]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-mq.c
blkcg: allocate struct blkcg_gq outside request queue spinlock
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
34#include "blk-mq-tag.h"
cf43e6be 35#include "blk-stat.h"
87760e5e 36#include "blk-wbt.h"
bd166ef1 37#include "blk-mq-sched.h"
320ae51f
JA
38
39static DEFINE_MUTEX(all_q_mutex);
40static LIST_HEAD(all_q_list);
41
34dbad5d
OS
42static void blk_mq_poll_stats_start(struct request_queue *q);
43static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
320ae51f
JA
45/*
46 * Check if any of the ctx's have pending work in this hardware queue
47 */
50e1dab8 48bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 49{
bd166ef1
JA
50 return sbitmap_any_bit_set(&hctx->ctx_map) ||
51 !list_empty_careful(&hctx->dispatch) ||
52 blk_mq_sched_has_work(hctx);
1429d7c9
JA
53}
54
320ae51f
JA
55/*
56 * Mark this ctx as having pending work in this hardware queue
57 */
58static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
59 struct blk_mq_ctx *ctx)
60{
88459642
OS
61 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
62 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
63}
64
65static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
66 struct blk_mq_ctx *ctx)
67{
88459642 68 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
69}
70
1671d522 71void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 72{
4ecd4fef 73 int freeze_depth;
cddd5d17 74
4ecd4fef
CH
75 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
76 if (freeze_depth == 1) {
3ef28e83 77 percpu_ref_kill(&q->q_usage_counter);
b94ec296 78 blk_mq_run_hw_queues(q, false);
cddd5d17 79 }
f3af020b 80}
1671d522 81EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 82
6bae363e 83void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 84{
3ef28e83 85 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 86}
6bae363e 87EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 88
f91328c4
KB
89int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
90 unsigned long timeout)
91{
92 return wait_event_timeout(q->mq_freeze_wq,
93 percpu_ref_is_zero(&q->q_usage_counter),
94 timeout);
95}
96EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 97
f3af020b
TH
98/*
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
101 */
3ef28e83 102void blk_freeze_queue(struct request_queue *q)
f3af020b 103{
3ef28e83
DW
104 /*
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
110 */
1671d522 111 blk_freeze_queue_start(q);
f3af020b
TH
112 blk_mq_freeze_queue_wait(q);
113}
3ef28e83
DW
114
115void blk_mq_freeze_queue(struct request_queue *q)
116{
117 /*
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
120 */
121 blk_freeze_queue(q);
122}
c761d96b 123EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 124
b4c6a028 125void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 126{
4ecd4fef 127 int freeze_depth;
320ae51f 128
4ecd4fef
CH
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
131 if (!freeze_depth) {
3ef28e83 132 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 133 wake_up_all(&q->mq_freeze_wq);
add703fd 134 }
320ae51f 135}
b4c6a028 136EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 137
6a83e74d
BVA
138/**
139 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
140 * @q: request queue.
141 *
142 * Note: this function does not prevent that the struct request end_io()
143 * callback function is invoked. Additionally, it is not prevented that
144 * new queue_rq() calls occur unless the queue has been stopped first.
145 */
146void blk_mq_quiesce_queue(struct request_queue *q)
147{
148 struct blk_mq_hw_ctx *hctx;
149 unsigned int i;
150 bool rcu = false;
151
152 blk_mq_stop_hw_queues(q);
153
154 queue_for_each_hw_ctx(q, hctx, i) {
155 if (hctx->flags & BLK_MQ_F_BLOCKING)
156 synchronize_srcu(&hctx->queue_rq_srcu);
157 else
158 rcu = true;
159 }
160 if (rcu)
161 synchronize_rcu();
162}
163EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
164
aed3ea94
JA
165void blk_mq_wake_waiters(struct request_queue *q)
166{
167 struct blk_mq_hw_ctx *hctx;
168 unsigned int i;
169
170 queue_for_each_hw_ctx(q, hctx, i)
171 if (blk_mq_hw_queue_mapped(hctx))
172 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
173
174 /*
175 * If we are called because the queue has now been marked as
176 * dying, we need to ensure that processes currently waiting on
177 * the queue are notified as well.
178 */
179 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
180}
181
320ae51f
JA
182bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
183{
184 return blk_mq_has_free_tags(hctx->tags);
185}
186EXPORT_SYMBOL(blk_mq_can_queue);
187
2c3ad667
JA
188void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
189 struct request *rq, unsigned int op)
320ae51f 190{
af76e555
CH
191 INIT_LIST_HEAD(&rq->queuelist);
192 /* csd/requeue_work/fifo_time is initialized before use */
193 rq->q = q;
320ae51f 194 rq->mq_ctx = ctx;
ef295ecf 195 rq->cmd_flags = op;
e8064021
CH
196 if (blk_queue_io_stat(q))
197 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
198 /* do not touch atomic flags, it needs atomic ops against the timer */
199 rq->cpu = -1;
af76e555
CH
200 INIT_HLIST_NODE(&rq->hash);
201 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
202 rq->rq_disk = NULL;
203 rq->part = NULL;
3ee32372 204 rq->start_time = jiffies;
af76e555
CH
205#ifdef CONFIG_BLK_CGROUP
206 rq->rl = NULL;
0fec08b4 207 set_start_time_ns(rq);
af76e555
CH
208 rq->io_start_time_ns = 0;
209#endif
210 rq->nr_phys_segments = 0;
211#if defined(CONFIG_BLK_DEV_INTEGRITY)
212 rq->nr_integrity_segments = 0;
213#endif
af76e555
CH
214 rq->special = NULL;
215 /* tag was already set */
216 rq->errors = 0;
af76e555 217 rq->extra_len = 0;
af76e555 218
af76e555 219 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
220 rq->timeout = 0;
221
af76e555
CH
222 rq->end_io = NULL;
223 rq->end_io_data = NULL;
224 rq->next_rq = NULL;
225
ef295ecf 226 ctx->rq_dispatched[op_is_sync(op)]++;
320ae51f 227}
2c3ad667 228EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
320ae51f 229
2c3ad667
JA
230struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
231 unsigned int op)
5dee8577
CH
232{
233 struct request *rq;
234 unsigned int tag;
235
cb96a42c 236 tag = blk_mq_get_tag(data);
5dee8577 237 if (tag != BLK_MQ_TAG_FAIL) {
bd166ef1
JA
238 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
239
240 rq = tags->static_rqs[tag];
5dee8577 241
bd166ef1
JA
242 if (data->flags & BLK_MQ_REQ_INTERNAL) {
243 rq->tag = -1;
244 rq->internal_tag = tag;
245 } else {
200e86b3
JA
246 if (blk_mq_tag_busy(data->hctx)) {
247 rq->rq_flags = RQF_MQ_INFLIGHT;
248 atomic_inc(&data->hctx->nr_active);
249 }
bd166ef1
JA
250 rq->tag = tag;
251 rq->internal_tag = -1;
562bef42 252 data->hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
253 }
254
ef295ecf 255 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
5dee8577
CH
256 return rq;
257 }
258
259 return NULL;
260}
2c3ad667 261EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
5dee8577 262
6f3b0e8b
CH
263struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
264 unsigned int flags)
320ae51f 265{
5a797e00 266 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 267 struct request *rq;
a492f075 268 int ret;
320ae51f 269
6f3b0e8b 270 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
271 if (ret)
272 return ERR_PTR(ret);
320ae51f 273
bd166ef1 274 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
841bac2c 275
bd166ef1
JA
276 blk_mq_put_ctx(alloc_data.ctx);
277 blk_queue_exit(q);
278
279 if (!rq)
a492f075 280 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
281
282 rq->__data_len = 0;
283 rq->__sector = (sector_t) -1;
284 rq->bio = rq->biotail = NULL;
320ae51f
JA
285 return rq;
286}
4bb659b1 287EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 288
1f5bd336
ML
289struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
290 unsigned int flags, unsigned int hctx_idx)
291{
6d2809d5 292 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 293 struct request *rq;
6d2809d5 294 unsigned int cpu;
1f5bd336
ML
295 int ret;
296
297 /*
298 * If the tag allocator sleeps we could get an allocation for a
299 * different hardware context. No need to complicate the low level
300 * allocator for this for the rare use case of a command tied to
301 * a specific queue.
302 */
303 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
304 return ERR_PTR(-EINVAL);
305
306 if (hctx_idx >= q->nr_hw_queues)
307 return ERR_PTR(-EIO);
308
309 ret = blk_queue_enter(q, true);
310 if (ret)
311 return ERR_PTR(ret);
312
c8712c6a
CH
313 /*
314 * Check if the hardware context is actually mapped to anything.
315 * If not tell the caller that it should skip this queue.
316 */
6d2809d5
OS
317 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
318 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
319 blk_queue_exit(q);
320 return ERR_PTR(-EXDEV);
c8712c6a 321 }
6d2809d5
OS
322 cpu = cpumask_first(alloc_data.hctx->cpumask);
323 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 324
6d2809d5 325 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
c8712c6a 326
6d2809d5 327 blk_mq_put_ctx(alloc_data.ctx);
c8712c6a 328 blk_queue_exit(q);
6d2809d5
OS
329
330 if (!rq)
331 return ERR_PTR(-EWOULDBLOCK);
332
333 return rq;
1f5bd336
ML
334}
335EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
336
bd166ef1
JA
337void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
338 struct request *rq)
320ae51f 339{
bd166ef1 340 const int sched_tag = rq->internal_tag;
320ae51f
JA
341 struct request_queue *q = rq->q;
342
e8064021 343 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 344 atomic_dec(&hctx->nr_active);
87760e5e
JA
345
346 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 347 rq->rq_flags = 0;
0d2602ca 348
af76e555 349 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 350 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
351 if (rq->tag != -1)
352 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
353 if (sched_tag != -1)
354 blk_mq_sched_completed_request(hctx, rq);
50e1dab8 355 blk_mq_sched_restart_queues(hctx);
3ef28e83 356 blk_queue_exit(q);
320ae51f
JA
357}
358
bd166ef1 359static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
16a3c2a7 360 struct request *rq)
320ae51f
JA
361{
362 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
363
364 ctx->rq_completed[rq_is_sync(rq)]++;
bd166ef1
JA
365 __blk_mq_finish_request(hctx, ctx, rq);
366}
367
368void blk_mq_finish_request(struct request *rq)
369{
370 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
7c7f2f2b 371}
7c7f2f2b
JA
372
373void blk_mq_free_request(struct request *rq)
374{
bd166ef1 375 blk_mq_sched_put_request(rq);
320ae51f 376}
1a3b595a 377EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 378
c8a446ad 379inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 380{
0d11e6ac
ML
381 blk_account_io_done(rq);
382
91b63639 383 if (rq->end_io) {
87760e5e 384 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 385 rq->end_io(rq, error);
91b63639
CH
386 } else {
387 if (unlikely(blk_bidi_rq(rq)))
388 blk_mq_free_request(rq->next_rq);
320ae51f 389 blk_mq_free_request(rq);
91b63639 390 }
320ae51f 391}
c8a446ad 392EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 393
c8a446ad 394void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
395{
396 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
397 BUG();
c8a446ad 398 __blk_mq_end_request(rq, error);
63151a44 399}
c8a446ad 400EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 401
30a91cb4 402static void __blk_mq_complete_request_remote(void *data)
320ae51f 403{
3d6efbf6 404 struct request *rq = data;
320ae51f 405
30a91cb4 406 rq->q->softirq_done_fn(rq);
320ae51f 407}
320ae51f 408
ed851860 409static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
410{
411 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 412 bool shared = false;
320ae51f
JA
413 int cpu;
414
38535201 415 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
416 rq->q->softirq_done_fn(rq);
417 return;
418 }
320ae51f
JA
419
420 cpu = get_cpu();
38535201
CH
421 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
422 shared = cpus_share_cache(cpu, ctx->cpu);
423
424 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 425 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
426 rq->csd.info = rq;
427 rq->csd.flags = 0;
c46fff2a 428 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 429 } else {
30a91cb4 430 rq->q->softirq_done_fn(rq);
3d6efbf6 431 }
320ae51f
JA
432 put_cpu();
433}
30a91cb4 434
cf43e6be
JA
435static void blk_mq_stat_add(struct request *rq)
436{
437 if (rq->rq_flags & RQF_STATS) {
34dbad5d
OS
438 blk_mq_poll_stats_start(rq->q);
439 blk_stat_add(rq);
cf43e6be
JA
440 }
441}
442
1fa8cc52 443static void __blk_mq_complete_request(struct request *rq)
ed851860
JA
444{
445 struct request_queue *q = rq->q;
446
cf43e6be
JA
447 blk_mq_stat_add(rq);
448
ed851860 449 if (!q->softirq_done_fn)
c8a446ad 450 blk_mq_end_request(rq, rq->errors);
ed851860
JA
451 else
452 blk_mq_ipi_complete_request(rq);
453}
454
30a91cb4
CH
455/**
456 * blk_mq_complete_request - end I/O on a request
457 * @rq: the request being processed
458 *
459 * Description:
460 * Ends all I/O on a request. It does not handle partial completions.
