]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-mq-sched.c
mq-deadline: add blk-mq adaptation of the deadline IO scheduler
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq-sched.c
CommitLineData
bd166ef1
JA
1/*
2 * blk-mq scheduling framework
3 *
4 * Copyright (C) 2016 Jens Axboe
5 */
6#include <linux/kernel.h>
7#include <linux/module.h>
8#include <linux/blk-mq.h>
9
10#include <trace/events/block.h>
11
12#include "blk.h"
13#include "blk-mq.h"
14#include "blk-mq-sched.h"
15#include "blk-mq-tag.h"
16#include "blk-wbt.h"
17
18void blk_mq_sched_free_hctx_data(struct request_queue *q,
19 void (*exit)(struct blk_mq_hw_ctx *))
20{
21 struct blk_mq_hw_ctx *hctx;
22 int i;
23
24 queue_for_each_hw_ctx(q, hctx, i) {
25 if (exit && hctx->sched_data)
26 exit(hctx);
27 kfree(hctx->sched_data);
28 hctx->sched_data = NULL;
29 }
30}
31EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
32
33int blk_mq_sched_init_hctx_data(struct request_queue *q, size_t size,
34 int (*init)(struct blk_mq_hw_ctx *),
35 void (*exit)(struct blk_mq_hw_ctx *))
36{
37 struct blk_mq_hw_ctx *hctx;
38 int ret;
39 int i;
40
41 queue_for_each_hw_ctx(q, hctx, i) {
42 hctx->sched_data = kmalloc_node(size, GFP_KERNEL, hctx->numa_node);
43 if (!hctx->sched_data) {
44 ret = -ENOMEM;
45 goto error;
46 }
47
48 if (init) {
49 ret = init(hctx);
50 if (ret) {
51 /*
52 * We don't want to give exit() a partially
53 * initialized sched_data. init() must clean up
54 * if it fails.
55 */
56 kfree(hctx->sched_data);
57 hctx->sched_data = NULL;
58 goto error;
59 }
60 }
61 }
62
63 return 0;
64error:
65 blk_mq_sched_free_hctx_data(q, exit);
66 return ret;
67}
68EXPORT_SYMBOL_GPL(blk_mq_sched_init_hctx_data);
69
70static void __blk_mq_sched_assign_ioc(struct request_queue *q,
71 struct request *rq, struct io_context *ioc)
72{
73 struct io_cq *icq;
74
75 spin_lock_irq(q->queue_lock);
76 icq = ioc_lookup_icq(ioc, q);
77 spin_unlock_irq(q->queue_lock);
78
79 if (!icq) {
80 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
81 if (!icq)
82 return;
83 }
84
85 rq->elv.icq = icq;
86 if (!blk_mq_sched_get_rq_priv(q, rq)) {
87 rq->rq_flags |= RQF_ELVPRIV;
88 get_io_context(icq->ioc);
89 return;
90 }
91
92 rq->elv.icq = NULL;
93}
94
95static void blk_mq_sched_assign_ioc(struct request_queue *q,
96 struct request *rq, struct bio *bio)
97{
98 struct io_context *ioc;
99
100 ioc = rq_ioc(bio);
101 if (ioc)
102 __blk_mq_sched_assign_ioc(q, rq, ioc);
103}
104
105struct request *blk_mq_sched_get_request(struct request_queue *q,
106 struct bio *bio,
107 unsigned int op,
108 struct blk_mq_alloc_data *data)
109{
110 struct elevator_queue *e = q->elevator;
111 struct blk_mq_hw_ctx *hctx;
112 struct blk_mq_ctx *ctx;
113 struct request *rq;
114 const bool is_flush = op & (REQ_PREFLUSH | REQ_FUA);
115
116 blk_queue_enter_live(q);
117 ctx = blk_mq_get_ctx(q);
118 hctx = blk_mq_map_queue(q, ctx->cpu);
119
120 blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
121
122 if (e) {
123 data->flags |= BLK_MQ_REQ_INTERNAL;
124
125 /*
126 * Flush requests are special and go directly to the
127 * dispatch list.
128 */
129 if (!is_flush && e->type->ops.mq.get_request) {
130 rq = e->type->ops.mq.get_request(q, op, data);
131 if (rq)
132 rq->rq_flags |= RQF_QUEUED;
133 } else
134 rq = __blk_mq_alloc_request(data, op);
135 } else {
136 rq = __blk_mq_alloc_request(data, op);
137 data->hctx->tags->rqs[rq->tag] = rq;
138 }
139
140 if (rq) {
141 if (!is_flush) {
142 rq->elv.icq = NULL;
143 if (e && e->type->icq_cache)
144 blk_mq_sched_assign_ioc(q, rq, bio);
145 }
146 data->hctx->queued++;
147 return rq;
148 }
149
150 blk_queue_exit(q);
151 return NULL;
152}
153
154void blk_mq_sched_put_request(struct request *rq)
155{
156 struct request_queue *q = rq->q;
157 struct elevator_queue *e = q->elevator;
158
159 if (rq->rq_flags & RQF_ELVPRIV) {
160 blk_mq_sched_put_rq_priv(rq->q, rq);
161 if (rq->elv.icq) {
162 put_io_context(rq->elv.icq->ioc);
163 rq->elv.icq = NULL;
164 }
165 }
166
167 if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request)
168 e->type->ops.mq.put_request(rq);
169 else
170 blk_mq_finish_request(rq);
171}
172
173void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
174{
175 struct elevator_queue *e = hctx->queue->elevator;
176 LIST_HEAD(rq_list);
177
178 if (unlikely(blk_mq_hctx_stopped(hctx)))
179 return;
180
181 hctx->run++;
182
183 /*
184 * If we have previous entries on our dispatch list, grab them first for
185 * more fair dispatch.
