]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - block/blk-core.c
UBUNTU: Ubuntu-5.11.0-22.23
[mirror_ubuntu-hirsute-kernel.git] / block / blk-core.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
1da177e4
LT
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
1da177e4
LT
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/backing-dev.h>
18#include <linux/bio.h>
19#include <linux/blkdev.h>
320ae51f 20#include <linux/blk-mq.h>
52abca64 21#include <linux/blk-pm.h>
1da177e4
LT
22#include <linux/highmem.h>
23#include <linux/mm.h>
cee9a0c4 24#include <linux/pagemap.h>
1da177e4
LT
25#include <linux/kernel_stat.h>
26#include <linux/string.h>
27#include <linux/init.h>
1da177e4
LT
28#include <linux/completion.h>
29#include <linux/slab.h>
30#include <linux/swap.h>
31#include <linux/writeback.h>
faccbd4b 32#include <linux/task_io_accounting_ops.h>
c17bb495 33#include <linux/fault-inject.h>
73c10101 34#include <linux/list_sort.h>
e3c78ca5 35#include <linux/delay.h>
aaf7c680 36#include <linux/ratelimit.h>
6c954667 37#include <linux/pm_runtime.h>
eea8f41c 38#include <linux/blk-cgroup.h>
54d4e6ab 39#include <linux/t10-pi.h>
18fbda91 40#include <linux/debugfs.h>
30abb3a6 41#include <linux/bpf.h>
b8e24a93 42#include <linux/psi.h>
71ac860a 43#include <linux/sched/sysctl.h>
a892c8d5 44#include <linux/blk-crypto.h>
55782138
LZ
45
46#define CREATE_TRACE_POINTS
47#include <trace/events/block.h>
1da177e4 48
8324aa91 49#include "blk.h"
43a5e4e2 50#include "blk-mq.h"
bd166ef1 51#include "blk-mq-sched.h"
bca6b067 52#include "blk-pm.h"
c1c80384 53#include "blk-rq-qos.h"
8324aa91 54
18fbda91 55struct dentry *blk_debugfs_root;
18fbda91 56
d07335e5 57EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 58EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 59EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 60EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 61EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 62
a73f730d
TH
63DEFINE_IDA(blk_queue_ida);
64
1da177e4
LT
65/*
66 * For queue allocation
67 */
6728cb0e 68struct kmem_cache *blk_requestq_cachep;
1da177e4 69
1da177e4
LT
70/*
71 * Controlling structure to kblockd
72 */
ff856bad 73static struct workqueue_struct *kblockd_workqueue;
1da177e4 74
8814ce8a
BVA
75/**
76 * blk_queue_flag_set - atomically set a queue flag
77 * @flag: flag to be set
78 * @q: request queue
79 */
80void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81{
57d74df9 82 set_bit(flag, &q->queue_flags);
8814ce8a
BVA
83}
84EXPORT_SYMBOL(blk_queue_flag_set);
85
86/**
87 * blk_queue_flag_clear - atomically clear a queue flag
88 * @flag: flag to be cleared
89 * @q: request queue
90 */
91void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
92{
57d74df9 93 clear_bit(flag, &q->queue_flags);
8814ce8a
BVA
94}
95EXPORT_SYMBOL(blk_queue_flag_clear);
96
97/**
98 * blk_queue_flag_test_and_set - atomically test and set a queue flag
99 * @flag: flag to be set
100 * @q: request queue
101 *
102 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
103 * the flag was already set.
104 */
105bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
106{
57d74df9 107 return test_and_set_bit(flag, &q->queue_flags);
8814ce8a
BVA
108}
109EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
110
2a4aa30c 111void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 112{
1afb20f3
FT
113 memset(rq, 0, sizeof(*rq));
114
1da177e4 115 INIT_LIST_HEAD(&rq->queuelist);
63a71386 116 rq->q = q;
a2dec7b3 117 rq->__sector = (sector_t) -1;
2e662b65
JA
118 INIT_HLIST_NODE(&rq->hash);
119 RB_CLEAR_NODE(&rq->rb_node);
e44a6a23
XT
120 rq->tag = BLK_MQ_NO_TAG;
121 rq->internal_tag = BLK_MQ_NO_TAG;
522a7775 122 rq->start_time_ns = ktime_get_ns();
09e099d4 123 rq->part = NULL;
b554db14 124 refcount_set(&rq->ref, 1);
a892c8d5 125 blk_crypto_rq_set_defaults(rq);
1da177e4 126}
2a4aa30c 127EXPORT_SYMBOL(blk_rq_init);
1da177e4 128
e47bc4ed
CK
129#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
130static const char *const blk_op_name[] = {
131 REQ_OP_NAME(READ),
132 REQ_OP_NAME(WRITE),
133 REQ_OP_NAME(FLUSH),
134 REQ_OP_NAME(DISCARD),
135 REQ_OP_NAME(SECURE_ERASE),
136 REQ_OP_NAME(ZONE_RESET),
6e33dbf2 137 REQ_OP_NAME(ZONE_RESET_ALL),
6c1b1da5
AJ
138 REQ_OP_NAME(ZONE_OPEN),
139 REQ_OP_NAME(ZONE_CLOSE),
140 REQ_OP_NAME(ZONE_FINISH),
0512a75b 141 REQ_OP_NAME(ZONE_APPEND),
e47bc4ed
CK
142 REQ_OP_NAME(WRITE_SAME),
143 REQ_OP_NAME(WRITE_ZEROES),
144 REQ_OP_NAME(SCSI_IN),
145 REQ_OP_NAME(SCSI_OUT),
146 REQ_OP_NAME(DRV_IN),
147 REQ_OP_NAME(DRV_OUT),
148};
149#undef REQ_OP_NAME
150
151/**
152 * blk_op_str - Return string XXX in the REQ_OP_XXX.
153 * @op: REQ_OP_XXX.
154 *
155 * Description: Centralize block layer function to convert REQ_OP_XXX into
156 * string format. Useful in the debugging and tracing bio or request. For
157 * invalid REQ_OP_XXX it returns string "UNKNOWN".
158 */
159inline const char *blk_op_str(unsigned int op)
160{
161 const char *op_str = "UNKNOWN";
162
163 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
164 op_str = blk_op_name[op];
165
166 return op_str;
167}
168EXPORT_SYMBOL_GPL(blk_op_str);
169
2a842aca
CH
170static const struct {
171 int errno;
172 const char *name;
173} blk_errors[] = {
174 [BLK_STS_OK] = { 0, "" },
175 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
176 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
177 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
178 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
179 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
180 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
181 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
182 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
183 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 184 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 185 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 186
4e4cbee9
CH
187 /* device mapper special case, should not leak out: */
188 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
189
3b481d91
KB
190 /* zone device specific errors */
191 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
192 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
193
2a842aca
CH
194 /* everything else not covered above: */
195 [BLK_STS_IOERR] = { -EIO, "I/O" },
196};
197
198blk_status_t errno_to_blk_status(int errno)
199{
200 int i;
201
202 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
203 if (blk_errors[i].errno == errno)
204 return (__force blk_status_t)i;
205 }
206
207 return BLK_STS_IOERR;
208}
209EXPORT_SYMBOL_GPL(errno_to_blk_status);
210
211int blk_status_to_errno(blk_status_t status)
212{
213 int idx = (__force int)status;
214
34bd9c1c 215 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
216 return -EIO;
217 return blk_errors[idx].errno;
218}
219EXPORT_SYMBOL_GPL(blk_status_to_errno);
220
178cc590
CH
221static void print_req_error(struct request *req, blk_status_t status,
222 const char *caller)
2a842aca
CH
223{
224 int idx = (__force int)status;
225
34bd9c1c 226 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
227 return;
228
178cc590 229 printk_ratelimited(KERN_ERR
b0e5168a
CK
230 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
231 "phys_seg %u prio class %u\n",
178cc590 232 caller, blk_errors[idx].name,
b0e5168a
CK
233 req->rq_disk ? req->rq_disk->disk_name : "?",
234 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
235 req->cmd_flags & ~REQ_OP_MASK,
236 req->nr_phys_segments,
237 IOPRIO_PRIO_CLASS(req->ioprio));
2a842aca
CH
238}
239
5bb23a68 240static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 241 unsigned int nbytes, blk_status_t error)
1da177e4 242{
78d8e58a 243 if (error)
4e4cbee9 244 bio->bi_status = error;
797e7dbb 245
e8064021 246 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 247 bio_set_flag(bio, BIO_QUIET);
08bafc03 248
f79ea416 249 bio_advance(bio, nbytes);
7ba1ba12 250
0512a75b
KB
251 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
252 /*
253 * Partial zone append completions cannot be supported as the
254 * BIO fragments may end up not being written sequentially.
