]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - block/blk-mq.c
blk-mq: rename blk_mq_hw_ctx->queue_rq_srcu to ->srcu
[mirror_ubuntu-focal-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
cf43e6be 36#include "blk-stat.h"
87760e5e 37#include "blk-wbt.h"
bd166ef1 38#include "blk-mq-sched.h"
320ae51f 39
ea435e1b 40static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
34dbad5d
OS
41static void blk_mq_poll_stats_start(struct request_queue *q);
42static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
720b8ccc
SB
44static int blk_mq_poll_stats_bkt(const struct request *rq)
45{
46 int ddir, bytes, bucket;
47
99c749a4 48 ddir = rq_data_dir(rq);
720b8ccc
SB
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59}
60
320ae51f
JA
61/*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
79f720a7 64static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 65{
79f720a7
JA
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 68 blk_mq_sched_has_work(hctx);
1429d7c9
JA
69}
70
320ae51f
JA
71/*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76{
88459642
OS
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
79}
80
81static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83{
88459642 84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
85}
86
f299b7c7
JA
87struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90};
91
92static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95{
96 struct mq_inflight *mi = priv;
97
67818d25 98 if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
f299b7c7 99 /*
b8d62b3a
JA
100 * index[0] counts the specific partition that was asked
101 * for. index[1] counts the ones that are active on the
102 * whole device, so increment that if mi->part is indeed
103 * a partition, and not a whole device.
f299b7c7 104 */
b8d62b3a 105 if (rq->part == mi->part)
f299b7c7 106 mi->inflight[0]++;
b8d62b3a
JA
107 if (mi->part->partno)
108 mi->inflight[1]++;
f299b7c7
JA
109 }
110}
111
112void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113 unsigned int inflight[2])
114{
115 struct mq_inflight mi = { .part = part, .inflight = inflight, };
116
b8d62b3a 117 inflight[0] = inflight[1] = 0;
f299b7c7
JA
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119}
120
1671d522 121void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 122{
4ecd4fef 123 int freeze_depth;
cddd5d17 124
4ecd4fef
CH
125 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126 if (freeze_depth == 1) {
3ef28e83 127 percpu_ref_kill(&q->q_usage_counter);
055f6e18
ML
128 if (q->mq_ops)
129 blk_mq_run_hw_queues(q, false);
cddd5d17 130 }
f3af020b 131}
1671d522 132EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 133
6bae363e 134void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 135{
3ef28e83 136 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 137}
6bae363e 138EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 139
f91328c4
KB
140int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
141 unsigned long timeout)
142{
143 return wait_event_timeout(q->mq_freeze_wq,
144 percpu_ref_is_zero(&q->q_usage_counter),
145 timeout);
146}
147EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 148
f3af020b
TH
149/*
150 * Guarantee no request is in use, so we can change any data structure of
151 * the queue afterward.
152 */
3ef28e83 153void blk_freeze_queue(struct request_queue *q)
f3af020b 154{
3ef28e83
DW
155 /*
156 * In the !blk_mq case we are only calling this to kill the
157 * q_usage_counter, otherwise this increases the freeze depth
158 * and waits for it to return to zero. For this reason there is
159 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
160 * exported to drivers as the only user for unfreeze is blk_mq.
161 */
1671d522 162 blk_freeze_queue_start(q);
f3af020b
TH
163 blk_mq_freeze_queue_wait(q);
164}
3ef28e83
DW
165
166void blk_mq_freeze_queue(struct request_queue *q)
167{
168 /*
169 * ...just an alias to keep freeze and unfreeze actions balanced
170 * in the blk_mq_* namespace
171 */
172 blk_freeze_queue(q);
173}
c761d96b 174EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 175
b4c6a028 176void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 177{
4ecd4fef 178 int freeze_depth;
320ae51f 179
4ecd4fef
CH
180 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
181 WARN_ON_ONCE(freeze_depth < 0);
182 if (!freeze_depth) {
3ef28e83 183 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 184 wake_up_all(&q->mq_freeze_wq);
add703fd 185 }
320ae51f 186}
b4c6a028 187EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 188
852ec809
BVA
189/*
190 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
191 * mpt3sas driver such that this function can be removed.
192 */
193void blk_mq_quiesce_queue_nowait(struct request_queue *q)
194{
195 unsigned long flags;
196
197 spin_lock_irqsave(q->queue_lock, flags);
198 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
199 spin_unlock_irqrestore(q->queue_lock, flags);
200}
201EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
202
6a83e74d 203/**
69e07c4a 204 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
205 * @q: request queue.
206 *
207 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
208 * callback function is invoked. Once this function is returned, we make
209 * sure no dispatch can happen until the queue is unquiesced via
210 * blk_mq_unquiesce_queue().
6a83e74d
BVA
211 */
212void blk_mq_quiesce_queue(struct request_queue *q)
213{
214 struct blk_mq_hw_ctx *hctx;
215 unsigned int i;
216 bool rcu = false;
217
1d9e9bc6 218 blk_mq_quiesce_queue_nowait(q);
f4560ffe 219
6a83e74d
BVA
220 queue_for_each_hw_ctx(q, hctx, i) {
221 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 222 synchronize_srcu(hctx->srcu);
6a83e74d
BVA
223 else
224 rcu = true;
225 }
226 if (rcu)
227 synchronize_rcu();
228}
229EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
230
e4e73913
ML
231/*
232 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
233 * @q: request queue.