461 * The actual completion happens out-of-order, through a IPI handler.
462 **/
f4829a9b 463void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 464{
95f09684
JA
465 struct request_queue *q = rq->q;
466
467 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 468 return;
f4829a9b
CH
469 if (!blk_mark_rq_complete(rq)) {
470 rq->errors = error;
ed851860 471 __blk_mq_complete_request(rq);
f4829a9b 472 }
30a91cb4
CH
473}
474EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 475
973c0191
KB
476int blk_mq_request_started(struct request *rq)
477{
478 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
479}
480EXPORT_SYMBOL_GPL(blk_mq_request_started);
481
e2490073 482void blk_mq_start_request(struct request *rq)
320ae51f
JA
483{
484 struct request_queue *q = rq->q;
485
bd166ef1
JA
486 blk_mq_sched_started_request(rq);
487
320ae51f
JA
488 trace_block_rq_issue(q, rq);
489
cf43e6be 490 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 491 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 492 rq->rq_flags |= RQF_STATS;
87760e5e 493 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
494 }
495
2b8393b4 496 blk_add_timer(rq);
87ee7b11 497
538b7534
JA
498 /*
499 * Ensure that ->deadline is visible before set the started
500 * flag and clear the completed flag.
501 */
502 smp_mb__before_atomic();
503
87ee7b11
JA
504 /*
505 * Mark us as started and clear complete. Complete might have been
506 * set if requeue raced with timeout, which then marked it as
507 * complete. So be sure to clear complete again when we start
508 * the request, otherwise we'll ignore the completion event.
509 */
4b570521
JA
510 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
511 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
512 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
513 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
514
515 if (q->dma_drain_size && blk_rq_bytes(rq)) {
516 /*
517 * Make sure space for the drain appears. We know we can do
518 * this because max_hw_segments has been adjusted to be one
519 * fewer than the device can handle.
520 */
521 rq->nr_phys_segments++;
522 }
320ae51f 523}
e2490073 524EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 525
d9d149a3
ML
526/*
527 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
48b99c9d 528 * flag isn't set yet, so there may be race with timeout handler,
d9d149a3
ML
529 * but given rq->deadline is just set in .queue_rq() under
530 * this situation, the race won't be possible in reality because
531 * rq->timeout should be set as big enough to cover the window
532 * between blk_mq_start_request() called from .queue_rq() and
533 * clearing REQ_ATOM_STARTED here.
534 */
ed0791b2 535static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
536{
537 struct request_queue *q = rq->q;
538
539 trace_block_rq_requeue(q, rq);
87760e5e 540 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 541 blk_mq_sched_requeue_request(rq);
49f5baa5 542
e2490073
CH
543 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
544 if (q->dma_drain_size && blk_rq_bytes(rq))
545 rq->nr_phys_segments--;
546 }
320ae51f
JA
547}
548
2b053aca 549void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 550{
ed0791b2 551 __blk_mq_requeue_request(rq);
ed0791b2 552
ed0791b2 553 BUG_ON(blk_queued_rq(rq));
2b053aca 554 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
555}
556EXPORT_SYMBOL(blk_mq_requeue_request);
557
6fca6a61
CH
558static void blk_mq_requeue_work(struct work_struct *work)
559{
560 struct request_queue *q =
2849450a 561 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
562 LIST_HEAD(rq_list);
563 struct request *rq, *next;
564 unsigned long flags;
565
566 spin_lock_irqsave(&q->requeue_lock, flags);
567 list_splice_init(&q->requeue_list, &rq_list);
568 spin_unlock_irqrestore(&q->requeue_lock, flags);
569
570 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 571 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
572 continue;
573
e8064021 574 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 575 list_del_init(&rq->queuelist);
bd6737f1 576 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
577 }
578
579 while (!list_empty(&rq_list)) {
580 rq = list_entry(rq_list.next, struct request, queuelist);
581 list_del_init(&rq->queuelist);
bd6737f1 582 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
583 }
584
52d7f1b5 585 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
586}
587
2b053aca
BVA
588void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
589 bool kick_requeue_list)
6fca6a61
CH
590{
591 struct request_queue *q = rq->q;
592 unsigned long flags;
593
594 /*
595 * We abuse this flag that is otherwise used by the I/O scheduler to
596 * request head insertation from the workqueue.
597 */
e8064021 598 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
599
600 spin_lock_irqsave(&q->requeue_lock, flags);
601 if (at_head) {
e8064021 602 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
603 list_add(&rq->queuelist, &q->requeue_list);
604 } else {
605 list_add_tail(&rq->queuelist, &q->requeue_list);
606 }
607 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
608
609 if (kick_requeue_list)
610 blk_mq_kick_requeue_list(q);
6fca6a61
CH
611}
612EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
613
614void blk_mq_kick_requeue_list(struct request_queue *q)
615{
2849450a 616 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
617}
618EXPORT_SYMBOL(blk_mq_kick_requeue_list);
619
2849450a
MS
620void blk_mq_delay_kick_requeue_list(struct request_queue *q,
621 unsigned long msecs)
622{
623 kblockd_schedule_delayed_work(&q->requeue_work,
624 msecs_to_jiffies(msecs));
625}
626EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
627
1885b24d
JA
628void blk_mq_abort_requeue_list(struct request_queue *q)
629{
630 unsigned long flags;
631 LIST_HEAD(rq_list);
632
633 spin_lock_irqsave(&q->requeue_lock, flags);
634 list_splice_init(&q->requeue_list, &rq_list);
635 spin_unlock_irqrestore(&q->requeue_lock, flags);
636
637 while (!list_empty(&rq_list)) {
638 struct request *rq;
639
640 rq = list_first_entry(&rq_list, struct request, queuelist);
641 list_del_init(&rq->queuelist);
642 rq->errors = -EIO;
643 blk_mq_end_request(rq, rq->errors);
644 }
645}
646EXPORT_SYMBOL(blk_mq_abort_requeue_list);
647
0e62f51f
JA
648struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
649{
88c7b2b7
JA
650 if (tag < tags->nr_tags) {
651 prefetch(tags->rqs[tag]);
4ee86bab 652 return tags->rqs[tag];
88c7b2b7 653 }
4ee86bab
HR
654
655 return NULL;
24d2f903
CH
656}
657EXPORT_SYMBOL(blk_mq_tag_to_rq);
658
320ae51f 659struct blk_mq_timeout_data {
46f92d42
CH
660 unsigned long next;
661 unsigned int next_set;
320ae51f
JA
662};
663
90415837 664void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 665{
f8a5b122 666 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 667 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
668
669 /*
670 * We know that complete is set at this point. If STARTED isn't set
671 * anymore, then the request isn't active and the "timeout" should
672 * just be ignored. This can happen due to the bitflag ordering.
673 * Timeout first checks if STARTED is set, and if it is, assumes
674 * the request is active. But if we race with completion, then
48b99c9d 675 * both flags will get cleared. So check here again, and ignore
87ee7b11
JA
676 * a timeout event with a request that isn't active.
677 */
46f92d42
CH
678 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
679 return;
87ee7b11 680
46f92d42 681 if (ops->timeout)
0152fb6b 682 ret = ops->timeout(req, reserved);
46f92d42
CH
683
684 switch (ret) {
685 case BLK_EH_HANDLED:
686 __blk_mq_complete_request(req);
687 break;
688 case BLK_EH_RESET_TIMER:
689 blk_add_timer(req);
690 blk_clear_rq_complete(req);
691 break;
692 case BLK_EH_NOT_HANDLED:
693 break;
694 default:
695 printk(KERN_ERR "block: bad eh return: %d\n", ret);
696 break;
697 }
87ee7b11 698}
5b3f25fc 699
81481eb4
CH
700static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
701 struct request *rq, void *priv, bool reserved)
702{
703 struct blk_mq_timeout_data *data = priv;
87ee7b11 704
a4ef8e56 705 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 706 return;
87ee7b11 707
d9d149a3
ML
708 /*
709 * The rq being checked may have been freed and reallocated
710 * out already here, we avoid this race by checking rq->deadline
711 * and REQ_ATOM_COMPLETE flag together:
712 *
713 * - if rq->deadline is observed as new value because of
714 * reusing, the rq won't be timed out because of timing.
715 * - if rq->deadline is observed as previous value,
716 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
717 * because we put a barrier between setting rq->deadline
718 * and clearing the flag in blk_mq_start_request(), so
719 * this rq won't be timed out too.
