]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
loop: fix circular locking in loop_clr_fd()
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
2056a782 29#include <linux/blktrace_api.h>
c17bb495 30#include <linux/fault-inject.h>
5f3ea37c 31#include <trace/block.h>
1da177e4 32
8324aa91
JA
33#include "blk.h"
34
0bfc2455
IM
35DEFINE_TRACE(block_plug);
36DEFINE_TRACE(block_unplug_io);
37DEFINE_TRACE(block_unplug_timer);
38DEFINE_TRACE(block_getrq);
39DEFINE_TRACE(block_sleeprq);
40DEFINE_TRACE(block_rq_requeue);
41DEFINE_TRACE(block_bio_backmerge);
42DEFINE_TRACE(block_bio_frontmerge);
43DEFINE_TRACE(block_bio_queue);
44DEFINE_TRACE(block_rq_complete);
45DEFINE_TRACE(block_remap); /* Also used in drivers/md/dm.c */
46EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
47
165125e1 48static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
49
50/*
51 * For the allocated request tables
52 */
5ece6c52 53static struct kmem_cache *request_cachep;
1da177e4
LT
54
55/*
56 * For queue allocation
57 */
6728cb0e 58struct kmem_cache *blk_requestq_cachep;
1da177e4 59
1da177e4
LT
60/*
61 * Controlling structure to kblockd
62 */
ff856bad 63static struct workqueue_struct *kblockd_workqueue;
1da177e4 64
26b8256e
JA
65static void drive_stat_acct(struct request *rq, int new_io)
66{
bc58ba94 67 struct gendisk *disk = rq->rq_disk;
28f13702 68 struct hd_struct *part;
26b8256e 69 int rw = rq_data_dir(rq);
c9959059 70 int cpu;
26b8256e 71
fb8ec18c 72 if (!blk_fs_request(rq) || !disk || !blk_do_io_stat(disk->queue))
26b8256e
JA
73 return;
74
074a7aca 75 cpu = part_stat_lock();
e71bf0d0 76 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
c9959059 77
28f13702 78 if (!new_io)
074a7aca 79 part_stat_inc(cpu, part, merges[rw]);
28f13702 80 else {
074a7aca
TH
81 part_round_stats(cpu, part);
82 part_inc_in_flight(part);
26b8256e 83 }
e71bf0d0 84
074a7aca 85 part_stat_unlock();
26b8256e
JA
86}
87
8324aa91 88void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
89{
90 int nr;
91
92 nr = q->nr_requests - (q->nr_requests / 8) + 1;
93 if (nr > q->nr_requests)
94 nr = q->nr_requests;
95 q->nr_congestion_on = nr;
96
97 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
98 if (nr < 1)
99 nr = 1;
100 q->nr_congestion_off = nr;
101}
102
1da177e4
LT
103/**
104 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
105 * @bdev: device
106 *
107 * Locates the passed device's request queue and returns the address of its
108 * backing_dev_info
109 *
110 * Will return NULL if the request queue cannot be located.
111 */
112struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
113{
114 struct backing_dev_info *ret = NULL;
165125e1 115 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
116
117 if (q)
118 ret = &q->backing_dev_info;
119 return ret;
120}
1da177e4
LT
121EXPORT_SYMBOL(blk_get_backing_dev_info);
122
2a4aa30c 123void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 124{
1afb20f3
FT
125 memset(rq, 0, sizeof(*rq));
126
1da177e4 127 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 128 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 129 rq->cpu = -1;
63a71386
JA
130 rq->q = q;
131 rq->sector = rq->hard_sector = (sector_t) -1;
2e662b65
JA
132 INIT_HLIST_NODE(&rq->hash);
133 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 134 rq->cmd = rq->__cmd;
63a71386 135 rq->tag = -1;
1da177e4 136 rq->ref_count = 1;
1da177e4 137}
2a4aa30c 138EXPORT_SYMBOL(blk_rq_init);
1da177e4 139
5bb23a68
N
140static void req_bio_endio(struct request *rq, struct bio *bio,
141 unsigned int nbytes, int error)
1da177e4 142{
165125e1 143 struct request_queue *q = rq->q;
797e7dbb 144
5bb23a68
N
145 if (&q->bar_rq != rq) {
146 if (error)
147 clear_bit(BIO_UPTODATE, &bio->bi_flags);
148 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
149 error = -EIO;
797e7dbb 150
5bb23a68 151 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 152 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 153 __func__, nbytes, bio->bi_size);
5bb23a68
N
154 nbytes = bio->bi_size;
155 }
797e7dbb 156
08bafc03
KM
157 if (unlikely(rq->cmd_flags & REQ_QUIET))
158 set_bit(BIO_QUIET, &bio->bi_flags);
159
5bb23a68
N
160 bio->bi_size -= nbytes;
161 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
162
163 if (bio_integrity(bio))
164 bio_integrity_advance(bio, nbytes);
165
5bb23a68 166 if (bio->bi_size == 0)
6712ecf8 167 bio_endio(bio, error);
5bb23a68
N
168 } else {
169
170 /*
171 * Okay, this is the barrier request in progress, just
172 * record the error;
173 */
174 if (error && !q->orderr)
175 q->orderr = error;
176 }
1da177e4 177}
1da177e4 178
1da177e4
LT
179void blk_dump_rq_flags(struct request *rq, char *msg)
180{
181 int bit;
182
6728cb0e 183 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
184 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
185 rq->cmd_flags);
1da177e4 186
6728cb0e
JA
187 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
188 (unsigned long long)rq->sector,
189 rq->nr_sectors,
190 rq->current_nr_sectors);
191 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
192 rq->bio, rq->biotail,
193 rq->buffer, rq->data,
194 rq->data_len);
1da177e4 195
4aff5e23 196 if (blk_pc_request(rq)) {
6728cb0e 197 printk(KERN_INFO " cdb: ");
d34c87e4 198 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
199 printk("%02x ", rq->cmd[bit]);
200 printk("\n");
201 }
202}
1da177e4
LT
203EXPORT_SYMBOL(blk_dump_rq_flags);
204
1da177e4
LT
205/*
206 * "plug" the device if there are no outstanding requests: this will
207 * force the transfer to start only after we have put all the requests
208 * on the list.
209 *
210 * This is called with interrupts off and no requests on the queue and
211 * with the queue lock held.
212 */
165125e1 213void blk_plug_device(struct request_queue *q)
1da177e4
LT
214{
215 WARN_ON(!irqs_disabled());
216
217 /*
218 * don't plug a stopped queue, it must be paired with blk_start_queue()
219 * which will restart the queueing
220 */
7daac490 221 if (blk_queue_stopped(q))
1da177e4
LT
222 return;
223
e48ec690 224 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 225 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 226 trace_block_plug(q);
2056a782 227 }
1da177e4 228}
1da177e4
LT
229EXPORT_SYMBOL(blk_plug_device);
230
6c5e0c4d
JA
231/**
232 * blk_plug_device_unlocked - plug a device without queue lock held
233 * @q: The &struct request_queue to plug
234 *
235 * Description:
236 * Like @blk_plug_device(), but grabs the queue lock and disables
237 * interrupts.
238 **/
239void blk_plug_device_unlocked(struct request_queue *q)
240{
241 unsigned long flags;
242
243 spin_lock_irqsave(q->queue_lock, flags);
244 blk_plug_device(q);
245 spin_unlock_irqrestore(q->queue_lock, flags);
246}
247EXPORT_SYMBOL(blk_plug_device_unlocked);
248
1da177e4
LT
249/*
250 * remove the queue from the plugged list, if present. called with
251 * queue lock held and interrupts disabled.
252 */
165125e1 253int blk_remove_plug(struct request_queue *q)
1da177e4
LT
254{
255 WARN_ON(!irqs_disabled());
256
e48ec690 257 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
258 return 0;
259
260 del_timer(&q->unplug_timer);
261 return 1;
262}
1da177e4
LT
263EXPORT_SYMBOL(blk_remove_plug);
264
265/*
266 * remove the plug and let it rip..
267 */
165125e1 268void __generic_unplug_device(struct request_queue *q)
1da177e4 269{
7daac490 270 if (unlikely(blk_queue_stopped(q)))
1da177e4 271 return;
a31a9738 272 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
1da177e4
LT
273 return;
274
22e2c507 275 q->request_fn(q);
1da177e4 276}
1da177e4
LT
277
278/**
279 * generic_unplug_device - fire a request queue
165125e1 280 * @q: The &struct request_queue in question
1da177e4
LT
281 *
282 * Description:
283 * Linux uses plugging to build bigger requests queues before letting
284 * the device have at them. If a queue is plugged, the I/O scheduler
285 * is still adding and merging requests on the queue. Once the queue
286 * gets unplugged, the request_fn defined for the queue is invoked and
287 * transfers started.
