]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-mq-sched.c
blk-mq: release driver tag on a requeue event
[mirror_ubuntu-artful-kernel.git] / block / blk-mq-sched.c
CommitLineData
bd166ef1
JA
1/*
2 * blk-mq scheduling framework
3 *
4 * Copyright (C) 2016 Jens Axboe
5 */
6#include <linux/kernel.h>
7#include <linux/module.h>
8#include <linux/blk-mq.h>
9
10#include <trace/events/block.h>
11
12#include "blk.h"
13#include "blk-mq.h"
14#include "blk-mq-sched.h"
15#include "blk-mq-tag.h"
16#include "blk-wbt.h"
17
18void blk_mq_sched_free_hctx_data(struct request_queue *q,
19 void (*exit)(struct blk_mq_hw_ctx *))
20{
21 struct blk_mq_hw_ctx *hctx;
22 int i;
23
24 queue_for_each_hw_ctx(q, hctx, i) {
25 if (exit && hctx->sched_data)
26 exit(hctx);
27 kfree(hctx->sched_data);
28 hctx->sched_data = NULL;
29 }
30}
31EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
32
33int blk_mq_sched_init_hctx_data(struct request_queue *q, size_t size,
34 int (*init)(struct blk_mq_hw_ctx *),
35 void (*exit)(struct blk_mq_hw_ctx *))
36{
37 struct blk_mq_hw_ctx *hctx;
38 int ret;
39 int i;
40
41 queue_for_each_hw_ctx(q, hctx, i) {
42 hctx->sched_data = kmalloc_node(size, GFP_KERNEL, hctx->numa_node);
43 if (!hctx->sched_data) {
44 ret = -ENOMEM;
45 goto error;
46 }
47
48 if (init) {
49 ret = init(hctx);
50 if (ret) {
51 /*
52 * We don't want to give exit() a partially
53 * initialized sched_data. init() must clean up
54 * if it fails.
55 */
56 kfree(hctx->sched_data);
57 hctx->sched_data = NULL;
58 goto error;
59 }
60 }
61 }
62
63 return 0;
64error:
65 blk_mq_sched_free_hctx_data(q, exit);
66 return ret;
67}
68EXPORT_SYMBOL_GPL(blk_mq_sched_init_hctx_data);
69
70static void __blk_mq_sched_assign_ioc(struct request_queue *q,
71 struct request *rq, struct io_context *ioc)
72{
73 struct io_cq *icq;
74
75 spin_lock_irq(q->queue_lock);
76 icq = ioc_lookup_icq(ioc, q);
77 spin_unlock_irq(q->queue_lock);
78
79 if (!icq) {
80 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
81 if (!icq)
82 return;
83 }
84
85 rq->elv.icq = icq;
86 if (!blk_mq_sched_get_rq_priv(q, rq)) {
87 rq->rq_flags |= RQF_ELVPRIV;
88 get_io_context(icq->ioc);
89 return;
90 }
91
92 rq->elv.icq = NULL;
93}
94
95static void blk_mq_sched_assign_ioc(struct request_queue *q,
96 struct request *rq, struct bio *bio)
97{
98 struct io_context *ioc;
99
100 ioc = rq_ioc(bio);
101 if (ioc)
102 __blk_mq_sched_assign_ioc(q, rq, ioc);
103}
104
105struct request *blk_mq_sched_get_request(struct request_queue *q,
106 struct bio *bio,
107 unsigned int op,
108 struct blk_mq_alloc_data *data)
109{
110 struct elevator_queue *e = q->elevator;
111 struct blk_mq_hw_ctx *hctx;
112 struct blk_mq_ctx *ctx;
113 struct request *rq;
114 const bool is_flush = op & (REQ_PREFLUSH | REQ_FUA);
115
116 blk_queue_enter_live(q);
117 ctx = blk_mq_get_ctx(q);
118 hctx = blk_mq_map_queue(q, ctx->cpu);
119
5a797e00 120 blk_mq_set_alloc_data(data, q, data->flags, ctx, hctx);
bd166ef1
JA
121
122 if (e) {
123 data->flags |= BLK_MQ_REQ_INTERNAL;
124
125 /*
126 * Flush requests are special and go directly to the
127 * dispatch list.