255 */
256 if (bio->bi_iter.bi_size)
257 bio->bi_status = BLK_STS_IOERR;
258 else
259 bio->bi_iter.bi_sector = rq->__sector;
260 }
261
143a87f4 262 /* don't actually finish bio if it's part of flush sequence */
e8064021 263 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 264 bio_endio(bio);
1da177e4 265}
1da177e4 266
1da177e4
LT
267void blk_dump_rq_flags(struct request *rq, char *msg)
268{
aebf526b
CH
269 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
270 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 271 (unsigned long long) rq->cmd_flags);
1da177e4 272
83096ebf
TH
273 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
274 (unsigned long long)blk_rq_pos(rq),
275 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
276 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
277 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 278}
1da177e4
LT
279EXPORT_SYMBOL(blk_dump_rq_flags);
280
1da177e4
LT
281/**
282 * blk_sync_queue - cancel any pending callbacks on a queue
283 * @q: the queue
284 *
285 * Description:
286 * The block layer may perform asynchronous callback activity
287 * on a queue, such as calling the unplug function after a timeout.
288 * A block device may call blk_sync_queue to ensure that any
289 * such activity is cancelled, thus allowing it to release resources
59c51591 290 * that the callbacks might use. The caller must already have made sure
c62b37d9 291 * that its ->submit_bio will not re-add plugging prior to calling
1da177e4
LT
292 * this function.
293 *
da527770 294 * This function does not cancel any asynchronous activity arising
da3dae54 295 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 296 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 297 *
1da177e4
LT
298 */
299void blk_sync_queue(struct request_queue *q)
300{
70ed28b9 301 del_timer_sync(&q->timeout);
4e9b6f20 302 cancel_work_sync(&q->timeout_work);
1da177e4
LT
303}
304EXPORT_SYMBOL(blk_sync_queue);
305
c9254f2d 306/**
cd84a62e 307 * blk_set_pm_only - increment pm_only counter
c9254f2d 308 * @q: request queue pointer
c9254f2d 309 */
cd84a62e 310void blk_set_pm_only(struct request_queue *q)
c9254f2d 311{
cd84a62e 312 atomic_inc(&q->pm_only);
c9254f2d 313}
cd84a62e 314EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 315
cd84a62e 316void blk_clear_pm_only(struct request_queue *q)
c9254f2d 317{
cd84a62e
BVA
318 int pm_only;
319
320 pm_only = atomic_dec_return(&q->pm_only);
321 WARN_ON_ONCE(pm_only < 0);
322 if (pm_only == 0)
323 wake_up_all(&q->mq_freeze_wq);
c9254f2d 324}
cd84a62e 325EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 326
b5bd357c
LC
327/**
328 * blk_put_queue - decrement the request_queue refcount
329 * @q: the request_queue structure to decrement the refcount for
330 *
331 * Decrements the refcount of the request_queue kobject. When this reaches 0
332 * we'll have blk_release_queue() called.
e8c7d14a
LC
333 *
334 * Context: Any context, but the last reference must not be dropped from
335 * atomic context.
b5bd357c 336 */
165125e1 337void blk_put_queue(struct request_queue *q)
483f4afc
AV
338{
339 kobject_put(&q->kobj);
340}
d86e0e83 341EXPORT_SYMBOL(blk_put_queue);
483f4afc 342
aed3ea94
JA
343void blk_set_queue_dying(struct request_queue *q)
344{
8814ce8a 345 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
aed3ea94 346
d3cfb2a0
ML
347 /*
348 * When queue DYING flag is set, we need to block new req
349 * entering queue, so we call blk_freeze_queue_start() to
350 * prevent I/O from crossing blk_queue_enter().
351 */
352 blk_freeze_queue_start(q);
353
344e9ffc 354 if (queue_is_mq(q))
aed3ea94 355 blk_mq_wake_waiters(q);
055f6e18
ML
356
357 /* Make blk_queue_enter() reexamine the DYING flag. */
358 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
359}
360EXPORT_SYMBOL_GPL(blk_set_queue_dying);
361
c9a929dd
TH
362/**
363 * blk_cleanup_queue - shutdown a request queue
364 * @q: request queue to shutdown
365 *
c246e80d
BVA
366 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
367 * put it. All future requests will be failed immediately with -ENODEV.
e8c7d14a
LC
368 *
369 * Context: can sleep
c94a96ac 370 */
6728cb0e 371void blk_cleanup_queue(struct request_queue *q)
483f4afc 372{
e8c7d14a
LC
373 /* cannot be called from atomic context */
374 might_sleep();
375
bae85c15
BVA
376 WARN_ON_ONCE(blk_queue_registered(q));
377
3f3299d5 378 /* mark @q DYING, no new request or merges will be allowed afterwards */
aed3ea94 379 blk_set_queue_dying(q);
6ecf23af 380
57d74df9
CH
381 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
382 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
c9a929dd 383
c246e80d
BVA
384 /*
385 * Drain all requests queued before DYING marking. Set DEAD flag to
67ed8b73
BVA
386 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
387 * after draining finished.
c246e80d 388 */
3ef28e83 389 blk_freeze_queue(q);
c57cdf7a
ML
390
391 rq_qos_exit(q);
392
57d74df9 393 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
c9a929dd 394
5a48fc14
DW
395 /* for synchronous bio-based driver finish in-flight integrity i/o */
396 blk_flush_integrity();
397
c9a929dd 398 /* @q won't process any more request, flush async actions */
dc3b17cc 399 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
400 blk_sync_queue(q);
401
344e9ffc 402 if (queue_is_mq(q))
c7e2d94b 403 blk_mq_exit_queue(q);
a1ce35fa 404
c3e22192
ML
405 /*
406 * In theory, request pool of sched_tags belongs to request queue.
407 * However, the current implementation requires tag_set for freeing
408 * requests, so free the pool now.
409 *
410 * Queue has become frozen, there can't be any in-queue requests, so
411 * it is safe to free requests now.
412 */
413 mutex_lock(&q->sysfs_lock);
414 if (q->elevator)
415 blk_mq_sched_free_requests(q);
416 mutex_unlock(&q->sysfs_lock);
417
3ef28e83 418 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 419
c9a929dd 420 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
421 blk_put_queue(q);
422}
1da177e4
LT
423EXPORT_SYMBOL(blk_cleanup_queue);
424
3a0a5299
BVA
425/**
426 * blk_queue_enter() - try to increase q->q_usage_counter
427 * @q: request queue pointer
a4d34da7 428 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
3a0a5299 429 */
9a95e4ef 430int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 431{
a4d34da7 432 const bool pm = flags & BLK_MQ_REQ_PM;
3a0a5299 433
3ef28e83 434 while (true) {
3a0a5299 435 bool success = false;
3ef28e83 436
818e0fa2 437 rcu_read_lock();
3a0a5299
BVA
438 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
439 /*
cd84a62e
BVA
440 * The code that increments the pm_only counter is
441 * responsible for ensuring that that counter is
442 * globally visible before the queue is unfrozen.
3a0a5299 443 */
52abca64
AS
444 if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) ||
445 !blk_queue_pm_only(q)) {
3a0a5299
BVA
446 success = true;
447 } else {
448 percpu_ref_put(&q->q_usage_counter);
449 }
450 }
818e0fa2 451 rcu_read_unlock();
3a0a5299
BVA
452
453 if (success)
3ef28e83
DW
454 return 0;
455
3a0a5299 456 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
457 return -EBUSY;
458
5ed61d3f 459 /*
1671d522 460 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 461 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
462 * .q_usage_counter and reading .mq_freeze_depth or
463 * queue dying flag, otherwise the following wait may
464 * never return if the two reads are reordered.