288 **/
165125e1 289void generic_unplug_device(struct request_queue *q)
1da177e4 290{
dbaf2c00
JA
291 if (blk_queue_plugged(q)) {
292 spin_lock_irq(q->queue_lock);
293 __generic_unplug_device(q);
294 spin_unlock_irq(q->queue_lock);
295 }
1da177e4
LT
296}
297EXPORT_SYMBOL(generic_unplug_device);
298
299static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
300 struct page *page)
301{
165125e1 302 struct request_queue *q = bdi->unplug_io_data;
1da177e4 303
2ad8b1ef 304 blk_unplug(q);
1da177e4
LT
305}
306
86db1e29 307void blk_unplug_work(struct work_struct *work)
1da177e4 308{
165125e1
JA
309 struct request_queue *q =
310 container_of(work, struct request_queue, unplug_work);
1da177e4 311
5f3ea37c 312 trace_block_unplug_io(q);
1da177e4
LT
313 q->unplug_fn(q);
314}
315
86db1e29 316void blk_unplug_timeout(unsigned long data)
1da177e4 317{
165125e1 318 struct request_queue *q = (struct request_queue *)data;
1da177e4 319
5f3ea37c 320 trace_block_unplug_timer(q);
18887ad9 321 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
322}
323
2ad8b1ef
AB
324void blk_unplug(struct request_queue *q)
325{
326 /*
327 * devices don't necessarily have an ->unplug_fn defined
328 */
329 if (q->unplug_fn) {
5f3ea37c 330 trace_block_unplug_io(q);
2ad8b1ef
AB
331 q->unplug_fn(q);
332 }
333}
334EXPORT_SYMBOL(blk_unplug);
335
c7c22e4d
JA
336static void blk_invoke_request_fn(struct request_queue *q)
337{
80a4b58e
JA
338 if (unlikely(blk_queue_stopped(q)))
339 return;
340
c7c22e4d
JA
341 /*
342 * one level of recursion is ok and is much faster than kicking
343 * the unplug handling
344 */
345 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
346 q->request_fn(q);
347 queue_flag_clear(QUEUE_FLAG_REENTER, q);
348 } else {
349 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
350 kblockd_schedule_work(q, &q->unplug_work);
351 }
352}
353
1da177e4
LT
354/**
355 * blk_start_queue - restart a previously stopped queue
165125e1 356 * @q: The &struct request_queue in question
1da177e4
LT
357 *
358 * Description:
359 * blk_start_queue() will clear the stop flag on the queue, and call
360 * the request_fn for the queue if it was in a stopped state when
361 * entered. Also see blk_stop_queue(). Queue lock must be held.
362 **/
165125e1 363void blk_start_queue(struct request_queue *q)
1da177e4 364{
a038e253
PBG
365 WARN_ON(!irqs_disabled());
366
75ad23bc 367 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
c7c22e4d 368 blk_invoke_request_fn(q);
1da177e4 369}
1da177e4
LT
370EXPORT_SYMBOL(blk_start_queue);
371
372/**
373 * blk_stop_queue - stop a queue
165125e1 374 * @q: The &struct request_queue in question
1da177e4
LT
375 *
376 * Description:
377 * The Linux block layer assumes that a block driver will consume all
378 * entries on the request queue when the request_fn strategy is called.
379 * Often this will not happen, because of hardware limitations (queue
380 * depth settings). If a device driver gets a 'queue full' response,
381 * or if it simply chooses not to queue more I/O at one point, it can
382 * call this function to prevent the request_fn from being called until
383 * the driver has signalled it's ready to go again. This happens by calling
384 * blk_start_queue() to restart queue operations. Queue lock must be held.
385 **/
165125e1 386void blk_stop_queue(struct request_queue *q)
1da177e4
LT
387{
388 blk_remove_plug(q);
75ad23bc 389 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
390}
391EXPORT_SYMBOL(blk_stop_queue);
392
393/**
394 * blk_sync_queue - cancel any pending callbacks on a queue
395 * @q: the queue
396 *
397 * Description:
398 * The block layer may perform asynchronous callback activity
399 * on a queue, such as calling the unplug function after a timeout.
400 * A block device may call blk_sync_queue to ensure that any
401 * such activity is cancelled, thus allowing it to release resources
59c51591 402 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
403 * that its ->make_request_fn will not re-add plugging prior to calling
404 * this function.
405 *
406 */
407void blk_sync_queue(struct request_queue *q)
408{
409 del_timer_sync(&q->unplug_timer);
70ed28b9 410 del_timer_sync(&q->timeout);
64d01dc9 411 cancel_work_sync(&q->unplug_work);
1da177e4
LT
412}
413EXPORT_SYMBOL(blk_sync_queue);
414
415/**
80a4b58e 416 * __blk_run_queue - run a single device queue
1da177e4 417 * @q: The queue to run
80a4b58e
JA
418 *
419 * Description:
420 * See @blk_run_queue. This variant must be called with the queue lock
421 * held and interrupts disabled.
422 *
1da177e4 423 */
75ad23bc 424void __blk_run_queue(struct request_queue *q)
1da177e4 425{
1da177e4 426 blk_remove_plug(q);
dac07ec1
JA
427
428 /*
429 * Only recurse once to avoid overrunning the stack, let the unplug
430 * handling reinvoke the handler shortly if we already got there.
431 */
c7c22e4d
JA
432 if (!elv_queue_empty(q))
433 blk_invoke_request_fn(q);
75ad23bc
NP
434}
435EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 436
75ad23bc
NP
437/**
438 * blk_run_queue - run a single device queue
439 * @q: The queue to run
80a4b58e
JA
440 *
441 * Description:
442 * Invoke request handling on this queue, if it has pending work to do.
443 * May be used to restart queueing when a request has completed. Also
444 * See @blk_start_queueing.
445 *
75ad23bc
NP
446 */
447void blk_run_queue(struct request_queue *q)
448{
449 unsigned long flags;
450
451 spin_lock_irqsave(q->queue_lock, flags);
452 __blk_run_queue(q);
1da177e4
LT
453 spin_unlock_irqrestore(q->queue_lock, flags);
454}
455EXPORT_SYMBOL(blk_run_queue);
456
165125e1 457void blk_put_queue(struct request_queue *q)
483f4afc
AV
458{
459 kobject_put(&q->kobj);
460}
483f4afc 461
6728cb0e 462void blk_cleanup_queue(struct request_queue *q)
483f4afc 463{
e3335de9
JA
464 /*
465 * We know we have process context here, so we can be a little
466 * cautious and ensure that pending block actions on this device
467 * are done before moving on. Going into this function, we should
468 * not have processes doing IO to this device.
469 */
470 blk_sync_queue(q);
471
483f4afc 472 mutex_lock(&q->sysfs_lock);
75ad23bc 473 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
474 mutex_unlock(&q->sysfs_lock);
475
476 if (q->elevator)
477 elevator_exit(q->elevator);
478
479 blk_put_queue(q);
480}
1da177e4
LT
481EXPORT_SYMBOL(blk_cleanup_queue);
482
165125e1 483static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
484{
485 struct request_list *rl = &q->rq;
486
487 rl->count[READ] = rl->count[WRITE] = 0;
488 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 489 rl->elvpriv = 0;
1da177e4
LT
490 init_waitqueue_head(&rl->wait[READ]);
491 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 492
1946089a
CL
493 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
494 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
495
496 if (!rl->rq_pool)
497 return -ENOMEM;
498
499 return 0;
500}
501
165125e1 502struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 503{
1946089a
CL
504 return blk_alloc_queue_node(gfp_mask, -1);
505}
506EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 507
165125e1 508struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 509{
165125e1 510 struct request_queue *q;
e0bf68dd 511 int err;
1946089a 512
8324aa91 513 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 514 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
515 if (!q)
516 return NULL;
517
e0bf68dd
PZ
518 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
519 q->backing_dev_info.unplug_io_data = q;
520 err = bdi_init(&q->backing_dev_info);
521 if (err) {
8324aa91 522 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
523 return NULL;
524 }
525
1da177e4 526 init_timer(&q->unplug_timer);
242f9dcb
JA
527 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
528 INIT_LIST_HEAD(&q->timeout_list);
713ada9b 529 INIT_WORK(&q->unplug_work, blk_unplug_work);
483f4afc 530
8324aa91 531 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 532
483f4afc 533 mutex_init(&q->sysfs_lock);
e7e72bf6 534 spin_lock_init(&q->__queue_lock);
483f4afc 535
1da177e4
LT
536 return q;
537}
1946089a 538EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
539
540/**
541 * blk_init_queue - prepare a request queue for use with a block device
542 * @rfn: The function to be called to process requests that have been
543 * placed on the queue.
544 * @lock: Request queue spin lock
545 *
546 * Description:
547 * If a block device wishes to use the standard request handling procedures,
548 * which sorts requests and coalesces adjacent requests, then it must
549 * call blk_init_queue(). The function @rfn will be called when there
550 * are requests on the queue that need to be processed. If the device
551 * supports plugging, then @rfn may not be called immediately when requests
552 * are available on the queue, but may be called at some time later instead.
553 * Plugged queues are generally unplugged when a buffer belonging to one
554 * of the requests on the queue is needed, or due to memory pressure.
555 *
556 * @rfn is not required, or even expected, to remove all requests off the
557 * queue, but only as many as it can handle at a time. If it does leave
558 * requests on the queue, it is responsible for arranging that the requests
559 * get dealt with eventually.
560 *
561 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
562 * request queue; this lock will be taken also from interrupt context, so irq
563 * disabling is needed for it.
1da177e4 564 *
710027a4 565 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
566 * it didn't succeed.
567 *
568 * Note:
569 * blk_init_queue() must be paired with a blk_cleanup_queue() call
570 * when the block device is deactivated (such as at module unload).
