]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - block/blk-mq.c
blk-mq: move hctx lock/unlock into a helper
[mirror_ubuntu-eoan-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
cf43e6be 36#include "blk-stat.h"
87760e5e 37#include "blk-wbt.h"
bd166ef1 38#include "blk-mq-sched.h"
320ae51f 39
ea435e1b 40static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
34dbad5d
OS
41static void blk_mq_poll_stats_start(struct request_queue *q);
42static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
720b8ccc
SB
44static int blk_mq_poll_stats_bkt(const struct request *rq)
45{
46 int ddir, bytes, bucket;
47
99c749a4 48 ddir = rq_data_dir(rq);
720b8ccc
SB
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59}
60
320ae51f
JA
61/*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
79f720a7 64static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 65{
79f720a7
JA
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 68 blk_mq_sched_has_work(hctx);
1429d7c9
JA
69}
70
320ae51f
JA
71/*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76{
88459642
OS
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
79}
80
81static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83{
88459642 84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
85}
86
f299b7c7
JA
87struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90};
91
92static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95{
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
b8d62b3a
JA
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
f299b7c7 105 */
b8d62b3a 106 if (rq->part == mi->part)
f299b7c7 107 mi->inflight[0]++;
b8d62b3a
JA
108 if (mi->part->partno)
109 mi->inflight[1]++;
f299b7c7
JA
110 }
111}
112
113void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115{
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
b8d62b3a 118 inflight[0] = inflight[1] = 0;
f299b7c7
JA
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120}
121
1671d522 122void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 123{
4ecd4fef 124 int freeze_depth;
cddd5d17 125
4ecd4fef
CH
126 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
127 if (freeze_depth == 1) {
3ef28e83 128 percpu_ref_kill(&q->q_usage_counter);
055f6e18
ML
129 if (q->mq_ops)
130 blk_mq_run_hw_queues(q, false);
cddd5d17 131 }
f3af020b 132}
1671d522 133EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 134
6bae363e 135void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 136{
3ef28e83 137 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 138}
6bae363e 139EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 140
f91328c4
KB
141int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
142 unsigned long timeout)
143{
144 return wait_event_timeout(q->mq_freeze_wq,
145 percpu_ref_is_zero(&q->q_usage_counter),
146 timeout);
147}
148EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 149
f3af020b
TH
150/*
151 * Guarantee no request is in use, so we can change any data structure of
152 * the queue afterward.
153 */
3ef28e83 154void blk_freeze_queue(struct request_queue *q)
f3af020b 155{
3ef28e83
DW
156 /*
157 * In the !blk_mq case we are only calling this to kill the
158 * q_usage_counter, otherwise this increases the freeze depth
159 * and waits for it to return to zero. For this reason there is
160 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
161 * exported to drivers as the only user for unfreeze is blk_mq.
162 */
1671d522 163 blk_freeze_queue_start(q);
f3af020b
TH
164 blk_mq_freeze_queue_wait(q);
165}
3ef28e83
DW
166
167void blk_mq_freeze_queue(struct request_queue *q)
168{
169 /*
170 * ...just an alias to keep freeze and unfreeze actions balanced
171 * in the blk_mq_* namespace
172 */
173 blk_freeze_queue(q);
174}
c761d96b 175EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 176
b4c6a028 177void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 178{
4ecd4fef 179 int freeze_depth;
320ae51f 180
4ecd4fef
CH
181 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
182 WARN_ON_ONCE(freeze_depth < 0);
183 if (!freeze_depth) {
3ef28e83 184 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 185 wake_up_all(&q->mq_freeze_wq);
add703fd 186 }
320ae51f 187}
b4c6a028 188EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 189
852ec809
BVA
190/*
191 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
192 * mpt3sas driver such that this function can be removed.
193 */
194void blk_mq_quiesce_queue_nowait(struct request_queue *q)
195{
196 unsigned long flags;
197
198 spin_lock_irqsave(q->queue_lock, flags);
199 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
200 spin_unlock_irqrestore(q->queue_lock, flags);
201}
202EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
203
6a83e74d 204/**
69e07c4a 205 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
206 * @q: request queue.
207 *
208 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
209 * callback function is invoked. Once this function is returned, we make
210 * sure no dispatch can happen until the queue is unquiesced via
211 * blk_mq_unquiesce_queue().
6a83e74d
BVA
212 */
213void blk_mq_quiesce_queue(struct request_queue *q)
214{
215 struct blk_mq_hw_ctx *hctx;
216 unsigned int i;
217 bool rcu = false;
218
1d9e9bc6 219 blk_mq_quiesce_queue_nowait(q);
f4560ffe 220
6a83e74d
BVA
221 queue_for_each_hw_ctx(q, hctx, i) {
222 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 223 synchronize_srcu(hctx->queue_rq_srcu);
6a83e74d
BVA
224 else
225 rcu = true;
226 }
227 if (rcu)
228 synchronize_rcu();
229}
230EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
231
e4e73913
ML
232/*
233 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
234 * @q: request queue.
235 *
236 * This function recovers queue into the state before quiescing
237 * which is done by blk_mq_quiesce_queue.
238 */
239void blk_mq_unquiesce_queue(struct request_queue *q)
240{
852ec809
BVA
241 unsigned long flags;
242
243 spin_lock_irqsave(q->queue_lock, flags);
f4560ffe 244 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
852ec809 245 spin_unlock_irqrestore(q->queue_lock, flags);
f4560ffe 246
1d9e9bc6
ML
247 /* dispatch requests which are inserted during quiescing */
248 blk_mq_run_hw_queues(q, true);
e4e73913
ML
249}
250EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
251
aed3ea94
JA
252void blk_mq_wake_waiters(struct request_queue *q)
253{
254 struct blk_mq_hw_ctx *hctx;
255 unsigned int i;
256
257 queue_for_each_hw_ctx(q, hctx, i)
258 if (blk_mq_hw_queue_mapped(hctx))
259 blk_mq_tag_wakeup_all(hctx->tags, true);
260}
261
320ae51f
JA
262bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
263{
264 return blk_mq_has_free_tags(hctx->tags);
265}
266EXPORT_SYMBOL(blk_mq_can_queue);
267
e4cdf1a1
CH
268static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
269 unsigned int tag, unsigned int op)
320ae51f 270{
e4cdf1a1
CH
271 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
272 struct request *rq = tags->static_rqs[tag];
273
c3a148d2
BVA
274 rq->rq_flags = 0;
275
e4cdf1a1
CH
276 if (data->flags & BLK_MQ_REQ_INTERNAL) {
277 rq->tag = -1;
278 rq->internal_tag = tag;
279 } else {
280 if (blk_mq_tag_busy(data->hctx)) {
281 rq->rq_flags = RQF_MQ_INFLIGHT;
282 atomic_inc(&data->hctx->nr_active);
283 }
284 rq->tag = tag;
285 rq->internal_tag = -1;
286 data->hctx->tags->rqs[rq->tag] = rq;
287 }
288
af76e555
CH
289 INIT_LIST_HEAD(&rq->queuelist);
290 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
291 rq->q = data->q;
292 rq->mq_ctx = data->ctx;
ef295ecf 293 rq->cmd_flags = op;
1b6d65a0
BVA
294 if (data->flags & BLK_MQ_REQ_PREEMPT)
295 rq->rq_flags |= RQF_PREEMPT;
e4cdf1a1 296 if (blk_queue_io_stat(data->q))
e8064021 297 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
298 /* do not touch atomic flags, it needs atomic ops against the timer */
299 rq->cpu = -1;
af76e555
CH
300 INIT_HLIST_NODE(&rq->hash);
301 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
302 rq->rq_disk = NULL;
303 rq->part = NULL;
3ee32372 304 rq->start_time = jiffies;
af76e555
CH
305#ifdef CONFIG_BLK_CGROUP
306 rq->rl = NULL;
0fec08b4 307 set_start_time_ns(rq);
af76e555
CH
308 rq->io_start_time_ns = 0;
309#endif
310 rq->nr_phys_segments = 0;
311#if defined(CONFIG_BLK_DEV_INTEGRITY)
312 rq->nr_integrity_segments = 0;
313#endif
af76e555
CH
314 rq->special = NULL;
315 /* tag was already set */
af76e555 316 rq->extra_len = 0;
af76e555 317
af76e555 318 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
319 rq->timeout = 0;
320
af76e555
CH
321 rq->end_io = NULL;
322 rq->end_io_data = NULL;
323 rq->next_rq = NULL;
324
e4cdf1a1
CH
325 data->ctx->rq_dispatched[op_is_sync(op)]++;
326 return rq;
5dee8577
CH
327}
328
d2c0d383
CH
329static struct request *blk_mq_get_request(struct request_queue *q,
330 struct bio *bio, unsigned int op,
331 struct blk_mq_alloc_data *data)
332{
333 struct elevator_queue *e = q->elevator;
334 struct request *rq;
e4cdf1a1 335 unsigned int tag;
21e768b4 336 bool put_ctx_on_error = false;
d2c0d383
CH
337
338 blk_queue_enter_live(q);
339 data->q = q;
21e768b4
BVA
340 if (likely(!data->ctx)) {
341 data->ctx = blk_mq_get_ctx(q);
342 put_ctx_on_error = true;
343 }
d2c0d383
CH
344 if (likely(!data->hctx))
345 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
03a07c92
GR
346 if (op & REQ_NOWAIT)
347 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
348
349 if (e) {
350 data->flags |= BLK_MQ_REQ_INTERNAL;
351
352 /*
353 * Flush requests are special and go directly to the
354 * dispatch list.
355 */
5bbf4e5a
CH
356 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
357 e->type->ops.mq.limit_depth(op, data);
d2c0d383
CH
358 }
359
e4cdf1a1
CH
360 tag = blk_mq_get_tag(data);
361 if (tag == BLK_MQ_TAG_FAIL) {
21e768b4
BVA
362 if (put_ctx_on_error) {
363 blk_mq_put_ctx(data->ctx);
1ad43c00
ML
364 data->ctx = NULL;
365 }
037cebb8
CH
366 blk_queue_exit(q);
367 return NULL;
d2c0d383
CH
368 }
369
e4cdf1a1 370 rq = blk_mq_rq_ctx_init(data, tag, op);
037cebb8
CH
371 if (!op_is_flush(op)) {
372 rq->elv.icq = NULL;
5bbf4e5a 373 if (e && e->type->ops.mq.prepare_request) {
44e8c2bf
CH
374 if (e->type->icq_cache && rq_ioc(bio))
375 blk_mq_sched_assign_ioc(rq, bio);
376
5bbf4e5a
CH
377 e->type->ops.mq.prepare_request(rq, bio);
378 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 379 }
037cebb8
CH
380 }
381 data->hctx->queued++;
382 return rq;
d2c0d383
CH
383}
384
cd6ce148 385struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 386 blk_mq_req_flags_t flags)
320ae51f 387{
5a797e00 388 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 389 struct request *rq;
a492f075 390 int ret;
320ae51f 391
3a0a5299 392 ret = blk_queue_enter(q, flags);
a492f075
JL
393 if (ret)
394 return ERR_PTR(ret);
320ae51f 395
cd6ce148 396 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 397 blk_queue_exit(q);
841bac2c 398
bd166ef1 399 if (!rq)
a492f075 400 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3 401
1ad43c00 402 blk_mq_put_ctx(alloc_data.ctx);
1ad43c00 403
0c4de0f3
CH
404 rq->__data_len = 0;
405 rq->__sector = (sector_t) -1;
406 rq->bio = rq->biotail = NULL;
320ae51f
JA
407 return rq;
408}
4bb659b1 409EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 410
cd6ce148 411struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 412 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 413{
6d2809d5 414 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 415 struct request *rq;
6d2809d5 416 unsigned int cpu;
1f5bd336
ML
417 int ret;
418
419 /*
420 * If the tag allocator sleeps we could get an allocation for a
421 * different hardware context. No need to complicate the low level
422 * allocator for this for the rare use case of a command tied to
423 * a specific queue.
