448 3364{
b1f74493
FT
3365 bool pending;
3366 unsigned int bidi_bytes = 0;
3367
2fff8a92 3368 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3369 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3370
b1f74493
FT
3371 if (unlikely(blk_bidi_rq(rq)))
3372 bidi_bytes = blk_rq_bytes(rq->next_rq);
3373
3374 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3375 BUG_ON(pending);
32fab448 3376}
56ad1740 3377EXPORT_SYMBOL(__blk_end_request_all);
32fab448 3378
e19a3ab0 3379/**
b1f74493
FT
3380 * __blk_end_request_cur - Helper function to finish the current request chunk.
3381 * @rq: the request to finish the current chunk for
2a842aca 3382 * @error: block status code
e19a3ab0
KU
3383 *
3384 * Description:
b1f74493
FT
3385 * Complete the current consecutively mapped chunk from @rq. Must
3386 * be called with queue lock held.
e19a3ab0
KU
3387 *
3388 * Return:
b1f74493
FT
3389 * %false - we are done with this request
3390 * %true - still buffers pending for this request
3391 */
2a842aca 3392bool __blk_end_request_cur(struct request *rq, blk_status_t error)
e19a3ab0 3393{
b1f74493 3394 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 3395}
56ad1740 3396EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 3397
86db1e29
JA
3398void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3399 struct bio *bio)
1da177e4 3400{
b4f42e28 3401 if (bio_has_data(bio))
fb2dce86 3402 rq->nr_phys_segments = bio_phys_segments(q, bio);
445251d0
JA
3403 else if (bio_op(bio) == REQ_OP_DISCARD)
3404 rq->nr_phys_segments = 1;
b4f42e28 3405
4f024f37 3406 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 3407 rq->bio = rq->biotail = bio;
1da177e4 3408
74d46992
CH
3409 if (bio->bi_disk)
3410 rq->rq_disk = bio->bi_disk;
66846572 3411}
1da177e4 3412
2d4dc890
IL
3413#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3414/**
3415 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3416 * @rq: the request to be flushed
3417 *
3418 * Description:
3419 * Flush all pages in @rq.
3420 */
3421void rq_flush_dcache_pages(struct request *rq)
3422{
3423 struct req_iterator iter;
7988613b 3424 struct bio_vec bvec;
2d4dc890
IL
3425
3426 rq_for_each_segment(bvec, rq, iter)
7988613b 3427 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3428}
3429EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3430#endif
3431
ef9e3fac
KU
3432/**
3433 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3434 * @q : the queue of the device being checked
3435 *
3436 * Description:
3437 * Check if underlying low-level drivers of a device are busy.
3438 * If the drivers want to export their busy state, they must set own
3439 * exporting function using blk_queue_lld_busy() first.
3440 *
3441 * Basically, this function is used only by request stacking drivers
3442 * to stop dispatching requests to underlying devices when underlying
3443 * devices are busy. This behavior helps more I/O merging on the queue
3444 * of the request stacking driver and prevents I/O throughput regression
3445 * on burst I/O load.
3446 *
3447 * Return:
3448 * 0 - Not busy (The request stacking driver should dispatch request)
3449 * 1 - Busy (The request stacking driver should stop dispatching request)
3450 */
3451int blk_lld_busy(struct request_queue *q)
3452{
3453 if (q->lld_busy_fn)
3454 return q->lld_busy_fn(q);
3455
3456 return 0;
3457}
3458EXPORT_SYMBOL_GPL(blk_lld_busy);
3459
78d8e58a
MS
3460/**
3461 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3462 * @rq: the clone request to be cleaned up
3463 *
3464 * Description:
3465 * Free all bios in @rq for a cloned request.
3466 */
3467void blk_rq_unprep_clone(struct request *rq)
3468{
3469 struct bio *bio;
3470
3471 while ((bio = rq->bio) != NULL) {
3472 rq->bio = bio->bi_next;
3473
3474 bio_put(bio);
3475 }
3476}
3477EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3478
3479/*
3480 * Copy attributes of the original request to the clone request.