571 **/
1946089a 572
165125e1 573struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 574{
1946089a
CL
575 return blk_init_queue_node(rfn, lock, -1);
576}
577EXPORT_SYMBOL(blk_init_queue);
578
165125e1 579struct request_queue *
1946089a
CL
580blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
581{
165125e1 582 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
583
584 if (!q)
585 return NULL;
586
1946089a 587 q->node = node_id;
8669aafd 588 if (blk_init_free_list(q)) {
8324aa91 589 kmem_cache_free(blk_requestq_cachep, q);
8669aafd
AV
590 return NULL;
591 }
1da177e4 592
152587de
JA
593 /*
594 * if caller didn't supply a lock, they get per-queue locking with
595 * our embedded lock
596 */
e7e72bf6 597 if (!lock)
152587de 598 lock = &q->__queue_lock;
152587de 599
1da177e4 600 q->request_fn = rfn;
1da177e4
LT
601 q->prep_rq_fn = NULL;
602 q->unplug_fn = generic_unplug_device;
bc58ba94 603 q->queue_flags = QUEUE_FLAG_DEFAULT;
1da177e4
LT
604 q->queue_lock = lock;
605
f3b144aa
JA
606 /*
607 * This also sets hw/phys segments, boundary and size
608 */
1da177e4 609 blk_queue_make_request(q, __make_request);
1da177e4 610
44ec9542
AS
611 q->sg_reserved_size = INT_MAX;
612
abf54393
FT
613 blk_set_cmd_filter_defaults(&q->cmd_filter);
614
1da177e4
LT
615 /*
616 * all done
617 */
618 if (!elevator_init(q, NULL)) {
619 blk_queue_congestion_threshold(q);
620 return q;
621 }
622
8669aafd 623 blk_put_queue(q);
1da177e4
LT
624 return NULL;
625}
1946089a 626EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 627
165125e1 628int blk_get_queue(struct request_queue *q)
1da177e4 629{
fde6ad22 630 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 631 kobject_get(&q->kobj);
1da177e4
LT
632 return 0;
633 }
634
635 return 1;
636}
1da177e4 637
165125e1 638static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 639{
4aff5e23 640 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 641 elv_put_request(q, rq);
1da177e4
LT
642 mempool_free(rq, q->rq.rq_pool);
643}
644
1ea25ecb 645static struct request *
165125e1 646blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
647{
648 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
649
650 if (!rq)
651 return NULL;
652
2a4aa30c 653 blk_rq_init(q, rq);
1afb20f3 654
49171e5c 655 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 656
cb98fc8b 657 if (priv) {
cb78b285 658 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
659 mempool_free(rq, q->rq.rq_pool);
660 return NULL;
661 }
4aff5e23 662 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 663 }
1da177e4 664
cb98fc8b 665 return rq;
1da177e4
LT
666}
667
668/*
669 * ioc_batching returns true if the ioc is a valid batching request and
670 * should be given priority access to a request.
671 */
165125e1 672static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
673{
674 if (!ioc)
675 return 0;
676
677 /*
678 * Make sure the process is able to allocate at least 1 request
679 * even if the batch times out, otherwise we could theoretically
680 * lose wakeups.
681 */
682 return ioc->nr_batch_requests == q->nr_batching ||
683 (ioc->nr_batch_requests > 0
684 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
685}
686
687/*
688 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
689 * will cause the process to be a "batcher" on all queues in the system. This
690 * is the behaviour we want though - once it gets a wakeup it should be given
691 * a nice run.
692 */
165125e1 693static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
694{
695 if (!ioc || ioc_batching(q, ioc))
696 return;
697
698 ioc->nr_batch_requests = q->nr_batching;
699 ioc->last_waited = jiffies;
700}
701
165125e1 702static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
703{
704 struct request_list *rl = &q->rq;
705
706 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 707 blk_clear_queue_congested(q, rw);
1da177e4
LT
708
709 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
710 if (waitqueue_active(&rl->wait[rw]))
711 wake_up(&rl->wait[rw]);
712
713 blk_clear_queue_full(q, rw);
714 }
715}
716
717/*
718 * A request has just been released. Account for it, update the full and
719 * congestion status, wake up any waiters. Called under q->queue_lock.
720 */
165125e1 721static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
722{
723 struct request_list *rl = &q->rq;
724
725 rl->count[rw]--;
cb98fc8b
TH
726 if (priv)
727 rl->elvpriv--;
1da177e4
LT
728
729 __freed_request(q, rw);
730
731 if (unlikely(rl->starved[rw ^ 1]))
732 __freed_request(q, rw ^ 1);
1da177e4
LT
733}
734
1da177e4 735/*
d6344532
NP
736 * Get a free request, queue_lock must be held.
737 * Returns NULL on failure, with queue_lock held.
738 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 739 */
165125e1 740static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 741 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
742{
743 struct request *rq = NULL;
744 struct request_list *rl = &q->rq;
88ee5ef1 745 struct io_context *ioc = NULL;
7749a8d4 746 const int rw = rw_flags & 0x01;
88ee5ef1
JA
747 int may_queue, priv;
748
7749a8d4 749 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
750 if (may_queue == ELV_MQUEUE_NO)
751 goto rq_starved;
752
753 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
754 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 755 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
756 /*
757 * The queue will fill after this allocation, so set
758 * it as full, and mark this process as "batching".
759 * This process will be allowed to complete a batch of
760 * requests, others will be blocked.
761 */
762 if (!blk_queue_full(q, rw)) {
763 ioc_set_batching(q, ioc);
764 blk_set_queue_full(q, rw);
765 } else {
766 if (may_queue != ELV_MQUEUE_MUST
767 && !ioc_batching(q, ioc)) {
768 /*
769 * The queue is full and the allocating
770 * process is not a "batcher", and not
771 * exempted by the IO scheduler
772 */
773 goto out;
774 }
775 }
1da177e4 776 }
79e2de4b 777 blk_set_queue_congested(q, rw);
1da177e4
LT
778 }
779
082cf69e
JA
780 /*
781 * Only allow batching queuers to allocate up to 50% over the defined
782 * limit of requests, otherwise we could have thousands of requests
783 * allocated with any setting of ->nr_requests
784 */
fd782a4a 785 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 786 goto out;
fd782a4a 787
1da177e4
LT
788 rl->count[rw]++;
789 rl->starved[rw] = 0;
cb98fc8b 790
64521d1a 791 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
792 if (priv)
793 rl->elvpriv++;
794
1da177e4
LT
795 spin_unlock_irq(q->queue_lock);
796
7749a8d4 797 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 798 if (unlikely(!rq)) {
1da177e4
LT
799 /*
800 * Allocation failed presumably due to memory. Undo anything
801 * we might have messed up.
802 *
803 * Allocating task should really be put onto the front of the
804 * wait queue, but this is pretty rare.
805 */
806 spin_lock_irq(q->queue_lock);
cb98fc8b 807 freed_request(q, rw, priv);
1da177e4
LT
808
809 /*
810 * in the very unlikely event that allocation failed and no
811 * requests for this direction was pending, mark us starved
812 * so that freeing of a request in the other direction will
813 * notice us. another possible fix would be to split the
814 * rq mempool into READ and WRITE
815 */
816rq_starved:
817 if (unlikely(rl->count[rw] == 0))
818 rl->starved[rw] = 1;
819
1da177e4
LT
820 goto out;
821 }
822
88ee5ef1
JA
823 /*
824 * ioc may be NULL here, and ioc_batching will be false. That's
825 * OK, if the queue is under the request limit then requests need
826 * not count toward the nr_batch_requests limit. There will always
827 * be some limit enforced by BLK_BATCH_TIME.
828 */
1da177e4
LT
829 if (ioc_batching(q, ioc))
830 ioc->nr_batch_requests--;
6728cb0e 831
5f3ea37c 832 trace_block_getrq(q, bio, rw);
1da177e4 833out:
1da177e4
LT
834 return rq;
835}
836
837/*
838 * No available requests for this queue, unplug the device and wait for some
839 * requests to become available.
d6344532
NP
840 *
841 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 842 */
165125e1 843static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 844 struct bio *bio)
1da177e4 845{
7749a8d4 846 const int rw = rw_flags & 0x01;
1da177e4
LT
847 struct request *rq;
848
7749a8d4 849 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
850 while (!rq) {
851 DEFINE_WAIT(wait);
05caf8db 852 struct io_context *ioc;
1da177e4
LT
853 struct request_list *rl = &q->rq;
854
855 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
856 TASK_UNINTERRUPTIBLE);
857
5f3ea37c 858 trace_block_sleeprq(q, bio, rw);
1da177e4 859
05caf8db
ZY
860 __generic_unplug_device(q);
861 spin_unlock_irq(q->queue_lock);
862 io_schedule();
1da177e4 863
05caf8db
ZY
864 /*
865 * After sleeping, we become a "batching" process and
866 * will be able to allocate at least one request, and
867 * up to a big batch of them for a small period time.