5ed61d3f
ML
465 */
466 smp_rmb();
467
1dc3039b 468 wait_event(q->mq_freeze_wq,
7996a8b5 469 (!q->mq_freeze_depth &&
52abca64 470 blk_pm_resume_queue(pm, q)) ||
1dc3039b 471 blk_queue_dying(q));
3ef28e83
DW
472 if (blk_queue_dying(q))
473 return -ENODEV;
3ef28e83
DW
474 }
475}
476
accea322
CH
477static inline int bio_queue_enter(struct bio *bio)
478{
479 struct request_queue *q = bio->bi_disk->queue;
480 bool nowait = bio->bi_opf & REQ_NOWAIT;
481 int ret;
482
483 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
484 if (unlikely(ret)) {
485 if (nowait && !blk_queue_dying(q))
486 bio_wouldblock_error(bio);
487 else
488 bio_io_error(bio);
489 }
490
491 return ret;
492}
493
3ef28e83
DW
494void blk_queue_exit(struct request_queue *q)
495{
496 percpu_ref_put(&q->q_usage_counter);
497}
498
499static void blk_queue_usage_counter_release(struct percpu_ref *ref)
500{
501 struct request_queue *q =
502 container_of(ref, struct request_queue, q_usage_counter);
503
504 wake_up_all(&q->mq_freeze_wq);
505}
506
bca237a5 507static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 508{
bca237a5 509 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
510
511 kblockd_schedule_work(&q->timeout_work);
512}
513
2e3c18d0
TH
514static void blk_timeout_work(struct work_struct *work)
515{
516}
517
c62b37d9 518struct request_queue *blk_alloc_queue(int node_id)
1946089a 519{
165125e1 520 struct request_queue *q;
338aa96d 521 int ret;
1946089a 522
8324aa91 523 q = kmem_cache_alloc_node(blk_requestq_cachep,
3d745ea5 524 GFP_KERNEL | __GFP_ZERO, node_id);
1da177e4
LT
525 if (!q)
526 return NULL;
527
cbf62af3 528 q->last_merge = NULL;
cbf62af3 529
3d745ea5 530 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
a73f730d 531 if (q->id < 0)
3d2936f4 532 goto fail_q;
a73f730d 533
338aa96d
KO
534 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
535 if (ret)
54efd50b
KO
536 goto fail_id;
537
aef33c2f 538 q->backing_dev_info = bdi_alloc(node_id);
d03f6cdc
JK
539 if (!q->backing_dev_info)
540 goto fail_split;
541
a83b576c
JA
542 q->stats = blk_alloc_queue_stats();
543 if (!q->stats)
544 goto fail_stats;
545
5151412d 546 q->node = node_id;
0989a025 547
bccf5e26
JG
548 atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
549
bca237a5
KC
550 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
551 laptop_mode_timer_fn, 0);
552 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
2e3c18d0 553 INIT_WORK(&q->timeout_work, blk_timeout_work);
a612fddf 554 INIT_LIST_HEAD(&q->icq_list);
4eef3049 555#ifdef CONFIG_BLK_CGROUP
e8989fae 556 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 557#endif
483f4afc 558
8324aa91 559 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 560
85e0cbbb 561 mutex_init(&q->debugfs_mutex);
483f4afc 562 mutex_init(&q->sysfs_lock);
cecf5d87 563 mutex_init(&q->sysfs_dir_lock);
0d945c1f 564 spin_lock_init(&q->queue_lock);
c94a96ac 565
320ae51f 566 init_waitqueue_head(&q->mq_freeze_wq);
7996a8b5 567 mutex_init(&q->mq_freeze_lock);
320ae51f 568
3ef28e83
DW
569 /*
570 * Init percpu_ref in atomic mode so that it's faster to shutdown.
571 * See blk_register_queue() for details.
572 */
573 if (percpu_ref_init(&q->q_usage_counter,
574 blk_queue_usage_counter_release,
575 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 576 goto fail_bdi;
f51b802c 577
3ef28e83
DW
578 if (blkcg_init_queue(q))
579 goto fail_ref;
580
3d745ea5
CH
581 blk_queue_dma_alignment(q, 511);
582 blk_set_default_limits(&q->limits);
c62b37d9 583 q->nr_requests = BLKDEV_MAX_RQ;
3d745ea5 584
1da177e4 585 return q;
a73f730d 586
3ef28e83
DW
587fail_ref:
588 percpu_ref_exit(&q->q_usage_counter);
fff4996b 589fail_bdi:
a83b576c
JA
590 blk_free_queue_stats(q->stats);
591fail_stats:
d03f6cdc 592 bdi_put(q->backing_dev_info);
54efd50b 593fail_split:
338aa96d 594 bioset_exit(&q->bio_split);
a73f730d
TH
595fail_id:
596 ida_simple_remove(&blk_queue_ida, q->id);
597fail_q:
598 kmem_cache_free(blk_requestq_cachep, q);
599 return NULL;
1da177e4 600}
3d745ea5 601EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 602
b5bd357c
LC
603/**
604 * blk_get_queue - increment the request_queue refcount
605 * @q: the request_queue structure to increment the refcount for
606 *
607 * Increment the refcount of the request_queue kobject.
763b5892
LC
608 *
609 * Context: Any context.
b5bd357c 610 */
09ac46c4 611bool blk_get_queue(struct request_queue *q)
1da177e4 612{
3f3299d5 613 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
614 __blk_get_queue(q);
615 return true;
1da177e4
LT
616 }
617
09ac46c4 618 return false;
1da177e4 619}
d86e0e83 620EXPORT_SYMBOL(blk_get_queue);
1da177e4 621
a1ce35fa
JA
622/**
623 * blk_get_request - allocate a request
624 * @q: request queue to allocate a request for
625 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
626 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1da177e4 627 */
a1ce35fa
JA
628struct request *blk_get_request(struct request_queue *q, unsigned int op,
629 blk_mq_req_flags_t flags)
1da177e4 630{
a1ce35fa 631 struct request *req;
1da177e4 632
a1ce35fa 633 WARN_ON_ONCE(op & REQ_NOWAIT);
a4d34da7 634 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
1da177e4 635
a1ce35fa
JA
636 req = blk_mq_alloc_request(q, op, flags);
637 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
638 q->mq_ops->initialize_rq_fn(req);
1da177e4 639
a1ce35fa 640 return req;
1da177e4 641}
a1ce35fa 642EXPORT_SYMBOL(blk_get_request);
1da177e4 643
1da177e4
LT
644void blk_put_request(struct request *req)
645{
a1ce35fa 646 blk_mq_free_request(req);
1da177e4 647}
1da177e4
LT
648EXPORT_SYMBOL(blk_put_request);
649
52c5e62d 650static void handle_bad_sector(struct bio *bio, sector_t maxsector)
1da177e4
LT
651{
652 char b[BDEVNAME_SIZE];
653
f4ac712e
TH
654 pr_info_ratelimited("attempt to access beyond end of device\n"
655 "%s: rw=%d, want=%llu, limit=%llu\n",
656 bio_devname(bio, b), bio->bi_opf,
657 bio_end_sector(bio), maxsector);
1da177e4
LT
658}
659
c17bb495
AM
660#ifdef CONFIG_FAIL_MAKE_REQUEST
661
662static DECLARE_FAULT_ATTR(fail_make_request);
663
664static int __init setup_fail_make_request(char *str)
665{
666 return setup_fault_attr(&fail_make_request, str);
667}
668__setup("fail_make_request=", setup_fail_make_request);
669
8446fe92 670static bool should_fail_request(struct block_device *part, unsigned int bytes)
c17bb495 671{
8446fe92 672 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
673}
674
675static int __init fail_make_request_debugfs(void)
676{
dd48c085
AM
677 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
678 NULL, &fail_make_request);
679
21f9fcd8 680 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
681}
682
683late_initcall(fail_make_request_debugfs);
684
685#else /* CONFIG_FAIL_MAKE_REQUEST */
686
8446fe92 687static inline bool should_fail_request(struct block_device *part,
b2c9cd37 688 unsigned int bytes)
c17bb495 689{
b2c9cd37 690 return false;
c17bb495
AM
691}
692
693#endif /* CONFIG_FAIL_MAKE_REQUEST */
694
8446fe92 695static inline bool bio_check_ro(struct bio *bio, struct block_device *part)
721c7fc7 696{
b089cfd9
JA
697 const int op = bio_op(bio);
698
8446fe92 699 if (part->bd_read_only && op_is_write(op)) {
721c7fc7
ID
700 char b[BDEVNAME_SIZE];
701
8b2ded1c
MP
702 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
703 return false;
704
a32e236e 705 WARN_ONCE(1,
c8178674 706 "Trying to write to read-only block-device %s (partno %d)\n",
8446fe92 707 bio_devname(bio, b), part->bd_partno);
a32e236e
LT
708 /* Older lvm-tools actually trigger this */
709 return false;
721c7fc7
ID
710 }
711
712 return false;
713}
714
30abb3a6
HM
715static noinline int should_fail_bio(struct bio *bio)
716{
8446fe92 717 if (should_fail_request(bio->bi_disk->part0, bio->bi_iter.bi_size))
30abb3a6
HM
718 return -EIO;
719 return 0;
720}
721ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
722
52c5e62d
CH
723/*
724 * Check whether this bio extends beyond the end of the device or partition.