424 */
425 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
426 return ERR_PTR(-EINVAL);
427
428 if (hctx_idx >= q->nr_hw_queues)
429 return ERR_PTR(-EIO);
430
3a0a5299 431 ret = blk_queue_enter(q, flags);
1f5bd336
ML
432 if (ret)
433 return ERR_PTR(ret);
434
c8712c6a
CH
435 /*
436 * Check if the hardware context is actually mapped to anything.
437 * If not tell the caller that it should skip this queue.
438 */
6d2809d5
OS
439 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
440 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
441 blk_queue_exit(q);
442 return ERR_PTR(-EXDEV);
c8712c6a 443 }
6d2809d5
OS
444 cpu = cpumask_first(alloc_data.hctx->cpumask);
445 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 446
cd6ce148 447 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 448 blk_queue_exit(q);
c8712c6a 449
6d2809d5
OS
450 if (!rq)
451 return ERR_PTR(-EWOULDBLOCK);
452
453 return rq;
1f5bd336
ML
454}
455EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
456
6af54051 457void blk_mq_free_request(struct request *rq)
320ae51f 458{
320ae51f 459 struct request_queue *q = rq->q;
6af54051
CH
460 struct elevator_queue *e = q->elevator;
461 struct blk_mq_ctx *ctx = rq->mq_ctx;
462 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
463 const int sched_tag = rq->internal_tag;
464
5bbf4e5a 465 if (rq->rq_flags & RQF_ELVPRIV) {
6af54051
CH
466 if (e && e->type->ops.mq.finish_request)
467 e->type->ops.mq.finish_request(rq);
468 if (rq->elv.icq) {
469 put_io_context(rq->elv.icq->ioc);
470 rq->elv.icq = NULL;
471 }
472 }
320ae51f 473
6af54051 474 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 475 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 476 atomic_dec(&hctx->nr_active);
87760e5e 477
7beb2f84
JA
478 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
479 laptop_io_completion(q->backing_dev_info);
480
87760e5e 481 wbt_done(q->rq_wb, &rq->issue_stat);
0d2602ca 482
85acb3ba
SL
483 if (blk_rq_rl(rq))
484 blk_put_rl(blk_rq_rl(rq));
485
af76e555 486 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 487 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
488 if (rq->tag != -1)
489 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
490 if (sched_tag != -1)
c05f8525 491 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
6d8c6c0f 492 blk_mq_sched_restart(hctx);
3ef28e83 493 blk_queue_exit(q);
320ae51f 494}
1a3b595a 495EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 496
2a842aca 497inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 498{
0d11e6ac
ML
499 blk_account_io_done(rq);
500
91b63639 501 if (rq->end_io) {
87760e5e 502 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 503 rq->end_io(rq, error);
91b63639
CH
504 } else {
505 if (unlikely(blk_bidi_rq(rq)))
506 blk_mq_free_request(rq->next_rq);
320ae51f 507 blk_mq_free_request(rq);
91b63639 508 }
320ae51f 509}
c8a446ad 510EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 511
2a842aca 512void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
513{
514 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
515 BUG();
c8a446ad 516 __blk_mq_end_request(rq, error);
63151a44 517}
c8a446ad 518EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 519
30a91cb4 520static void __blk_mq_complete_request_remote(void *data)
320ae51f 521{
3d6efbf6 522 struct request *rq = data;
320ae51f 523
30a91cb4 524 rq->q->softirq_done_fn(rq);
320ae51f 525}
320ae51f 526
453f8341 527static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
528{
529 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 530 bool shared = false;
320ae51f
JA
531 int cpu;
532
453f8341
CH
533 if (rq->internal_tag != -1)
534 blk_mq_sched_completed_request(rq);
535 if (rq->rq_flags & RQF_STATS) {
536 blk_mq_poll_stats_start(rq->q);
537 blk_stat_add(rq);
538 }
539
38535201 540 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
541 rq->q->softirq_done_fn(rq);
542 return;
543 }
320ae51f
JA
544
545 cpu = get_cpu();
38535201
CH
546 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
547 shared = cpus_share_cache(cpu, ctx->cpu);
548
549 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 550 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
551 rq->csd.info = rq;
552 rq->csd.flags = 0;
c46fff2a 553 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 554 } else {
30a91cb4 555 rq->q->softirq_done_fn(rq);
3d6efbf6 556 }
320ae51f
JA
557 put_cpu();
558}
30a91cb4 559
04ced159
JA
560static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
561{
562 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
563 rcu_read_unlock();
564 else
565 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
566}
567
568static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
569{
570 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
571 rcu_read_lock();
572 else
573 *srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
574}
575
30a91cb4
CH
576/**
577 * blk_mq_complete_request - end I/O on a request
578 * @rq: the request being processed
579 *
580 * Description:
581 * Ends all I/O on a request. It does not handle partial completions.
582 * The actual completion happens out-of-order, through a IPI handler.
583 **/
08e0029a 584void blk_mq_complete_request(struct request *rq)
30a91cb4 585{
95f09684
JA
586 struct request_queue *q = rq->q;
587
588 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 589 return;
08e0029a 590 if (!blk_mark_rq_complete(rq))
ed851860 591 __blk_mq_complete_request(rq);
30a91cb4
CH
592}
593EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 594
973c0191
KB
595int blk_mq_request_started(struct request *rq)
596{
597 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
598}
599EXPORT_SYMBOL_GPL(blk_mq_request_started);
600
e2490073 601void blk_mq_start_request(struct request *rq)
320ae51f
JA
602{
603 struct request_queue *q = rq->q;
604
bd166ef1
JA
605 blk_mq_sched_started_request(rq);
606
320ae51f
JA
607 trace_block_rq_issue(q, rq);
608
cf43e6be 609 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 610 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 611 rq->rq_flags |= RQF_STATS;
87760e5e 612 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
613 }
614
2b8393b4 615 blk_add_timer(rq);
87ee7b11 616
a7af0af3 617 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
538b7534 618
87ee7b11
JA
619 /*
620 * Mark us as started and clear complete. Complete might have been
621 * set if requeue raced with timeout, which then marked it as
622 * complete. So be sure to clear complete again when we start
623 * the request, otherwise we'll ignore the completion event.
a7af0af3
PZ
624 *
625 * Ensure that ->deadline is visible before we set STARTED, such that
626 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
627 * it observes STARTED.
87ee7b11 628 */
a7af0af3
PZ
629 smp_wmb();
630 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
631 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
632 /*
633 * Coherence order guarantees these consecutive stores to a
634 * single variable propagate in the specified order. Thus the
635 * clear_bit() is ordered _after_ the set bit. See
636 * blk_mq_check_expired().
637 *
638 * (the bits must be part of the same byte for this to be
639 * true).
640 */
4b570521 641 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
a7af0af3 642 }
49f5baa5
CH
643
644 if (q->dma_drain_size && blk_rq_bytes(rq)) {
645 /*
646 * Make sure space for the drain appears. We know we can do
647 * this because max_hw_segments has been adjusted to be one
648 * fewer than the device can handle.
649 */
650 rq->nr_phys_segments++;
651 }
320ae51f 652}
e2490073 653EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 654
d9d149a3
ML
655/*
656 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
48b99c9d 657 * flag isn't set yet, so there may be race with timeout handler,
d9d149a3
ML
658 * but given rq->deadline is just set in .queue_rq() under
659 * this situation, the race won't be possible in reality because
660 * rq->timeout should be set as big enough to cover the window
661 * between blk_mq_start_request() called from .queue_rq() and
662 * clearing REQ_ATOM_STARTED here.
663 */
ed0791b2 664static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
665{
666 struct request_queue *q = rq->q;
667
923218f6
ML
668 blk_mq_put_driver_tag(rq);
669
320ae51f 670 trace_block_rq_requeue(q, rq);
87760e5e 671 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 672 blk_mq_sched_requeue_request(rq);
49f5baa5 673
e2490073
CH
674 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
675 if (q->dma_drain_size && blk_rq_bytes(rq))
676 rq->nr_phys_segments--;
677 }
320ae51f
JA
678}
679
2b053aca 680void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 681{
ed0791b2 682 __blk_mq_requeue_request(rq);
ed0791b2 683
ed0791b2 684 BUG_ON(blk_queued_rq(rq));
2b053aca 685 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
686}
687EXPORT_SYMBOL(blk_mq_requeue_request);
688
6fca6a61
CH
689static void blk_mq_requeue_work(struct work_struct *work)
690{
691 struct request_queue *q =
2849450a 692 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
693 LIST_HEAD(rq_list);
694 struct request *rq, *next;
6fca6a61 695
18e9781d 696 spin_lock_irq(&q->requeue_lock);
6fca6a61 697 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 698 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
699
700 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 701 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
702 continue;
703
e8064021 704 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 705 list_del_init(&rq->queuelist);
bd6737f1 706 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
707 }
708
709 while (!list_empty(&rq_list)) {
710 rq = list_entry(rq_list.next, struct request, queuelist);
711 list_del_init(&rq->queuelist);
bd6737f1 712 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
713 }
714
52d7f1b5 715 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
716}
717
2b053aca
BVA
718void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
719 bool kick_requeue_list)
6fca6a61
CH
720{
721 struct request_queue *q = rq->q;
722 unsigned long flags;
723
724 /*
725 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 726 * request head insertion from the workqueue.
6fca6a61 727 */
e8064021 728 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
729
730 spin_lock_irqsave(&q->requeue_lock, flags);
731 if (at_head) {
e8064021 732 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
733 list_add(&rq->queuelist, &q->requeue_list);
734 } else {
735 list_add_tail(&rq->queuelist, &q->requeue_list);
736 }
737 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
738
739 if (kick_requeue_list)
740 blk_mq_kick_requeue_list(q);
6fca6a61
CH
741}
742EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
743
744void blk_mq_kick_requeue_list(struct request_queue *q)
745{
2849450a 746 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
747}
748EXPORT_SYMBOL(blk_mq_kick_requeue_list);
749
2849450a
MS
750void blk_mq_delay_kick_requeue_list(struct request_queue *q,
751 unsigned long msecs)
752{
d4acf365
BVA
753 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
754 msecs_to_jiffies(msecs));
2849450a
MS
755}
756EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
757
0e62f51f
JA
758struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
759{
88c7b2b7
JA
760 if (tag < tags->nr_tags) {
761 prefetch(tags->rqs[tag]);
4ee86bab 762 return tags->rqs[tag];
88c7b2b7 763 }
4ee86bab
HR
764
765 return NULL;
24d2f903
CH
766}
767EXPORT_SYMBOL(blk_mq_tag_to_rq);
768
320ae51f 769struct blk_mq_timeout_data {
46f92d42
CH
770 unsigned long next;
771 unsigned int next_set;
320ae51f
JA
772};
773
90415837 774void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 775{
f8a5b122 776 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 777 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
778
779 /*
780 * We know that complete is set at this point. If STARTED isn't set
781 * anymore, then the request isn't active and the "timeout" should
782 * just be ignored. This can happen due to the bitflag ordering.
783 * Timeout first checks if STARTED is set, and if it is, assumes
784 * the request is active. But if we race with completion, then
48b99c9d 785 * both flags will get cleared. So check here again, and ignore
87ee7b11
JA
786 * a timeout event with a request that isn't active.
787 */
46f92d42
CH
788 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
789 return;
87ee7b11 790
46f92d42 791 if (ops->timeout)
0152fb6b 792 ret = ops->timeout(req, reserved);
46f92d42
CH
793
794 switch (ret) {
795 case BLK_EH_HANDLED:
796 __blk_mq_complete_request(req);
797 break;
798 case BLK_EH_RESET_TIMER:
799 blk_add_timer(req);
800 blk_clear_rq_complete(req);
801 break;
802 case BLK_EH_NOT_HANDLED:
803 break;
804 default:
805 printk(KERN_ERR "block: bad eh return: %d\n", ret);
806 break;
807 }
87ee7b11 808}
5b3f25fc 809
81481eb4
CH
810static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
811 struct request *rq, void *priv, bool reserved)
812{
813 struct blk_mq_timeout_data *data = priv;
a7af0af3 814 unsigned long deadline;
87ee7b11 815
95a49603 816 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 817 return;
87ee7b11 818
a7af0af3
PZ
819 /*
820 * Ensures that if we see STARTED we must also see our
821 * up-to-date deadline, see blk_mq_start_request().