868 * See ioc_batching, ioc_set_batching
869 */
870 ioc = current_io_context(GFP_NOIO, q->node);
871 ioc_set_batching(q, ioc);
d6344532 872
05caf8db 873 spin_lock_irq(q->queue_lock);
1da177e4 874 finish_wait(&rl->wait[rw], &wait);
05caf8db
ZY
875
876 rq = get_request(q, rw_flags, bio, GFP_NOIO);
877 };
1da177e4
LT
878
879 return rq;
880}
881
165125e1 882struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
883{
884 struct request *rq;
885
886 BUG_ON(rw != READ && rw != WRITE);
887
d6344532
NP
888 spin_lock_irq(q->queue_lock);
889 if (gfp_mask & __GFP_WAIT) {
22e2c507 890 rq = get_request_wait(q, rw, NULL);
d6344532 891 } else {
22e2c507 892 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
893 if (!rq)
894 spin_unlock_irq(q->queue_lock);
895 }
896 /* q->queue_lock is unlocked at this point */
1da177e4
LT
897
898 return rq;
899}
1da177e4
LT
900EXPORT_SYMBOL(blk_get_request);
901
dc72ef4a
JA
902/**
903 * blk_start_queueing - initiate dispatch of requests to device
904 * @q: request queue to kick into gear
905 *
906 * This is basically a helper to remove the need to know whether a queue
907 * is plugged or not if someone just wants to initiate dispatch of requests
80a4b58e
JA
908 * for this queue. Should be used to start queueing on a device outside
909 * of ->request_fn() context. Also see @blk_run_queue.
dc72ef4a
JA
910 *
911 * The queue lock must be held with interrupts disabled.
912 */
165125e1 913void blk_start_queueing(struct request_queue *q)
dc72ef4a 914{
336c3d8c
EO
915 if (!blk_queue_plugged(q)) {
916 if (unlikely(blk_queue_stopped(q)))
917 return;
dc72ef4a 918 q->request_fn(q);
336c3d8c 919 } else
dc72ef4a
JA
920 __generic_unplug_device(q);
921}
922EXPORT_SYMBOL(blk_start_queueing);
923
1da177e4
LT
924/**
925 * blk_requeue_request - put a request back on queue
926 * @q: request queue where request should be inserted
927 * @rq: request to be inserted
928 *
929 * Description:
930 * Drivers often keep queueing requests until the hardware cannot accept
931 * more, when that condition happens we need to put the request back
932 * on the queue. Must be called with queue lock held.
933 */
165125e1 934void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 935{
242f9dcb
JA
936 blk_delete_timer(rq);
937 blk_clear_rq_complete(rq);
5f3ea37c 938 trace_block_rq_requeue(q, rq);
2056a782 939
1da177e4
LT
940 if (blk_rq_tagged(rq))
941 blk_queue_end_tag(q, rq);
942
943 elv_requeue_request(q, rq);
944}
1da177e4
LT
945EXPORT_SYMBOL(blk_requeue_request);
946
947/**
710027a4 948 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
949 * @q: request queue where request should be inserted
950 * @rq: request to be inserted
951 * @at_head: insert request at head or tail of queue
952 * @data: private data
1da177e4
LT
953 *
954 * Description:
955 * Many block devices need to execute commands asynchronously, so they don't
956 * block the whole kernel from preemption during request execution. This is
957 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
958 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
959 * be scheduled for actual execution by the request queue.
1da177e4
LT
960 *
961 * We have the option of inserting the head or the tail of the queue.
962 * Typically we use the tail for new ioctls and so forth. We use the head
963 * of the queue for things like a QUEUE_FULL message from a device, or a
964 * host that is unable to accept a particular command.
965 */
165125e1 966void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 967 int at_head, void *data)
1da177e4 968{
867d1191 969 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
970 unsigned long flags;
971
972 /*
973 * tell I/O scheduler that this isn't a regular read/write (ie it
974 * must not attempt merges on this) and that it acts as a soft
975 * barrier
976 */
4aff5e23
JA
977 rq->cmd_type = REQ_TYPE_SPECIAL;
978 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
979
980 rq->special = data;
981
982 spin_lock_irqsave(q->queue_lock, flags);
983
984 /*
985 * If command is tagged, release the tag
986 */
867d1191
TH
987 if (blk_rq_tagged(rq))
988 blk_queue_end_tag(q, rq);
1da177e4 989
b238b3d4 990 drive_stat_acct(rq, 1);
867d1191 991 __elv_add_request(q, rq, where, 0);
dc72ef4a 992 blk_start_queueing(q);
1da177e4
LT
993 spin_unlock_irqrestore(q->queue_lock, flags);
994}
1da177e4
LT
995EXPORT_SYMBOL(blk_insert_request);
996
1da177e4
LT
997/*
998 * add-request adds a request to the linked list.
999 * queue lock is held and interrupts disabled, as we muck with the
1000 * request queue list.
1001 */
6728cb0e 1002static inline void add_request(struct request_queue *q, struct request *req)
1da177e4 1003{
b238b3d4 1004 drive_stat_acct(req, 1);
1da177e4 1005
1da177e4
LT
1006 /*
1007 * elevator indicated where it wants this request to be
1008 * inserted at elevator_merge time
1009 */
1010 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1011}
6728cb0e 1012
074a7aca
TH
1013static void part_round_stats_single(int cpu, struct hd_struct *part,
1014 unsigned long now)
1015{
1016 if (now == part->stamp)
1017 return;
1018
1019 if (part->in_flight) {
1020 __part_stat_add(cpu, part, time_in_queue,
1021 part->in_flight * (now - part->stamp));
1022 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1023 }
1024 part->stamp = now;
1025}
1026
1027/**
496aa8a9
RD
1028 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1029 * @cpu: cpu number for stats access
1030 * @part: target partition
1da177e4
LT
1031 *
1032 * The average IO queue length and utilisation statistics are maintained
1033 * by observing the current state of the queue length and the amount of
1034 * time it has been in this state for.
1035 *
1036 * Normally, that accounting is done on IO completion, but that can result
1037 * in more than a second's worth of IO being accounted for within any one
1038 * second, leading to >100% utilisation. To deal with that, we call this
1039 * function to do a round-off before returning the results when reading
1040 * /proc/diskstats. This accounts immediately for all queue usage up to
1041 * the current jiffies and restarts the counters again.
1042 */
c9959059 1043void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1044{
1045 unsigned long now = jiffies;
1046
074a7aca
TH
1047 if (part->partno)
1048 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1049 part_round_stats_single(cpu, part, now);
6f2576af 1050}
074a7aca 1051EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1052
1da177e4
LT
1053/*
1054 * queue lock must be held
1055 */
165125e1 1056void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1057{
1da177e4
LT
1058 if (unlikely(!q))
1059 return;
1060 if (unlikely(--req->ref_count))
1061 return;
1062
8922e16c
TH
1063 elv_completed_request(q, req);
1064
1da177e4
LT
1065 /*
1066 * Request may not have originated from ll_rw_blk. if not,
1067 * it didn't come out of our reserved rq pools
1068 */
49171e5c 1069 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 1070 int rw = rq_data_dir(req);
4aff5e23 1071 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1072
1da177e4 1073 BUG_ON(!list_empty(&req->queuelist));
9817064b 1074 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1075
1076 blk_free_request(q, req);
cb98fc8b 1077 freed_request(q, rw, priv);
1da177e4
LT
1078 }
1079}
6e39b69e
MC
1080EXPORT_SYMBOL_GPL(__blk_put_request);
1081
1da177e4
LT
1082void blk_put_request(struct request *req)
1083{
8922e16c 1084 unsigned long flags;
165125e1 1085 struct request_queue *q = req->q;
8922e16c 1086
52a93ba8
FT
1087 spin_lock_irqsave(q->queue_lock, flags);
1088 __blk_put_request(q, req);
1089 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1090}
1da177e4
LT
1091EXPORT_SYMBOL(blk_put_request);
1092
86db1e29 1093void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1094{
c7c22e4d 1095 req->cpu = bio->bi_comp_cpu;
4aff5e23 1096 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
1097
1098 /*
1099 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1100 */
6000a368
MC
1101 if (bio_rw_ahead(bio))
1102 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
1103 REQ_FAILFAST_DRIVER);
1104 if (bio_failfast_dev(bio))
1105 req->cmd_flags |= REQ_FAILFAST_DEV;
1106 if (bio_failfast_transport(bio))
1107 req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
1108 if (bio_failfast_driver(bio))
1109 req->cmd_flags |= REQ_FAILFAST_DRIVER;
52d9e675
TH
1110
1111 /*
1112 * REQ_BARRIER implies no merging, but lets make it explicit
1113 */
fb2dce86 1114 if (unlikely(bio_discard(bio))) {
e17fc0a1
DW
1115 req->cmd_flags |= REQ_DISCARD;
1116 if (bio_barrier(bio))
1117 req->cmd_flags |= REQ_SOFTBARRIER;
fb2dce86 1118 req->q->prepare_discard_fn(req->q, req);
e17fc0a1
DW
1119 } else if (unlikely(bio_barrier(bio)))
1120 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 1121
b31dc66a 1122 if (bio_sync(bio))
4aff5e23 1123 req->cmd_flags |= REQ_RW_SYNC;
213d9417
JA
1124 if (bio_unplug(bio))
1125 req->cmd_flags |= REQ_UNPLUG;
5404bc7a
JA
1126 if (bio_rw_meta(bio))
1127 req->cmd_flags |= REQ_RW_META;
b31dc66a 1128
52d9e675
TH
1129 req->errors = 0;
1130 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 1131 req->ioprio = bio_prio(bio);
52d9e675 1132 req->start_time = jiffies;
bc1c56fd 1133 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1134}
1135
165125e1 1136static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1137{
450991bc 1138 struct request *req;
a7384677 1139 int el_ret, nr_sectors;
51da90fc
JA
1140 const unsigned short prio = bio_prio(bio);
1141 const int sync = bio_sync(bio);
213d9417 1142 const int unplug = bio_unplug(bio);
7749a8d4 1143 int rw_flags;
1da177e4 1144
1da177e4 1145 nr_sectors = bio_sectors(bio);
1da177e4
LT
1146
1147 /*
1148 * low level driver can indicate that it wants pages above a
1149 * certain limit bounced to low memory (ie for highmem, or even
1150 * ISA dma in theory)
1151 */
1152 blk_queue_bounce(q, &bio);
1153
1da177e4
LT
1154 spin_lock_irq(q->queue_lock);
1155
a7384677 1156 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q))
1da177e4
LT
1157 goto get_rq;
1158
1159 el_ret = elv_merge(q, &req, bio);
1160 switch (el_ret) {
6728cb0e
JA
1161 case ELEVATOR_BACK_MERGE:
1162 BUG_ON(!rq_mergeable(req));
1da177e4 1163
6728cb0e
JA
1164 if (!ll_back_merge_fn(q, req, bio))
1165 break;
1da177e4 1166
5f3ea37c 1167 trace_block_bio_backmerge(q, bio);
2056a782 1168
6728cb0e
JA
1169 req->biotail->bi_next = bio;
1170 req->biotail = bio;
1171 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1172 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1173 if (!blk_rq_cpu_valid(req))
1174 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1175 drive_stat_acct(req, 0);
1176 if (!attempt_back_merge(q, req))
1177 elv_merged_request(q, req, el_ret);
1178 goto out;
1da177e4 1179
6728cb0e
JA
1180 case ELEVATOR_FRONT_MERGE:
1181 BUG_ON(!rq_mergeable(req));
1da177e4 1182
6728cb0e
JA
1183 if (!ll_front_merge_fn(q, req, bio))
1184 break;
1da177e4 1185
5f3ea37c 1186 trace_block_bio_frontmerge(q, bio);
2056a782 1187
6728cb0e
JA
1188 bio->bi_next = req->bio;
1189 req->bio = bio;
1da177e4 1190
6728cb0e
JA
1191 /*
1192 * may not be valid. if the low level driver said
1193 * it didn't need a bounce buffer then it better
1194 * not touch req->buffer either...