720 */
46f92d42
CH
721 if (time_after_eq(jiffies, rq->deadline)) {
722 if (!blk_mark_rq_complete(rq))
0152fb6b 723 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
724 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
725 data->next = rq->deadline;
726 data->next_set = 1;
727 }
87ee7b11
JA
728}
729
287922eb 730static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 731{
287922eb
CH
732 struct request_queue *q =
733 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
734 struct blk_mq_timeout_data data = {
735 .next = 0,
736 .next_set = 0,
737 };
81481eb4 738 int i;
320ae51f 739
71f79fb3
GKB
740 /* A deadlock might occur if a request is stuck requiring a
741 * timeout at the same time a queue freeze is waiting
742 * completion, since the timeout code would not be able to
743 * acquire the queue reference here.
744 *
745 * That's why we don't use blk_queue_enter here; instead, we use
746 * percpu_ref_tryget directly, because we need to be able to
747 * obtain a reference even in the short window between the queue
748 * starting to freeze, by dropping the first reference in
1671d522 749 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
750 * consumed, marked by the instant q_usage_counter reaches
751 * zero.
752 */
753 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
754 return;
755
0bf6cd5b 756 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 757
81481eb4
CH
758 if (data.next_set) {
759 data.next = blk_rq_timeout(round_jiffies_up(data.next));
760 mod_timer(&q->timeout, data.next);
0d2602ca 761 } else {
0bf6cd5b
CH
762 struct blk_mq_hw_ctx *hctx;
763
f054b56c
ML
764 queue_for_each_hw_ctx(q, hctx, i) {
765 /* the hctx may be unmapped, so check it here */
766 if (blk_mq_hw_queue_mapped(hctx))
767 blk_mq_tag_idle(hctx);
768 }
0d2602ca 769 }
287922eb 770 blk_queue_exit(q);
320ae51f
JA
771}
772
773/*
774 * Reverse check our software queue for entries that we could potentially
775 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
776 * too much time checking for merges.
777 */
778static bool blk_mq_attempt_merge(struct request_queue *q,
779 struct blk_mq_ctx *ctx, struct bio *bio)
780{
781 struct request *rq;
782 int checked = 8;
783
784 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
34fe7c05 785 bool merged = false;
320ae51f
JA
786
787 if (!checked--)
788 break;
789
790 if (!blk_rq_merge_ok(rq, bio))
791 continue;
792
34fe7c05
CH
793 switch (blk_try_merge(rq, bio)) {
794 case ELEVATOR_BACK_MERGE:
795 if (blk_mq_sched_allow_merge(q, rq, bio))
796 merged = bio_attempt_back_merge(q, rq, bio);
bd166ef1 797 break;
34fe7c05
CH
798 case ELEVATOR_FRONT_MERGE:
799 if (blk_mq_sched_allow_merge(q, rq, bio))
800 merged = bio_attempt_front_merge(q, rq, bio);
320ae51f 801 break;
1e739730
CH
802 case ELEVATOR_DISCARD_MERGE:
803 merged = bio_attempt_discard_merge(q, rq, bio);
320ae51f 804 break;
34fe7c05
CH
805 default:
806 continue;
320ae51f 807 }
34fe7c05
CH
808
809 if (merged)
810 ctx->rq_merged++;
811 return merged;
320ae51f
JA
812 }
813
814 return false;
815}
816
88459642
OS
817struct flush_busy_ctx_data {
818 struct blk_mq_hw_ctx *hctx;
819 struct list_head *list;
820};
821
822static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
823{
824 struct flush_busy_ctx_data *flush_data = data;
825 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
826 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
827
828 sbitmap_clear_bit(sb, bitnr);
829 spin_lock(&ctx->lock);
830 list_splice_tail_init(&ctx->rq_list, flush_data->list);
831 spin_unlock(&ctx->lock);
832 return true;
833}
834
1429d7c9
JA
835/*
836 * Process software queues that have been marked busy, splicing them
837 * to the for-dispatch
838 */
2c3ad667 839void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 840{
88459642
OS
841 struct flush_busy_ctx_data data = {
842 .hctx = hctx,
843 .list = list,
844 };
1429d7c9 845
88459642 846 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 847}
2c3ad667 848EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 849
703fd1c0
JA
850static inline unsigned int queued_to_index(unsigned int queued)
851{
852 if (!queued)
853 return 0;
1429d7c9 854
703fd1c0 855 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
856}
857
bd6737f1
JA
858bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
859 bool wait)
bd166ef1
JA
860{
861 struct blk_mq_alloc_data data = {
862 .q = rq->q,
bd166ef1
JA
863 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
864 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
865 };
866
bd166ef1
JA
867 if (rq->tag != -1) {
868done:
869 if (hctx)
870 *hctx = data.hctx;
871 return true;
872 }
873
415b806d
SG
874 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
875 data.flags |= BLK_MQ_REQ_RESERVED;
876
bd166ef1
JA
877 rq->tag = blk_mq_get_tag(&data);
878 if (rq->tag >= 0) {
200e86b3
JA
879 if (blk_mq_tag_busy(data.hctx)) {
880 rq->rq_flags |= RQF_MQ_INFLIGHT;
881 atomic_inc(&data.hctx->nr_active);
882 }
bd166ef1
JA
883 data.hctx->tags->rqs[rq->tag] = rq;
884 goto done;
885 }
886
887 return false;
888}
889
113285b4
JA
890static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
891 struct request *rq)
99cf1dc5 892{
99cf1dc5
JA
893 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
894 rq->tag = -1;
895
896 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
897 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
898 atomic_dec(&hctx->nr_active);
899 }
900}
901
113285b4
JA
902static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
903 struct request *rq)
904{
905 if (rq->tag == -1 || rq->internal_tag == -1)
906 return;
907
908 __blk_mq_put_driver_tag(hctx, rq);
909}
910
911static void blk_mq_put_driver_tag(struct request *rq)
912{
913 struct blk_mq_hw_ctx *hctx;
914
915 if (rq->tag == -1 || rq->internal_tag == -1)
916 return;
917
918 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
919 __blk_mq_put_driver_tag(hctx, rq);
920}
921
bd166ef1
JA
922/*
923 * If we fail getting a driver tag because all the driver tags are already
924 * assigned and on the dispatch list, BUT the first entry does not have a
925 * tag, then we could deadlock. For that case, move entries with assigned
926 * driver tags to the front, leaving the set of tagged requests in the
927 * same order, and the untagged set in the same order.
928 */
929static bool reorder_tags_to_front(struct list_head *list)
930{
931 struct request *rq, *tmp, *first = NULL;
932
933 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
934 if (rq == first)
935 break;
936 if (rq->tag != -1) {
937 list_move(&rq->queuelist, list);
938 if (!first)
939 first = rq;
940 }
941 }
942
943 return first != NULL;
944}
945
da55f2cc
OS
946static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
947 void *key)
948{
949 struct blk_mq_hw_ctx *hctx;
950
951 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
952
953 list_del(&wait->task_list);
954 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
955 blk_mq_run_hw_queue(hctx, true);
956 return 1;
957}
958
959static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
960{
961 struct sbq_wait_state *ws;
962
963 /*
964 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
965 * The thread which wins the race to grab this bit adds the hardware
966 * queue to the wait queue.
967 */
968 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
969 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
970 return false;
971
972 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
973 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
974
975 /*
976 * As soon as this returns, it's no longer safe to fiddle with
977 * hctx->dispatch_wait, since a completion can wake up the wait queue
978 * and unlock the bit.
979 */
980 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
981 return true;
982}
983
f04c3df3 984bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
320ae51f
JA
985{
986 struct request_queue *q = hctx->queue;
320ae51f 987 struct request *rq;
74c45052
JA
988 LIST_HEAD(driver_list);
989 struct list_head *dptr;
f04c3df3 990 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
320ae51f 991
74c45052
JA
992 /*
993 * Start off with dptr being NULL, so we start the first request
994 * immediately, even if we have more pending.
995 */
996 dptr = NULL;
997
320ae51f
JA
998 /*
999 * Now process all the entries, sending them to the driver.
1000 */
1429d7c9 1001 queued = 0;
f04c3df3 1002 while (!list_empty(list)) {
74c45052 1003 struct blk_mq_queue_data bd;
320ae51f 1004
f04c3df3 1005 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
1006 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1007 if (!queued && reorder_tags_to_front(list))
1008 continue;
3c782d67
JA
1009
1010 /*
da55f2cc
OS
1011 * The initial allocation attempt failed, so we need to
1012 * rerun the hardware queue when a tag is freed.
3c782d67 1013 */
da55f2cc
OS
1014 if (blk_mq_dispatch_wait_add(hctx)) {
1015 /*
1016 * It's possible that a tag was freed in the
1017 * window between the allocation failure and
1018 * adding the hardware queue to the wait queue.
1019 */
1020 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1021 break;
1022 } else {
3c782d67 1023 break;
da55f2cc 1024 }
bd166ef1 1025 }
da55f2cc 1026
320ae51f 1027 list_del_init(&rq->queuelist);
320ae51f 1028
74c45052
JA
1029 bd.rq = rq;
1030 bd.list = dptr;
113285b4
JA
1031
1032 /*
1033 * Flag last if we have no more requests, or if we have more
1034 * but can't assign a driver tag to it.
1035 */
1036 if (list_empty(list))
1037 bd.last = true;
1038 else {
1039 struct request *nxt;
1040
1041 nxt = list_first_entry(list, struct request, queuelist);
1042 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1043 }
74c45052
JA
1044
1045 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
1046 switch (ret) {
1047 case BLK_MQ_RQ_QUEUE_OK:
1048 queued++;
52b9c330 1049 break;
320ae51f 1050 case BLK_MQ_RQ_QUEUE_BUSY:
113285b4 1051 blk_mq_put_driver_tag_hctx(hctx, rq);
f04c3df3 1052 list_add(&rq->queuelist, list);
ed0791b2 1053 __blk_mq_requeue_request(rq);
320ae51f
JA
1054 break;
1055 default:
1056 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 1057 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 1058 rq->errors = -EIO;
c8a446ad 1059 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
1060 break;
1061 }
1062
1063 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1064 break;
74c45052
JA
1065
1066 /*
1067 * We've done the first request. If we have more than 1
1068 * left in the list, set dptr to defer issue.
1069 */
f04c3df3 1070 if (!dptr && list->next != list->prev)
74c45052 1071 dptr = &driver_list;
320ae51f
JA
1072 }
1073
703fd1c0 1074 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1075
1076 /*
1077 * Any items that need requeuing? Stuff them into hctx->dispatch,
1078 * that is where we will continue on next queue run.
1079 */
f04c3df3 1080 if (!list_empty(list)) {
113285b4
JA
1081 /*
1082 * If we got a driver tag for the next request already,
1083 * free it again.
1084 */
1085 rq = list_first_entry(list, struct request, queuelist);
1086 blk_mq_put_driver_tag(rq);
1087
320ae51f 1088 spin_lock(&hctx->lock);
c13660a0 1089 list_splice_init(list, &hctx->dispatch);
320ae51f 1090 spin_unlock(&hctx->lock);
f04c3df3 1091
9ba52e58
SL
1092 /*
1093 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1094 * it's possible the queue is stopped and restarted again
1095 * before this. Queue restart will dispatch requests. And since
1096 * requests in rq_list aren't added into hctx->dispatch yet,
1097 * the requests in rq_list might get lost.