128 */
129 if (!is_flush && e->type->ops.mq.get_request) {
130 rq = e->type->ops.mq.get_request(q, op, data);
131 if (rq)
132 rq->rq_flags |= RQF_QUEUED;
133 } else
134 rq = __blk_mq_alloc_request(data, op);
135 } else {
136 rq = __blk_mq_alloc_request(data, op);
b48fda09
JA
137 if (rq)
138 data->hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
139 }
140
141 if (rq) {
142 if (!is_flush) {
143 rq->elv.icq = NULL;
144 if (e && e->type->icq_cache)
145 blk_mq_sched_assign_ioc(q, rq, bio);
146 }
147 data->hctx->queued++;
148 return rq;
149 }
150
151 blk_queue_exit(q);
152 return NULL;
153}
154
155void blk_mq_sched_put_request(struct request *rq)
156{
157 struct request_queue *q = rq->q;
158 struct elevator_queue *e = q->elevator;
159
160 if (rq->rq_flags & RQF_ELVPRIV) {
161 blk_mq_sched_put_rq_priv(rq->q, rq);
162 if (rq->elv.icq) {
163 put_io_context(rq->elv.icq->ioc);
164 rq->elv.icq = NULL;
165 }
166 }
167
168 if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request)
169 e->type->ops.mq.put_request(rq);
170 else
171 blk_mq_finish_request(rq);
172}
173
174void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
175{
176 struct elevator_queue *e = hctx->queue->elevator;
177 LIST_HEAD(rq_list);
178
179 if (unlikely(blk_mq_hctx_stopped(hctx)))
180 return;
181
182 hctx->run++;
183
184 /*
185 * If we have previous entries on our dispatch list, grab them first for
186 * more fair dispatch.
187 */
188 if (!list_empty_careful(&hctx->dispatch)) {
189 spin_lock(&hctx->lock);
190 if (!list_empty(&hctx->dispatch))
191 list_splice_init(&hctx->dispatch, &rq_list);
192 spin_unlock(&hctx->lock);
193 }
194
195 /*
196 * Only ask the scheduler for requests, if we didn't have residual
197 * requests from the dispatch list. This is to avoid the case where
198 * we only ever dispatch a fraction of the requests available because
199 * of low device queue depth. Once we pull requests out of the IO
200 * scheduler, we can no longer merge or sort them. So it's best to
201 * leave them there for as long as we can. Mark the hw queue as
202 * needing a restart in that case.
203 */
204 if (list_empty(&rq_list)) {
205 if (e && e->type->ops.mq.dispatch_requests)
206 e->type->ops.mq.dispatch_requests(hctx, &rq_list);
207 else
208 blk_mq_flush_busy_ctxs(hctx, &rq_list);
209 } else
210 blk_mq_sched_mark_restart(hctx);
211
212 blk_mq_dispatch_rq_list(hctx, &rq_list);
213}
214
215void blk_mq_sched_move_to_dispatch(struct blk_mq_hw_ctx *hctx,
216 struct list_head *rq_list,
217 struct request *(*get_rq)(struct blk_mq_hw_ctx *))
218{
219 do {
220 struct request *rq;
221
222 rq = get_rq(hctx);
223 if (!rq)
224 break;
225
226 list_add_tail(&rq->queuelist, rq_list);
227 } while (1);
228}
229EXPORT_SYMBOL_GPL(blk_mq_sched_move_to_dispatch);
230
231bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio)
232{
233 struct request *rq;
234 int ret;
235
236 ret = elv_merge(q, &rq, bio);
237 if (ret == ELEVATOR_BACK_MERGE) {
238 if (!blk_mq_sched_allow_merge(q, rq, bio))
239 return false;
240 if (bio_attempt_back_merge(q, rq, bio)) {
241 if (!attempt_back_merge(q, rq))
242 elv_merged_request(q, rq, ret);
243 return true;
244 }
245 } else if (ret == ELEVATOR_FRONT_MERGE) {
246 if (!blk_mq_sched_allow_merge(q, rq, bio))
247 return false;
248 if (bio_attempt_front_merge(q, rq, bio)) {
249 if (!attempt_front_merge(q, rq))
250 elv_merged_request(q, rq, ret);
251 return true;
252 }
253 }
254
255 return false;
256}
257EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
258
259bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
260{
261 struct elevator_queue *e = q->elevator;
262
263 if (e->type->ops.mq.bio_merge) {
264 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
265 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
266
267 blk_mq_put_ctx(ctx);
268 return e->type->ops.mq.bio_merge(hctx, bio);
269 }
270
271 return false;
272}
273
274bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
275{
276 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
277}
278EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
279
280void blk_mq_sched_request_inserted(struct request *rq)
281{
282 trace_block_rq_insert(rq->q, rq);
283}
284EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
285
286bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, struct request *rq)
287{
288 if (rq->tag == -1) {
289 rq->rq_flags |= RQF_SORTED;
290 return false;
291 }
292
293 /*
294 * If we already have a real request tag, send directly to
295 * the dispatch list.