725 * This may well happen - the kernel calls bread() without checking the size of
726 * the device, e.g., when mounting a file system.
727 */
728static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
729{
730 unsigned int nr_sectors = bio_sectors(bio);
731
732 if (nr_sectors && maxsector &&
733 (nr_sectors > maxsector ||
734 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
735 handle_bad_sector(bio, maxsector);
736 return -EIO;
737 }
738 return 0;
739}
740
74d46992
CH
741/*
742 * Remap block n of partition p to block n+start(p) of the disk.
743 */
744static inline int blk_partition_remap(struct bio *bio)
745{
8446fe92 746 struct block_device *p;
52c5e62d 747 int ret = -EIO;
74d46992 748
721c7fc7
ID
749 rcu_read_lock();
750 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
52c5e62d
CH
751 if (unlikely(!p))
752 goto out;
753 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
754 goto out;
755 if (unlikely(bio_check_ro(bio, p)))
721c7fc7 756 goto out;
721c7fc7 757
5eac3eb3 758 if (bio_sectors(bio)) {
8446fe92 759 if (bio_check_eod(bio, bdev_nr_sectors(p)))
52c5e62d 760 goto out;
8446fe92 761 bio->bi_iter.bi_sector += p->bd_start_sect;
1c02fca6 762 trace_block_bio_remap(bio, p->bd_dev,
29ff57c6 763 bio->bi_iter.bi_sector -
8446fe92 764 p->bd_start_sect);
52c5e62d 765 }
c04fa44b 766 bio->bi_partno = 0;
52c5e62d 767 ret = 0;
721c7fc7
ID
768out:
769 rcu_read_unlock();
74d46992
CH
770 return ret;
771}
772
0512a75b
KB
773/*
774 * Check write append to a zoned block device.
775 */
776static inline blk_status_t blk_check_zone_append(struct request_queue *q,
777 struct bio *bio)
778{
779 sector_t pos = bio->bi_iter.bi_sector;
780 int nr_sectors = bio_sectors(bio);
781
782 /* Only applicable to zoned block devices */
783 if (!blk_queue_is_zoned(q))
784 return BLK_STS_NOTSUPP;
785
786 /* The bio sector must point to the start of a sequential zone */
787 if (pos & (blk_queue_zone_sectors(q) - 1) ||
788 !blk_queue_zone_is_seq(q, pos))
789 return BLK_STS_IOERR;
790
791 /*
792 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
793 * split and could result in non-contiguous sectors being written in
794 * different zones.
795 */
796 if (nr_sectors > q->limits.chunk_sectors)
797 return BLK_STS_IOERR;
798
799 /* Make sure the BIO is small enough and will not get split */
800 if (nr_sectors > q->limits.max_zone_append_sectors)
801 return BLK_STS_IOERR;
802
803 bio->bi_opf |= REQ_NOMERGE;
804
805 return BLK_STS_OK;
806}
807
ed00aabd 808static noinline_for_stack bool submit_bio_checks(struct bio *bio)
1da177e4 809{
833f84e2 810 struct request_queue *q = bio->bi_disk->queue;
4e4cbee9 811 blk_status_t status = BLK_STS_IOERR;
5a473e83 812 struct blk_plug *plug;
1da177e4
LT
813
814 might_sleep();
1da177e4 815
5a473e83
JA
816 plug = blk_mq_plug(q, bio);
817 if (plug && plug->nowait)
818 bio->bi_opf |= REQ_NOWAIT;
819
03a07c92 820 /*
b0beb280 821 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
021a2446 822 * if queue does not support NOWAIT.
03a07c92 823 */
021a2446 824 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
b0beb280 825 goto not_supported;
03a07c92 826
30abb3a6 827 if (should_fail_bio(bio))
5a7bbad2 828 goto end_io;
2056a782 829
52c5e62d
CH
830 if (bio->bi_partno) {
831 if (unlikely(blk_partition_remap(bio)))
721c7fc7
ID
832 goto end_io;
833 } else {
8446fe92 834 if (unlikely(bio_check_ro(bio, bio->bi_disk->part0)))
52c5e62d
CH
835 goto end_io;
836 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
721c7fc7
ID
837 goto end_io;
838 }
2056a782 839
5a7bbad2 840 /*
ed00aabd
CH
841 * Filter flush bio's early so that bio based drivers without flush
842 * support don't have to worry about them.
5a7bbad2 843 */
f3a8ab7d 844 if (op_is_flush(bio->bi_opf) &&
c888a8f9 845 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 846 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
e439ab71 847 if (!bio_sectors(bio)) {
4e4cbee9 848 status = BLK_STS_OK;
51fd77bd
JA
849 goto end_io;
850 }
5a7bbad2 851 }
5ddfe969 852
d04c406f
CH
853 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
854 bio->bi_opf &= ~REQ_HIPRI;
855
288dab8a
CH
856 switch (bio_op(bio)) {
857 case REQ_OP_DISCARD:
858 if (!blk_queue_discard(q))
859 goto not_supported;
860 break;
861 case REQ_OP_SECURE_ERASE:
862 if (!blk_queue_secure_erase(q))
863 goto not_supported;
864 break;
865 case REQ_OP_WRITE_SAME:
74d46992 866 if (!q->limits.max_write_same_sectors)
288dab8a 867 goto not_supported;
58886785 868 break;
0512a75b
KB
869 case REQ_OP_ZONE_APPEND:
870 status = blk_check_zone_append(q, bio);
871 if (status != BLK_STS_OK)
872 goto end_io;
873 break;
2d253440 874 case REQ_OP_ZONE_RESET:
6c1b1da5
AJ
875 case REQ_OP_ZONE_OPEN:
876 case REQ_OP_ZONE_CLOSE:
877 case REQ_OP_ZONE_FINISH:
74d46992 878 if (!blk_queue_is_zoned(q))
2d253440 879 goto not_supported;
288dab8a 880 break;
6e33dbf2
CK
881 case REQ_OP_ZONE_RESET_ALL:
882 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
883 goto not_supported;
884 break;
a6f0788e 885 case REQ_OP_WRITE_ZEROES:
74d46992 886 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
887 goto not_supported;
888 break;
288dab8a
CH
889 default:
890 break;
5a7bbad2 891 }
01edede4 892
7f4b35d1 893 /*
3e82c348
CH
894 * Various block parts want %current->io_context, so allocate it up
895 * front rather than dealing with lots of pain to allocate it only
896 * where needed. This may fail and the block layer knows how to live
897 * with it.
7f4b35d1 898 */
3e82c348
CH
899 if (unlikely(!current->io_context))
900 create_task_io_context(current, GFP_ATOMIC, q->node);
7f4b35d1 901
db18a53e
CH
902 if (blk_throtl_bio(bio)) {
903 blkcg_bio_issue_init(bio);
ae118896 904 return false;
db18a53e
CH
905 }
906
907 blk_cgroup_bio_start(bio);
908 blkcg_bio_issue_init(bio);
27a84d54 909
fbbaf700 910 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
e8a676d6 911 trace_block_bio_queue(bio);
fbbaf700
N
912 /* Now that enqueuing has been traced, we need to trace
913 * completion as well.