3481 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3482 */
3483static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3484{
3485 dst->cpu = src->cpu;
b0fd271d
KU
3486 dst->__sector = blk_rq_pos(src);
3487 dst->__data_len = blk_rq_bytes(src);
3488 dst->nr_phys_segments = src->nr_phys_segments;
3489 dst->ioprio = src->ioprio;
3490 dst->extra_len = src->extra_len;
78d8e58a
MS
3491}
3492
3493/**
3494 * blk_rq_prep_clone - Helper function to setup clone request
3495 * @rq: the request to be setup
3496 * @rq_src: original request to be cloned
3497 * @bs: bio_set that bios for clone are allocated from
3498 * @gfp_mask: memory allocation mask for bio
3499 * @bio_ctr: setup function to be called for each clone bio.
3500 * Returns %0 for success, non %0 for failure.
3501 * @data: private data to be passed to @bio_ctr
3502 *
3503 * Description:
3504 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3505 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3506 * are not copied, and copying such parts is the caller's responsibility.
3507 * Also, pages which the original bios are pointing to are not copied
3508 * and the cloned bios just point same pages.
3509 * So cloned bios must be completed before original bios, which means
3510 * the caller must complete @rq before @rq_src.
3511 */
3512int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3513 struct bio_set *bs, gfp_t gfp_mask,
3514 int (*bio_ctr)(struct bio *, struct bio *, void *),
3515 void *data)
3516{
3517 struct bio *bio, *bio_src;
3518
3519 if (!bs)
f4f8154a 3520 bs = &fs_bio_set;
78d8e58a
MS
3521
3522 __rq_for_each_bio(bio_src, rq_src) {
3523 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3524 if (!bio)
3525 goto free_and_out;
3526
3527 if (bio_ctr && bio_ctr(bio, bio_src, data))
3528 goto free_and_out;
3529
3530 if (rq->bio) {
3531 rq->biotail->bi_next = bio;
3532 rq->biotail = bio;
3533 } else
3534 rq->bio = rq->biotail = bio;
3535 }
3536
3537 __blk_rq_prep_clone(rq, rq_src);
3538
3539 return 0;
3540
3541free_and_out:
3542 if (bio)
3543 bio_put(bio);
3544 blk_rq_unprep_clone(rq);
3545
3546 return -ENOMEM;
b0fd271d
KU
3547}
3548EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3549
59c3d45e 3550int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3551{
3552 return queue_work(kblockd_workqueue, work);
3553}
1da177e4
LT
3554EXPORT_SYMBOL(kblockd_schedule_work);
3555
ee63cfa7
JA
3556int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3557{
3558 return queue_work_on(cpu, kblockd_workqueue, work);
3559}
3560EXPORT_SYMBOL(kblockd_schedule_work_on);
3561
818cd1cb
JA
3562int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3563 unsigned long delay)
3564{
3565 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3566}
3567EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3568
75df7136
SJ
3569/**
3570 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3571 * @plug: The &struct blk_plug that needs to be initialized
3572 *
3573 * Description:
3574 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3575 * pending I/O should the task end up blocking between blk_start_plug() and
3576 * blk_finish_plug(). This is important from a performance perspective, but
3577 * also ensures that we don't deadlock. For instance, if the task is blocking
3578 * for a memory allocation, memory reclaim could end up wanting to free a
3579 * page belonging to that request that is currently residing in our private
3580 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3581 * this kind of deadlock.
3582 */
73c10101
JA
3583void blk_start_plug(struct blk_plug *plug)
3584{
3585 struct task_struct *tsk = current;
3586
dd6cf3e1
SL
3587 /*
3588 * If this is a nested plug, don't actually assign it.
3589 */
3590 if (tsk->plug)
3591 return;
3592
73c10101 3593 INIT_LIST_HEAD(&plug->list);
320ae51f 3594 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3595 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3596 /*
dd6cf3e1
SL
3597 * Store ordering should not be needed here, since a potential
3598 * preempt will imply a full memory barrier
73c10101 3599 */
dd6cf3e1 3600 tsk->plug = plug;
73c10101
JA
3601}
3602EXPORT_SYMBOL(blk_start_plug);
3603
3604static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3605{
3606 struct request *rqa = container_of(a, struct request, queuelist);
3607 struct request *rqb = container_of(b, struct request, queuelist);
3608
975927b9
JM
3609 return !(rqa->q < rqb->q ||
3610 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3611}
3612
49cac01e
JA
3613/*
3614 * If 'from_schedule' is true, then postpone the dispatch of requests
3615 * until a safe kblockd context. We due this to avoid accidental big
3616 * additional stack usage in driver dispatch, in places where the originally
3617 * plugger did not intend it.