822 */
823 smp_rmb();
824
825 deadline = READ_ONCE(rq->deadline);
826
d9d149a3
ML
827 /*
828 * The rq being checked may have been freed and reallocated
829 * out already here, we avoid this race by checking rq->deadline
830 * and REQ_ATOM_COMPLETE flag together:
831 *
832 * - if rq->deadline is observed as new value because of
833 * reusing, the rq won't be timed out because of timing.
834 * - if rq->deadline is observed as previous value,
835 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
836 * because we put a barrier between setting rq->deadline
837 * and clearing the flag in blk_mq_start_request(), so
838 * this rq won't be timed out too.
839 */
a7af0af3
PZ
840 if (time_after_eq(jiffies, deadline)) {
841 if (!blk_mark_rq_complete(rq)) {
842 /*
843 * Again coherence order ensures that consecutive reads
844 * from the same variable must be in that order. This
845 * ensures that if we see COMPLETE clear, we must then
846 * see STARTED set and we'll ignore this timeout.
847 *
848 * (There's also the MB implied by the test_and_clear())
849 */
0152fb6b 850 blk_mq_rq_timed_out(rq, reserved);
a7af0af3
PZ
851 }
852 } else if (!data->next_set || time_after(data->next, deadline)) {
853 data->next = deadline;
46f92d42
CH
854 data->next_set = 1;
855 }
87ee7b11
JA
856}
857
287922eb 858static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 859{
287922eb
CH
860 struct request_queue *q =
861 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
862 struct blk_mq_timeout_data data = {
863 .next = 0,
864 .next_set = 0,
865 };
81481eb4 866 int i;
320ae51f 867
71f79fb3
GKB
868 /* A deadlock might occur if a request is stuck requiring a
869 * timeout at the same time a queue freeze is waiting
870 * completion, since the timeout code would not be able to
871 * acquire the queue reference here.
872 *
873 * That's why we don't use blk_queue_enter here; instead, we use
874 * percpu_ref_tryget directly, because we need to be able to
875 * obtain a reference even in the short window between the queue
876 * starting to freeze, by dropping the first reference in
1671d522 877 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
878 * consumed, marked by the instant q_usage_counter reaches
879 * zero.
880 */
881 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
882 return;
883
0bf6cd5b 884 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 885
81481eb4
CH
886 if (data.next_set) {
887 data.next = blk_rq_timeout(round_jiffies_up(data.next));
888 mod_timer(&q->timeout, data.next);
0d2602ca 889 } else {
0bf6cd5b
CH
890 struct blk_mq_hw_ctx *hctx;
891
f054b56c
ML
892 queue_for_each_hw_ctx(q, hctx, i) {
893 /* the hctx may be unmapped, so check it here */
894 if (blk_mq_hw_queue_mapped(hctx))
895 blk_mq_tag_idle(hctx);
896 }
0d2602ca 897 }
287922eb 898 blk_queue_exit(q);
320ae51f
JA
899}
900
88459642
OS
901struct flush_busy_ctx_data {
902 struct blk_mq_hw_ctx *hctx;
903 struct list_head *list;
904};
905
906static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
907{
908 struct flush_busy_ctx_data *flush_data = data;
909 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
910 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
911
912 sbitmap_clear_bit(sb, bitnr);
913 spin_lock(&ctx->lock);
914 list_splice_tail_init(&ctx->rq_list, flush_data->list);
915 spin_unlock(&ctx->lock);
916 return true;
917}
918
1429d7c9
JA
919/*
920 * Process software queues that have been marked busy, splicing them
921 * to the for-dispatch
922 */
2c3ad667 923void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 924{
88459642
OS
925 struct flush_busy_ctx_data data = {
926 .hctx = hctx,
927 .list = list,
928 };
1429d7c9 929
88459642 930 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 931}
2c3ad667 932EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 933
b347689f
ML
934struct dispatch_rq_data {
935 struct blk_mq_hw_ctx *hctx;
936 struct request *rq;
937};
938
939static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
940 void *data)
941{
942 struct dispatch_rq_data *dispatch_data = data;
943 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
944 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
945
946 spin_lock(&ctx->lock);
947 if (unlikely(!list_empty(&ctx->rq_list))) {
948 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
949 list_del_init(&dispatch_data->rq->queuelist);
950 if (list_empty(&ctx->rq_list))
951 sbitmap_clear_bit(sb, bitnr);
952 }
953 spin_unlock(&ctx->lock);
954
955 return !dispatch_data->rq;
956}
957
958struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
959 struct blk_mq_ctx *start)
960{
961 unsigned off = start ? start->index_hw : 0;
962 struct dispatch_rq_data data = {
963 .hctx = hctx,
964 .rq = NULL,
965 };
966
967 __sbitmap_for_each_set(&hctx->ctx_map, off,
968 dispatch_rq_from_ctx, &data);
969
970 return data.rq;
971}
972
703fd1c0
JA
973static inline unsigned int queued_to_index(unsigned int queued)
974{
975 if (!queued)
976 return 0;
1429d7c9 977
703fd1c0 978 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
979}
980
bd6737f1
JA
981bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
982 bool wait)
bd166ef1
JA
983{
984 struct blk_mq_alloc_data data = {
985 .q = rq->q,
bd166ef1
JA
986 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
987 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
988 };
989
5feeacdd
JA
990 might_sleep_if(wait);
991
81380ca1
OS
992 if (rq->tag != -1)
993 goto done;
bd166ef1 994
415b806d
SG
995 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
996 data.flags |= BLK_MQ_REQ_RESERVED;
997
bd166ef1
JA
998 rq->tag = blk_mq_get_tag(&data);
999 if (rq->tag >= 0) {
200e86b3
JA
1000 if (blk_mq_tag_busy(data.hctx)) {
1001 rq->rq_flags |= RQF_MQ_INFLIGHT;
1002 atomic_inc(&data.hctx->nr_active);
1003 }
bd166ef1 1004 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
1005 }
1006
81380ca1
OS
1007done:
1008 if (hctx)
1009 *hctx = data.hctx;
1010 return rq->tag != -1;
bd166ef1
JA
1011}
1012
eb619fdb
JA
1013static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1014 int flags, void *key)
da55f2cc
OS
1015{
1016 struct blk_mq_hw_ctx *hctx;
1017
1018 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1019
eb619fdb 1020 list_del_init(&wait->entry);
da55f2cc
OS
1021 blk_mq_run_hw_queue(hctx, true);
1022 return 1;
1023}
1024
f906a6a0
JA
1025/*
1026 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1027 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1028 * restart. For both caes, take care to check the condition again after
1029 * marking us as waiting.
1030 */
1031static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1032 struct request *rq)
da55f2cc 1033{
eb619fdb 1034 struct blk_mq_hw_ctx *this_hctx = *hctx;
f906a6a0 1035 bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
da55f2cc 1036 struct sbq_wait_state *ws;
f906a6a0
JA
1037 wait_queue_entry_t *wait;
1038 bool ret;
da55f2cc 1039
f906a6a0
JA
1040 if (!shared_tags) {
1041 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1042 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1043 } else {
1044 wait = &this_hctx->dispatch_wait;
1045 if (!list_empty_careful(&wait->entry))
1046 return false;
1047
1048 spin_lock(&this_hctx->lock);
1049 if (!list_empty(&wait->entry)) {
1050 spin_unlock(&this_hctx->lock);
1051 return false;
1052 }
eb619fdb 1053
f906a6a0
JA
1054 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1055 add_wait_queue(&ws->wait, wait);
eb619fdb
JA
1056 }
1057
da55f2cc 1058 /*
eb619fdb
JA
1059 * It's possible that a tag was freed in the window between the
1060 * allocation failure and adding the hardware queue to the wait
1061 * queue.
da55f2cc 1062 */
f906a6a0
JA
1063 ret = blk_mq_get_driver_tag(rq, hctx, false);
1064
1065 if (!shared_tags) {
1066 /*
1067 * Don't clear RESTART here, someone else could have set it.
1068 * At most this will cost an extra queue run.
1069 */
1070 return ret;
1071 } else {
1072 if (!ret) {
1073 spin_unlock(&this_hctx->lock);
1074 return false;
1075 }
1076
1077 /*
1078 * We got a tag, remove ourselves from the wait queue to ensure
1079 * someone else gets the wakeup.
1080 */
1081 spin_lock_irq(&ws->wait.lock);
1082 list_del_init(&wait->entry);
1083 spin_unlock_irq(&ws->wait.lock);
eb619fdb 1084 spin_unlock(&this_hctx->lock);
f906a6a0 1085 return true;
eb619fdb 1086 }
da55f2cc
OS
1087}
1088
de148297 1089bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
eb619fdb 1090 bool got_budget)
320ae51f 1091{
81380ca1 1092 struct blk_mq_hw_ctx *hctx;
6d6f167c 1093 struct request *rq, *nxt;
eb619fdb 1094 bool no_tag = false;
fc17b653 1095 int errors, queued;
320ae51f 1096
81380ca1
OS
1097 if (list_empty(list))
1098 return false;
1099
de148297
ML
1100 WARN_ON(!list_is_singular(list) && got_budget);
1101
320ae51f
JA
1102 /*
1103 * Now process all the entries, sending them to the driver.
1104 */
93efe981 1105 errors = queued = 0;
81380ca1 1106 do {
74c45052 1107 struct blk_mq_queue_data bd;
fc17b653 1108 blk_status_t ret;
320ae51f 1109
f04c3df3 1110 rq = list_first_entry(list, struct request, queuelist);
bd166ef1 1111 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
3c782d67 1112 /*
da55f2cc 1113 * The initial allocation attempt failed, so we need to
eb619fdb
JA
1114 * rerun the hardware queue when a tag is freed. The
1115 * waitqueue takes care of that. If the queue is run
1116 * before we add this entry back on the dispatch list,
1117 * we'll re-run it below.
3c782d67 1118 */
f906a6a0 1119 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
de148297
ML
1120 if (got_budget)
1121 blk_mq_put_dispatch_budget(hctx);
f906a6a0
JA
1122 /*
1123 * For non-shared tags, the RESTART check
1124 * will suffice.
1125 */
1126 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1127 no_tag = true;
de148297
ML
1128 break;
1129 }
1130 }
1131
0c6af1cc
ML
1132 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1133 blk_mq_put_driver_tag(rq);
88022d72 1134 break;
0c6af1cc 1135 }
da55f2cc 1136
320ae51f 1137 list_del_init(&rq->queuelist);
320ae51f 1138
74c45052 1139 bd.rq = rq;
113285b4
JA
1140
1141 /*
1142 * Flag last if we have no more requests, or if we have more
1143 * but can't assign a driver tag to it.
1144 */
1145 if (list_empty(list))
1146 bd.last = true;
1147 else {
113285b4
JA
1148 nxt = list_first_entry(list, struct request, queuelist);
1149 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1150 }
74c45052
JA
1151
1152 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653 1153 if (ret == BLK_STS_RESOURCE) {
6d6f167c
JW
1154 /*
1155 * If an I/O scheduler has been configured and we got a
ff821d27
JA
1156 * driver tag for the next request already, free it
1157 * again.
6d6f167c
JW
1158 */
1159 if (!list_empty(list)) {
1160 nxt = list_first_entry(list, struct request, queuelist);
1161 blk_mq_put_driver_tag(nxt);
1162 }
f04c3df3 1163 list_add(&rq->queuelist, list);
ed0791b2 1164 __blk_mq_requeue_request(rq);
320ae51f 1165 break;
fc17b653
CH
1166 }
1167
1168 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1169 errors++;
2a842aca 1170 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1171 continue;
320ae51f
JA
1172 }
1173
fc17b653 1174 queued++;
81380ca1 1175 } while (!list_empty(list));
320ae51f 1176
703fd1c0 1177 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1178
1179 /*
1180 * Any items that need requeuing? Stuff them into hctx->dispatch,
1181 * that is where we will continue on next queue run.