914 */
915 bio_set_flag(bio, BIO_TRACE_COMPLETION);
916 }
27a84d54 917 return true;
a7384677 918
288dab8a 919not_supported:
4e4cbee9 920 status = BLK_STS_NOTSUPP;
a7384677 921end_io:
4e4cbee9 922 bio->bi_status = status;
4246a0b6 923 bio_endio(bio);
27a84d54 924 return false;
1da177e4
LT
925}
926
ed00aabd 927static blk_qc_t __submit_bio(struct bio *bio)
ac7c5675 928{
c62b37d9 929 struct gendisk *disk = bio->bi_disk;
ac7c5675
CH
930 blk_qc_t ret = BLK_QC_T_NONE;
931
932 if (blk_crypto_bio_prep(&bio)) {
c62b37d9
CH
933 if (!disk->fops->submit_bio)
934 return blk_mq_submit_bio(bio);
935 ret = disk->fops->submit_bio(bio);
ac7c5675 936 }
c62b37d9 937 blk_queue_exit(disk->queue);
ac7c5675
CH
938 return ret;
939}
940
566acf2d
CH
941/*
942 * The loop in this function may be a bit non-obvious, and so deserves some
943 * explanation:
944 *
945 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
946 * that), so we have a list with a single bio.
947 * - We pretend that we have just taken it off a longer list, so we assign
948 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
949 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
950 * bios through a recursive call to submit_bio_noacct. If it did, we find a
951 * non-NULL value in bio_list and re-enter the loop from the top.
952 * - In this case we really did just take the bio of the top of the list (no
953 * pretending) and so remove it from bio_list, and call into ->submit_bio()
954 * again.
955 *
956 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
957 * bio_list_on_stack[1] contains bios that were submitted before the current
958 * ->submit_bio_bio, but that haven't been processed yet.
959 */
960static blk_qc_t __submit_bio_noacct(struct bio *bio)
961{
962 struct bio_list bio_list_on_stack[2];
963 blk_qc_t ret = BLK_QC_T_NONE;
964
965 BUG_ON(bio->bi_next);
966
967 bio_list_init(&bio_list_on_stack[0]);
968 current->bio_list = bio_list_on_stack;
969
970 do {
971 struct request_queue *q = bio->bi_disk->queue;
972 struct bio_list lower, same;
973
974 if (unlikely(bio_queue_enter(bio) != 0))
975 continue;
976
977 /*
978 * Create a fresh bio_list for all subordinate requests.
979 */
980 bio_list_on_stack[1] = bio_list_on_stack[0];
981 bio_list_init(&bio_list_on_stack[0]);
982
983 ret = __submit_bio(bio);
984
985 /*
986 * Sort new bios into those for a lower level and those for the
987 * same level.
988 */
989 bio_list_init(&lower);
990 bio_list_init(&same);
991 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
992 if (q == bio->bi_disk->queue)
993 bio_list_add(&same, bio);
994 else
995 bio_list_add(&lower, bio);
996
997 /*
998 * Now assemble so we handle the lowest level first.
999 */
1000 bio_list_merge(&bio_list_on_stack[0], &lower);
1001 bio_list_merge(&bio_list_on_stack[0], &same);
1002 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1003 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
1004
1005 current->bio_list = NULL;
1006 return ret;
1007}
1008
ff93ea0c
CH
1009static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1010{
7c792f33 1011 struct bio_list bio_list[2] = { };
ff93ea0c
CH
1012 blk_qc_t ret = BLK_QC_T_NONE;
1013
7c792f33 1014 current->bio_list = bio_list;
ff93ea0c
CH
1015
1016 do {
0e6e255e 1017 struct gendisk *disk = bio->bi_disk;
ff93ea0c
CH
1018
1019 if (unlikely(bio_queue_enter(bio) != 0))
1020 continue;
1021
1022 if (!blk_crypto_bio_prep(&bio)) {
1023 blk_queue_exit(disk->queue);
1024 ret = BLK_QC_T_NONE;
1025 continue;
1026 }
1027
1028 ret = blk_mq_submit_bio(bio);
7c792f33 1029 } while ((bio = bio_list_pop(&bio_list[0])));
ff93ea0c
CH
1030
1031 current->bio_list = NULL;
1032 return ret;
1033}
1034
27a84d54 1035/**
ed00aabd 1036 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
27a84d54
CH
1037 * @bio: The bio describing the location in memory and on the device.
1038 *
3fdd4086
CH
1039 * This is a version of submit_bio() that shall only be used for I/O that is
1040 * resubmitted to lower level drivers by stacking block drivers. All file
1041 * systems and other upper level users of the block layer should use
1042 * submit_bio() instead.
d89d8796 1043 */
ed00aabd 1044blk_qc_t submit_bio_noacct(struct bio *bio)
d89d8796 1045{
ed00aabd 1046 if (!submit_bio_checks(bio))
566acf2d 1047 return BLK_QC_T_NONE;
27a84d54
CH
1048
1049 /*
566acf2d
CH
1050 * We only want one ->submit_bio to be active at a time, else stack
1051 * usage with stacked devices could be a problem. Use current->bio_list
1052 * to collect a list of requests submited by a ->submit_bio method while
1053 * it is active, and then process them after it returned.
27a84d54 1054 */
bddd87c7 1055 if (current->bio_list) {
f5fe1b51 1056 bio_list_add(&current->bio_list[0], bio);
566acf2d 1057 return BLK_QC_T_NONE;
d89d8796 1058 }
27a84d54 1059
ff93ea0c
CH
1060 if (!bio->bi_disk->fops->submit_bio)
1061 return __submit_bio_noacct_mq(bio);
566acf2d 1062 return __submit_bio_noacct(bio);
d89d8796 1063}
ed00aabd 1064EXPORT_SYMBOL(submit_bio_noacct);
1da177e4
LT
1065
1066/**
710027a4 1067 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1068 * @bio: The &struct bio which describes the I/O
1069 *
3fdd4086
CH
1070 * submit_bio() is used to submit I/O requests to block devices. It is passed a
1071 * fully set up &struct bio that describes the I/O that needs to be done. The
1072 * bio will be send to the device described by the bi_disk and bi_partno fields.
1da177e4 1073 *
3fdd4086
CH
1074 * The success/failure status of the request, along with notification of
1075 * completion, is delivered asynchronously through the ->bi_end_io() callback
1076 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
1077 * been called.
1da177e4 1078 */
4e49ea4a 1079blk_qc_t submit_bio(struct bio *bio)
1da177e4 1080{
d3f77dfd
TH
1081 if (blkcg_punt_bio_submit(bio))
1082 return BLK_QC_T_NONE;
1083
bf2de6f5
JA
1084 /*
1085 * If it's a regular read/write or a barrier with data attached,
1086 * go through the normal accounting stuff before submission.
1087 */
e2a60da7 1088 if (bio_has_data(bio)) {
4363ac7c
MP
1089 unsigned int count;
1090
95fe6c1a 1091 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
7c5a0dcf 1092 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
4363ac7c
MP
1093 else
1094 count = bio_sectors(bio);
1095
a8ebb056 1096 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
1097 count_vm_events(PGPGOUT, count);
1098 } else {
4f024f37 1099 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
1100 count_vm_events(PGPGIN, count);
1101 }
1102
1103 if (unlikely(block_dump)) {
1104 char b[BDEVNAME_SIZE];
8dcbdc74 1105 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1106 current->comm, task_pid_nr(current),
a8ebb056 1107 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 1108 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 1109 bio_devname(bio, b), count);
bf2de6f5 1110 }
1da177e4
LT
1111 }
1112
b8e24a93 1113 /*
760f83ea
CH
1114 * If we're reading data that is part of the userspace workingset, count
1115 * submission time as memory stall. When the device is congested, or
1116 * the submitting cgroup IO-throttled, submission can be a significant
1117 * part of overall IO time.
b8e24a93 1118 */
760f83ea
CH
1119 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1120 bio_flagged(bio, BIO_WORKINGSET))) {
1121 unsigned long pflags;
1122 blk_qc_t ret;
b8e24a93 1123
760f83ea 1124 psi_memstall_enter(&pflags);
ed00aabd 1125 ret = submit_bio_noacct(bio);
b8e24a93
JW
1126 psi_memstall_leave(&pflags);
1127
760f83ea
CH
1128 return ret;
1129 }
1130
ed00aabd 1131 return submit_bio_noacct(bio);
1da177e4 1132}
1da177e4
LT
1133EXPORT_SYMBOL(submit_bio);
1134
82124d60 1135/**
bf4e6b4e 1136 * blk_cloned_rq_check_limits - Helper function to check a cloned request
0d720318 1137 * for the new queue limits
82124d60
KU
1138 * @q: the queue
1139 * @rq: the request being checked
1140 *
1141 * Description:
1142 * @rq may have been made based on weaker limitations of upper-level queues
1143 * in request stacking drivers, and it may violate the limitation of @q.