296 */
297 spin_lock(&hctx->lock);
298 list_add(&rq->queuelist, &hctx->dispatch);
299 spin_unlock(&hctx->lock);
300 return true;
301}
302EXPORT_SYMBOL_GPL(blk_mq_sched_bypass_insert);
303
304static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
305 struct blk_mq_hw_ctx *hctx,
306 unsigned int hctx_idx)
307{
308 if (hctx->sched_tags) {
309 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
310 blk_mq_free_rq_map(hctx->sched_tags);
311 hctx->sched_tags = NULL;
312 }
313}
314
315int blk_mq_sched_setup(struct request_queue *q)
316{
317 struct blk_mq_tag_set *set = q->tag_set;
318 struct blk_mq_hw_ctx *hctx;
319 int ret, i;
320
321 /*
322 * Default to 256, since we don't split into sync/async like the
323 * old code did. Additionally, this is a per-hw queue depth.
324 */
325 q->nr_requests = 2 * BLKDEV_MAX_RQ;
326
327 /*
328 * We're switching to using an IO scheduler, so setup the hctx
329 * scheduler tags and switch the request map from the regular
330 * tags to scheduler tags. First allocate what we need, so we
331 * can safely fail and fallback, if needed.
332 */
333 ret = 0;
334 queue_for_each_hw_ctx(q, hctx, i) {
335 hctx->sched_tags = blk_mq_alloc_rq_map(set, i, q->nr_requests, 0);
336 if (!hctx->sched_tags) {
337 ret = -ENOMEM;
338 break;
339 }
340 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, i, q->nr_requests);
341 if (ret)
342 break;
343 }
344
345 /*
346 * If we failed, free what we did allocate
347 */
348 if (ret) {
349 queue_for_each_hw_ctx(q, hctx, i) {
350 if (!hctx->sched_tags)
351 continue;
352 blk_mq_sched_free_tags(set, hctx, i);
353 }
354
355 return ret;
356 }
357
358 return 0;
359}
360
361void blk_mq_sched_teardown(struct request_queue *q)
362{
363 struct blk_mq_tag_set *set = q->tag_set;
364 struct blk_mq_hw_ctx *hctx;
365 int i;
366
367 queue_for_each_hw_ctx(q, hctx, i)
368 blk_mq_sched_free_tags(set, hctx, i);
369}
d3484991
JA
370
371int blk_mq_sched_init(struct request_queue *q)
372{
373 int ret;
374
375#if defined(CONFIG_DEFAULT_SQ_NONE)
376 if (q->nr_hw_queues == 1)
377 return 0;
378#endif
379#if defined(CONFIG_DEFAULT_MQ_NONE)
380 if (q->nr_hw_queues > 1)
381 return 0;
382#endif
383
384 mutex_lock(&q->sysfs_lock);
385 ret = elevator_init(q, NULL);
386 mutex_unlock(&q->sysfs_lock);
387
388 return ret;
389}