1182 */
f04c3df3 1183 if (!list_empty(list)) {
320ae51f 1184 spin_lock(&hctx->lock);
c13660a0 1185 list_splice_init(list, &hctx->dispatch);
320ae51f 1186 spin_unlock(&hctx->lock);
f04c3df3 1187
9ba52e58 1188 /*
710c785f
BVA
1189 * If SCHED_RESTART was set by the caller of this function and
1190 * it is no longer set that means that it was cleared by another
1191 * thread and hence that a queue rerun is needed.
9ba52e58 1192 *
eb619fdb
JA
1193 * If 'no_tag' is set, that means that we failed getting
1194 * a driver tag with an I/O scheduler attached. If our dispatch
1195 * waitqueue is no longer active, ensure that we run the queue
1196 * AFTER adding our entries back to the list.
bd166ef1 1197 *
710c785f
BVA
1198 * If no I/O scheduler has been configured it is possible that
1199 * the hardware queue got stopped and restarted before requests
1200 * were pushed back onto the dispatch list. Rerun the queue to
1201 * avoid starvation. Notes:
1202 * - blk_mq_run_hw_queue() checks whether or not a queue has
1203 * been stopped before rerunning a queue.
1204 * - Some but not all block drivers stop a queue before
fc17b653 1205 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1206 * and dm-rq.
bd166ef1 1207 */
eb619fdb
JA
1208 if (!blk_mq_sched_needs_restart(hctx) ||
1209 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1210 blk_mq_run_hw_queue(hctx, true);
320ae51f 1211 }
f04c3df3 1212
93efe981 1213 return (queued + errors) != 0;
f04c3df3
JA
1214}
1215
6a83e74d
BVA
1216static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1217{
1218 int srcu_idx;
1219
b7a71e66
JA
1220 /*
1221 * We should be running this queue from one of the CPUs that
1222 * are mapped to it.
1223 */
6a83e74d
BVA
1224 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1225 cpu_online(hctx->next_cpu));
1226
b7a71e66
JA
1227 /*
1228 * We can't run the queue inline with ints disabled. Ensure that
1229 * we catch bad users of this early.
1230 */
1231 WARN_ON_ONCE(in_interrupt());
1232
04ced159 1233 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1234
04ced159
JA
1235 hctx_lock(hctx, &srcu_idx);
1236 blk_mq_sched_dispatch_requests(hctx);
1237 hctx_unlock(hctx, srcu_idx);
6a83e74d
BVA
1238}
1239
506e931f
JA
1240/*
1241 * It'd be great if the workqueue API had a way to pass
1242 * in a mask and had some smarts for more clever placement.
1243 * For now we just round-robin here, switching for every
1244 * BLK_MQ_CPU_WORK_BATCH queued items.
1245 */
1246static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1247{
b657d7e6
CH
1248 if (hctx->queue->nr_hw_queues == 1)
1249 return WORK_CPU_UNBOUND;
506e931f
JA
1250
1251 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1252 int next_cpu;
506e931f
JA
1253
1254 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1255 if (next_cpu >= nr_cpu_ids)
1256 next_cpu = cpumask_first(hctx->cpumask);
1257
1258 hctx->next_cpu = next_cpu;
1259 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1260 }
1261
b657d7e6 1262 return hctx->next_cpu;
506e931f
JA
1263}
1264
7587a5ae
BVA
1265static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1266 unsigned long msecs)
320ae51f 1267{
5435c023
BVA
1268 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1269 return;
1270
1271 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1272 return;
1273
1b792f2f 1274 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1275 int cpu = get_cpu();
1276 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1277 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1278 put_cpu();
398205b8
PB
1279 return;
1280 }
e4043dcf 1281
2a90d4aa 1282 put_cpu();
e4043dcf 1283 }
398205b8 1284
9f993737
JA
1285 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1286 &hctx->run_work,
1287 msecs_to_jiffies(msecs));
7587a5ae
BVA
1288}
1289
1290void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1291{
1292 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1293}
1294EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1295
79f720a7 1296bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 1297{
24f5a90f
ML
1298 int srcu_idx;
1299 bool need_run;
1300
1301 /*
1302 * When queue is quiesced, we may be switching io scheduler, or
1303 * updating nr_hw_queues, or other things, and we can't run queue
1304 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1305 *
1306 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1307 * quiesced.
1308 */
04ced159
JA
1309 hctx_lock(hctx, &srcu_idx);
1310 need_run = !blk_queue_quiesced(hctx->queue) &&
1311 blk_mq_hctx_has_pending(hctx);
1312 hctx_unlock(hctx, srcu_idx);
24f5a90f
ML
1313
1314 if (need_run) {
79f720a7
JA
1315 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1316 return true;
1317 }
1318
1319 return false;
320ae51f 1320}
5b727272 1321EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1322
b94ec296 1323void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1324{
1325 struct blk_mq_hw_ctx *hctx;
1326 int i;
1327
1328 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 1329 if (blk_mq_hctx_stopped(hctx))
320ae51f
JA
1330 continue;
1331
b94ec296 1332 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1333 }
1334}
b94ec296 1335EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1336
fd001443
BVA
1337/**
1338 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1339 * @q: request queue.
1340 *
1341 * The caller is responsible for serializing this function against
1342 * blk_mq_{start,stop}_hw_queue().
1343 */
1344bool blk_mq_queue_stopped(struct request_queue *q)
1345{
1346 struct blk_mq_hw_ctx *hctx;
1347 int i;
1348
1349 queue_for_each_hw_ctx(q, hctx, i)
1350 if (blk_mq_hctx_stopped(hctx))
1351 return true;
1352
1353 return false;
1354}
1355EXPORT_SYMBOL(blk_mq_queue_stopped);
1356
39a70c76
ML
1357/*
1358 * This function is often used for pausing .queue_rq() by driver when
1359 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1360 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1361 *
1362 * We do not guarantee that dispatch can be drained or blocked
1363 * after blk_mq_stop_hw_queue() returns. Please use
1364 * blk_mq_quiesce_queue() for that requirement.
1365 */
2719aa21
JA
1366void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1367{
641a9ed6 1368 cancel_delayed_work(&hctx->run_work);
280d45f6 1369
641a9ed6 1370 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1371}
641a9ed6 1372EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1373
39a70c76
ML
1374/*
1375 * This function is often used for pausing .queue_rq() by driver when
1376 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1377 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1378 *
1379 * We do not guarantee that dispatch can be drained or blocked
1380 * after blk_mq_stop_hw_queues() returns. Please use
1381 * blk_mq_quiesce_queue() for that requirement.
1382 */
2719aa21
JA
1383void blk_mq_stop_hw_queues(struct request_queue *q)
1384{
641a9ed6
ML
1385 struct blk_mq_hw_ctx *hctx;
1386 int i;
1387
1388 queue_for_each_hw_ctx(q, hctx, i)
1389 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1390}
1391EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1392
320ae51f
JA
1393void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1394{
1395 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1396
0ffbce80 1397 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1398}
1399EXPORT_SYMBOL(blk_mq_start_hw_queue);
1400
2f268556
CH
1401void blk_mq_start_hw_queues(struct request_queue *q)
1402{
1403 struct blk_mq_hw_ctx *hctx;
1404 int i;
1405
1406 queue_for_each_hw_ctx(q, hctx, i)
1407 blk_mq_start_hw_queue(hctx);
1408}
1409EXPORT_SYMBOL(blk_mq_start_hw_queues);
1410
ae911c5e
JA
1411void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1412{
1413 if (!blk_mq_hctx_stopped(hctx))
1414 return;
1415
1416 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1417 blk_mq_run_hw_queue(hctx, async);
1418}
1419EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1420
1b4a3258 1421void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1422{
1423 struct blk_mq_hw_ctx *hctx;
1424 int i;
1425
ae911c5e
JA
1426 queue_for_each_hw_ctx(q, hctx, i)
1427 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1428}
1429EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1430
70f4db63 1431static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1432{
1433 struct blk_mq_hw_ctx *hctx;
1434
9f993737 1435 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1436
21c6e939
JA
1437 /*
1438 * If we are stopped, don't run the queue. The exception is if
1439 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1440 * the STOPPED bit and run it.
1441 */
1442 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1443 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1444 return;
7587a5ae 1445
21c6e939
JA
1446 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1447 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1448 }
7587a5ae
BVA
1449
1450 __blk_mq_run_hw_queue(hctx);
1451}
1452
70f4db63
CH
1453
1454void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1455{
5435c023 1456 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
19c66e59 1457 return;
70f4db63 1458
21c6e939
JA
1459 /*
1460 * Stop the hw queue, then modify currently delayed work.
1461 * This should prevent us from running the queue prematurely.
1462 * Mark the queue as auto-clearing STOPPED when it runs.
1463 */
7e79dadc 1464 blk_mq_stop_hw_queue(hctx);
21c6e939
JA
1465 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1466 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1467 &hctx->run_work,
1468 msecs_to_jiffies(msecs));
70f4db63
CH
1469}
1470EXPORT_SYMBOL(blk_mq_delay_queue);
1471
cfd0c552 1472static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1473 struct request *rq,
1474 bool at_head)
320ae51f 1475{
e57690fe
JA
1476 struct blk_mq_ctx *ctx = rq->mq_ctx;
1477
7b607814
BVA
1478 lockdep_assert_held(&ctx->lock);
1479
01b983c9
JA
1480 trace_block_rq_insert(hctx->queue, rq);
1481
72a0a36e
CH
1482 if (at_head)
1483 list_add(&rq->queuelist, &ctx->rq_list);
1484 else
1485 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1486}
4bb659b1 1487
2c3ad667
JA
1488void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1489 bool at_head)
cfd0c552
ML
1490{
1491 struct blk_mq_ctx *ctx = rq->mq_ctx;
1492
7b607814
BVA
1493 lockdep_assert_held(&ctx->lock);
1494
e57690fe 1495 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1496 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1497}
1498
157f377b
JA
1499/*
1500 * Should only be used carefully, when the caller knows we want to
1501 * bypass a potential IO scheduler on the target device.
1502 */
b0850297 1503void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
157f377b
JA
1504{
1505 struct blk_mq_ctx *ctx = rq->mq_ctx;
1506 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1507
1508 spin_lock(&hctx->lock);
1509 list_add_tail(&rq->queuelist, &hctx->dispatch);
1510 spin_unlock(&hctx->lock);
1511
b0850297
ML
1512 if (run_queue)
1513 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1514}
1515
bd166ef1
JA
1516void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1517 struct list_head *list)
320ae51f
JA
1518
1519{
320ae51f
JA
1520 /*
1521 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1522 * offline now
1523 */
1524 spin_lock(&ctx->lock);
1525 while (!list_empty(list)) {
1526 struct request *rq;
1527
1528 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1529 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1530 list_del_init(&rq->queuelist);
e57690fe 1531 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1532 }
cfd0c552 1533 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1534 spin_unlock(&ctx->lock);
320ae51f
JA
1535}
1536
1537static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1538{
1539 struct request *rqa = container_of(a, struct request, queuelist);
1540 struct request *rqb = container_of(b, struct request, queuelist);
1541
1542 return !(rqa->mq_ctx < rqb->mq_ctx ||
1543 (rqa->mq_ctx == rqb->mq_ctx &&
1544 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1545}
1546
1547void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1548{
1549 struct blk_mq_ctx *this_ctx;
1550 struct request_queue *this_q;
1551 struct request *rq;
1552 LIST_HEAD(list);
1553 LIST_HEAD(ctx_list);
1554 unsigned int depth;
1555
1556 list_splice_init(&plug->mq_list, &list);
1557
1558 list_sort(NULL, &list, plug_ctx_cmp);
1559
1560 this_q = NULL;
1561 this_ctx = NULL;
1562 depth = 0;
1563
1564 while (!list_empty(&list)) {
1565 rq = list_entry_rq(list.next);
1566 list_del_init(&rq->queuelist);
1567 BUG_ON(!rq->q);
1568 if (rq->mq_ctx != this_ctx) {
1569 if (this_ctx) {
bd166ef1
JA
1570 trace_block_unplug(this_q, depth, from_schedule);
1571 blk_mq_sched_insert_requests(this_q, this_ctx,
1572 &ctx_list,
1573 from_schedule);
320ae51f
JA
1574 }
1575
1576 this_ctx = rq->mq_ctx;
1577 this_q = rq->q;
1578 depth = 0;
1579 }
1580
1581 depth++;
1582 list_add_tail(&rq->queuelist, &ctx_list);
1583 }
1584
1585 /*
1586 * If 'this_ctx' is set, we know we have entries to complete
1587 * on 'ctx_list'. Do those.