3618 */
f6603783 3619static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3620 bool from_schedule)
99e22598 3621 __releases(q->queue_lock)
94b5eb28 3622{
2fff8a92
BVA
3623 lockdep_assert_held(q->queue_lock);
3624
49cac01e 3625 trace_block_unplug(q, depth, !from_schedule);
99e22598 3626
70460571 3627 if (from_schedule)
24ecfbe2 3628 blk_run_queue_async(q);
70460571 3629 else
24ecfbe2 3630 __blk_run_queue(q);
50864670 3631 spin_unlock_irq(q->queue_lock);
94b5eb28
JA
3632}
3633
74018dc3 3634static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3635{
3636 LIST_HEAD(callbacks);
3637
2a7d5559
SL
3638 while (!list_empty(&plug->cb_list)) {
3639 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3640
2a7d5559
SL
3641 while (!list_empty(&callbacks)) {
3642 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3643 struct blk_plug_cb,
3644 list);
2a7d5559 3645 list_del(&cb->list);
74018dc3 3646 cb->callback(cb, from_schedule);
2a7d5559 3647 }
048c9374
N
3648 }
3649}
3650
9cbb1750
N
3651struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3652 int size)
3653{
3654 struct blk_plug *plug = current->plug;
3655 struct blk_plug_cb *cb;
3656
3657 if (!plug)
3658 return NULL;
3659
3660 list_for_each_entry(cb, &plug->cb_list, list)
3661 if (cb->callback == unplug && cb->data == data)
3662 return cb;
3663
3664 /* Not currently on the callback list */
3665 BUG_ON(size < sizeof(*cb));
3666 cb = kzalloc(size, GFP_ATOMIC);
3667 if (cb) {
3668 cb->data = data;
3669 cb->callback = unplug;
3670 list_add(&cb->list, &plug->cb_list);
3671 }
3672 return cb;
3673}
3674EXPORT_SYMBOL(blk_check_plugged);
3675
49cac01e 3676void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3677{
3678 struct request_queue *q;
73c10101 3679 struct request *rq;
109b8129 3680 LIST_HEAD(list);
94b5eb28 3681 unsigned int depth;
73c10101 3682
74018dc3 3683 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3684
3685 if (!list_empty(&plug->mq_list))
3686 blk_mq_flush_plug_list(plug, from_schedule);
3687
73c10101
JA
3688 if (list_empty(&plug->list))
3689 return;
3690
109b8129
N
3691 list_splice_init(&plug->list, &list);
3692
422765c2 3693 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3694
3695 q = NULL;
94b5eb28 3696 depth = 0;
18811272 3697
109b8129
N
3698 while (!list_empty(&list)) {
3699 rq = list_entry_rq(list.next);
73c10101 3700 list_del_init(&rq->queuelist);
73c10101
JA
3701 BUG_ON(!rq->q);
3702 if (rq->q != q) {
99e22598
JA
3703 /*
3704 * This drops the queue lock
3705 */
3706 if (q)
49cac01e 3707 queue_unplugged(q, depth, from_schedule);
73c10101 3708 q = rq->q;
94b5eb28 3709 depth = 0;
50864670 3710 spin_lock_irq(q->queue_lock);
73c10101 3711 }
8ba61435
TH
3712
3713 /*
3714 * Short-circuit if @q is dead
3715 */
3f3299d5 3716 if (unlikely(blk_queue_dying(q))) {
2a842aca 3717 __blk_end_request_all(rq, BLK_STS_IOERR);
8ba61435
TH
3718 continue;
3719 }
3720
73c10101
JA
3721 /*
3722 * rq is already accounted, so use raw insert
3723 */
f73f44eb 3724 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3725 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3726 else
3727 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3728
3729 depth++;
73c10101
JA
3730 }
3731
99e22598
JA
3732 /*
3733 * This drops the queue lock
3734 */
3735 if (q)
49cac01e 3736 queue_unplugged(q, depth, from_schedule);
73c10101 3737}
73c10101
JA
3738
3739void blk_finish_plug(struct blk_plug *plug)
3740{
dd6cf3e1
SL
3741 if (plug != current->plug)
3742 return;
f6603783 3743 blk_flush_plug_list(plug, false);