1098 *
1099 * blk_mq_run_hw_queue() already checks the STOPPED bit
bd166ef1 1100 *
da55f2cc
OS
1101 * If RESTART or TAG_WAITING is set, then let completion restart
1102 * the queue instead of potentially looping here.
bd166ef1 1103 */
da55f2cc
OS
1104 if (!blk_mq_sched_needs_restart(hctx) &&
1105 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
bd166ef1 1106 blk_mq_run_hw_queue(hctx, true);
320ae51f 1107 }
f04c3df3 1108
2aa0f21d 1109 return queued != 0;
f04c3df3
JA
1110}
1111
6a83e74d
BVA
1112static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1113{
1114 int srcu_idx;
1115
1116 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1117 cpu_online(hctx->next_cpu));
1118
1119 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1120 rcu_read_lock();
bd166ef1 1121 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1122 rcu_read_unlock();
1123 } else {
1124 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
bd166ef1 1125 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1126 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1127 }
1128}
1129
506e931f
JA
1130/*
1131 * It'd be great if the workqueue API had a way to pass
1132 * in a mask and had some smarts for more clever placement.
1133 * For now we just round-robin here, switching for every
1134 * BLK_MQ_CPU_WORK_BATCH queued items.
1135 */
1136static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1137{
b657d7e6
CH
1138 if (hctx->queue->nr_hw_queues == 1)
1139 return WORK_CPU_UNBOUND;
506e931f
JA
1140
1141 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1142 int next_cpu;
506e931f
JA
1143
1144 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1145 if (next_cpu >= nr_cpu_ids)
1146 next_cpu = cpumask_first(hctx->cpumask);
1147
1148 hctx->next_cpu = next_cpu;
1149 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1150 }
1151
b657d7e6 1152 return hctx->next_cpu;
506e931f
JA
1153}
1154
320ae51f
JA
1155void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1156{
5d1b25c1
BVA
1157 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1158 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
1159 return;
1160
1b792f2f 1161 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1162 int cpu = get_cpu();
1163 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1164 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1165 put_cpu();
398205b8
PB
1166 return;
1167 }
e4043dcf 1168
2a90d4aa 1169 put_cpu();
e4043dcf 1170 }
398205b8 1171
27489a3c 1172 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
320ae51f
JA
1173}
1174
b94ec296 1175void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1176{
1177 struct blk_mq_hw_ctx *hctx;
1178 int i;
1179
1180 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1181 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1182 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1183 continue;
1184
b94ec296 1185 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1186 }
1187}
b94ec296 1188EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1189
fd001443
BVA
1190/**
1191 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1192 * @q: request queue.
1193 *
1194 * The caller is responsible for serializing this function against
1195 * blk_mq_{start,stop}_hw_queue().
1196 */
1197bool blk_mq_queue_stopped(struct request_queue *q)
1198{
1199 struct blk_mq_hw_ctx *hctx;
1200 int i;
1201
1202 queue_for_each_hw_ctx(q, hctx, i)
1203 if (blk_mq_hctx_stopped(hctx))
1204 return true;
1205
1206 return false;
1207}
1208EXPORT_SYMBOL(blk_mq_queue_stopped);
1209
320ae51f
JA
1210void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1211{
27489a3c 1212 cancel_work(&hctx->run_work);
70f4db63 1213 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
1214 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1215}
1216EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1217
280d45f6
CH
1218void blk_mq_stop_hw_queues(struct request_queue *q)
1219{
1220 struct blk_mq_hw_ctx *hctx;
1221 int i;
1222
1223 queue_for_each_hw_ctx(q, hctx, i)
1224 blk_mq_stop_hw_queue(hctx);
1225}
1226EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1227
320ae51f
JA
1228void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1229{
1230 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1231
0ffbce80 1232 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1233}
1234EXPORT_SYMBOL(blk_mq_start_hw_queue);
1235
2f268556
CH
1236void blk_mq_start_hw_queues(struct request_queue *q)
1237{
1238 struct blk_mq_hw_ctx *hctx;
1239 int i;
1240
1241 queue_for_each_hw_ctx(q, hctx, i)
1242 blk_mq_start_hw_queue(hctx);
1243}
1244EXPORT_SYMBOL(blk_mq_start_hw_queues);
1245
ae911c5e
JA
1246void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1247{
1248 if (!blk_mq_hctx_stopped(hctx))
1249 return;
1250
1251 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1252 blk_mq_run_hw_queue(hctx, async);
1253}
1254EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1255
1b4a3258 1256void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1257{
1258 struct blk_mq_hw_ctx *hctx;
1259 int i;
1260
ae911c5e
JA
1261 queue_for_each_hw_ctx(q, hctx, i)
1262 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1263}
1264EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1265
70f4db63 1266static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1267{
1268 struct blk_mq_hw_ctx *hctx;
1269
27489a3c 1270 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
e4043dcf 1271
320ae51f
JA
1272 __blk_mq_run_hw_queue(hctx);
1273}
1274
70f4db63
CH
1275static void blk_mq_delay_work_fn(struct work_struct *work)
1276{
1277 struct blk_mq_hw_ctx *hctx;
1278
1279 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1280
1281 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1282 __blk_mq_run_hw_queue(hctx);
1283}
1284
1285void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1286{
19c66e59
ML
1287 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1288 return;
70f4db63 1289
7e79dadc 1290 blk_mq_stop_hw_queue(hctx);
b657d7e6
CH
1291 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1292 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
1293}
1294EXPORT_SYMBOL(blk_mq_delay_queue);
1295
cfd0c552 1296static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1297 struct request *rq,
1298 bool at_head)
320ae51f 1299{
e57690fe
JA
1300 struct blk_mq_ctx *ctx = rq->mq_ctx;
1301
01b983c9
JA
1302 trace_block_rq_insert(hctx->queue, rq);
1303
72a0a36e
CH
1304 if (at_head)
1305 list_add(&rq->queuelist, &ctx->rq_list);
1306 else
1307 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1308}
4bb659b1 1309
2c3ad667
JA
1310void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1311 bool at_head)
cfd0c552
ML
1312{
1313 struct blk_mq_ctx *ctx = rq->mq_ctx;
1314
e57690fe 1315 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1316 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1317}
1318
bd166ef1
JA
1319void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1320 struct list_head *list)
320ae51f
JA
1321
1322{
320ae51f
JA
1323 /*
1324 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1325 * offline now
1326 */
1327 spin_lock(&ctx->lock);
1328 while (!list_empty(list)) {
1329 struct request *rq;
1330
1331 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1332 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1333 list_del_init(&rq->queuelist);
e57690fe 1334 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1335 }
cfd0c552 1336 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1337 spin_unlock(&ctx->lock);
320ae51f
JA
1338}
1339
1340static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1341{
1342 struct request *rqa = container_of(a, struct request, queuelist);
1343 struct request *rqb = container_of(b, struct request, queuelist);
1344
1345 return !(rqa->mq_ctx < rqb->mq_ctx ||
1346 (rqa->mq_ctx == rqb->mq_ctx &&
1347 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1348}
1349
1350void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1351{
1352 struct blk_mq_ctx *this_ctx;
1353 struct request_queue *this_q;
1354 struct request *rq;
1355 LIST_HEAD(list);
1356 LIST_HEAD(ctx_list);
1357 unsigned int depth;
1358
1359 list_splice_init(&plug->mq_list, &list);
1360
1361 list_sort(NULL, &list, plug_ctx_cmp);
1362
1363 this_q = NULL;
1364 this_ctx = NULL;
1365 depth = 0;
1366
1367 while (!list_empty(&list)) {
1368 rq = list_entry_rq(list.next);
1369 list_del_init(&rq->queuelist);
1370 BUG_ON(!rq->q);
1371 if (rq->mq_ctx != this_ctx) {
1372 if (this_ctx) {
bd166ef1
JA
1373 trace_block_unplug(this_q, depth, from_schedule);
1374 blk_mq_sched_insert_requests(this_q, this_ctx,
1375 &ctx_list,
1376 from_schedule);
320ae51f
JA
1377 }
1378
1379 this_ctx = rq->mq_ctx;
1380 this_q = rq->q;
1381 depth = 0;
1382 }
1383
1384 depth++;
1385 list_add_tail(&rq->queuelist, &ctx_list);
1386 }
1387
1388 /*
1389 * If 'this_ctx' is set, we know we have entries to complete
1390 * on 'ctx_list'. Do those.