1588 */
1589 if (this_ctx) {
bd166ef1
JA
1590 trace_block_unplug(this_q, depth, from_schedule);
1591 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1592 from_schedule);
320ae51f
JA
1593 }
1594}
1595
1596static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1597{
da8d7f07 1598 blk_init_request_from_bio(rq, bio);
4b570521 1599
85acb3ba
SL
1600 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1601
6e85eaf3 1602 blk_account_io_start(rq, true);
320ae51f
JA
1603}
1604
ab42f35d
ML
1605static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1606 struct blk_mq_ctx *ctx,
1607 struct request *rq)
1608{
1609 spin_lock(&ctx->lock);
1610 __blk_mq_insert_request(hctx, rq, false);
1611 spin_unlock(&ctx->lock);
07068d5b 1612}
14ec77f3 1613
fd2d3326
JA
1614static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1615{
bd166ef1
JA
1616 if (rq->tag != -1)
1617 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1618
1619 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1620}
1621
d964f04a
ML
1622static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1623 struct request *rq,
04ced159 1624 blk_qc_t *cookie)
f984df1f 1625{
f984df1f 1626 struct request_queue *q = rq->q;
f984df1f
SL
1627 struct blk_mq_queue_data bd = {
1628 .rq = rq,
d945a365 1629 .last = true,
f984df1f 1630 };
bd166ef1 1631 blk_qc_t new_cookie;
f06345ad 1632 blk_status_t ret;
d964f04a
ML
1633 bool run_queue = true;
1634
f4560ffe
ML
1635 /* RCU or SRCU read lock is needed before checking quiesced flag */
1636 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a
ML
1637 run_queue = false;
1638 goto insert;
1639 }
f984df1f 1640
bd166ef1 1641 if (q->elevator)
2253efc8
BVA
1642 goto insert;
1643
d964f04a 1644 if (!blk_mq_get_driver_tag(rq, NULL, false))
bd166ef1
JA
1645 goto insert;
1646
88022d72 1647 if (!blk_mq_get_dispatch_budget(hctx)) {
de148297
ML
1648 blk_mq_put_driver_tag(rq);
1649 goto insert;
88022d72 1650 }
de148297 1651
bd166ef1
JA
1652 new_cookie = request_to_qc_t(hctx, rq);
1653
f984df1f
SL
1654 /*
1655 * For OK queue, we are done. For error, kill it. Any other
1656 * error (busy), just add it to our list as we previously
1657 * would have done
1658 */
1659 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653
CH
1660 switch (ret) {
1661 case BLK_STS_OK:
7b371636 1662 *cookie = new_cookie;
2253efc8 1663 return;
fc17b653
CH
1664 case BLK_STS_RESOURCE:
1665 __blk_mq_requeue_request(rq);
1666 goto insert;
1667 default:
7b371636 1668 *cookie = BLK_QC_T_NONE;
fc17b653 1669 blk_mq_end_request(rq, ret);
2253efc8 1670 return;
f984df1f 1671 }
7b371636 1672
2253efc8 1673insert:
04ced159
JA
1674 blk_mq_sched_insert_request(rq, false, run_queue, false,
1675 hctx->flags & BLK_MQ_F_BLOCKING);
f984df1f
SL
1676}
1677
5eb6126e
CH
1678static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1679 struct request *rq, blk_qc_t *cookie)
1680{
04ced159 1681 int srcu_idx;
bf4907c0 1682
04ced159 1683 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1684
04ced159
JA
1685 hctx_lock(hctx, &srcu_idx);
1686 __blk_mq_try_issue_directly(hctx, rq, cookie);
1687 hctx_unlock(hctx, srcu_idx);
5eb6126e
CH
1688}
1689
dece1635 1690static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1691{
ef295ecf 1692 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1693 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1694 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1695 struct request *rq;
5eb6126e 1696 unsigned int request_count = 0;
f984df1f 1697 struct blk_plug *plug;
5b3f341f 1698 struct request *same_queue_rq = NULL;
7b371636 1699 blk_qc_t cookie;
87760e5e 1700 unsigned int wb_acct;
07068d5b
JA
1701
1702 blk_queue_bounce(q, &bio);
1703
af67c31f 1704 blk_queue_split(q, &bio);
f36ea50c 1705
e23947bd 1706 if (!bio_integrity_prep(bio))
dece1635 1707 return BLK_QC_T_NONE;
07068d5b 1708
87c279e6
OS
1709 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1710 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1711 return BLK_QC_T_NONE;
f984df1f 1712
bd166ef1
JA
1713 if (blk_mq_sched_bio_merge(q, bio))
1714 return BLK_QC_T_NONE;
1715
87760e5e
JA
1716 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1717
bd166ef1
JA
1718 trace_block_getrq(q, bio, bio->bi_opf);
1719
d2c0d383 1720 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1721 if (unlikely(!rq)) {
1722 __wbt_done(q->rq_wb, wb_acct);
03a07c92
GR
1723 if (bio->bi_opf & REQ_NOWAIT)
1724 bio_wouldblock_error(bio);
dece1635 1725 return BLK_QC_T_NONE;
87760e5e
JA
1726 }
1727
1728 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1729
fd2d3326 1730 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1731
f984df1f 1732 plug = current->plug;
07068d5b 1733 if (unlikely(is_flush_fua)) {
f984df1f 1734 blk_mq_put_ctx(data.ctx);
07068d5b 1735 blk_mq_bio_to_request(rq, bio);
923218f6
ML
1736
1737 /* bypass scheduler for flush rq */
1738 blk_insert_flush(rq);
1739 blk_mq_run_hw_queue(data.hctx, true);
a4d907b6 1740 } else if (plug && q->nr_hw_queues == 1) {
600271d9
SL
1741 struct request *last = NULL;
1742
b00c53e8 1743 blk_mq_put_ctx(data.ctx);
e6c4438b 1744 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1745
1746 /*
1747 * @request_count may become stale because of schedule
1748 * out, so check the list again.
1749 */
1750 if (list_empty(&plug->mq_list))
1751 request_count = 0;
254d259d
CH
1752 else if (blk_queue_nomerges(q))
1753 request_count = blk_plug_queued_count(q);
1754
676d0607 1755 if (!request_count)
e6c4438b 1756 trace_block_plug(q);
600271d9
SL
1757 else
1758 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1759
600271d9
SL
1760 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1761 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1762 blk_flush_plug_list(plug, false);
1763 trace_block_plug(q);
320ae51f 1764 }
b094f89c 1765
e6c4438b 1766 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1767 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1768 blk_mq_bio_to_request(rq, bio);
07068d5b 1769
07068d5b 1770 /*
6a83e74d 1771 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1772 * Otherwise the existing request in the plug list will be
1773 * issued. So the plug list will have one request at most
2299722c
CH
1774 * The plug list might get flushed before this. If that happens,
1775 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1776 */
2299722c
CH
1777 if (list_empty(&plug->mq_list))
1778 same_queue_rq = NULL;
1779 if (same_queue_rq)
1780 list_del_init(&same_queue_rq->queuelist);
1781 list_add_tail(&rq->queuelist, &plug->mq_list);
1782
bf4907c0
JA
1783 blk_mq_put_ctx(data.ctx);
1784
dad7a3be
ML
1785 if (same_queue_rq) {
1786 data.hctx = blk_mq_map_queue(q,
1787 same_queue_rq->mq_ctx->cpu);
2299722c
CH
1788 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1789 &cookie);
dad7a3be 1790 }
a4d907b6 1791 } else if (q->nr_hw_queues > 1 && is_sync) {
bf4907c0 1792 blk_mq_put_ctx(data.ctx);
2299722c 1793 blk_mq_bio_to_request(rq, bio);
2299722c 1794 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
a4d907b6 1795 } else if (q->elevator) {
b00c53e8 1796 blk_mq_put_ctx(data.ctx);
bd166ef1 1797 blk_mq_bio_to_request(rq, bio);
a4d907b6 1798 blk_mq_sched_insert_request(rq, false, true, true, true);
ab42f35d 1799 } else {
b00c53e8 1800 blk_mq_put_ctx(data.ctx);
ab42f35d
ML
1801 blk_mq_bio_to_request(rq, bio);
1802 blk_mq_queue_io(data.hctx, data.ctx, rq);
a4d907b6 1803 blk_mq_run_hw_queue(data.hctx, true);
ab42f35d 1804 }
320ae51f 1805
7b371636 1806 return cookie;
320ae51f
JA
1807}
1808
cc71a6f4
JA
1809void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1810 unsigned int hctx_idx)
95363efd 1811{
e9b267d9 1812 struct page *page;
320ae51f 1813
24d2f903 1814 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1815 int i;
320ae51f 1816
24d2f903 1817 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1818 struct request *rq = tags->static_rqs[i];
1819
1820 if (!rq)
e9b267d9 1821 continue;
d6296d39 1822 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 1823 tags->static_rqs[i] = NULL;
e9b267d9 1824 }
320ae51f 1825 }
320ae51f 1826
24d2f903
CH
1827 while (!list_empty(&tags->page_list)) {
1828 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1829 list_del_init(&page->lru);
f75782e4
CM
1830 /*
1831 * Remove kmemleak object previously allocated in
1832 * blk_mq_init_rq_map().
1833 */
1834 kmemleak_free(page_address(page));
320ae51f
JA
1835 __free_pages(page, page->private);
1836 }
cc71a6f4 1837}
320ae51f 1838
cc71a6f4
JA
1839void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1840{
24d2f903 1841 kfree(tags->rqs);
cc71a6f4 1842 tags->rqs = NULL;
2af8cbe3
JA
1843 kfree(tags->static_rqs);
1844 tags->static_rqs = NULL;
320ae51f 1845
24d2f903 1846 blk_mq_free_tags(tags);
320ae51f
JA
1847}
1848
cc71a6f4
JA
1849struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1850 unsigned int hctx_idx,
1851 unsigned int nr_tags,
1852 unsigned int reserved_tags)
320ae51f 1853{
24d2f903 1854 struct blk_mq_tags *tags;
59f082e4 1855 int node;
320ae51f 1856
59f082e4
SL
1857 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1858 if (node == NUMA_NO_NODE)
1859 node = set->numa_node;
1860
1861 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1862 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1863 if (!tags)
1864 return NULL;
320ae51f 1865
cc71a6f4 1866 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1867 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1868 node);
24d2f903
CH
1869 if (!tags->rqs) {
1870 blk_mq_free_tags(tags);
1871 return NULL;
1872 }
320ae51f 1873
2af8cbe3
JA
1874 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1875 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1876 node);
2af8cbe3
JA
1877 if (!tags->static_rqs) {
1878 kfree(tags->rqs);
1879 blk_mq_free_tags(tags);
1880 return NULL;
1881 }
1882
cc71a6f4
JA
1883 return tags;
1884}
1885
1886static size_t order_to_size(unsigned int order)
1887{
1888 return (size_t)PAGE_SIZE << order;
1889}
1890
1891int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1892 unsigned int hctx_idx, unsigned int depth)
1893{
1894 unsigned int i, j, entries_per_page, max_order = 4;
1895 size_t rq_size, left;
59f082e4
SL
1896 int node;
1897
1898 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1899 if (node == NUMA_NO_NODE)
1900 node = set->numa_node;
cc71a6f4
JA
1901
1902 INIT_LIST_HEAD(&tags->page_list);
1903
320ae51f
JA
1904 /*
1905 * rq_size is the size of the request plus driver payload, rounded
1906 * to the cacheline size
1907 */
24d2f903 1908 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1909 cache_line_size());
cc71a6f4 1910 left = rq_size * depth;
320ae51f 1911
cc71a6f4 1912 for (i = 0; i < depth; ) {
320ae51f
JA
1913 int this_order = max_order;
1914 struct page *page;
1915 int to_do;
1916 void *p;
1917
b3a834b1 1918 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1919 this_order--;
1920
1921 do {
59f082e4 1922 page = alloc_pages_node(node,
36e1f3d1 1923 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1924 this_order);
320ae51f
JA
1925 if (page)
1926 break;
1927 if (!this_order--)
1928 break;
1929 if (order_to_size(this_order) < rq_size)
1930 break;
1931 } while (1);
1932
1933 if (!page)
24d2f903 1934 goto fail;
320ae51f
JA
1935
1936 page->private = this_order;
24d2f903 1937 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1938
1939 p = page_address(page);
f75782e4
CM
1940 /*
1941 * Allow kmemleak to scan these pages as they contain pointers
1942 * to additional allocations like via ops->init_request().