1195 */
1196 req->buffer = bio_data(bio);
1197 req->current_nr_sectors = bio_cur_sectors(bio);
1198 req->hard_cur_sectors = req->current_nr_sectors;
1199 req->sector = req->hard_sector = bio->bi_sector;
1200 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1201 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1202 if (!blk_rq_cpu_valid(req))
1203 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1204 drive_stat_acct(req, 0);
1205 if (!attempt_front_merge(q, req))
1206 elv_merged_request(q, req, el_ret);
1207 goto out;
1208
1209 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1210 default:
1211 ;
1da177e4
LT
1212 }
1213
450991bc 1214get_rq:
7749a8d4
JA
1215 /*
1216 * This sync check and mask will be re-done in init_request_from_bio(),
1217 * but we need to set it earlier to expose the sync flag to the
1218 * rq allocator and io schedulers.
1219 */
1220 rw_flags = bio_data_dir(bio);
1221 if (sync)
1222 rw_flags |= REQ_RW_SYNC;
1223
1da177e4 1224 /*
450991bc 1225 * Grab a free request. This is might sleep but can not fail.
d6344532 1226 * Returns with the queue unlocked.
450991bc 1227 */
7749a8d4 1228 req = get_request_wait(q, rw_flags, bio);
d6344532 1229
450991bc
NP
1230 /*
1231 * After dropping the lock and possibly sleeping here, our request
1232 * may now be mergeable after it had proven unmergeable (above).
1233 * We don't worry about that case for efficiency. It won't happen
1234 * often, and the elevators are able to handle it.
1da177e4 1235 */
52d9e675 1236 init_request_from_bio(req, bio);
1da177e4 1237
450991bc 1238 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1239 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1240 bio_flagged(bio, BIO_CPU_AFFINE))
1241 req->cpu = blk_cpu_to_group(smp_processor_id());
a31a9738 1242 if (!blk_queue_nonrot(q) && elv_queue_empty(q))
450991bc 1243 blk_plug_device(q);
1da177e4
LT
1244 add_request(q, req);
1245out:
213d9417 1246 if (unplug || blk_queue_nonrot(q))
1da177e4 1247 __generic_unplug_device(q);
1da177e4
LT
1248 spin_unlock_irq(q->queue_lock);
1249 return 0;
1da177e4
LT
1250}
1251
1252/*
1253 * If bio->bi_dev is a partition, remap the location
1254 */
1255static inline void blk_partition_remap(struct bio *bio)
1256{
1257 struct block_device *bdev = bio->bi_bdev;
1258
bf2de6f5 1259 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1260 struct hd_struct *p = bdev->bd_part;
1261
1da177e4
LT
1262 bio->bi_sector += p->start_sect;
1263 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1264
5f3ea37c 1265 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
c7149d6b
AB
1266 bdev->bd_dev, bio->bi_sector,
1267 bio->bi_sector - p->start_sect);
1da177e4
LT
1268 }
1269}
1270
1da177e4
LT
1271static void handle_bad_sector(struct bio *bio)
1272{
1273 char b[BDEVNAME_SIZE];
1274
1275 printk(KERN_INFO "attempt to access beyond end of device\n");
1276 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1277 bdevname(bio->bi_bdev, b),
1278 bio->bi_rw,
1279 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1280 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1281
1282 set_bit(BIO_EOF, &bio->bi_flags);
1283}
1284
c17bb495
AM
1285#ifdef CONFIG_FAIL_MAKE_REQUEST
1286
1287static DECLARE_FAULT_ATTR(fail_make_request);
1288
1289static int __init setup_fail_make_request(char *str)
1290{
1291 return setup_fault_attr(&fail_make_request, str);
1292}
1293__setup("fail_make_request=", setup_fail_make_request);
1294
1295static int should_fail_request(struct bio *bio)
1296{
eddb2e26
TH
1297 struct hd_struct *part = bio->bi_bdev->bd_part;
1298
1299 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1300 return should_fail(&fail_make_request, bio->bi_size);
1301
1302 return 0;
1303}
1304
1305static int __init fail_make_request_debugfs(void)
1306{
1307 return init_fault_attr_dentries(&fail_make_request,
1308 "fail_make_request");
1309}
1310
1311late_initcall(fail_make_request_debugfs);
1312
1313#else /* CONFIG_FAIL_MAKE_REQUEST */
1314
1315static inline int should_fail_request(struct bio *bio)
1316{
1317 return 0;
1318}
1319
1320#endif /* CONFIG_FAIL_MAKE_REQUEST */
1321
c07e2b41
JA
1322/*
1323 * Check whether this bio extends beyond the end of the device.
1324 */
1325static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1326{
1327 sector_t maxsector;
1328
1329 if (!nr_sectors)
1330 return 0;
1331
1332 /* Test device or partition size, when known. */
1333 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1334 if (maxsector) {
1335 sector_t sector = bio->bi_sector;
1336
1337 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1338 /*
1339 * This may well happen - the kernel calls bread()
1340 * without checking the size of the device, e.g., when
1341 * mounting a device.
1342 */
1343 handle_bad_sector(bio);
1344 return 1;
1345 }
1346 }
1347
1348 return 0;
1349}
1350
1da177e4 1351/**
710027a4 1352 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1353 * @bio: The bio describing the location in memory and on the device.
1354 *
1355 * generic_make_request() is used to make I/O requests of block
1356 * devices. It is passed a &struct bio, which describes the I/O that needs
1357 * to be done.
1358 *
1359 * generic_make_request() does not return any status. The
1360 * success/failure status of the request, along with notification of
1361 * completion, is delivered asynchronously through the bio->bi_end_io
1362 * function described (one day) else where.
1363 *
1364 * The caller of generic_make_request must make sure that bi_io_vec
1365 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1366 * set to describe the device address, and the
1367 * bi_end_io and optionally bi_private are set to describe how
1368 * completion notification should be signaled.
1369 *
1370 * generic_make_request and the drivers it calls may use bi_next if this
1371 * bio happens to be merged with someone else, and may change bi_dev and
1372 * bi_sector for remaps as it sees fit. So the values of these fields
1373 * should NOT be depended on after the call to generic_make_request.
1374 */
d89d8796 1375static inline void __generic_make_request(struct bio *bio)
1da177e4 1376{
165125e1 1377 struct request_queue *q;
5ddfe969 1378 sector_t old_sector;
1da177e4 1379 int ret, nr_sectors = bio_sectors(bio);
2056a782 1380 dev_t old_dev;
51fd77bd 1381 int err = -EIO;
1da177e4
LT
1382
1383 might_sleep();
1da177e4 1384
c07e2b41
JA
1385 if (bio_check_eod(bio, nr_sectors))
1386 goto end_io;
1da177e4
LT
1387
1388 /*
1389 * Resolve the mapping until finished. (drivers are
1390 * still free to implement/resolve their own stacking
1391 * by explicitly returning 0)
1392 *
1393 * NOTE: we don't repeat the blk_size check for each new device.