1391 */
1392 if (this_ctx) {
bd166ef1
JA
1393 trace_block_unplug(this_q, depth, from_schedule);
1394 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1395 from_schedule);
320ae51f
JA
1396 }
1397}
1398
1399static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1400{
1401 init_request_from_bio(rq, bio);
4b570521 1402
6e85eaf3 1403 blk_account_io_start(rq, true);
320ae51f
JA
1404}
1405
274a5843
JA
1406static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1407{
1408 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1409 !blk_queue_nomerges(hctx->queue);
1410}
1411
07068d5b
JA
1412static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1413 struct blk_mq_ctx *ctx,
1414 struct request *rq, struct bio *bio)
320ae51f 1415{
e18378a6 1416 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1417 blk_mq_bio_to_request(rq, bio);
1418 spin_lock(&ctx->lock);
1419insert_rq:
1420 __blk_mq_insert_request(hctx, rq, false);
1421 spin_unlock(&ctx->lock);
1422 return false;
1423 } else {
274a5843
JA
1424 struct request_queue *q = hctx->queue;
1425
07068d5b
JA
1426 spin_lock(&ctx->lock);
1427 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1428 blk_mq_bio_to_request(rq, bio);
1429 goto insert_rq;
1430 }
320ae51f 1431
07068d5b 1432 spin_unlock(&ctx->lock);
bd166ef1 1433 __blk_mq_finish_request(hctx, ctx, rq);
07068d5b 1434 return true;
14ec77f3 1435 }
07068d5b 1436}
14ec77f3 1437
fd2d3326
JA
1438static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1439{
bd166ef1
JA
1440 if (rq->tag != -1)
1441 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1442
1443 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1444}
1445
5eb6126e 1446static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
9c621104 1447 bool may_sleep)
f984df1f 1448{
f984df1f 1449 struct request_queue *q = rq->q;
f984df1f
SL
1450 struct blk_mq_queue_data bd = {
1451 .rq = rq,
1452 .list = NULL,
1453 .last = 1
1454 };
bd166ef1
JA
1455 struct blk_mq_hw_ctx *hctx;
1456 blk_qc_t new_cookie;
1457 int ret;
f984df1f 1458
bd166ef1 1459 if (q->elevator)
2253efc8
BVA
1460 goto insert;
1461
bd166ef1
JA
1462 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1463 goto insert;
1464
1465 new_cookie = request_to_qc_t(hctx, rq);
1466
f984df1f
SL
1467 /*
1468 * For OK queue, we are done. For error, kill it. Any other
1469 * error (busy), just add it to our list as we previously
1470 * would have done
1471 */
1472 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1473 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1474 *cookie = new_cookie;
2253efc8 1475 return;
7b371636 1476 }
f984df1f 1477
7b371636
JA
1478 __blk_mq_requeue_request(rq);
1479
1480 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1481 *cookie = BLK_QC_T_NONE;
1482 rq->errors = -EIO;
1483 blk_mq_end_request(rq, rq->errors);
2253efc8 1484 return;
f984df1f 1485 }
7b371636 1486
2253efc8 1487insert:
9c621104 1488 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
f984df1f
SL
1489}
1490
5eb6126e
CH
1491static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1492 struct request *rq, blk_qc_t *cookie)
1493{
1494 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1495 rcu_read_lock();
1496 __blk_mq_try_issue_directly(rq, cookie, false);
1497 rcu_read_unlock();
1498 } else {
1499 unsigned int srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1500 __blk_mq_try_issue_directly(rq, cookie, true);
1501 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1502 }
1503}
1504
dece1635 1505static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1506{
ef295ecf 1507 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1508 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1509 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1510 struct request *rq;
5eb6126e 1511 unsigned int request_count = 0;
f984df1f 1512 struct blk_plug *plug;
5b3f341f 1513 struct request *same_queue_rq = NULL;
7b371636 1514 blk_qc_t cookie;
87760e5e 1515 unsigned int wb_acct;
07068d5b
JA
1516
1517 blk_queue_bounce(q, &bio);
1518
1519 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1520 bio_io_error(bio);
dece1635 1521 return BLK_QC_T_NONE;
07068d5b
JA
1522 }
1523
54efd50b
KO
1524 blk_queue_split(q, &bio, q->bio_split);
1525
87c279e6
OS
1526 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1527 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1528 return BLK_QC_T_NONE;
f984df1f 1529
bd166ef1
JA
1530 if (blk_mq_sched_bio_merge(q, bio))
1531 return BLK_QC_T_NONE;
1532
87760e5e
JA
1533 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1534
bd166ef1
JA
1535 trace_block_getrq(q, bio, bio->bi_opf);
1536
1537 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1538 if (unlikely(!rq)) {
1539 __wbt_done(q->rq_wb, wb_acct);
dece1635 1540 return BLK_QC_T_NONE;
87760e5e
JA
1541 }
1542
1543 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1544
fd2d3326 1545 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1546
a4d907b6 1547 plug = current->plug;
07068d5b
JA
1548 if (unlikely(is_flush_fua)) {
1549 blk_mq_bio_to_request(rq, bio);
a4d907b6
CH
1550 if (q->elevator) {
1551 blk_mq_sched_insert_request(rq, false, true, true,
1552 true);
1553 } else {
1554 blk_insert_flush(rq);
1555 blk_mq_run_hw_queue(data.hctx, true);
1556 }
1557 } else if (plug && q->nr_hw_queues == 1) {
254d259d
CH
1558 struct request *last = NULL;
1559
1560 blk_mq_bio_to_request(rq, bio);
1561
1562 /*
1563 * @request_count may become stale because of schedule
1564 * out, so check the list again.
1565 */
1566 if (list_empty(&plug->mq_list))
1567 request_count = 0;
1568 else if (blk_queue_nomerges(q))
1569 request_count = blk_plug_queued_count(q);
1570
1571 if (!request_count)
1572 trace_block_plug(q);
1573 else
1574 last = list_entry_rq(plug->mq_list.prev);
1575
254d259d
CH
1576 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1577 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1578 blk_flush_plug_list(plug, false);
1579 trace_block_plug(q);
1580 }
1581
1582 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1583 } else if (plug && !blk_queue_nomerges(q)) {
07068d5b 1584 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1585
1586 /*
6a83e74d 1587 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1588 * Otherwise the existing request in the plug list will be
1589 * issued. So the plug list will have one request at most
2299722c
CH
1590 * The plug list might get flushed before this. If that happens,
1591 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1592 */
2299722c
CH
1593 if (list_empty(&plug->mq_list))
1594 same_queue_rq = NULL;
1595 if (same_queue_rq)
1596 list_del_init(&same_queue_rq->queuelist);
1597 list_add_tail(&rq->queuelist, &plug->mq_list);
1598
2299722c
CH
1599 if (same_queue_rq)
1600 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1601 &cookie);
a4d907b6 1602 } else if (q->nr_hw_queues > 1 && is_sync) {
2299722c 1603 blk_mq_bio_to_request(rq, bio);
2299722c 1604 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
a4d907b6 1605 } else if (q->elevator) {
bd166ef1 1606 blk_mq_bio_to_request(rq, bio);
a4d907b6
CH
1607 blk_mq_sched_insert_request(rq, false, true, true, true);
1608 } else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1609 blk_mq_run_hw_queue(data.hctx, true);
07068d5b 1610 }
a4d907b6 1611
07068d5b 1612 blk_mq_put_ctx(data.ctx);
7b371636 1613 return cookie;
07068d5b
JA
1614}
1615
cc71a6f4
JA
1616void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1617 unsigned int hctx_idx)
95363efd 1618{
e9b267d9 1619 struct page *page;
320ae51f 1620
24d2f903 1621 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1622 int i;
320ae51f 1623
24d2f903 1624 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1625 struct request *rq = tags->static_rqs[i];
1626
1627 if (!rq)
e9b267d9 1628 continue;
2af8cbe3 1629 set->ops->exit_request(set->driver_data, rq,
24d2f903 1630 hctx_idx, i);
2af8cbe3 1631 tags->static_rqs[i] = NULL;
e9b267d9 1632 }
320ae51f 1633 }
320ae51f 1634
24d2f903
CH
1635 while (!list_empty(&tags->page_list)) {
1636 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1637 list_del_init(&page->lru);
f75782e4
CM
1638 /*
1639 * Remove kmemleak object previously allocated in
1640 * blk_mq_init_rq_map().
1641 */
1642 kmemleak_free(page_address(page));
320ae51f
JA
1643 __free_pages(page, page->private);
1644 }
cc71a6f4 1645}
320ae51f 1646
cc71a6f4
JA
1647void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1648{
24d2f903 1649 kfree(tags->rqs);
cc71a6f4 1650 tags->rqs = NULL;
2af8cbe3
JA
1651 kfree(tags->static_rqs);
1652 tags->static_rqs = NULL;
320ae51f 1653
24d2f903 1654 blk_mq_free_tags(tags);
320ae51f
JA
1655}
1656
cc71a6f4
JA
1657struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1658 unsigned int hctx_idx,
1659 unsigned int nr_tags,
1660 unsigned int reserved_tags)
320ae51f 1661{
24d2f903 1662 struct blk_mq_tags *tags;
59f082e4 1663 int node;
320ae51f 1664
59f082e4
SL
1665 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1666 if (node == NUMA_NO_NODE)
1667 node = set->numa_node;
1668
1669 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1670 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1671 if (!tags)
1672 return NULL;
320ae51f 1673
cc71a6f4 1674 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1675 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1676 node);
24d2f903
CH
1677 if (!tags->rqs) {
1678 blk_mq_free_tags(tags);
1679 return NULL;
1680 }
320ae51f 1681
2af8cbe3
JA
1682 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1683 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1684 node);
2af8cbe3
JA
1685 if (!tags->static_rqs) {
1686 kfree(tags->rqs);
1687 blk_mq_free_tags(tags);
1688 return NULL;
1689 }
1690
cc71a6f4
JA
1691 return tags;
1692}
1693
1694static size_t order_to_size(unsigned int order)
1695{
1696 return (size_t)PAGE_SIZE << order;
1697}
1698
1699int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1700 unsigned int hctx_idx, unsigned int depth)
1701{
1702 unsigned int i, j, entries_per_page, max_order = 4;
1703 size_t rq_size, left;
59f082e4
SL
1704 int node;
1705
1706 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1707 if (node == NUMA_NO_NODE)
1708 node = set->numa_node;
cc71a6f4
JA
1709
1710 INIT_LIST_HEAD(&tags->page_list);
1711
320ae51f
JA
1712 /*
1713 * rq_size is the size of the request plus driver payload, rounded
1714 * to the cacheline size
1715 */
24d2f903 1716 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1717 cache_line_size());
cc71a6f4 1718 left = rq_size * depth;
320ae51f 1719
cc71a6f4 1720 for (i = 0; i < depth; ) {
320ae51f
JA
1721 int this_order = max_order;
1722 struct page *page;
1723 int to_do;
1724 void *p;
1725
b3a834b1 1726 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1727 this_order--;
1728
1729 do {
59f082e4 1730 page = alloc_pages_node(node,
36e1f3d1 1731 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1732 this_order);
320ae51f
JA
1733 if (page)
1734 break;
1735 if (!this_order--)
1736 break;
1737 if (order_to_size(this_order) < rq_size)
1738 break;
1739 } while (1);
1740
1741 if (!page)
24d2f903 1742 goto fail;
320ae51f
JA
1743
1744 page->private = this_order;
24d2f903 1745 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1746
1747 p = page_address(page);
f75782e4
CM
1748 /*
1749 * Allow kmemleak to scan these pages as they contain pointers
1750 * to additional allocations like via ops->init_request().
1751 */
36e1f3d1 1752 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1753 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1754 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1755 left -= to_do * rq_size;
1756 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1757 struct request *rq = p;
1758
1759 tags->static_rqs[i] = rq;
24d2f903
CH
1760 if (set->ops->init_request) {
1761 if (set->ops->init_request(set->driver_data,
2af8cbe3 1762 rq, hctx_idx, i,
59f082e4 1763 node)) {
2af8cbe3 1764 tags->static_rqs[i] = NULL;
24d2f903 1765 goto fail;
a5164405 1766 }
e9b267d9
CH
1767 }
1768
320ae51f
JA
1769 p += rq_size;
1770 i++;
1771 }
1772 }
cc71a6f4 1773 return 0;
320ae51f 1774
24d2f903 1775fail:
cc71a6f4
JA
1776 blk_mq_free_rqs(set, tags, hctx_idx);
1777 return -ENOMEM;
320ae51f
JA
1778}
1779
e57690fe
JA
1780/*
1781 * 'cpu' is going away. splice any existing rq_list entries from this
1782 * software queue to the hw queue dispatch list, and ensure that it
1783 * gets run.