73c10101 3744
dd6cf3e1 3745 current->plug = NULL;
73c10101 3746}
88b996cd 3747EXPORT_SYMBOL(blk_finish_plug);
73c10101 3748
47fafbc7 3749#ifdef CONFIG_PM
6c954667
LM
3750/**
3751 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3752 * @q: the queue of the device
3753 * @dev: the device the queue belongs to
3754 *
3755 * Description:
3756 * Initialize runtime-PM-related fields for @q and start auto suspend for
3757 * @dev. Drivers that want to take advantage of request-based runtime PM
3758 * should call this function after @dev has been initialized, and its
3759 * request queue @q has been allocated, and runtime PM for it can not happen
3760 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3761 * cases, driver should call this function before any I/O has taken place.
3762 *
3763 * This function takes care of setting up using auto suspend for the device,
3764 * the autosuspend delay is set to -1 to make runtime suspend impossible
3765 * until an updated value is either set by user or by driver. Drivers do
3766 * not need to touch other autosuspend settings.
3767 *
3768 * The block layer runtime PM is request based, so only works for drivers
3769 * that use request as their IO unit instead of those directly use bio's.
3770 */
3771void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3772{
765e40b6
CH
3773 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3774 if (q->mq_ops)
3775 return;
3776
6c954667
LM
3777 q->dev = dev;
3778 q->rpm_status = RPM_ACTIVE;
3779 pm_runtime_set_autosuspend_delay(q->dev, -1);
3780 pm_runtime_use_autosuspend(q->dev);
3781}
3782EXPORT_SYMBOL(blk_pm_runtime_init);
3783
3784/**
3785 * blk_pre_runtime_suspend - Pre runtime suspend check
3786 * @q: the queue of the device
3787 *
3788 * Description:
3789 * This function will check if runtime suspend is allowed for the device
3790 * by examining if there are any requests pending in the queue. If there
3791 * are requests pending, the device can not be runtime suspended; otherwise,
3792 * the queue's status will be updated to SUSPENDING and the driver can
3793 * proceed to suspend the device.
3794 *
3795 * For the not allowed case, we mark last busy for the device so that
3796 * runtime PM core will try to autosuspend it some time later.
3797 *
3798 * This function should be called near the start of the device's
3799 * runtime_suspend callback.
3800 *
3801 * Return:
3802 * 0 - OK to runtime suspend the device
3803 * -EBUSY - Device should not be runtime suspended
3804 */
3805int blk_pre_runtime_suspend(struct request_queue *q)
3806{
3807 int ret = 0;
3808
4fd41a85
KX
3809 if (!q->dev)
3810 return ret;
3811
6c954667
LM
3812 spin_lock_irq(q->queue_lock);
3813 if (q->nr_pending) {
3814 ret = -EBUSY;
3815 pm_runtime_mark_last_busy(q->dev);
3816 } else {
3817 q->rpm_status = RPM_SUSPENDING;
3818 }
3819 spin_unlock_irq(q->queue_lock);
3820 return ret;
3821}
3822EXPORT_SYMBOL(blk_pre_runtime_suspend);
3823
3824/**
3825 * blk_post_runtime_suspend - Post runtime suspend processing
3826 * @q: the queue of the device
3827 * @err: return value of the device's runtime_suspend function
3828 *
3829 * Description:
3830 * Update the queue's runtime status according to the return value of the
3831 * device's runtime suspend function and mark last busy for the device so
3832 * that PM core will try to auto suspend the device at a later time.
3833 *
3834 * This function should be called near the end of the device's
3835 * runtime_suspend callback.