1144 * Since the block layer and the underlying device driver trust @rq
1145 * after it is inserted to @q, it should be checked against @q before
1146 * the insertion using this generic function.
1147 *
82124d60 1148 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
1149 * limits when retrying requests on other queues. Those requests need
1150 * to be checked against the new queue limits again during dispatch.
82124d60 1151 */
143d2600 1152static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
bf4e6b4e 1153 struct request *rq)
82124d60 1154{
8327cce5
RS
1155 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1156
1157 if (blk_rq_sectors(rq) > max_sectors) {
1158 /*
1159 * SCSI device does not have a good way to return if
1160 * Write Same/Zero is actually supported. If a device rejects
1161 * a non-read/write command (discard, write same,etc.) the
1162 * low-level device driver will set the relevant queue limit to
1163 * 0 to prevent blk-lib from issuing more of the offending
1164 * operations. Commands queued prior to the queue limit being
1165 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1166 * errors being propagated to upper layers.
1167 */
1168 if (max_sectors == 0)
1169 return BLK_STS_NOTSUPP;
1170
61939b12 1171 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
8327cce5 1172 __func__, blk_rq_sectors(rq), max_sectors);
143d2600 1173 return BLK_STS_IOERR;
82124d60
KU
1174 }
1175
1176 /*
1177 * queue's settings related to segment counting like q->bounce_pfn
1178 * may differ from that of other stacking queues.
1179 * Recalculate it to check the request correctly on this queue's
1180 * limitation.
1181 */
e9cd19c0 1182 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
8a78362c 1183 if (rq->nr_phys_segments > queue_max_segments(q)) {
61939b12
JP
1184 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1185 __func__, rq->nr_phys_segments, queue_max_segments(q));
143d2600 1186 return BLK_STS_IOERR;
82124d60
KU
1187 }
1188
143d2600 1189 return BLK_STS_OK;
82124d60 1190}
82124d60
KU
1191
1192/**
1193 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1194 * @q: the queue to submit the request
1195 * @rq: the request being queued
1196 */
2a842aca 1197blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60 1198{
8327cce5
RS
1199 blk_status_t ret;
1200
1201 ret = blk_cloned_rq_check_limits(q, rq);
1202 if (ret != BLK_STS_OK)
1203 return ret;
82124d60 1204
b2c9cd37 1205 if (rq->rq_disk &&
8446fe92 1206 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 1207 return BLK_STS_IOERR;
82124d60 1208
a892c8d5
ST
1209 if (blk_crypto_insert_cloned_request(rq))
1210 return BLK_STS_IOERR;
1211
a1ce35fa 1212 if (blk_queue_io_stat(q))
b5af37ab 1213 blk_account_io_start(rq);
82124d60
KU
1214
1215 /*
a1ce35fa
JA
1216 * Since we have a scheduler attached on the top device,
1217 * bypass a potential scheduler on the bottom device for
1218 * insert.
82124d60 1219 */
fd9c40f6 1220 return blk_mq_request_issue_directly(rq, true);
82124d60
KU
1221}
1222EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1223
80a761fd
TH
1224/**
1225 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1226 * @rq: request to examine
1227 *
1228 * Description:
1229 * A request could be merge of IOs which require different failure
1230 * handling. This function determines the number of bytes which
1231 * can be failed from the beginning of the request without
1232 * crossing into area which need to be retried further.
1233 *
1234 * Return:
1235 * The number of bytes to fail.
80a761fd
TH
1236 */
1237unsigned int blk_rq_err_bytes(const struct request *rq)
1238{
1239 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1240 unsigned int bytes = 0;
1241 struct bio *bio;
1242
e8064021 1243 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
1244 return blk_rq_bytes(rq);
1245
1246 /*
1247 * Currently the only 'mixing' which can happen is between
1248 * different fastfail types. We can safely fail portions
1249 * which have all the failfast bits that the first one has -
1250 * the ones which are at least as eager to fail as the first
1251 * one.
1252 */
1253 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 1254 if ((bio->bi_opf & ff) != ff)
80a761fd 1255 break;
4f024f37 1256 bytes += bio->bi_iter.bi_size;
80a761fd
TH
1257 }
1258
1259 /* this could lead to infinite loop */
1260 BUG_ON(blk_rq_bytes(rq) && !bytes);
1261 return bytes;
1262}
1263EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1264
8446fe92
CH
1265static void update_io_ticks(struct block_device *part, unsigned long now,
1266 bool end)
9123bf6f
CH
1267{
1268 unsigned long stamp;
1269again:
8446fe92 1270 stamp = READ_ONCE(part->bd_stamp);
9123bf6f 1271 if (unlikely(stamp != now)) {
8446fe92 1272 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
9123bf6f
CH
1273 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1274 }
8446fe92
CH
1275 if (part->bd_partno) {
1276 part = bdev_whole(part);
9123bf6f
CH
1277 goto again;
1278 }
1279}
1280
f1394b79 1281static void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 1282{
ecb6186c 1283 if (req->part && blk_do_io_stat(req)) {
ddcf35d3 1284 const int sgrp = op_stat_group(req_op(req));
bc58ba94 1285
112f158f 1286 part_stat_lock();
8446fe92 1287 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
bc58ba94
JA
1288 part_stat_unlock();
1289 }
1290}
1291
522a7775 1292void blk_account_io_done(struct request *req, u64 now)
bc58ba94 1293{
bc58ba94 1294 /*
dd4c133f
TH
1295 * Account IO completion. flush_rq isn't accounted as a
1296 * normal IO on queueing nor completion. Accounting the
1297 * containing request is enough.
bc58ba94 1298 */
ecb6186c
LG
1299 if (req->part && blk_do_io_stat(req) &&
1300 !(req->rq_flags & RQF_FLUSH_SEQ)) {
ddcf35d3 1301 const int sgrp = op_stat_group(req_op(req));
bc58ba94 1302
112f158f 1303 part_stat_lock();
8446fe92
CH
1304 update_io_ticks(req->part, jiffies, true);
1305 part_stat_inc(req->part, ios[sgrp]);
1306 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
524f9ffd 1307 part_stat_unlock();
bc58ba94
JA
1308 }
1309}
1310
b5af37ab 1311void blk_account_io_start(struct request *rq)
320ae51f 1312{
320ae51f
JA
1313 if (!blk_do_io_stat(rq))
1314 return;
1315
b5af37ab 1316 rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
524f9ffd 1317
112f158f 1318 part_stat_lock();
76268f3a 1319 update_io_ticks(rq->part, jiffies, false);
320ae51f
JA
1320 part_stat_unlock();
1321}
320ae51f 1322
8446fe92 1323static unsigned long __part_start_io_acct(struct block_device *part,
7b26410b 1324 unsigned int sectors, unsigned int op)
956d510e 1325{
956d510e
CH
1326 const int sgrp = op_stat_group(op);
1327 unsigned long now = READ_ONCE(jiffies);
1328
1329 part_stat_lock();
1330 update_io_ticks(part, now, false);
1331 part_stat_inc(part, ios[sgrp]);
1332 part_stat_add(part, sectors[sgrp], sectors);
1333 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1334 part_stat_unlock();
320ae51f 1335
956d510e
CH
1336 return now;
1337}
7b26410b 1338
8446fe92 1339unsigned long part_start_io_acct(struct gendisk *disk, struct block_device **part,
7b26410b
SL
1340 struct bio *bio)
1341{
1342 *part = disk_map_sector_rcu(disk, bio->bi_iter.bi_sector);
1343
1344 return __part_start_io_acct(*part, bio_sectors(bio), bio_op(bio));
1345}
1346EXPORT_SYMBOL_GPL(part_start_io_acct);
1347
1348unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1349 unsigned int op)
1350{
8446fe92 1351 return __part_start_io_acct(disk->part0, sectors, op);
7b26410b 1352}
956d510e
CH
1353EXPORT_SYMBOL(disk_start_io_acct);
1354
8446fe92 1355static void __part_end_io_acct(struct block_device *part, unsigned int op,
7b26410b 1356 unsigned long start_time)
956d510e 1357{
956d510e
CH
1358 const int sgrp = op_stat_group(op);
1359 unsigned long now = READ_ONCE(jiffies);
1360 unsigned long duration = now - start_time;
5b18b5a7 1361
956d510e
CH
1362 part_stat_lock();
1363 update_io_ticks(part, now, true);
1364 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1365 part_stat_local_dec(part, in_flight[op_is_write(op)]);
320ae51f
JA
1366 part_stat_unlock();
1367}
7b26410b 1368
8446fe92 1369void part_end_io_acct(struct block_device *part, struct bio *bio,
7b26410b
SL
1370 unsigned long start_time)
1371{
1372 __part_end_io_acct(part, bio_op(bio), start_time);
7b26410b
SL
1373}
1374EXPORT_SYMBOL_GPL(part_end_io_acct);
1375
1376void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1377 unsigned long start_time)
1378{
8446fe92 1379 __part_end_io_acct(disk->part0, op, start_time);
7b26410b 1380}
956d510e 1381EXPORT_SYMBOL(disk_end_io_acct);
320ae51f 1382
ef71de8b
CH
1383/*
1384 * Steal bios from a request and add them to a bio list.