1394 * Stacking drivers are expected to know what they are doing.
1395 */
5ddfe969 1396 old_sector = -1;
2056a782 1397 old_dev = 0;
1da177e4
LT
1398 do {
1399 char b[BDEVNAME_SIZE];
1400
1401 q = bdev_get_queue(bio->bi_bdev);
a7384677 1402 if (unlikely(!q)) {
1da177e4
LT
1403 printk(KERN_ERR
1404 "generic_make_request: Trying to access "
1405 "nonexistent block-device %s (%Lu)\n",
1406 bdevname(bio->bi_bdev, b),
1407 (long long) bio->bi_sector);
a7384677 1408 goto end_io;
1da177e4
LT
1409 }
1410
4fa253f3 1411 if (unlikely(nr_sectors > q->max_hw_sectors)) {
6728cb0e 1412 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1da177e4
LT
1413 bdevname(bio->bi_bdev, b),
1414 bio_sectors(bio),
1415 q->max_hw_sectors);
1416 goto end_io;
1417 }
1418
fde6ad22 1419 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1420 goto end_io;
1421
c17bb495
AM
1422 if (should_fail_request(bio))
1423 goto end_io;
1424
1da177e4
LT
1425 /*
1426 * If this device has partitions, remap block n
1427 * of partition p to block n+start(p) of the disk.
1428 */
1429 blk_partition_remap(bio);
1430
7ba1ba12
MP
1431 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1432 goto end_io;
1433
5ddfe969 1434 if (old_sector != -1)
5f3ea37c 1435 trace_block_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 1436 old_sector);
2056a782 1437
5f3ea37c 1438 trace_block_bio_queue(q, bio);
2056a782 1439
5ddfe969 1440 old_sector = bio->bi_sector;
2056a782
JA
1441 old_dev = bio->bi_bdev->bd_dev;
1442
c07e2b41
JA
1443 if (bio_check_eod(bio, nr_sectors))
1444 goto end_io;
a7384677
TH
1445
1446 if (bio_discard(bio) && !q->prepare_discard_fn) {
51fd77bd
JA
1447 err = -EOPNOTSUPP;
1448 goto end_io;
1449 }
cec0707e
JA
1450 if (bio_barrier(bio) && bio_has_data(bio) &&
1451 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1452 err = -EOPNOTSUPP;
1453 goto end_io;
1454 }
5ddfe969 1455
1da177e4
LT
1456 ret = q->make_request_fn(q, bio);
1457 } while (ret);
a7384677
TH
1458
1459 return;
1460
1461end_io:
1462 bio_endio(bio, err);
1da177e4
LT
1463}
1464
d89d8796
NB
1465/*
1466 * We only want one ->make_request_fn to be active at a time,
1467 * else stack usage with stacked devices could be a problem.
1468 * So use current->bio_{list,tail} to keep a list of requests
1469 * submited by a make_request_fn function.
1470 * current->bio_tail is also used as a flag to say if
1471 * generic_make_request is currently active in this task or not.
1472 * If it is NULL, then no make_request is active. If it is non-NULL,
1473 * then a make_request is active, and new requests should be added
1474 * at the tail
1475 */
1476void generic_make_request(struct bio *bio)
1477{
1478 if (current->bio_tail) {
1479 /* make_request is active */
1480 *(current->bio_tail) = bio;
1481 bio->bi_next = NULL;
1482 current->bio_tail = &bio->bi_next;
1483 return;
1484 }
1485 /* following loop may be a bit non-obvious, and so deserves some
1486 * explanation.
1487 * Before entering the loop, bio->bi_next is NULL (as all callers
1488 * ensure that) so we have a list with a single bio.
1489 * We pretend that we have just taken it off a longer list, so
1490 * we assign bio_list to the next (which is NULL) and bio_tail
1491 * to &bio_list, thus initialising the bio_list of new bios to be
1492 * added. __generic_make_request may indeed add some more bios
1493 * through a recursive call to generic_make_request. If it
1494 * did, we find a non-NULL value in bio_list and re-enter the loop
1495 * from the top. In this case we really did just take the bio
1496 * of the top of the list (no pretending) and so fixup bio_list and
1497 * bio_tail or bi_next, and call into __generic_make_request again.
1498 *
1499 * The loop was structured like this to make only one call to
1500 * __generic_make_request (which is important as it is large and
1501 * inlined) and to keep the structure simple.
1502 */
1503 BUG_ON(bio->bi_next);
1504 do {
1505 current->bio_list = bio->bi_next;
1506 if (bio->bi_next == NULL)
1507 current->bio_tail = &current->bio_list;
1508 else
1509 bio->bi_next = NULL;
1510 __generic_make_request(bio);
1511 bio = current->bio_list;
1512 } while (bio);
1513 current->bio_tail = NULL; /* deactivate */
1514}
1da177e4
LT
1515EXPORT_SYMBOL(generic_make_request);
1516
1517/**
710027a4 1518 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1519 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1520 * @bio: The &struct bio which describes the I/O
1521 *
1522 * submit_bio() is very similar in purpose to generic_make_request(), and
1523 * uses that function to do most of the work. Both are fairly rough
710027a4 1524 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1525 *
1526 */
1527void submit_bio(int rw, struct bio *bio)
1528{
1529 int count = bio_sectors(bio);
1530
22e2c507 1531 bio->bi_rw |= rw;
1da177e4 1532
bf2de6f5
JA
1533 /*
1534 * If it's a regular read/write or a barrier with data attached,
1535 * go through the normal accounting stuff before submission.
1536 */
a9c701e5 1537 if (bio_has_data(bio)) {
bf2de6f5
JA
1538 if (rw & WRITE) {
1539 count_vm_events(PGPGOUT, count);
1540 } else {
1541 task_io_account_read(bio->bi_size);
1542 count_vm_events(PGPGIN, count);
1543 }
1544
1545 if (unlikely(block_dump)) {
1546 char b[BDEVNAME_SIZE];
1547 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1548 current->comm, task_pid_nr(current),
bf2de6f5
JA
1549 (rw & WRITE) ? "WRITE" : "READ",
1550 (unsigned long long)bio->bi_sector,
6728cb0e 1551 bdevname(bio->bi_bdev, b));
bf2de6f5 1552 }
1da177e4
LT
1553 }
1554
1555 generic_make_request(bio);
1556}
1da177e4
LT
1557EXPORT_SYMBOL(submit_bio);
1558
82124d60
KU
1559/**
1560 * blk_rq_check_limits - Helper function to check a request for the queue limit
1561 * @q: the queue
1562 * @rq: the request being checked
1563 *
1564 * Description:
1565 * @rq may have been made based on weaker limitations of upper-level queues
1566 * in request stacking drivers, and it may violate the limitation of @q.
1567 * Since the block layer and the underlying device driver trust @rq
1568 * after it is inserted to @q, it should be checked against @q before
1569 * the insertion using this generic function.
1570 *
1571 * This function should also be useful for request stacking drivers
1572 * in some cases below, so export this fuction.
1573 * Request stacking drivers like request-based dm may change the queue
1574 * limits while requests are in the queue (e.g. dm's table swapping).
1575 * Such request stacking drivers should check those requests agaist
1576 * the new queue limits again when they dispatch those requests,
1577 * although such checkings are also done against the old queue limits
1578 * when submitting requests.
1579 */
1580int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1581{
1582 if (rq->nr_sectors > q->max_sectors ||
1583 rq->data_len > q->max_hw_sectors << 9) {
1584 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1585 return -EIO;
1586 }
1587
1588 /*
1589 * queue's settings related to segment counting like q->bounce_pfn
1590 * may differ from that of other stacking queues.
1591 * Recalculate it to check the request correctly on this queue's
1592 * limitation.
1593 */
1594 blk_recalc_rq_segments(rq);
1595 if (rq->nr_phys_segments > q->max_phys_segments ||
1596 rq->nr_phys_segments > q->max_hw_segments) {
1597 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1598 return -EIO;
1599 }
1600
1601 return 0;
1602}
1603EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1604
1605/**
1606 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1607 * @q: the queue to submit the request
1608 * @rq: the request being queued
1609 */
1610int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1611{
1612 unsigned long flags;
1613
1614 if (blk_rq_check_limits(q, rq))
1615 return -EIO;
1616
1617#ifdef CONFIG_FAIL_MAKE_REQUEST
1618 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1619 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1620 return -EIO;
1621#endif
1622
1623 spin_lock_irqsave(q->queue_lock, flags);
1624
1625 /*
1626 * Submitting request must be dequeued before calling this function
1627 * because it will be linked to another request_queue
1628 */
1629 BUG_ON(blk_queued_rq(rq));
1630
1631 drive_stat_acct(rq, 1);
1632 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1633
1634 spin_unlock_irqrestore(q->queue_lock, flags);
1635
1636 return 0;
1637}
1638EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1639
53a08807
TH
1640/**
1641 * blkdev_dequeue_request - dequeue request and start timeout timer
1642 * @req: request to dequeue
1643 *
1644 * Dequeue @req and start timeout timer on it. This hands off the
1645 * request to the driver.
1646 *
1647 * Block internal functions which don't want to start timer should
1648 * call elv_dequeue_request().