3836 */
3837void blk_post_runtime_suspend(struct request_queue *q, int err)
3838{
4fd41a85
KX
3839 if (!q->dev)
3840 return;
3841
6c954667
LM
3842 spin_lock_irq(q->queue_lock);
3843 if (!err) {
3844 q->rpm_status = RPM_SUSPENDED;
3845 } else {
3846 q->rpm_status = RPM_ACTIVE;
3847 pm_runtime_mark_last_busy(q->dev);
3848 }
3849 spin_unlock_irq(q->queue_lock);
3850}
3851EXPORT_SYMBOL(blk_post_runtime_suspend);
3852
3853/**
3854 * blk_pre_runtime_resume - Pre runtime resume processing
3855 * @q: the queue of the device
3856 *
3857 * Description:
3858 * Update the queue's runtime status to RESUMING in preparation for the
3859 * runtime resume of the device.
3860 *
3861 * This function should be called near the start of the device's
3862 * runtime_resume callback.
3863 */
3864void blk_pre_runtime_resume(struct request_queue *q)
3865{
4fd41a85
KX
3866 if (!q->dev)
3867 return;
3868
6c954667
LM
3869 spin_lock_irq(q->queue_lock);
3870 q->rpm_status = RPM_RESUMING;
3871 spin_unlock_irq(q->queue_lock);
3872}
3873EXPORT_SYMBOL(blk_pre_runtime_resume);
3874
3875/**
3876 * blk_post_runtime_resume - Post runtime resume processing
3877 * @q: the queue of the device
3878 * @err: return value of the device's runtime_resume function
3879 *
3880 * Description:
3881 * Update the queue's runtime status according to the return value of the
3882 * device's runtime_resume function. If it is successfully resumed, process
3883 * the requests that are queued into the device's queue when it is resuming
3884 * and then mark last busy and initiate autosuspend for it.
3885 *
3886 * This function should be called near the end of the device's
3887 * runtime_resume callback.
3888 */
3889void blk_post_runtime_resume(struct request_queue *q, int err)
3890{
4fd41a85
KX
3891 if (!q->dev)
3892 return;
3893
6c954667
LM
3894 spin_lock_irq(q->queue_lock);
3895 if (!err) {
3896 q->rpm_status = RPM_ACTIVE;
3897 __blk_run_queue(q);
3898 pm_runtime_mark_last_busy(q->dev);
c60855cd 3899 pm_request_autosuspend(q->dev);
6c954667
LM
3900 } else {
3901 q->rpm_status = RPM_SUSPENDED;
3902 }
3903 spin_unlock_irq(q->queue_lock);
3904}
3905EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3906
3907/**
3908 * blk_set_runtime_active - Force runtime status of the queue to be active
3909 * @q: the queue of the device
3910 *
3911 * If the device is left runtime suspended during system suspend the resume
3912 * hook typically resumes the device and corrects runtime status
3913 * accordingly. However, that does not affect the queue runtime PM status
3914 * which is still "suspended". This prevents processing requests from the
3915 * queue.
3916 *
3917 * This function can be used in driver's resume hook to correct queue
3918 * runtime PM status and re-enable peeking requests from the queue. It
3919 * should be called before first request is added to the queue.
3920 */
3921void blk_set_runtime_active(struct request_queue *q)
3922{
3923 spin_lock_irq(q->queue_lock);
3924 q->rpm_status = RPM_ACTIVE;
3925 pm_runtime_mark_last_busy(q->dev);
3926 pm_request_autosuspend(q->dev);
3927 spin_unlock_irq(q->queue_lock);
3928}
3929EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3930#endif
3931
1da177e4
LT
3932int __init blk_dev_init(void)
3933{
ef295ecf
CH
3934 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3935 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3936 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3937 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3938 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3939
89b90be2
TH
3940 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3941 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3942 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3943 if (!kblockd_workqueue)
3944 panic("Failed to create kblockd\n");
3945
3946 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3947 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3948
c2789bd4 3949 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3950 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3951
18fbda91
OS
3952#ifdef CONFIG_DEBUG_FS
3953 blk_debugfs_root = debugfs_create_dir("block", NULL);
3954#endif
3955
d38ecf93 3956 return 0;
1da177e4 3957}