1385 * The request must not have been partially completed before.
1386 */
1387void blk_steal_bios(struct bio_list *list, struct request *rq)
1388{
1389 if (rq->bio) {
1390 if (list->tail)
1391 list->tail->bi_next = rq->bio;
1392 else
1393 list->head = rq->bio;
1394 list->tail = rq->biotail;
1395
1396 rq->bio = NULL;
1397 rq->biotail = NULL;
1398 }
1399
1400 rq->__data_len = 0;
1401}
1402EXPORT_SYMBOL_GPL(blk_steal_bios);
1403
3bcddeac 1404/**
2e60e022 1405 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1406 * @req: the request being processed
2a842aca 1407 * @error: block status code
8ebf9756 1408 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1409 *
1410 * Description:
8ebf9756
RD
1411 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1412 * the request structure even if @req doesn't have leftover.
1413 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1414 *
1415 * This special helper function is only for request stacking drivers
1416 * (e.g. request-based dm) so that they can handle partial completion.
3a211b71 1417 * Actual device drivers should use blk_mq_end_request instead.
2e60e022
TH
1418 *
1419 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1420 * %false return from this function.
3bcddeac 1421 *
1954e9a9
BVA
1422 * Note:
1423 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1424 * blk_rq_bytes() and in blk_update_request().
1425 *
3bcddeac 1426 * Return:
2e60e022
TH
1427 * %false - this request doesn't have any more data
1428 * %true - this request has more data
3bcddeac 1429 **/
2a842aca
CH
1430bool blk_update_request(struct request *req, blk_status_t error,
1431 unsigned int nr_bytes)
1da177e4 1432{
f79ea416 1433 int total_bytes;
1da177e4 1434
2a842aca 1435 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 1436
2e60e022
TH
1437 if (!req->bio)
1438 return false;
1439
54d4e6ab
MG
1440#ifdef CONFIG_BLK_DEV_INTEGRITY
1441 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1442 error == BLK_STS_OK)
1443 req->q->integrity.profile->complete_fn(req, nr_bytes);
1444#endif
1445
2a842aca
CH
1446 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1447 !(req->rq_flags & RQF_QUIET)))
178cc590 1448 print_req_error(req, error, __func__);
1da177e4 1449
bc58ba94 1450 blk_account_io_completion(req, nr_bytes);
d72d904a 1451
f79ea416
KO
1452 total_bytes = 0;
1453 while (req->bio) {
1454 struct bio *bio = req->bio;
4f024f37 1455 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 1456
9c24c10a 1457 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 1458 req->bio = bio->bi_next;
1da177e4 1459
fbbaf700
N
1460 /* Completion has already been traced */
1461 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 1462 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 1463
f79ea416
KO
1464 total_bytes += bio_bytes;
1465 nr_bytes -= bio_bytes;
1da177e4 1466
f79ea416
KO
1467 if (!nr_bytes)
1468 break;
1da177e4
LT
1469 }
1470
1471 /*
1472 * completely done
1473 */
2e60e022
TH
1474 if (!req->bio) {
1475 /*
1476 * Reset counters so that the request stacking driver
1477 * can find how many bytes remain in the request
1478 * later.
1479 */
a2dec7b3 1480 req->__data_len = 0;
2e60e022
TH
1481 return false;
1482 }
1da177e4 1483
a2dec7b3 1484 req->__data_len -= total_bytes;
2e46e8b2
TH
1485
1486 /* update sector only for requests with clear definition of sector */
57292b58 1487 if (!blk_rq_is_passthrough(req))
a2dec7b3 1488 req->__sector += total_bytes >> 9;
2e46e8b2 1489
80a761fd 1490 /* mixed attributes always follow the first bio */
e8064021 1491 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 1492 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 1493 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
1494 }
1495
ed6565e7
CH
1496 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1497 /*
1498 * If total number of sectors is less than the first segment
1499 * size, something has gone terribly wrong.
1500 */
1501 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1502 blk_dump_rq_flags(req, "request botched");
1503 req->__data_len = blk_rq_cur_bytes(req);
1504 }
2e46e8b2 1505
ed6565e7 1506 /* recalculate the number of segments */
e9cd19c0 1507 req->nr_phys_segments = blk_recalc_rq_segments(req);
ed6565e7 1508 }
2e46e8b2 1509
2e60e022 1510 return true;
1da177e4 1511}
2e60e022 1512EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 1513
2d4dc890
IL
1514#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1515/**
1516 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1517 * @rq: the request to be flushed
1518 *
1519 * Description:
1520 * Flush all pages in @rq.
1521 */
1522void rq_flush_dcache_pages(struct request *rq)
1523{
1524 struct req_iterator iter;
7988613b 1525 struct bio_vec bvec;
2d4dc890
IL
1526
1527 rq_for_each_segment(bvec, rq, iter)
7988613b 1528 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1529}
1530EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1531#endif
1532
ef9e3fac
KU
1533/**
1534 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1535 * @q : the queue of the device being checked
1536 *
1537 * Description:
1538 * Check if underlying low-level drivers of a device are busy.
1539 * If the drivers want to export their busy state, they must set own
1540 * exporting function using blk_queue_lld_busy() first.
1541 *
1542 * Basically, this function is used only by request stacking drivers
1543 * to stop dispatching requests to underlying devices when underlying
1544 * devices are busy. This behavior helps more I/O merging on the queue
1545 * of the request stacking driver and prevents I/O throughput regression
1546 * on burst I/O load.
1547 *
1548 * Return:
1549 * 0 - Not busy (The request stacking driver should dispatch request)
1550 * 1 - Busy (The request stacking driver should stop dispatching request)
1551 */
1552int blk_lld_busy(struct request_queue *q)
1553{
344e9ffc 1554 if (queue_is_mq(q) && q->mq_ops->busy)
9ba20527 1555 return q->mq_ops->busy(q);
ef9e3fac
KU
1556
1557 return 0;
1558}
1559EXPORT_SYMBOL_GPL(blk_lld_busy);
1560
78d8e58a
MS
1561/**
1562 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1563 * @rq: the clone request to be cleaned up
1564 *
1565 * Description:
1566 * Free all bios in @rq for a cloned request.