1943 */
36e1f3d1 1944 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1945 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1946 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1947 left -= to_do * rq_size;
1948 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1949 struct request *rq = p;
1950
1951 tags->static_rqs[i] = rq;
24d2f903 1952 if (set->ops->init_request) {
d6296d39 1953 if (set->ops->init_request(set, rq, hctx_idx,
59f082e4 1954 node)) {
2af8cbe3 1955 tags->static_rqs[i] = NULL;
24d2f903 1956 goto fail;
a5164405 1957 }
e9b267d9
CH
1958 }
1959
320ae51f
JA
1960 p += rq_size;
1961 i++;
1962 }
1963 }
cc71a6f4 1964 return 0;
320ae51f 1965
24d2f903 1966fail:
cc71a6f4
JA
1967 blk_mq_free_rqs(set, tags, hctx_idx);
1968 return -ENOMEM;
320ae51f
JA
1969}
1970
e57690fe
JA
1971/*
1972 * 'cpu' is going away. splice any existing rq_list entries from this
1973 * software queue to the hw queue dispatch list, and ensure that it
1974 * gets run.
1975 */
9467f859 1976static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1977{
9467f859 1978 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1979 struct blk_mq_ctx *ctx;
1980 LIST_HEAD(tmp);
1981
9467f859 1982 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1983 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1984
1985 spin_lock(&ctx->lock);
1986 if (!list_empty(&ctx->rq_list)) {
1987 list_splice_init(&ctx->rq_list, &tmp);
1988 blk_mq_hctx_clear_pending(hctx, ctx);
1989 }
1990 spin_unlock(&ctx->lock);
1991
1992 if (list_empty(&tmp))
9467f859 1993 return 0;
484b4061 1994
e57690fe
JA
1995 spin_lock(&hctx->lock);
1996 list_splice_tail_init(&tmp, &hctx->dispatch);
1997 spin_unlock(&hctx->lock);
484b4061
JA
1998
1999 blk_mq_run_hw_queue(hctx, true);
9467f859 2000 return 0;
484b4061
JA
2001}
2002
9467f859 2003static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 2004{
9467f859
TG
2005 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2006 &hctx->cpuhp_dead);
484b4061
JA
2007}
2008
c3b4afca 2009/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
2010static void blk_mq_exit_hctx(struct request_queue *q,
2011 struct blk_mq_tag_set *set,
2012 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2013{
9c1051aa
OS
2014 blk_mq_debugfs_unregister_hctx(hctx);
2015
8ab0b7dc
ML
2016 if (blk_mq_hw_queue_mapped(hctx))
2017 blk_mq_tag_idle(hctx);
08e98fc6 2018
f70ced09 2019 if (set->ops->exit_request)
d6296d39 2020 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 2021
93252632
OS
2022 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2023
08e98fc6
ML
2024 if (set->ops->exit_hctx)
2025 set->ops->exit_hctx(hctx, hctx_idx);
2026
6a83e74d 2027 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 2028 cleanup_srcu_struct(hctx->queue_rq_srcu);
6a83e74d 2029
9467f859 2030 blk_mq_remove_cpuhp(hctx);
f70ced09 2031 blk_free_flush_queue(hctx->fq);
88459642 2032 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2033}
2034
624dbe47
ML
2035static void blk_mq_exit_hw_queues(struct request_queue *q,
2036 struct blk_mq_tag_set *set, int nr_queue)
2037{
2038 struct blk_mq_hw_ctx *hctx;
2039 unsigned int i;
2040
2041 queue_for_each_hw_ctx(q, hctx, i) {
2042 if (i == nr_queue)
2043 break;
08e98fc6 2044 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 2045 }
624dbe47
ML
2046}
2047
08e98fc6
ML
2048static int blk_mq_init_hctx(struct request_queue *q,
2049 struct blk_mq_tag_set *set,
2050 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 2051{
08e98fc6
ML
2052 int node;
2053
2054 node = hctx->numa_node;
2055 if (node == NUMA_NO_NODE)
2056 node = hctx->numa_node = set->numa_node;
2057
9f993737 2058 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2059 spin_lock_init(&hctx->lock);
2060 INIT_LIST_HEAD(&hctx->dispatch);
2061 hctx->queue = q;
2404e607 2062 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2063
9467f859 2064 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
2065
2066 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
2067
2068 /*
08e98fc6
ML
2069 * Allocate space for all possible cpus to avoid allocation at
2070 * runtime
320ae51f 2071 */
d904bfa7 2072 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
08e98fc6
ML
2073 GFP_KERNEL, node);
2074 if (!hctx->ctxs)
2075 goto unregister_cpu_notifier;
320ae51f 2076
88459642
OS
2077 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2078 node))
08e98fc6 2079 goto free_ctxs;
320ae51f 2080
08e98fc6 2081 hctx->nr_ctx = 0;
320ae51f 2082
eb619fdb
JA
2083 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2084 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2085
08e98fc6
ML
2086 if (set->ops->init_hctx &&
2087 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2088 goto free_bitmap;
320ae51f 2089
93252632
OS
2090 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2091 goto exit_hctx;
2092
f70ced09
ML
2093 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2094 if (!hctx->fq)
93252632 2095 goto sched_exit_hctx;
320ae51f 2096
f70ced09 2097 if (set->ops->init_request &&
d6296d39
CH
2098 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2099 node))
f70ced09 2100 goto free_fq;
320ae51f 2101
6a83e74d 2102 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 2103 init_srcu_struct(hctx->queue_rq_srcu);
6a83e74d 2104
9c1051aa
OS
2105 blk_mq_debugfs_register_hctx(q, hctx);
2106
08e98fc6 2107 return 0;
320ae51f 2108
f70ced09
ML
2109 free_fq:
2110 kfree(hctx->fq);
93252632
OS
2111 sched_exit_hctx:
2112 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
2113 exit_hctx:
2114 if (set->ops->exit_hctx)
2115 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 2116 free_bitmap:
88459642 2117 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2118 free_ctxs:
2119 kfree(hctx->ctxs);
2120 unregister_cpu_notifier:
9467f859 2121 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
2122 return -1;
2123}
320ae51f 2124
320ae51f
JA
2125static void blk_mq_init_cpu_queues(struct request_queue *q,
2126 unsigned int nr_hw_queues)
2127{
2128 unsigned int i;
2129
2130 for_each_possible_cpu(i) {
2131 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2132 struct blk_mq_hw_ctx *hctx;
2133
320ae51f
JA
2134 __ctx->cpu = i;
2135 spin_lock_init(&__ctx->lock);
2136 INIT_LIST_HEAD(&__ctx->rq_list);
2137 __ctx->queue = q;
2138
4b855ad3
CH
2139 /* If the cpu isn't present, the cpu is mapped to first hctx */
2140 if (!cpu_present(i))
320ae51f
JA
2141 continue;
2142
7d7e0f90 2143 hctx = blk_mq_map_queue(q, i);
e4043dcf 2144
320ae51f
JA
2145 /*
2146 * Set local node, IFF we have more than one hw queue. If
2147 * not, we remain on the home node of the device
2148 */
2149 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 2150 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
2151 }
2152}
2153
cc71a6f4
JA
2154static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2155{
2156 int ret = 0;
2157
2158 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2159 set->queue_depth, set->reserved_tags);
2160 if (!set->tags[hctx_idx])
2161 return false;
2162
2163 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2164 set->queue_depth);
2165 if (!ret)
2166 return true;
2167
2168 blk_mq_free_rq_map(set->tags[hctx_idx]);
2169 set->tags[hctx_idx] = NULL;
2170 return false;
2171}
2172
2173static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2174 unsigned int hctx_idx)
2175{
bd166ef1
JA
2176 if (set->tags[hctx_idx]) {
2177 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2178 blk_mq_free_rq_map(set->tags[hctx_idx]);
2179 set->tags[hctx_idx] = NULL;
2180 }
cc71a6f4
JA
2181}
2182
4b855ad3 2183static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2184{
d1b1cea1 2185 unsigned int i, hctx_idx;
320ae51f
JA
2186 struct blk_mq_hw_ctx *hctx;
2187 struct blk_mq_ctx *ctx;
2a34c087 2188 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2189
60de074b
AM
2190 /*
2191 * Avoid others reading imcomplete hctx->cpumask through sysfs
2192 */
2193 mutex_lock(&q->sysfs_lock);
2194
320ae51f 2195 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2196 cpumask_clear(hctx->cpumask);
320ae51f
JA
2197 hctx->nr_ctx = 0;
2198 }
2199
2200 /*
4b855ad3
CH
2201 * Map software to hardware queues.
2202 *
2203 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2204 */
4b855ad3 2205 for_each_present_cpu(i) {
d1b1cea1
GKB
2206 hctx_idx = q->mq_map[i];
2207 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2208 if (!set->tags[hctx_idx] &&
2209 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2210 /*
2211 * If tags initialization fail for some hctx,
2212 * that hctx won't be brought online. In this
2213 * case, remap the current ctx to hctx[0] which
2214 * is guaranteed to always have tags allocated
2215 */
cc71a6f4 2216 q->mq_map[i] = 0;
d1b1cea1
GKB
2217 }
2218
897bb0c7 2219 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2220 hctx = blk_mq_map_queue(q, i);
868f2f0b 2221
e4043dcf 2222 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2223 ctx->index_hw = hctx->nr_ctx;
2224 hctx->ctxs[hctx->nr_ctx++] = ctx;
2225 }
506e931f 2226
60de074b
AM
2227 mutex_unlock(&q->sysfs_lock);
2228
506e931f 2229 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2230 /*
a68aafa5
JA
2231 * If no software queues are mapped to this hardware queue,
2232 * disable it and free the request entries.
484b4061
JA
2233 */
2234 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2235 /* Never unmap queue 0. We need it as a
2236 * fallback in case of a new remap fails
2237 * allocation
2238 */
cc71a6f4
JA
2239 if (i && set->tags[i])
2240 blk_mq_free_map_and_requests(set, i);
2241
2a34c087 2242 hctx->tags = NULL;
484b4061
JA
2243 continue;
2244 }
2245
2a34c087
ML
2246 hctx->tags = set->tags[i];
2247 WARN_ON(!hctx->tags);
2248
889fa31f
CY
2249 /*
2250 * Set the map size to the number of mapped software queues.
2251 * This is more accurate and more efficient than looping
2252 * over all possibly mapped software queues.
2253 */
88459642 2254 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2255
484b4061
JA
2256 /*
2257 * Initialize batch roundrobin counts
2258 */
506e931f
JA
2259 hctx->next_cpu = cpumask_first(hctx->cpumask);
2260 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2261 }
320ae51f
JA
2262}
2263
8e8320c9
JA
2264/*
2265 * Caller needs to ensure that we're either frozen/quiesced, or that
2266 * the queue isn't live yet.