1784 */
9467f859 1785static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1786{
9467f859 1787 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1788 struct blk_mq_ctx *ctx;
1789 LIST_HEAD(tmp);
1790
9467f859 1791 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1792 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1793
1794 spin_lock(&ctx->lock);
1795 if (!list_empty(&ctx->rq_list)) {
1796 list_splice_init(&ctx->rq_list, &tmp);
1797 blk_mq_hctx_clear_pending(hctx, ctx);
1798 }
1799 spin_unlock(&ctx->lock);
1800
1801 if (list_empty(&tmp))
9467f859 1802 return 0;
484b4061 1803
e57690fe
JA
1804 spin_lock(&hctx->lock);
1805 list_splice_tail_init(&tmp, &hctx->dispatch);
1806 spin_unlock(&hctx->lock);
484b4061
JA
1807
1808 blk_mq_run_hw_queue(hctx, true);
9467f859 1809 return 0;
484b4061
JA
1810}
1811
9467f859 1812static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1813{
9467f859
TG
1814 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1815 &hctx->cpuhp_dead);
484b4061
JA
1816}
1817
c3b4afca 1818/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1819static void blk_mq_exit_hctx(struct request_queue *q,
1820 struct blk_mq_tag_set *set,
1821 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1822{
f70ced09
ML
1823 unsigned flush_start_tag = set->queue_depth;
1824
08e98fc6
ML
1825 blk_mq_tag_idle(hctx);
1826
f70ced09
ML
1827 if (set->ops->exit_request)
1828 set->ops->exit_request(set->driver_data,
1829 hctx->fq->flush_rq, hctx_idx,
1830 flush_start_tag + hctx_idx);
1831
08e98fc6
ML
1832 if (set->ops->exit_hctx)
1833 set->ops->exit_hctx(hctx, hctx_idx);
1834
6a83e74d
BVA
1835 if (hctx->flags & BLK_MQ_F_BLOCKING)
1836 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1837
9467f859 1838 blk_mq_remove_cpuhp(hctx);
f70ced09 1839 blk_free_flush_queue(hctx->fq);
88459642 1840 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1841}
1842
624dbe47
ML
1843static void blk_mq_exit_hw_queues(struct request_queue *q,
1844 struct blk_mq_tag_set *set, int nr_queue)
1845{
1846 struct blk_mq_hw_ctx *hctx;
1847 unsigned int i;
1848
1849 queue_for_each_hw_ctx(q, hctx, i) {
1850 if (i == nr_queue)
1851 break;
08e98fc6 1852 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1853 }
624dbe47
ML
1854}
1855
08e98fc6
ML
1856static int blk_mq_init_hctx(struct request_queue *q,
1857 struct blk_mq_tag_set *set,
1858 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1859{
08e98fc6 1860 int node;
f70ced09 1861 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1862
1863 node = hctx->numa_node;
1864 if (node == NUMA_NO_NODE)
1865 node = hctx->numa_node = set->numa_node;
1866
27489a3c 1867 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1868 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1869 spin_lock_init(&hctx->lock);
1870 INIT_LIST_HEAD(&hctx->dispatch);
1871 hctx->queue = q;
1872 hctx->queue_num = hctx_idx;
2404e607 1873 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1874
9467f859 1875 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1876
1877 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1878
1879 /*
08e98fc6
ML
1880 * Allocate space for all possible cpus to avoid allocation at
1881 * runtime
320ae51f 1882 */
08e98fc6
ML
1883 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1884 GFP_KERNEL, node);
1885 if (!hctx->ctxs)
1886 goto unregister_cpu_notifier;
320ae51f 1887
88459642
OS
1888 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1889 node))
08e98fc6 1890 goto free_ctxs;
320ae51f 1891
08e98fc6 1892 hctx->nr_ctx = 0;
320ae51f 1893
08e98fc6
ML
1894 if (set->ops->init_hctx &&
1895 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1896 goto free_bitmap;
320ae51f 1897
f70ced09
ML
1898 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1899 if (!hctx->fq)
1900 goto exit_hctx;
320ae51f 1901
f70ced09
ML
1902 if (set->ops->init_request &&
1903 set->ops->init_request(set->driver_data,
1904 hctx->fq->flush_rq, hctx_idx,
1905 flush_start_tag + hctx_idx, node))
1906 goto free_fq;
320ae51f 1907
6a83e74d
BVA
1908 if (hctx->flags & BLK_MQ_F_BLOCKING)
1909 init_srcu_struct(&hctx->queue_rq_srcu);
1910
08e98fc6 1911 return 0;
320ae51f 1912
f70ced09
ML
1913 free_fq:
1914 kfree(hctx->fq);
1915 exit_hctx:
1916 if (set->ops->exit_hctx)
1917 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1918 free_bitmap:
88459642 1919 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1920 free_ctxs:
1921 kfree(hctx->ctxs);
1922 unregister_cpu_notifier:
9467f859 1923 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
1924 return -1;
1925}
320ae51f 1926
320ae51f
JA
1927static void blk_mq_init_cpu_queues(struct request_queue *q,
1928 unsigned int nr_hw_queues)
1929{
1930 unsigned int i;
1931
1932 for_each_possible_cpu(i) {
1933 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1934 struct blk_mq_hw_ctx *hctx;
1935
320ae51f
JA
1936 __ctx->cpu = i;
1937 spin_lock_init(&__ctx->lock);
1938 INIT_LIST_HEAD(&__ctx->rq_list);
1939 __ctx->queue = q;
1940
1941 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1942 if (!cpu_online(i))
1943 continue;
1944
7d7e0f90 1945 hctx = blk_mq_map_queue(q, i);
e4043dcf 1946
320ae51f
JA
1947 /*
1948 * Set local node, IFF we have more than one hw queue. If
1949 * not, we remain on the home node of the device
1950 */
1951 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1952 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
1953 }
1954}
1955
cc71a6f4
JA
1956static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1957{
1958 int ret = 0;
1959
1960 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1961 set->queue_depth, set->reserved_tags);
1962 if (!set->tags[hctx_idx])
1963 return false;
1964
1965 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1966 set->queue_depth);
1967 if (!ret)
1968 return true;
1969
1970 blk_mq_free_rq_map(set->tags[hctx_idx]);
1971 set->tags[hctx_idx] = NULL;
1972 return false;
1973}
1974
1975static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1976 unsigned int hctx_idx)
1977{
bd166ef1
JA
1978 if (set->tags[hctx_idx]) {
1979 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1980 blk_mq_free_rq_map(set->tags[hctx_idx]);
1981 set->tags[hctx_idx] = NULL;
1982 }
cc71a6f4
JA
1983}
1984
5778322e
AM
1985static void blk_mq_map_swqueue(struct request_queue *q,
1986 const struct cpumask *online_mask)
320ae51f 1987{
d1b1cea1 1988 unsigned int i, hctx_idx;
320ae51f
JA
1989 struct blk_mq_hw_ctx *hctx;
1990 struct blk_mq_ctx *ctx;
2a34c087 1991 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1992
60de074b
AM
1993 /*
1994 * Avoid others reading imcomplete hctx->cpumask through sysfs
1995 */
1996 mutex_lock(&q->sysfs_lock);
1997
320ae51f 1998 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1999 cpumask_clear(hctx->cpumask);
320ae51f
JA
2000 hctx->nr_ctx = 0;
2001 }
2002
2003 /*
2004 * Map software to hardware queues
2005 */
897bb0c7 2006 for_each_possible_cpu(i) {
320ae51f 2007 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 2008 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
2009 continue;
2010
d1b1cea1
GKB
2011 hctx_idx = q->mq_map[i];
2012 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2013 if (!set->tags[hctx_idx] &&
2014 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2015 /*
2016 * If tags initialization fail for some hctx,
2017 * that hctx won't be brought online. In this
2018 * case, remap the current ctx to hctx[0] which
2019 * is guaranteed to always have tags allocated
2020 */
cc71a6f4 2021 q->mq_map[i] = 0;
d1b1cea1
GKB
2022 }
2023
897bb0c7 2024 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2025 hctx = blk_mq_map_queue(q, i);
868f2f0b 2026
e4043dcf 2027 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2028 ctx->index_hw = hctx->nr_ctx;
2029 hctx->ctxs[hctx->nr_ctx++] = ctx;
2030 }
506e931f 2031
60de074b
AM
2032 mutex_unlock(&q->sysfs_lock);
2033
506e931f 2034 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2035 /*
a68aafa5
JA
2036 * If no software queues are mapped to this hardware queue,
2037 * disable it and free the request entries.
484b4061
JA
2038 */
2039 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2040 /* Never unmap queue 0. We need it as a
2041 * fallback in case of a new remap fails
2042 * allocation
2043 */
cc71a6f4
JA
2044 if (i && set->tags[i])
2045 blk_mq_free_map_and_requests(set, i);
2046
2a34c087 2047 hctx->tags = NULL;
484b4061
JA
2048 continue;
2049 }
2050
2a34c087
ML
2051 hctx->tags = set->tags[i];
2052 WARN_ON(!hctx->tags);
2053
889fa31f
CY
2054 /*
2055 * Set the map size to the number of mapped software queues.
2056 * This is more accurate and more efficient than looping
2057 * over all possibly mapped software queues.
2058 */
88459642 2059 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2060
484b4061
JA
2061 /*
2062 * Initialize batch roundrobin counts
2063 */
506e931f
JA
2064 hctx->next_cpu = cpumask_first(hctx->cpumask);
2065 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2066 }
320ae51f
JA
2067}
2068
2404e607 2069static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2070{
2071 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2072 int i;
2073
2404e607
JM
2074 queue_for_each_hw_ctx(q, hctx, i) {
2075 if (shared)
2076 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2077 else
2078 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2079 }
2080}
2081
2082static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2083{
2084 struct request_queue *q;
0d2602ca
JA
2085
2086 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2087 blk_mq_freeze_queue(q);
2404e607 2088 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2089 blk_mq_unfreeze_queue(q);
2090 }
2091}
2092
2093static void blk_mq_del_queue_tag_set(struct request_queue *q)
2094{
2095 struct blk_mq_tag_set *set = q->tag_set;
2096
0d2602ca
JA
2097 mutex_lock(&set->tag_list_lock);
2098 list_del_init(&q->tag_set_list);
2404e607
JM
2099 if (list_is_singular(&set->tag_list)) {
2100 /* just transitioned to unshared */
2101 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2102 /* update existing queue */
2103 blk_mq_update_tag_set_depth(set, false);
2104 }
0d2602ca 2105 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
2106}
2107
2108static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2109 struct request_queue *q)
2110{
2111 q->tag_set = set;
2112
2113 mutex_lock(&set->tag_list_lock);
2404e607
JM
2114
2115 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2116 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2117 set->flags |= BLK_MQ_F_TAG_SHARED;
2118 /* update existing queue */
2119 blk_mq_update_tag_set_depth(set, true);
2120 }
2121 if (set->flags & BLK_MQ_F_TAG_SHARED)
2122 queue_set_hctx_shared(q, true);
0d2602ca 2123 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 2124
0d2602ca
JA
2125 mutex_unlock(&set->tag_list_lock);
2126}
2127
e09aae7e
ML
2128/*
2129 * It is the actual release handler for mq, but we do it from
2130 * request queue's release handler for avoiding use-after-free
2131 * and headache because q->mq_kobj shouldn't have been introduced,
2132 * but we can't group ctx/kctx kobj without it.