1649 */
1650void blkdev_dequeue_request(struct request *req)
1651{
1652 elv_dequeue_request(req->q, req);
1653
1654 /*
1655 * We are now handing the request to the hardware, add the
1656 * timeout handler.
1657 */
1658 blk_add_timer(req);
1659}
1660EXPORT_SYMBOL(blkdev_dequeue_request);
1661
bc58ba94
JA
1662static void blk_account_io_completion(struct request *req, unsigned int bytes)
1663{
1664 struct gendisk *disk = req->rq_disk;
1665
fb8ec18c 1666 if (!disk || !blk_do_io_stat(disk->queue))
bc58ba94
JA
1667 return;
1668
1669 if (blk_fs_request(req)) {
1670 const int rw = rq_data_dir(req);
1671 struct hd_struct *part;
1672 int cpu;
1673
1674 cpu = part_stat_lock();
1675 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1676 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1677 part_stat_unlock();
1678 }
1679}
1680
1681static void blk_account_io_done(struct request *req)
1682{
1683 struct gendisk *disk = req->rq_disk;
1684
fb8ec18c 1685 if (!disk || !blk_do_io_stat(disk->queue))
bc58ba94
JA
1686 return;
1687
1688 /*
1689 * Account IO completion. bar_rq isn't accounted as a normal
1690 * IO on queueing nor completion. Accounting the containing
1691 * request is enough.
1692 */
1693 if (blk_fs_request(req) && req != &req->q->bar_rq) {
1694 unsigned long duration = jiffies - req->start_time;
1695 const int rw = rq_data_dir(req);
1696 struct hd_struct *part;
1697 int cpu;
1698
1699 cpu = part_stat_lock();
1700 part = disk_map_sector_rcu(disk, req->sector);
1701
1702 part_stat_inc(cpu, part, ios[rw]);
1703 part_stat_add(cpu, part, ticks[rw], duration);
1704 part_round_stats(cpu, part);
1705 part_dec_in_flight(part);
1706
1707 part_stat_unlock();
1708 }
1709}
1710
3bcddeac
KU
1711/**
1712 * __end_that_request_first - end I/O on a request
1713 * @req: the request being processed
710027a4 1714 * @error: %0 for success, < %0 for error
3bcddeac
KU
1715 * @nr_bytes: number of bytes to complete
1716 *
1717 * Description:
1718 * Ends I/O on a number of bytes attached to @req, and sets it up
1719 * for the next range of segments (if any) in the cluster.
1720 *
1721 * Return:
710027a4
RD
1722 * %0 - we are done with this request, call end_that_request_last()
1723 * %1 - still buffers pending for this request
3bcddeac 1724 **/
5450d3e1 1725static int __end_that_request_first(struct request *req, int error,
1da177e4
LT
1726 int nr_bytes)
1727{
5450d3e1 1728 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1729 struct bio *bio;
1730
5f3ea37c 1731 trace_block_rq_complete(req->q, req);
2056a782 1732
1da177e4 1733 /*
710027a4 1734 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1da177e4
LT
1735 * sense key with us all the way through
1736 */
1737 if (!blk_pc_request(req))
1738 req->errors = 0;
1739
6728cb0e
JA
1740 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1741 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4
LT
1742 req->rq_disk ? req->rq_disk->disk_name : "?",
1743 (unsigned long long)req->sector);
1744 }
1745
bc58ba94 1746 blk_account_io_completion(req, nr_bytes);
d72d904a 1747
1da177e4
LT
1748 total_bytes = bio_nbytes = 0;
1749 while ((bio = req->bio) != NULL) {
1750 int nbytes;
1751
1752 if (nr_bytes >= bio->bi_size) {
1753 req->bio = bio->bi_next;
1754 nbytes = bio->bi_size;
5bb23a68 1755 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
1756 next_idx = 0;
1757 bio_nbytes = 0;
1758 } else {
1759 int idx = bio->bi_idx + next_idx;
1760
1761 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1762 blk_dump_rq_flags(req, "__end_that");
6728cb0e 1763 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
24c03d47 1764 __func__, bio->bi_idx, bio->bi_vcnt);
1da177e4
LT
1765 break;
1766 }
1767
1768 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1769 BIO_BUG_ON(nbytes > bio->bi_size);
1770
1771 /*
1772 * not a complete bvec done
1773 */
1774 if (unlikely(nbytes > nr_bytes)) {
1775 bio_nbytes += nr_bytes;
1776 total_bytes += nr_bytes;
1777 break;
1778 }
1779
1780 /*
1781 * advance to the next vector
1782 */
1783 next_idx++;
1784 bio_nbytes += nbytes;
1785 }
1786
1787 total_bytes += nbytes;
1788 nr_bytes -= nbytes;
1789
6728cb0e
JA
1790 bio = req->bio;
1791 if (bio) {
1da177e4
LT
1792 /*
1793 * end more in this run, or just return 'not-done'
1794 */
1795 if (unlikely(nr_bytes <= 0))
1796 break;
1797 }
1798 }
1799
1800 /*
1801 * completely done
1802 */
1803 if (!req->bio)
1804 return 0;
1805
1806 /*
1807 * if the request wasn't completed, update state
1808 */
1809 if (bio_nbytes) {
5bb23a68 1810 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
1811 bio->bi_idx += next_idx;
1812 bio_iovec(bio)->bv_offset += nr_bytes;
1813 bio_iovec(bio)->bv_len -= nr_bytes;
1814 }
1815
1816 blk_recalc_rq_sectors(req, total_bytes >> 9);
1817 blk_recalc_rq_segments(req);
1818 return 1;
1819}
1820
1da177e4
LT
1821/*
1822 * queue lock must be held
1823 */
5450d3e1 1824static void end_that_request_last(struct request *req, int error)
1da177e4 1825{
b8286239
KU
1826 if (blk_rq_tagged(req))
1827 blk_queue_end_tag(req->q, req);
1828
1829 if (blk_queued_rq(req))
53a08807 1830 elv_dequeue_request(req->q, req);
1da177e4
LT
1831
1832 if (unlikely(laptop_mode) && blk_fs_request(req))
1833 laptop_io_completion();
1834
e78042e5
MA
1835 blk_delete_timer(req);
1836
bc58ba94 1837 blk_account_io_done(req);
b8286239 1838
1da177e4 1839 if (req->end_io)
8ffdc655 1840 req->end_io(req, error);
b8286239
KU
1841 else {
1842 if (blk_bidi_rq(req))
1843 __blk_put_request(req->next_rq->q, req->next_rq);
1844
1da177e4 1845 __blk_put_request(req->q, req);
b8286239 1846 }
1da177e4
LT
1847}
1848
3b11313a
KU
1849/**
1850 * blk_rq_bytes - Returns bytes left to complete in the entire request
5d87a052 1851 * @rq: the request being processed
3b11313a
KU
1852 **/
1853unsigned int blk_rq_bytes(struct request *rq)
a0cd1285
JA
1854{
1855 if (blk_fs_request(rq))
1856 return rq->hard_nr_sectors << 9;
1857
1858 return rq->data_len;
1859}
3b11313a
KU
1860EXPORT_SYMBOL_GPL(blk_rq_bytes);
1861
1862/**
1863 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
5d87a052 1864 * @rq: the request being processed
3b11313a
KU
1865 **/
1866unsigned int blk_rq_cur_bytes(struct request *rq)
1867{
1868 if (blk_fs_request(rq))
1869 return rq->current_nr_sectors << 9;
1870
1871 if (rq->bio)
1872 return rq->bio->bi_size;
1873
1874 return rq->data_len;
1875}
1876EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
a0cd1285 1877
a0cd1285
JA
1878/**
1879 * end_request - end I/O on the current segment of the request
8f731f7d 1880 * @req: the request being processed
710027a4 1881 * @uptodate: error value or %0/%1 uptodate flag
a0cd1285
JA
1882 *
1883 * Description:
1884 * Ends I/O on the current segment of a request. If that is the only
1885 * remaining segment, the request is also completed and freed.
1886 *
710027a4
RD
1887 * This is a remnant of how older block drivers handled I/O completions.
1888 * Modern drivers typically end I/O on the full request in one go, unless
a0cd1285
JA
1889 * they have a residual value to account for. For that case this function
1890 * isn't really useful, unless the residual just happens to be the
1891 * full current segment. In other words, don't use this function in new
d00e29fd 1892 * code. Use blk_end_request() or __blk_end_request() to end a request.
a0cd1285
JA
1893 **/
1894void end_request(struct request *req, int uptodate)
1895{
d00e29fd
KU
1896 int error = 0;
1897
1898 if (uptodate <= 0)
1899 error = uptodate ? uptodate : -EIO;
1900
1901 __blk_end_request(req, error, req->hard_cur_sectors << 9);
a0cd1285 1902}
1da177e4
LT
1903EXPORT_SYMBOL(end_request);
1904
32fab448
KU
1905static int end_that_request_data(struct request *rq, int error,
1906 unsigned int nr_bytes, unsigned int bidi_bytes)
1907{
1908 if (rq->bio) {
1909 if (__end_that_request_first(rq, error, nr_bytes))
1910 return 1;
1911
1912 /* Bidi request must be completed as a whole */
1913 if (blk_bidi_rq(rq) &&
1914 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1915 return 1;
1916 }
1917
1918 return 0;
1919}
1920
336cdb40 1921/**
e19a3ab0
KU
1922 * blk_end_io - Generic end_io function to complete a request.