1567 */
1568void blk_rq_unprep_clone(struct request *rq)
1569{
1570 struct bio *bio;
1571
1572 while ((bio = rq->bio) != NULL) {
1573 rq->bio = bio->bi_next;
1574
1575 bio_put(bio);
1576 }
1577}
1578EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1579
78d8e58a
MS
1580/**
1581 * blk_rq_prep_clone - Helper function to setup clone request
1582 * @rq: the request to be setup
1583 * @rq_src: original request to be cloned
1584 * @bs: bio_set that bios for clone are allocated from
1585 * @gfp_mask: memory allocation mask for bio
1586 * @bio_ctr: setup function to be called for each clone bio.
1587 * Returns %0 for success, non %0 for failure.
1588 * @data: private data to be passed to @bio_ctr
1589 *
1590 * Description:
1591 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
78d8e58a
MS
1592 * Also, pages which the original bios are pointing to are not copied
1593 * and the cloned bios just point same pages.
1594 * So cloned bios must be completed before original bios, which means
1595 * the caller must complete @rq before @rq_src.
1596 */
1597int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1598 struct bio_set *bs, gfp_t gfp_mask,
1599 int (*bio_ctr)(struct bio *, struct bio *, void *),
1600 void *data)
1601{
1602 struct bio *bio, *bio_src;
1603
1604 if (!bs)
f4f8154a 1605 bs = &fs_bio_set;
78d8e58a
MS
1606
1607 __rq_for_each_bio(bio_src, rq_src) {
1608 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1609 if (!bio)
1610 goto free_and_out;
1611
1612 if (bio_ctr && bio_ctr(bio, bio_src, data))
1613 goto free_and_out;
1614
1615 if (rq->bio) {
1616 rq->biotail->bi_next = bio;
1617 rq->biotail = bio;
93f221ae 1618 } else {
78d8e58a 1619 rq->bio = rq->biotail = bio;
93f221ae
EB
1620 }
1621 bio = NULL;
78d8e58a
MS
1622 }
1623
361301a2
GJ
1624 /* Copy attributes of the original request to the clone request. */
1625 rq->__sector = blk_rq_pos(rq_src);
1626 rq->__data_len = blk_rq_bytes(rq_src);
1627 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1628 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1629 rq->special_vec = rq_src->special_vec;
1630 }
1631 rq->nr_phys_segments = rq_src->nr_phys_segments;
1632 rq->ioprio = rq_src->ioprio;
78d8e58a 1633
93f221ae
EB
1634 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1635 goto free_and_out;
78d8e58a
MS
1636
1637 return 0;
1638
1639free_and_out:
1640 if (bio)
1641 bio_put(bio);
1642 blk_rq_unprep_clone(rq);
1643
1644 return -ENOMEM;
b0fd271d
KU
1645}
1646EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1647
59c3d45e 1648int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
1649{
1650 return queue_work(kblockd_workqueue, work);
1651}
1da177e4
LT
1652EXPORT_SYMBOL(kblockd_schedule_work);
1653
818cd1cb
JA
1654int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1655 unsigned long delay)
1656{
1657 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1658}
1659EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1660
75df7136
SJ
1661/**
1662 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1663 * @plug: The &struct blk_plug that needs to be initialized
1664 *
1665 * Description:
40405851
JM
1666 * blk_start_plug() indicates to the block layer an intent by the caller
1667 * to submit multiple I/O requests in a batch. The block layer may use
1668 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1669 * is called. However, the block layer may choose to submit requests
1670 * before a call to blk_finish_plug() if the number of queued I/Os
1671 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1672 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1673 * the task schedules (see below).
1674 *
75df7136
SJ
1675 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1676 * pending I/O should the task end up blocking between blk_start_plug() and
1677 * blk_finish_plug(). This is important from a performance perspective, but
1678 * also ensures that we don't deadlock. For instance, if the task is blocking
1679 * for a memory allocation, memory reclaim could end up wanting to free a
1680 * page belonging to that request that is currently residing in our private
1681 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1682 * this kind of deadlock.
1683 */
73c10101
JA
1684void blk_start_plug(struct blk_plug *plug)
1685{
1686 struct task_struct *tsk = current;
1687
dd6cf3e1
SL
1688 /*
1689 * If this is a nested plug, don't actually assign it.
1690 */
1691 if (tsk->plug)
1692 return;
1693
320ae51f 1694 INIT_LIST_HEAD(&plug->mq_list);
048c9374 1695 INIT_LIST_HEAD(&plug->cb_list);
5f0ed774 1696 plug->rq_count = 0;
ce5b009c 1697 plug->multiple_queues = false;
5a473e83 1698 plug->nowait = false;
5f0ed774 1699
73c10101 1700 /*
dd6cf3e1
SL
1701 * Store ordering should not be needed here, since a potential
1702 * preempt will imply a full memory barrier
73c10101 1703 */
dd6cf3e1 1704 tsk->plug = plug;
73c10101
JA
1705}
1706EXPORT_SYMBOL(blk_start_plug);
1707
74018dc3 1708static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
1709{
1710 LIST_HEAD(callbacks);
1711
2a7d5559
SL
1712 while (!list_empty(&plug->cb_list)) {
1713 list_splice_init(&plug->cb_list, &callbacks);
048c9374 1714
2a7d5559
SL
1715 while (!list_empty(&callbacks)) {
1716 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
1717 struct blk_plug_cb,
1718 list);
2a7d5559 1719 list_del(&cb->list);
74018dc3 1720 cb->callback(cb, from_schedule);
2a7d5559 1721 }
048c9374
N
1722 }
1723}
1724
9cbb1750
N
1725struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1726 int size)
1727{
1728 struct blk_plug *plug = current->plug;
1729 struct blk_plug_cb *cb;
1730
1731 if (!plug)
1732 return NULL;
1733
1734 list_for_each_entry(cb, &plug->cb_list, list)
1735 if (cb->callback == unplug && cb->data == data)
1736 return cb;
1737
1738 /* Not currently on the callback list */
1739 BUG_ON(size < sizeof(*cb));
1740 cb = kzalloc(size, GFP_ATOMIC);
1741 if (cb) {
1742 cb->data = data;
1743 cb->callback = unplug;
1744 list_add(&cb->list, &plug->cb_list);
1745 }
1746 return cb;
1747}
1748EXPORT_SYMBOL(blk_check_plugged);
1749
49cac01e 1750void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101 1751{
74018dc3 1752 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
1753
1754 if (!list_empty(&plug->mq_list))
1755 blk_mq_flush_plug_list(plug, from_schedule);
73c10101 1756}
73c10101 1757
40405851
JM
1758/**
1759 * blk_finish_plug - mark the end of a batch of submitted I/O
1760 * @plug: The &struct blk_plug passed to blk_start_plug()
1761 *
1762 * Description:
1763 * Indicate that a batch of I/O submissions is complete. This function
1764 * must be paired with an initial call to blk_start_plug(). The intent
1765 * is to allow the block layer to optimize I/O submission. See the
1766 * documentation for blk_start_plug() for more information.
1767 */
73c10101
JA
1768void blk_finish_plug(struct blk_plug *plug)
1769{
dd6cf3e1
SL
1770 if (plug != current->plug)
1771 return;
f6603783 1772 blk_flush_plug_list(plug, false);
73c10101 1773
dd6cf3e1 1774 current->plug = NULL;
73c10101 1775}
88b996cd 1776EXPORT_SYMBOL(blk_finish_plug);
73c10101 1777
71ac860a
ML
1778void blk_io_schedule(void)
1779{
1780 /* Prevent hang_check timer from firing at us during very long I/O */
1781 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1782
1783 if (timeout)
1784 io_schedule_timeout(timeout);
1785 else
1786 io_schedule();
1787}
1788EXPORT_SYMBOL_GPL(blk_io_schedule);
1789
1da177e4
LT
1790int __init blk_dev_init(void)
1791{
ef295ecf
CH
1792 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1793 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1794 sizeof_field(struct request, cmd_flags));
ef295ecf 1795 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1796 sizeof_field(struct bio, bi_opf));
9eb55b03 1797
89b90be2
TH
1798 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1799 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 1800 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
1801 if (!kblockd_workqueue)
1802 panic("Failed to create kblockd\n");
1803
c2789bd4 1804 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 1805 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 1806
18fbda91 1807 blk_debugfs_root = debugfs_create_dir("block", NULL);
18fbda91 1808
d38ecf93 1809 return 0;
1da177e4 1810}