2267 */
2404e607 2268static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2269{
2270 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2271 int i;
2272
2404e607 2273 queue_for_each_hw_ctx(q, hctx, i) {
8e8320c9
JA
2274 if (shared) {
2275 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2276 atomic_inc(&q->shared_hctx_restart);
2404e607 2277 hctx->flags |= BLK_MQ_F_TAG_SHARED;
8e8320c9
JA
2278 } else {
2279 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2280 atomic_dec(&q->shared_hctx_restart);
2404e607 2281 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
8e8320c9 2282 }
2404e607
JM
2283 }
2284}
2285
8e8320c9
JA
2286static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2287 bool shared)
2404e607
JM
2288{
2289 struct request_queue *q;
0d2602ca 2290
705cda97
BVA
2291 lockdep_assert_held(&set->tag_list_lock);
2292
0d2602ca
JA
2293 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2294 blk_mq_freeze_queue(q);
2404e607 2295 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2296 blk_mq_unfreeze_queue(q);
2297 }
2298}
2299
2300static void blk_mq_del_queue_tag_set(struct request_queue *q)
2301{
2302 struct blk_mq_tag_set *set = q->tag_set;
2303
0d2602ca 2304 mutex_lock(&set->tag_list_lock);
705cda97
BVA
2305 list_del_rcu(&q->tag_set_list);
2306 INIT_LIST_HEAD(&q->tag_set_list);
2404e607
JM
2307 if (list_is_singular(&set->tag_list)) {
2308 /* just transitioned to unshared */
2309 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2310 /* update existing queue */
2311 blk_mq_update_tag_set_depth(set, false);
2312 }
0d2602ca 2313 mutex_unlock(&set->tag_list_lock);
705cda97
BVA
2314
2315 synchronize_rcu();
0d2602ca
JA
2316}
2317
2318static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2319 struct request_queue *q)
2320{
2321 q->tag_set = set;
2322
2323 mutex_lock(&set->tag_list_lock);
2404e607 2324
ff821d27
JA
2325 /*
2326 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2327 */
2328 if (!list_empty(&set->tag_list) &&
2329 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2404e607
JM
2330 set->flags |= BLK_MQ_F_TAG_SHARED;
2331 /* update existing queue */
2332 blk_mq_update_tag_set_depth(set, true);
2333 }
2334 if (set->flags & BLK_MQ_F_TAG_SHARED)
2335 queue_set_hctx_shared(q, true);
705cda97 2336 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2337
0d2602ca
JA
2338 mutex_unlock(&set->tag_list_lock);
2339}
2340
e09aae7e
ML
2341/*
2342 * It is the actual release handler for mq, but we do it from
2343 * request queue's release handler for avoiding use-after-free
2344 * and headache because q->mq_kobj shouldn't have been introduced,
2345 * but we can't group ctx/kctx kobj without it.
2346 */
2347void blk_mq_release(struct request_queue *q)
2348{
2349 struct blk_mq_hw_ctx *hctx;
2350 unsigned int i;
2351
2352 /* hctx kobj stays in hctx */
c3b4afca
ML
2353 queue_for_each_hw_ctx(q, hctx, i) {
2354 if (!hctx)
2355 continue;
6c8b232e 2356 kobject_put(&hctx->kobj);
c3b4afca 2357 }
e09aae7e 2358
a723bab3
AM
2359 q->mq_map = NULL;
2360
e09aae7e
ML
2361 kfree(q->queue_hw_ctx);
2362
7ea5fe31
ML
2363 /*
2364 * release .mq_kobj and sw queue's kobject now because
2365 * both share lifetime with request queue.
2366 */
2367 blk_mq_sysfs_deinit(q);
2368
e09aae7e
ML
2369 free_percpu(q->queue_ctx);
2370}
2371
24d2f903 2372struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2373{
2374 struct request_queue *uninit_q, *q;
2375
2376 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2377 if (!uninit_q)
2378 return ERR_PTR(-ENOMEM);
2379
2380 q = blk_mq_init_allocated_queue(set, uninit_q);
2381 if (IS_ERR(q))
2382 blk_cleanup_queue(uninit_q);
2383
2384 return q;
2385}
2386EXPORT_SYMBOL(blk_mq_init_queue);
2387
07319678
BVA
2388static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2389{
2390 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2391
2392 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2393 __alignof__(struct blk_mq_hw_ctx)) !=
2394 sizeof(struct blk_mq_hw_ctx));
2395
2396 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2397 hw_ctx_size += sizeof(struct srcu_struct);
2398
2399 return hw_ctx_size;
2400}
2401
868f2f0b
KB
2402static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2403 struct request_queue *q)
320ae51f 2404{
868f2f0b
KB
2405 int i, j;
2406 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2407
868f2f0b 2408 blk_mq_sysfs_unregister(q);
fb350e0a
ML
2409
2410 /* protect against switching io scheduler */
2411 mutex_lock(&q->sysfs_lock);
24d2f903 2412 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2413 int node;
f14bbe77 2414
868f2f0b
KB
2415 if (hctxs[i])
2416 continue;
2417
2418 node = blk_mq_hw_queue_to_node(q->mq_map, i);
07319678 2419 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
cdef54dd 2420 GFP_KERNEL, node);
320ae51f 2421 if (!hctxs[i])
868f2f0b 2422 break;
320ae51f 2423
a86073e4 2424 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2425 node)) {
2426 kfree(hctxs[i]);
2427 hctxs[i] = NULL;
2428 break;
2429 }
e4043dcf 2430
0d2602ca 2431 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2432 hctxs[i]->numa_node = node;
320ae51f 2433 hctxs[i]->queue_num = i;
868f2f0b
KB
2434
2435 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2436 free_cpumask_var(hctxs[i]->cpumask);
2437 kfree(hctxs[i]);
2438 hctxs[i] = NULL;
2439 break;
2440 }
2441 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2442 }
868f2f0b
KB
2443 for (j = i; j < q->nr_hw_queues; j++) {
2444 struct blk_mq_hw_ctx *hctx = hctxs[j];
2445
2446 if (hctx) {
cc71a6f4
JA
2447 if (hctx->tags)
2448 blk_mq_free_map_and_requests(set, j);
868f2f0b 2449 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2450 kobject_put(&hctx->kobj);
868f2f0b
KB
2451 hctxs[j] = NULL;
2452
2453 }
2454 }
2455 q->nr_hw_queues = i;
fb350e0a 2456 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
2457 blk_mq_sysfs_register(q);
2458}
2459
2460struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2461 struct request_queue *q)
2462{
66841672
ML
2463 /* mark the queue as mq asap */
2464 q->mq_ops = set->ops;
2465
34dbad5d 2466 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2467 blk_mq_poll_stats_bkt,
2468 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2469 if (!q->poll_cb)
2470 goto err_exit;
2471
868f2f0b
KB
2472 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2473 if (!q->queue_ctx)
c7de5726 2474 goto err_exit;
868f2f0b 2475
737f98cf
ML
2476 /* init q->mq_kobj and sw queues' kobjects */
2477 blk_mq_sysfs_init(q);
2478
868f2f0b
KB
2479 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2480 GFP_KERNEL, set->numa_node);
2481 if (!q->queue_hw_ctx)
2482 goto err_percpu;
2483
bdd17e75 2484 q->mq_map = set->mq_map;
868f2f0b
KB
2485
2486 blk_mq_realloc_hw_ctxs(set, q);
2487 if (!q->nr_hw_queues)
2488 goto err_hctxs;
320ae51f 2489
287922eb 2490 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2491 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2492
2493 q->nr_queues = nr_cpu_ids;
320ae51f 2494
94eddfbe 2495 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2496
05f1dd53
JA
2497 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2498 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2499
1be036e9
CH
2500 q->sg_reserved_size = INT_MAX;
2501
2849450a 2502 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2503 INIT_LIST_HEAD(&q->requeue_list);
2504 spin_lock_init(&q->requeue_lock);
2505
254d259d 2506 blk_queue_make_request(q, blk_mq_make_request);
ea435e1b
CH
2507 if (q->mq_ops->poll)
2508 q->poll_fn = blk_mq_poll;
07068d5b 2509
eba71768
JA
2510 /*
2511 * Do this after blk_queue_make_request() overrides it...
2512 */
2513 q->nr_requests = set->queue_depth;
2514
64f1c21e
JA
2515 /*
2516 * Default to classic polling
2517 */
2518 q->poll_nsec = -1;
2519
24d2f903
CH
2520 if (set->ops->complete)
2521 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2522
24d2f903 2523 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2524 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2525 blk_mq_map_swqueue(q);
4593fdbe 2526
d3484991
JA
2527 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2528 int ret;
2529
2530 ret = blk_mq_sched_init(q);
2531 if (ret)
2532 return ERR_PTR(ret);
2533 }
2534
320ae51f 2535 return q;
18741986 2536
320ae51f 2537err_hctxs:
868f2f0b 2538 kfree(q->queue_hw_ctx);
320ae51f 2539err_percpu:
868f2f0b 2540 free_percpu(q->queue_ctx);
c7de5726
ML
2541err_exit:
2542 q->mq_ops = NULL;
320ae51f
JA
2543 return ERR_PTR(-ENOMEM);
2544}
b62c21b7 2545EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2546
2547void blk_mq_free_queue(struct request_queue *q)
2548{
624dbe47 2549 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2550
0d2602ca 2551 blk_mq_del_queue_tag_set(q);
624dbe47 2552 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2553}
320ae51f
JA
2554
2555/* Basically redo blk_mq_init_queue with queue frozen */
4b855ad3 2556static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f 2557{
4ecd4fef 2558 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2559
9c1051aa 2560 blk_mq_debugfs_unregister_hctxs(q);
67aec14c
JA
2561 blk_mq_sysfs_unregister(q);
2562
320ae51f
JA
2563 /*
2564 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
ff821d27
JA
2565 * we should change hctx numa_node according to the new topology (this
2566 * involves freeing and re-allocating memory, worth doing?)
320ae51f 2567 */
4b855ad3 2568 blk_mq_map_swqueue(q);
320ae51f 2569
67aec14c 2570 blk_mq_sysfs_register(q);
9c1051aa 2571 blk_mq_debugfs_register_hctxs(q);
320ae51f
JA
2572}
2573
a5164405
JA
2574static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2575{
2576 int i;
2577
cc71a6f4
JA
2578 for (i = 0; i < set->nr_hw_queues; i++)
2579 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2580 goto out_unwind;
a5164405
JA
2581
2582 return 0;
2583
2584out_unwind:
2585 while (--i >= 0)
cc71a6f4 2586 blk_mq_free_rq_map(set->tags[i]);
a5164405 2587
a5164405
JA
2588 return -ENOMEM;
2589}
2590
2591/*
2592 * Allocate the request maps associated with this tag_set. Note that this
2593 * may reduce the depth asked for, if memory is tight. set->queue_depth
2594 * will be updated to reflect the allocated depth.
2595 */
2596static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2597{
2598 unsigned int depth;
2599 int err;
2600
2601 depth = set->queue_depth;
2602 do {
2603 err = __blk_mq_alloc_rq_maps(set);
2604 if (!err)
2605 break;
2606
2607 set->queue_depth >>= 1;
2608 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2609 err = -ENOMEM;
2610 break;
2611 }
2612 } while (set->queue_depth);
2613
2614 if (!set->queue_depth || err) {
2615 pr_err("blk-mq: failed to allocate request map\n");
2616 return -ENOMEM;
2617 }
2618
2619 if (depth != set->queue_depth)
2620 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2621 depth, set->queue_depth);
2622
2623 return 0;
2624}
2625
ebe8bddb
OS
2626static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2627{
7d4901a9
ML
2628 if (set->ops->map_queues) {
2629 int cpu;
2630 /*
2631 * transport .map_queues is usually done in the following
2632 * way:
2633 *
2634 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2635 * mask = get_cpu_mask(queue)
2636 * for_each_cpu(cpu, mask)
2637 * set->mq_map[cpu] = queue;
2638 * }
2639 *
2640 * When we need to remap, the table has to be cleared for
2641 * killing stale mapping since one CPU may not be mapped
2642 * to any hw queue.
2643 */
2644 for_each_possible_cpu(cpu)
2645 set->mq_map[cpu] = 0;
2646
ebe8bddb 2647 return set->ops->map_queues(set);
7d4901a9 2648 } else
ebe8bddb
OS
2649 return blk_mq_map_queues(set);
2650}
2651
a4391c64
JA
2652/*
2653 * Alloc a tag set to be associated with one or more request queues.