2133 */
2134void blk_mq_release(struct request_queue *q)
2135{
2136 struct blk_mq_hw_ctx *hctx;
2137 unsigned int i;
2138
bd166ef1
JA
2139 blk_mq_sched_teardown(q);
2140
e09aae7e 2141 /* hctx kobj stays in hctx */
c3b4afca
ML
2142 queue_for_each_hw_ctx(q, hctx, i) {
2143 if (!hctx)
2144 continue;
6c8b232e 2145 kobject_put(&hctx->kobj);
c3b4afca 2146 }
e09aae7e 2147
a723bab3
AM
2148 q->mq_map = NULL;
2149
e09aae7e
ML
2150 kfree(q->queue_hw_ctx);
2151
7ea5fe31
ML
2152 /*
2153 * release .mq_kobj and sw queue's kobject now because
2154 * both share lifetime with request queue.
2155 */
2156 blk_mq_sysfs_deinit(q);
2157
e09aae7e
ML
2158 free_percpu(q->queue_ctx);
2159}
2160
24d2f903 2161struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2162{
2163 struct request_queue *uninit_q, *q;
2164
2165 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2166 if (!uninit_q)
2167 return ERR_PTR(-ENOMEM);
2168
2169 q = blk_mq_init_allocated_queue(set, uninit_q);
2170 if (IS_ERR(q))
2171 blk_cleanup_queue(uninit_q);
2172
2173 return q;
2174}
2175EXPORT_SYMBOL(blk_mq_init_queue);
2176
868f2f0b
KB
2177static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2178 struct request_queue *q)
320ae51f 2179{
868f2f0b
KB
2180 int i, j;
2181 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2182
868f2f0b 2183 blk_mq_sysfs_unregister(q);
24d2f903 2184 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2185 int node;
f14bbe77 2186
868f2f0b
KB
2187 if (hctxs[i])
2188 continue;
2189
2190 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2191 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2192 GFP_KERNEL, node);
320ae51f 2193 if (!hctxs[i])
868f2f0b 2194 break;
320ae51f 2195
a86073e4 2196 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2197 node)) {
2198 kfree(hctxs[i]);
2199 hctxs[i] = NULL;
2200 break;
2201 }
e4043dcf 2202
0d2602ca 2203 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2204 hctxs[i]->numa_node = node;
320ae51f 2205 hctxs[i]->queue_num = i;
868f2f0b
KB
2206
2207 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2208 free_cpumask_var(hctxs[i]->cpumask);
2209 kfree(hctxs[i]);
2210 hctxs[i] = NULL;
2211 break;
2212 }
2213 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2214 }
868f2f0b
KB
2215 for (j = i; j < q->nr_hw_queues; j++) {
2216 struct blk_mq_hw_ctx *hctx = hctxs[j];
2217
2218 if (hctx) {
cc71a6f4
JA
2219 if (hctx->tags)
2220 blk_mq_free_map_and_requests(set, j);
868f2f0b 2221 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2222 kobject_put(&hctx->kobj);
868f2f0b
KB
2223 hctxs[j] = NULL;
2224
2225 }
2226 }
2227 q->nr_hw_queues = i;
2228 blk_mq_sysfs_register(q);
2229}
2230
2231struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2232 struct request_queue *q)
2233{
66841672
ML
2234 /* mark the queue as mq asap */
2235 q->mq_ops = set->ops;
2236
34dbad5d
OS
2237 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2238 blk_stat_rq_ddir, 2, q);
2239 if (!q->poll_cb)
2240 goto err_exit;
2241
868f2f0b
KB
2242 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2243 if (!q->queue_ctx)
c7de5726 2244 goto err_exit;
868f2f0b 2245
737f98cf
ML
2246 /* init q->mq_kobj and sw queues' kobjects */
2247 blk_mq_sysfs_init(q);
2248
868f2f0b
KB
2249 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2250 GFP_KERNEL, set->numa_node);
2251 if (!q->queue_hw_ctx)
2252 goto err_percpu;
2253
bdd17e75 2254 q->mq_map = set->mq_map;
868f2f0b
KB
2255
2256 blk_mq_realloc_hw_ctxs(set, q);
2257 if (!q->nr_hw_queues)
2258 goto err_hctxs;
320ae51f 2259
287922eb 2260 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2261 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2262
2263 q->nr_queues = nr_cpu_ids;
320ae51f 2264
94eddfbe 2265 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2266
05f1dd53
JA
2267 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2268 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2269
1be036e9
CH
2270 q->sg_reserved_size = INT_MAX;
2271
2849450a 2272 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2273 INIT_LIST_HEAD(&q->requeue_list);
2274 spin_lock_init(&q->requeue_lock);
2275
254d259d 2276 blk_queue_make_request(q, blk_mq_make_request);
07068d5b 2277
eba71768
JA
2278 /*
2279 * Do this after blk_queue_make_request() overrides it...
2280 */
2281 q->nr_requests = set->queue_depth;
2282
64f1c21e
JA
2283 /*
2284 * Default to classic polling
2285 */
2286 q->poll_nsec = -1;
2287
24d2f903
CH
2288 if (set->ops->complete)
2289 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2290
24d2f903 2291 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2292
5778322e 2293 get_online_cpus();
320ae51f 2294 mutex_lock(&all_q_mutex);
320ae51f 2295
4593fdbe 2296 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2297 blk_mq_add_queue_tag_set(set, q);
5778322e 2298 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2299
4593fdbe 2300 mutex_unlock(&all_q_mutex);
5778322e 2301 put_online_cpus();
4593fdbe 2302
d3484991
JA
2303 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2304 int ret;
2305
2306 ret = blk_mq_sched_init(q);
2307 if (ret)
2308 return ERR_PTR(ret);
2309 }
2310
320ae51f 2311 return q;
18741986 2312
320ae51f 2313err_hctxs:
868f2f0b 2314 kfree(q->queue_hw_ctx);
320ae51f 2315err_percpu:
868f2f0b 2316 free_percpu(q->queue_ctx);
c7de5726
ML
2317err_exit:
2318 q->mq_ops = NULL;
320ae51f
JA
2319 return ERR_PTR(-ENOMEM);
2320}
b62c21b7 2321EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2322
2323void blk_mq_free_queue(struct request_queue *q)
2324{
624dbe47 2325 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2326
0e626368
AM
2327 mutex_lock(&all_q_mutex);
2328 list_del_init(&q->all_q_node);
2329 mutex_unlock(&all_q_mutex);
2330
0d2602ca
JA
2331 blk_mq_del_queue_tag_set(q);
2332
624dbe47 2333 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2334}
320ae51f
JA
2335
2336/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2337static void blk_mq_queue_reinit(struct request_queue *q,
2338 const struct cpumask *online_mask)
320ae51f 2339{
4ecd4fef 2340 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2341
67aec14c
JA
2342 blk_mq_sysfs_unregister(q);
2343
320ae51f
JA
2344 /*
2345 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2346 * we should change hctx numa_node according to new topology (this
2347 * involves free and re-allocate memory, worthy doing?)
2348 */
2349
5778322e 2350 blk_mq_map_swqueue(q, online_mask);
320ae51f 2351
67aec14c 2352 blk_mq_sysfs_register(q);
320ae51f
JA
2353}
2354
65d5291e
SAS
2355/*
2356 * New online cpumask which is going to be set in this hotplug event.
2357 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2358 * one-by-one and dynamically allocating this could result in a failure.
2359 */
2360static struct cpumask cpuhp_online_new;
2361
2362static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2363{
2364 struct request_queue *q;
320ae51f
JA
2365
2366 mutex_lock(&all_q_mutex);
f3af020b
TH
2367 /*
2368 * We need to freeze and reinit all existing queues. Freezing
2369 * involves synchronous wait for an RCU grace period and doing it
2370 * one by one may take a long time. Start freezing all queues in
2371 * one swoop and then wait for the completions so that freezing can
2372 * take place in parallel.
2373 */
2374 list_for_each_entry(q, &all_q_list, all_q_node)
1671d522 2375 blk_freeze_queue_start(q);
415d3dab 2376 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2377 blk_mq_freeze_queue_wait(q);
2378
320ae51f 2379 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2380 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2381
2382 list_for_each_entry(q, &all_q_list, all_q_node)
2383 blk_mq_unfreeze_queue(q);
2384
320ae51f 2385 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2386}
2387
2388static int blk_mq_queue_reinit_dead(unsigned int cpu)
2389{
97a32864 2390 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2391 blk_mq_queue_reinit_work();
2392 return 0;
2393}
2394
2395/*
2396 * Before hotadded cpu starts handling requests, new mappings must be
2397 * established. Otherwise, these requests in hw queue might never be
2398 * dispatched.
2399 *
2400 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2401 * for CPU0, and ctx1 for CPU1).
2402 *
2403 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2404 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2405 *
2c3ad667
JA
2406 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2407 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2408 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2409 * ignored.
65d5291e
SAS
2410 */
2411static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2412{
2413 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2414 cpumask_set_cpu(cpu, &cpuhp_online_new);
2415 blk_mq_queue_reinit_work();
2416 return 0;
320ae51f
JA
2417}
2418
a5164405
JA
2419static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2420{
2421 int i;
2422
cc71a6f4
JA
2423 for (i = 0; i < set->nr_hw_queues; i++)
2424 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2425 goto out_unwind;
a5164405
JA
2426
2427 return 0;
2428
2429out_unwind:
2430 while (--i >= 0)
cc71a6f4 2431 blk_mq_free_rq_map(set->tags[i]);
a5164405 2432
a5164405
JA
2433 return -ENOMEM;
2434}
2435
2436/*
2437 * Allocate the request maps associated with this tag_set. Note that this
2438 * may reduce the depth asked for, if memory is tight. set->queue_depth
2439 * will be updated to reflect the allocated depth.
2440 */
2441static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2442{
2443 unsigned int depth;
2444 int err;
2445
2446 depth = set->queue_depth;
2447 do {
2448 err = __blk_mq_alloc_rq_maps(set);
2449 if (!err)
2450 break;
2451
2452 set->queue_depth >>= 1;
2453 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2454 err = -ENOMEM;
2455 break;
2456 }
2457 } while (set->queue_depth);
2458
2459 if (!set->queue_depth || err) {
2460 pr_err("blk-mq: failed to allocate request map\n");
2461 return -ENOMEM;
2462 }
2463
2464 if (depth != set->queue_depth)
2465 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2466 depth, set->queue_depth);
2467
2468 return 0;
2469}
2470
a4391c64
JA
2471/*
2472 * Alloc a tag set to be associated with one or more request queues.
2473 * May fail with EINVAL for various error conditions. May adjust the
2474 * requested depth down, if if it too large. In that case, the set
2475 * value will be stored in set->queue_depth.