1923 * @rq: the request being processed
710027a4 1924 * @error: %0 for success, < %0 for error
e3a04fe3
KU
1925 * @nr_bytes: number of bytes to complete @rq
1926 * @bidi_bytes: number of bytes to complete @rq->next_rq
e19a3ab0
KU
1927 * @drv_callback: function called between completion of bios in the request
1928 * and completion of the request.
710027a4 1929 * If the callback returns non %0, this helper returns without
e19a3ab0 1930 * completion of the request.
336cdb40
KU
1931 *
1932 * Description:
e3a04fe3 1933 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
336cdb40
KU
1934 * If @rq has leftover, sets it up for the next range of segments.
1935 *
1936 * Return:
710027a4
RD
1937 * %0 - we are done with this request
1938 * %1 - this request is not freed yet, it still has pending buffers.
336cdb40 1939 **/
22b13210
JA
1940static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1941 unsigned int bidi_bytes,
1942 int (drv_callback)(struct request *))
336cdb40
KU
1943{
1944 struct request_queue *q = rq->q;
1945 unsigned long flags = 0UL;
336cdb40 1946
32fab448
KU
1947 if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
1948 return 1;
336cdb40 1949
e19a3ab0
KU
1950 /* Special feature for tricky drivers */
1951 if (drv_callback && drv_callback(rq))
1952 return 1;
1953
336cdb40
KU
1954 add_disk_randomness(rq->rq_disk);
1955
1956 spin_lock_irqsave(q->queue_lock, flags);
b8286239 1957 end_that_request_last(rq, error);
336cdb40
KU
1958 spin_unlock_irqrestore(q->queue_lock, flags);
1959
1960 return 0;
1961}
e19a3ab0
KU
1962
1963/**
1964 * blk_end_request - Helper function for drivers to complete the request.
1965 * @rq: the request being processed
710027a4 1966 * @error: %0 for success, < %0 for error
e19a3ab0
KU
1967 * @nr_bytes: number of bytes to complete
1968 *
1969 * Description:
1970 * Ends I/O on a number of bytes attached to @rq.
1971 * If @rq has leftover, sets it up for the next range of segments.
1972 *
1973 * Return:
710027a4
RD
1974 * %0 - we are done with this request
1975 * %1 - still buffers pending for this request
e19a3ab0 1976 **/
22b13210 1977int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 1978{
e3a04fe3 1979 return blk_end_io(rq, error, nr_bytes, 0, NULL);
e19a3ab0 1980}
336cdb40
KU
1981EXPORT_SYMBOL_GPL(blk_end_request);
1982
1983/**
1984 * __blk_end_request - Helper function for drivers to complete the request.
1985 * @rq: the request being processed
710027a4 1986 * @error: %0 for success, < %0 for error
336cdb40
KU
1987 * @nr_bytes: number of bytes to complete
1988 *
1989 * Description:
1990 * Must be called with queue lock held unlike blk_end_request().
1991 *
1992 * Return:
710027a4
RD
1993 * %0 - we are done with this request
1994 * %1 - still buffers pending for this request
336cdb40 1995 **/
22b13210 1996int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
336cdb40 1997{
60540161 1998 if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
051cc395 1999 return 1;
336cdb40
KU
2000
2001 add_disk_randomness(rq->rq_disk);
2002
b8286239 2003 end_that_request_last(rq, error);
336cdb40
KU
2004
2005 return 0;
2006}
2007EXPORT_SYMBOL_GPL(__blk_end_request);
2008
e3a04fe3
KU
2009/**
2010 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
2011 * @rq: the bidi request being processed
710027a4 2012 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2013 * @nr_bytes: number of bytes to complete @rq
2014 * @bidi_bytes: number of bytes to complete @rq->next_rq
2015 *
2016 * Description:
2017 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2018 *
2019 * Return:
710027a4
RD
2020 * %0 - we are done with this request
2021 * %1 - still buffers pending for this request
e3a04fe3 2022 **/
22b13210
JA
2023int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
2024 unsigned int bidi_bytes)
e3a04fe3
KU
2025{
2026 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
2027}
2028EXPORT_SYMBOL_GPL(blk_end_bidi_request);
2029
32fab448
KU
2030/**
2031 * blk_update_request - Special helper function for request stacking drivers
2032 * @rq: the request being processed
2033 * @error: %0 for success, < %0 for error
2034 * @nr_bytes: number of bytes to complete @rq
2035 *
2036 * Description:
2037 * Ends I/O on a number of bytes attached to @rq, but doesn't complete
2038 * the request structure even if @rq doesn't have leftover.
2039 * If @rq has leftover, sets it up for the next range of segments.
2040 *
2041 * This special helper function is only for request stacking drivers
2042 * (e.g. request-based dm) so that they can handle partial completion.
2043 * Actual device drivers should use blk_end_request instead.
2044 */
2045void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
2046{
2047 if (!end_that_request_data(rq, error, nr_bytes, 0)) {
2048 /*
2049 * These members are not updated in end_that_request_data()
2050 * when all bios are completed.
2051 * Update them so that the request stacking driver can find
2052 * how many bytes remain in the request later.
2053 */
2054 rq->nr_sectors = rq->hard_nr_sectors = 0;
2055 rq->current_nr_sectors = rq->hard_cur_sectors = 0;
2056 }
2057}
2058EXPORT_SYMBOL_GPL(blk_update_request);
2059
e19a3ab0
KU
2060/**
2061 * blk_end_request_callback - Special helper function for tricky drivers
2062 * @rq: the request being processed
710027a4 2063 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2064 * @nr_bytes: number of bytes to complete
2065 * @drv_callback: function called between completion of bios in the request
2066 * and completion of the request.
710027a4 2067 * If the callback returns non %0, this helper returns without
e19a3ab0
KU
2068 * completion of the request.
2069 *
2070 * Description:
2071 * Ends I/O on a number of bytes attached to @rq.
2072 * If @rq has leftover, sets it up for the next range of segments.
2073 *
2074 * This special helper function is used only for existing tricky drivers.
2075 * (e.g. cdrom_newpc_intr() of ide-cd)
2076 * This interface will be removed when such drivers are rewritten.
2077 * Don't use this interface in other places anymore.
2078 *
2079 * Return:
710027a4
RD
2080 * %0 - we are done with this request
2081 * %1 - this request is not freed yet.
2082 * this request still has pending buffers or
2083 * the driver doesn't want to finish this request yet.
e19a3ab0 2084 **/
22b13210
JA
2085int blk_end_request_callback(struct request *rq, int error,
2086 unsigned int nr_bytes,
e19a3ab0
KU
2087 int (drv_callback)(struct request *))
2088{
e3a04fe3 2089 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
e19a3ab0
KU
2090}
2091EXPORT_SYMBOL_GPL(blk_end_request_callback);
2092
86db1e29
JA
2093void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2094 struct bio *bio)
1da177e4 2095{
d628eaef
DW
2096 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2097 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
4aff5e23 2098 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4 2099
fb2dce86
DW
2100 if (bio_has_data(bio)) {
2101 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2102 rq->buffer = bio_data(bio);
2103 }
1da177e4
LT
2104 rq->current_nr_sectors = bio_cur_sectors(bio);
2105 rq->hard_cur_sectors = rq->current_nr_sectors;
2106 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
0e75f906 2107 rq->data_len = bio->bi_size;
1da177e4
LT
2108
2109 rq->bio = rq->biotail = bio;
1da177e4 2110
66846572
N
2111 if (bio->bi_bdev)
2112 rq->rq_disk = bio->bi_bdev->bd_disk;
2113}
1da177e4 2114
ef9e3fac
KU
2115/**
2116 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2117 * @q : the queue of the device being checked
2118 *
2119 * Description:
2120 * Check if underlying low-level drivers of a device are busy.
2121 * If the drivers want to export their busy state, they must set own
2122 * exporting function using blk_queue_lld_busy() first.
2123 *
2124 * Basically, this function is used only by request stacking drivers
2125 * to stop dispatching requests to underlying devices when underlying
2126 * devices are busy. This behavior helps more I/O merging on the queue
2127 * of the request stacking driver and prevents I/O throughput regression
2128 * on burst I/O load.
2129 *
2130 * Return:
2131 * 0 - Not busy (The request stacking driver should dispatch request)
2132 * 1 - Busy (The request stacking driver should stop dispatching request)
2133 */
2134int blk_lld_busy(struct request_queue *q)
2135{
2136 if (q->lld_busy_fn)
2137 return q->lld_busy_fn(q);
2138
2139 return 0;
2140}
2141EXPORT_SYMBOL_GPL(blk_lld_busy);
2142
18887ad9 2143int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2144{
2145 return queue_work(kblockd_workqueue, work);
2146}
1da177e4
LT
2147EXPORT_SYMBOL(kblockd_schedule_work);
2148
1da177e4
LT
2149int __init blk_dev_init(void)
2150{
2151 kblockd_workqueue = create_workqueue("kblockd");
2152 if (!kblockd_workqueue)
2153 panic("Failed to create kblockd\n");
2154
2155 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2156 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2157
8324aa91 2158 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2159 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2160
d38ecf93 2161 return 0;
1da177e4 2162}
1da177e4 2163