2654 * May fail with EINVAL for various error conditions. May adjust the
2655 * requested depth down, if if it too large. In that case, the set
2656 * value will be stored in set->queue_depth.
2657 */
24d2f903
CH
2658int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2659{
da695ba2
CH
2660 int ret;
2661
205fb5f5
BVA
2662 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2663
24d2f903
CH
2664 if (!set->nr_hw_queues)
2665 return -EINVAL;
a4391c64 2666 if (!set->queue_depth)
24d2f903
CH
2667 return -EINVAL;
2668 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2669 return -EINVAL;
2670
7d7e0f90 2671 if (!set->ops->queue_rq)
24d2f903
CH
2672 return -EINVAL;
2673
de148297
ML
2674 if (!set->ops->get_budget ^ !set->ops->put_budget)
2675 return -EINVAL;
2676
a4391c64
JA
2677 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2678 pr_info("blk-mq: reduced tag depth to %u\n",
2679 BLK_MQ_MAX_DEPTH);
2680 set->queue_depth = BLK_MQ_MAX_DEPTH;
2681 }
24d2f903 2682
6637fadf
SL
2683 /*
2684 * If a crashdump is active, then we are potentially in a very
2685 * memory constrained environment. Limit us to 1 queue and
2686 * 64 tags to prevent using too much memory.
2687 */
2688 if (is_kdump_kernel()) {
2689 set->nr_hw_queues = 1;
2690 set->queue_depth = min(64U, set->queue_depth);
2691 }
868f2f0b
KB
2692 /*
2693 * There is no use for more h/w queues than cpus.
2694 */
2695 if (set->nr_hw_queues > nr_cpu_ids)
2696 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2697
868f2f0b 2698 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2699 GFP_KERNEL, set->numa_node);
2700 if (!set->tags)
a5164405 2701 return -ENOMEM;
24d2f903 2702
da695ba2
CH
2703 ret = -ENOMEM;
2704 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2705 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2706 if (!set->mq_map)
2707 goto out_free_tags;
2708
ebe8bddb 2709 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2710 if (ret)
2711 goto out_free_mq_map;
2712
2713 ret = blk_mq_alloc_rq_maps(set);
2714 if (ret)
bdd17e75 2715 goto out_free_mq_map;
24d2f903 2716
0d2602ca
JA
2717 mutex_init(&set->tag_list_lock);
2718 INIT_LIST_HEAD(&set->tag_list);
2719
24d2f903 2720 return 0;
bdd17e75
CH
2721
2722out_free_mq_map:
2723 kfree(set->mq_map);
2724 set->mq_map = NULL;
2725out_free_tags:
5676e7b6
RE
2726 kfree(set->tags);
2727 set->tags = NULL;
da695ba2 2728 return ret;
24d2f903
CH
2729}
2730EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2731
2732void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2733{
2734 int i;
2735
cc71a6f4
JA
2736 for (i = 0; i < nr_cpu_ids; i++)
2737 blk_mq_free_map_and_requests(set, i);
484b4061 2738
bdd17e75
CH
2739 kfree(set->mq_map);
2740 set->mq_map = NULL;
2741
981bd189 2742 kfree(set->tags);
5676e7b6 2743 set->tags = NULL;
24d2f903
CH
2744}
2745EXPORT_SYMBOL(blk_mq_free_tag_set);
2746
e3a2b3f9
JA
2747int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2748{
2749 struct blk_mq_tag_set *set = q->tag_set;
2750 struct blk_mq_hw_ctx *hctx;
2751 int i, ret;
2752
bd166ef1 2753 if (!set)
e3a2b3f9
JA
2754 return -EINVAL;
2755
70f36b60 2756 blk_mq_freeze_queue(q);
24f5a90f 2757 blk_mq_quiesce_queue(q);
70f36b60 2758
e3a2b3f9
JA
2759 ret = 0;
2760 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2761 if (!hctx->tags)
2762 continue;
bd166ef1
JA
2763 /*
2764 * If we're using an MQ scheduler, just update the scheduler
2765 * queue depth. This is similar to what the old code would do.
2766 */
70f36b60 2767 if (!hctx->sched_tags) {
c2e82a23 2768 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
2769 false);
2770 } else {
2771 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2772 nr, true);
2773 }
e3a2b3f9
JA
2774 if (ret)
2775 break;
2776 }
2777
2778 if (!ret)
2779 q->nr_requests = nr;
2780
24f5a90f 2781 blk_mq_unquiesce_queue(q);
70f36b60 2782 blk_mq_unfreeze_queue(q);
70f36b60 2783
e3a2b3f9
JA
2784 return ret;
2785}
2786
e4dc2b32
KB
2787static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2788 int nr_hw_queues)
868f2f0b
KB
2789{
2790 struct request_queue *q;
2791
705cda97
BVA
2792 lockdep_assert_held(&set->tag_list_lock);
2793
868f2f0b
KB
2794 if (nr_hw_queues > nr_cpu_ids)
2795 nr_hw_queues = nr_cpu_ids;
2796 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2797 return;
2798
2799 list_for_each_entry(q, &set->tag_list, tag_set_list)
2800 blk_mq_freeze_queue(q);
2801
2802 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2803 blk_mq_update_queue_map(set);
868f2f0b
KB
2804 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2805 blk_mq_realloc_hw_ctxs(set, q);
4b855ad3 2806 blk_mq_queue_reinit(q);
868f2f0b
KB
2807 }
2808
2809 list_for_each_entry(q, &set->tag_list, tag_set_list)
2810 blk_mq_unfreeze_queue(q);
2811}
e4dc2b32
KB
2812
2813void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2814{
2815 mutex_lock(&set->tag_list_lock);
2816 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2817 mutex_unlock(&set->tag_list_lock);
2818}
868f2f0b
KB
2819EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2820
34dbad5d
OS
2821/* Enable polling stats and return whether they were already enabled. */
2822static bool blk_poll_stats_enable(struct request_queue *q)
2823{
2824 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2825 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2826 return true;
2827 blk_stat_add_callback(q, q->poll_cb);
2828 return false;
2829}
2830
2831static void blk_mq_poll_stats_start(struct request_queue *q)
2832{
2833 /*
2834 * We don't arm the callback if polling stats are not enabled or the
2835 * callback is already active.
2836 */
2837 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2838 blk_stat_is_active(q->poll_cb))
2839 return;
2840
2841 blk_stat_activate_msecs(q->poll_cb, 100);
2842}
2843
2844static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2845{
2846 struct request_queue *q = cb->data;
720b8ccc 2847 int bucket;
34dbad5d 2848
720b8ccc
SB
2849 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2850 if (cb->stat[bucket].nr_samples)
2851 q->poll_stat[bucket] = cb->stat[bucket];
2852 }
34dbad5d
OS
2853}
2854
64f1c21e
JA
2855static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2856 struct blk_mq_hw_ctx *hctx,
2857 struct request *rq)
2858{
64f1c21e 2859 unsigned long ret = 0;
720b8ccc 2860 int bucket;
64f1c21e
JA
2861
2862 /*
2863 * If stats collection isn't on, don't sleep but turn it on for
2864 * future users
2865 */
34dbad5d 2866 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2867 return 0;
2868
64f1c21e
JA
2869 /*
2870 * As an optimistic guess, use half of the mean service time
2871 * for this type of request. We can (and should) make this smarter.
2872 * For instance, if the completion latencies are tight, we can
2873 * get closer than just half the mean. This is especially
2874 * important on devices where the completion latencies are longer
720b8ccc
SB
2875 * than ~10 usec. We do use the stats for the relevant IO size
2876 * if available which does lead to better estimates.
64f1c21e 2877 */
720b8ccc
SB
2878 bucket = blk_mq_poll_stats_bkt(rq);
2879 if (bucket < 0)
2880 return ret;
2881
2882 if (q->poll_stat[bucket].nr_samples)
2883 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
2884
2885 return ret;
2886}
2887
06426adf 2888static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2889 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2890 struct request *rq)
2891{
2892 struct hrtimer_sleeper hs;
2893 enum hrtimer_mode mode;
64f1c21e 2894 unsigned int nsecs;
06426adf
JA
2895 ktime_t kt;
2896
64f1c21e
JA
2897 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2898 return false;
2899
2900 /*
2901 * poll_nsec can be:
2902 *
2903 * -1: don't ever hybrid sleep
2904 * 0: use half of prev avg
2905 * >0: use this specific value
2906 */
2907 if (q->poll_nsec == -1)
2908 return false;
2909 else if (q->poll_nsec > 0)
2910 nsecs = q->poll_nsec;
2911 else
2912 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2913
2914 if (!nsecs)
06426adf
JA
2915 return false;
2916
2917 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2918
2919 /*
2920 * This will be replaced with the stats tracking code, using
2921 * 'avg_completion_time / 2' as the pre-sleep target.
2922 */
8b0e1953 2923 kt = nsecs;
06426adf
JA
2924
2925 mode = HRTIMER_MODE_REL;
2926 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2927 hrtimer_set_expires(&hs.timer, kt);
2928
2929 hrtimer_init_sleeper(&hs, current);
2930 do {
2931 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2932 break;
2933 set_current_state(TASK_UNINTERRUPTIBLE);
2934 hrtimer_start_expires(&hs.timer, mode);
2935 if (hs.task)
2936 io_schedule();
2937 hrtimer_cancel(&hs.timer);
2938 mode = HRTIMER_MODE_ABS;
2939 } while (hs.task && !signal_pending(current));
2940
2941 __set_current_state(TASK_RUNNING);
2942 destroy_hrtimer_on_stack(&hs.timer);
2943 return true;
2944}
2945
bbd7bb70
JA
2946static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2947{
2948 struct request_queue *q = hctx->queue;
2949 long state;
2950
06426adf
JA
2951 /*
2952 * If we sleep, have the caller restart the poll loop to reset
2953 * the state. Like for the other success return cases, the
2954 * caller is responsible for checking if the IO completed. If
2955 * the IO isn't complete, we'll get called again and will go
2956 * straight to the busy poll loop.
2957 */
64f1c21e 2958 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2959 return true;
2960
bbd7bb70
JA
2961 hctx->poll_considered++;
2962
2963 state = current->state;
2964 while (!need_resched()) {
2965 int ret;
2966
2967 hctx->poll_invoked++;
2968
2969 ret = q->mq_ops->poll(hctx, rq->tag);
2970 if (ret > 0) {
2971 hctx->poll_success++;
2972 set_current_state(TASK_RUNNING);
2973 return true;
2974 }
2975
2976 if (signal_pending_state(state, current))
2977 set_current_state(TASK_RUNNING);
2978
2979 if (current->state == TASK_RUNNING)
2980 return true;
2981 if (ret < 0)
2982 break;
2983 cpu_relax();
2984 }
2985
2986 return false;
2987}
2988
ea435e1b 2989static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
bbd7bb70
JA
2990{
2991 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
2992 struct request *rq;
2993
ea435e1b 2994 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
bbd7bb70
JA
2995 return false;
2996
bbd7bb70 2997 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2998 if (!blk_qc_t_is_internal(cookie))
2999 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3a07bb1d 3000 else {
bd166ef1 3001 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3a07bb1d
JA
3002 /*
3003 * With scheduling, if the request has completed, we'll
3004 * get a NULL return here, as we clear the sched tag when
3005 * that happens. The request still remains valid, like always,
3006 * so we should be safe with just the NULL check.
3007 */
3008 if (!rq)
3009 return false;
3010 }
bbd7bb70
JA
3011
3012 return __blk_mq_poll(hctx, rq);
3013}
bbd7bb70 3014
320ae51f
JA
3015static int __init blk_mq_init(void)
3016{
fc13457f
JA
3017 /*
3018 * See comment in block/blk.h rq_atomic_flags enum
3019 */
3020 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
3021 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
3022
9467f859
TG
3023 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3024 blk_mq_hctx_notify_dead);
320ae51f
JA
3025 return 0;
3026}
3027subsys_initcall(blk_mq_init);