2476 */
24d2f903
CH
2477int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2478{
da695ba2
CH
2479 int ret;
2480
205fb5f5
BVA
2481 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2482
24d2f903
CH
2483 if (!set->nr_hw_queues)
2484 return -EINVAL;
a4391c64 2485 if (!set->queue_depth)
24d2f903
CH
2486 return -EINVAL;
2487 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2488 return -EINVAL;
2489
7d7e0f90 2490 if (!set->ops->queue_rq)
24d2f903
CH
2491 return -EINVAL;
2492
a4391c64
JA
2493 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2494 pr_info("blk-mq: reduced tag depth to %u\n",
2495 BLK_MQ_MAX_DEPTH);
2496 set->queue_depth = BLK_MQ_MAX_DEPTH;
2497 }
24d2f903 2498
6637fadf
SL
2499 /*
2500 * If a crashdump is active, then we are potentially in a very
2501 * memory constrained environment. Limit us to 1 queue and
2502 * 64 tags to prevent using too much memory.
2503 */
2504 if (is_kdump_kernel()) {
2505 set->nr_hw_queues = 1;
2506 set->queue_depth = min(64U, set->queue_depth);
2507 }
868f2f0b
KB
2508 /*
2509 * There is no use for more h/w queues than cpus.
2510 */
2511 if (set->nr_hw_queues > nr_cpu_ids)
2512 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2513
868f2f0b 2514 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2515 GFP_KERNEL, set->numa_node);
2516 if (!set->tags)
a5164405 2517 return -ENOMEM;
24d2f903 2518
da695ba2
CH
2519 ret = -ENOMEM;
2520 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2521 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2522 if (!set->mq_map)
2523 goto out_free_tags;
2524
da695ba2
CH
2525 if (set->ops->map_queues)
2526 ret = set->ops->map_queues(set);
2527 else
2528 ret = blk_mq_map_queues(set);
2529 if (ret)
2530 goto out_free_mq_map;
2531
2532 ret = blk_mq_alloc_rq_maps(set);
2533 if (ret)
bdd17e75 2534 goto out_free_mq_map;
24d2f903 2535
0d2602ca
JA
2536 mutex_init(&set->tag_list_lock);
2537 INIT_LIST_HEAD(&set->tag_list);
2538
24d2f903 2539 return 0;
bdd17e75
CH
2540
2541out_free_mq_map:
2542 kfree(set->mq_map);
2543 set->mq_map = NULL;
2544out_free_tags:
5676e7b6
RE
2545 kfree(set->tags);
2546 set->tags = NULL;
da695ba2 2547 return ret;
24d2f903
CH
2548}
2549EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2550
2551void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2552{
2553 int i;
2554
cc71a6f4
JA
2555 for (i = 0; i < nr_cpu_ids; i++)
2556 blk_mq_free_map_and_requests(set, i);
484b4061 2557
bdd17e75
CH
2558 kfree(set->mq_map);
2559 set->mq_map = NULL;
2560
981bd189 2561 kfree(set->tags);
5676e7b6 2562 set->tags = NULL;
24d2f903
CH
2563}
2564EXPORT_SYMBOL(blk_mq_free_tag_set);
2565
e3a2b3f9
JA
2566int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2567{
2568 struct blk_mq_tag_set *set = q->tag_set;
2569 struct blk_mq_hw_ctx *hctx;
2570 int i, ret;
2571
bd166ef1 2572 if (!set)
e3a2b3f9
JA
2573 return -EINVAL;
2574
70f36b60
JA
2575 blk_mq_freeze_queue(q);
2576 blk_mq_quiesce_queue(q);
2577
e3a2b3f9
JA
2578 ret = 0;
2579 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2580 if (!hctx->tags)
2581 continue;
bd166ef1
JA
2582 /*
2583 * If we're using an MQ scheduler, just update the scheduler
2584 * queue depth. This is similar to what the old code would do.
2585 */
70f36b60
JA
2586 if (!hctx->sched_tags) {
2587 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2588 min(nr, set->queue_depth),
2589 false);
2590 } else {
2591 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2592 nr, true);
2593 }
e3a2b3f9
JA
2594 if (ret)
2595 break;
2596 }
2597
2598 if (!ret)
2599 q->nr_requests = nr;
2600
70f36b60
JA
2601 blk_mq_unfreeze_queue(q);
2602 blk_mq_start_stopped_hw_queues(q, true);
2603
e3a2b3f9
JA
2604 return ret;
2605}
2606
868f2f0b
KB
2607void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2608{
2609 struct request_queue *q;
2610
2611 if (nr_hw_queues > nr_cpu_ids)
2612 nr_hw_queues = nr_cpu_ids;
2613 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2614 return;
2615
2616 list_for_each_entry(q, &set->tag_list, tag_set_list)
2617 blk_mq_freeze_queue(q);
2618
2619 set->nr_hw_queues = nr_hw_queues;
2620 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2621 blk_mq_realloc_hw_ctxs(set, q);
868f2f0b
KB
2622 blk_mq_queue_reinit(q, cpu_online_mask);
2623 }
2624
2625 list_for_each_entry(q, &set->tag_list, tag_set_list)
2626 blk_mq_unfreeze_queue(q);
2627}
2628EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2629
34dbad5d
OS
2630/* Enable polling stats and return whether they were already enabled. */
2631static bool blk_poll_stats_enable(struct request_queue *q)
2632{
2633 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2634 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2635 return true;
2636 blk_stat_add_callback(q, q->poll_cb);
2637 return false;
2638}
2639
2640static void blk_mq_poll_stats_start(struct request_queue *q)
2641{
2642 /*
2643 * We don't arm the callback if polling stats are not enabled or the
2644 * callback is already active.
2645 */
2646 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2647 blk_stat_is_active(q->poll_cb))
2648 return;
2649
2650 blk_stat_activate_msecs(q->poll_cb, 100);
2651}
2652
2653static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2654{
2655 struct request_queue *q = cb->data;
2656
2657 if (cb->stat[READ].nr_samples)
2658 q->poll_stat[READ] = cb->stat[READ];
2659 if (cb->stat[WRITE].nr_samples)
2660 q->poll_stat[WRITE] = cb->stat[WRITE];
2661}
2662
64f1c21e
JA
2663static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2664 struct blk_mq_hw_ctx *hctx,
2665 struct request *rq)
2666{
64f1c21e
JA
2667 unsigned long ret = 0;
2668
2669 /*
2670 * If stats collection isn't on, don't sleep but turn it on for
2671 * future users
2672 */
34dbad5d 2673 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2674 return 0;
2675
64f1c21e
JA
2676 /*
2677 * As an optimistic guess, use half of the mean service time
2678 * for this type of request. We can (and should) make this smarter.
2679 * For instance, if the completion latencies are tight, we can
2680 * get closer than just half the mean. This is especially
2681 * important on devices where the completion latencies are longer
2682 * than ~10 usec.
2683 */
34dbad5d
OS
2684 if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
2685 ret = (q->poll_stat[READ].mean + 1) / 2;
2686 else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
2687 ret = (q->poll_stat[WRITE].mean + 1) / 2;
64f1c21e
JA
2688
2689 return ret;
2690}
2691
06426adf 2692static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2693 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2694 struct request *rq)
2695{
2696 struct hrtimer_sleeper hs;
2697 enum hrtimer_mode mode;
64f1c21e 2698 unsigned int nsecs;
06426adf
JA
2699 ktime_t kt;
2700
64f1c21e
JA
2701 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2702 return false;
2703
2704 /*
2705 * poll_nsec can be:
2706 *
2707 * -1: don't ever hybrid sleep
2708 * 0: use half of prev avg
2709 * >0: use this specific value
2710 */
2711 if (q->poll_nsec == -1)
2712 return false;
2713 else if (q->poll_nsec > 0)
2714 nsecs = q->poll_nsec;
2715 else
2716 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2717
2718 if (!nsecs)
06426adf
JA
2719 return false;
2720
2721 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2722
2723 /*
2724 * This will be replaced with the stats tracking code, using
2725 * 'avg_completion_time / 2' as the pre-sleep target.
2726 */
8b0e1953 2727 kt = nsecs;
06426adf
JA
2728
2729 mode = HRTIMER_MODE_REL;
2730 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2731 hrtimer_set_expires(&hs.timer, kt);
2732
2733 hrtimer_init_sleeper(&hs, current);
2734 do {
2735 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2736 break;
2737 set_current_state(TASK_UNINTERRUPTIBLE);
2738 hrtimer_start_expires(&hs.timer, mode);
2739 if (hs.task)
2740 io_schedule();
2741 hrtimer_cancel(&hs.timer);
2742 mode = HRTIMER_MODE_ABS;
2743 } while (hs.task && !signal_pending(current));
2744
2745 __set_current_state(TASK_RUNNING);
2746 destroy_hrtimer_on_stack(&hs.timer);
2747 return true;
2748}
2749
bbd7bb70
JA
2750static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2751{
2752 struct request_queue *q = hctx->queue;
2753 long state;
2754
06426adf
JA
2755 /*
2756 * If we sleep, have the caller restart the poll loop to reset
2757 * the state. Like for the other success return cases, the
2758 * caller is responsible for checking if the IO completed. If
2759 * the IO isn't complete, we'll get called again and will go
2760 * straight to the busy poll loop.
2761 */
64f1c21e 2762 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2763 return true;
2764
bbd7bb70
JA
2765 hctx->poll_considered++;
2766
2767 state = current->state;
2768 while (!need_resched()) {
2769 int ret;
2770
2771 hctx->poll_invoked++;
2772
2773 ret = q->mq_ops->poll(hctx, rq->tag);
2774 if (ret > 0) {
2775 hctx->poll_success++;
2776 set_current_state(TASK_RUNNING);
2777 return true;
2778 }
2779
2780 if (signal_pending_state(state, current))
2781 set_current_state(TASK_RUNNING);
2782
2783 if (current->state == TASK_RUNNING)
2784 return true;
2785 if (ret < 0)
2786 break;
2787 cpu_relax();
2788 }
2789
2790 return false;
2791}
2792
2793bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2794{
2795 struct blk_mq_hw_ctx *hctx;
2796 struct blk_plug *plug;
2797 struct request *rq;
2798
2799 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2800 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2801 return false;
2802
2803 plug = current->plug;
2804 if (plug)
2805 blk_flush_plug_list(plug, false);
2806
2807 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2808 if (!blk_qc_t_is_internal(cookie))
2809 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2810 else
2811 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
bbd7bb70
JA
2812
2813 return __blk_mq_poll(hctx, rq);
2814}
2815EXPORT_SYMBOL_GPL(blk_mq_poll);
2816
676141e4
JA
2817void blk_mq_disable_hotplug(void)
2818{
2819 mutex_lock(&all_q_mutex);
2820}
2821
2822void blk_mq_enable_hotplug(void)
2823{
2824 mutex_unlock(&all_q_mutex);
2825}
2826
320ae51f
JA
2827static int __init blk_mq_init(void)
2828{
9467f859
TG
2829 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2830 blk_mq_hctx_notify_dead);
320ae51f 2831
65d5291e
SAS
2832 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2833 blk_mq_queue_reinit_prepare,
2834 blk_mq_queue_reinit_dead);
320ae51f
JA
2835 return 0;
2836}
2837subsys_initcall(blk_mq_init);