186 */
187 if (!list_empty_careful(&hctx->dispatch)) {
188 spin_lock(&hctx->lock);
189 if (!list_empty(&hctx->dispatch))
190 list_splice_init(&hctx->dispatch, &rq_list);
191 spin_unlock(&hctx->lock);
192 }
193
194 /*
195 * Only ask the scheduler for requests, if we didn't have residual
196 * requests from the dispatch list. This is to avoid the case where
197 * we only ever dispatch a fraction of the requests available because
198 * of low device queue depth. Once we pull requests out of the IO
199 * scheduler, we can no longer merge or sort them. So it's best to
200 * leave them there for as long as we can. Mark the hw queue as
201 * needing a restart in that case.
202 */
203 if (list_empty(&rq_list)) {
204 if (e && e->type->ops.mq.dispatch_requests)
205 e->type->ops.mq.dispatch_requests(hctx, &rq_list);
206 else
207 blk_mq_flush_busy_ctxs(hctx, &rq_list);
208 } else
209 blk_mq_sched_mark_restart(hctx);
210
211 blk_mq_dispatch_rq_list(hctx, &rq_list);
212}
213
214void blk_mq_sched_move_to_dispatch(struct blk_mq_hw_ctx *hctx,
215 struct list_head *rq_list,
216 struct request *(*get_rq)(struct blk_mq_hw_ctx *))
217{
218 do {
219 struct request *rq;
220
221 rq = get_rq(hctx);
222 if (!rq)
223 break;
224
225 list_add_tail(&rq->queuelist, rq_list);
226 } while (1);
227}
228EXPORT_SYMBOL_GPL(blk_mq_sched_move_to_dispatch);
229
230bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio)
231{
232 struct request *rq;
233 int ret;
234
235 ret = elv_merge(q, &rq, bio);
236 if (ret == ELEVATOR_BACK_MERGE) {
237 if (!blk_mq_sched_allow_merge(q, rq, bio))
238 return false;
239 if (bio_attempt_back_merge(q, rq, bio)) {
240 if (!attempt_back_merge(q, rq))
241 elv_merged_request(q, rq, ret);
242 return true;
243 }
244 } else if (ret == ELEVATOR_FRONT_MERGE) {
245 if (!blk_mq_sched_allow_merge(q, rq, bio))
246 return false;
247 if (bio_attempt_front_merge(q, rq, bio)) {
248 if (!attempt_front_merge(q, rq))
249 elv_merged_request(q, rq, ret);
250 return true;
251 }
252 }
253
254 return false;
255}
256EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
257
258bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
259{
260 struct elevator_queue *e = q->elevator;
261
262 if (e->type->ops.mq.bio_merge) {
263 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
264 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
265
266 blk_mq_put_ctx(ctx);
267 return e->type->ops.mq.bio_merge(hctx, bio);
268 }
269
270 return false;
271}
272
273bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
274{
275 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
276}
277EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
278
279void blk_mq_sched_request_inserted(struct request *rq)
280{
281 trace_block_rq_insert(rq->q, rq);
282}
283EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
284
285bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, struct request *rq)
286{
287 if (rq->tag == -1) {
288 rq->rq_flags |= RQF_SORTED;
289 return false;
290 }
291
292 /*
293 * If we already have a real request tag, send directly to
294 * the dispatch list.
295 */
296 spin_lock(&hctx->lock);
297 list_add(&rq->queuelist, &hctx->dispatch);
298 spin_unlock(&hctx->lock);
299 return true;
300}
301EXPORT_SYMBOL_GPL(blk_mq_sched_bypass_insert);
302
303static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
304 struct blk_mq_hw_ctx *hctx,
305 unsigned int hctx_idx)
306{
307 if (hctx->sched_tags) {
308 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
309 blk_mq_free_rq_map(hctx->sched_tags);
310 hctx->sched_tags = NULL;
311 }
312}
313
314int blk_mq_sched_setup(struct request_queue *q)
315{
316 struct blk_mq_tag_set *set = q->tag_set;
317 struct blk_mq_hw_ctx *hctx;
318 int ret, i;
319
320 /*
321 * Default to 256, since we don't split into sync/async like the
322 * old code did. Additionally, this is a per-hw queue depth.
323 */
324 q->nr_requests = 2 * BLKDEV_MAX_RQ;
325
326 /*
327 * We're switching to using an IO scheduler, so setup the hctx
328 * scheduler tags and switch the request map from the regular
329 * tags to scheduler tags. First allocate what we need, so we
330 * can safely fail and fallback, if needed.
331 */
332 ret = 0;
333 queue_for_each_hw_ctx(q, hctx, i) {
334 hctx->sched_tags = blk_mq_alloc_rq_map(set, i, q->nr_requests, 0);
335 if (!hctx->sched_tags) {
336 ret = -ENOMEM;
337 break;
338 }
339 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, i, q->nr_requests);
340 if (ret)
341 break;
342 }
343
344 /*
345 * If we failed, free what we did allocate
346 */
347 if (ret) {
348 queue_for_each_hw_ctx(q, hctx, i) {
349 if (!hctx->sched_tags)
350 continue;
351 blk_mq_sched_free_tags(set, hctx, i);
352 }
353
354 return ret;
355 }
356
357 return 0;
358}
359
360void blk_mq_sched_teardown(struct request_queue *q)
361{
362 struct blk_mq_tag_set *set = q->tag_set;
363 struct blk_mq_hw_ctx *hctx;
364 int i;
365
366 queue_for_each_hw_ctx(q, hctx, i)
367 blk_mq_sched_free_tags(set, hctx, i);
368}