234 *
235 * This function recovers queue into the state before quiescing
236 * which is done by blk_mq_quiesce_queue.
237 */
238void blk_mq_unquiesce_queue(struct request_queue *q)
239{
852ec809
BVA
240 unsigned long flags;
241
242 spin_lock_irqsave(q->queue_lock, flags);
f4560ffe 243 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
852ec809 244 spin_unlock_irqrestore(q->queue_lock, flags);
f4560ffe 245
1d9e9bc6
ML
246 /* dispatch requests which are inserted during quiescing */
247 blk_mq_run_hw_queues(q, true);
e4e73913
ML
248}
249EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
250
aed3ea94
JA
251void blk_mq_wake_waiters(struct request_queue *q)
252{
253 struct blk_mq_hw_ctx *hctx;
254 unsigned int i;
255
256 queue_for_each_hw_ctx(q, hctx, i)
257 if (blk_mq_hw_queue_mapped(hctx))
258 blk_mq_tag_wakeup_all(hctx->tags, true);
259}
260
320ae51f
JA
261bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
262{
263 return blk_mq_has_free_tags(hctx->tags);
264}
265EXPORT_SYMBOL(blk_mq_can_queue);
266
e4cdf1a1
CH
267static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
268 unsigned int tag, unsigned int op)
320ae51f 269{
e4cdf1a1
CH
270 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
271 struct request *rq = tags->static_rqs[tag];
272
c3a148d2
BVA
273 rq->rq_flags = 0;
274
e4cdf1a1
CH
275 if (data->flags & BLK_MQ_REQ_INTERNAL) {
276 rq->tag = -1;
277 rq->internal_tag = tag;
278 } else {
279 if (blk_mq_tag_busy(data->hctx)) {
280 rq->rq_flags = RQF_MQ_INFLIGHT;
281 atomic_inc(&data->hctx->nr_active);
282 }
283 rq->tag = tag;
284 rq->internal_tag = -1;
285 data->hctx->tags->rqs[rq->tag] = rq;
286 }
287
af76e555
CH
288 INIT_LIST_HEAD(&rq->queuelist);
289 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
290 rq->q = data->q;
291 rq->mq_ctx = data->ctx;
ef295ecf 292 rq->cmd_flags = op;
1b6d65a0
BVA
293 if (data->flags & BLK_MQ_REQ_PREEMPT)
294 rq->rq_flags |= RQF_PREEMPT;
e4cdf1a1 295 if (blk_queue_io_stat(data->q))
e8064021 296 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
297 /* do not touch atomic flags, it needs atomic ops against the timer */
298 rq->cpu = -1;
af76e555
CH
299 INIT_HLIST_NODE(&rq->hash);
300 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
301 rq->rq_disk = NULL;
302 rq->part = NULL;
3ee32372 303 rq->start_time = jiffies;
af76e555
CH
304#ifdef CONFIG_BLK_CGROUP
305 rq->rl = NULL;
0fec08b4 306 set_start_time_ns(rq);
af76e555
CH
307 rq->io_start_time_ns = 0;
308#endif
309 rq->nr_phys_segments = 0;
310#if defined(CONFIG_BLK_DEV_INTEGRITY)
311 rq->nr_integrity_segments = 0;
312#endif
af76e555
CH
313 rq->special = NULL;
314 /* tag was already set */
af76e555 315 rq->extra_len = 0;
af76e555 316
af76e555 317 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
318 rq->timeout = 0;
319
af76e555
CH
320 rq->end_io = NULL;
321 rq->end_io_data = NULL;
322 rq->next_rq = NULL;
323
e4cdf1a1
CH
324 data->ctx->rq_dispatched[op_is_sync(op)]++;
325 return rq;
5dee8577
CH
326}
327
d2c0d383
CH
328static struct request *blk_mq_get_request(struct request_queue *q,
329 struct bio *bio, unsigned int op,
330 struct blk_mq_alloc_data *data)
331{
332 struct elevator_queue *e = q->elevator;
333 struct request *rq;
e4cdf1a1 334 unsigned int tag;
21e768b4 335 bool put_ctx_on_error = false;
d2c0d383
CH
336
337 blk_queue_enter_live(q);
338 data->q = q;
21e768b4
BVA
339 if (likely(!data->ctx)) {
340 data->ctx = blk_mq_get_ctx(q);
341 put_ctx_on_error = true;
342 }
d2c0d383
CH
343 if (likely(!data->hctx))
344 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
03a07c92
GR
345 if (op & REQ_NOWAIT)
346 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
347
348 if (e) {
349 data->flags |= BLK_MQ_REQ_INTERNAL;
350
351 /*
352 * Flush requests are special and go directly to the
353 * dispatch list.
354 */
5bbf4e5a
CH
355 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
356 e->type->ops.mq.limit_depth(op, data);
d2c0d383
CH
357 }
358
e4cdf1a1
CH
359 tag = blk_mq_get_tag(data);
360 if (tag == BLK_MQ_TAG_FAIL) {
21e768b4
BVA
361 if (put_ctx_on_error) {
362 blk_mq_put_ctx(data->ctx);
1ad43c00
ML
363 data->ctx = NULL;
364 }
037cebb8
CH
365 blk_queue_exit(q);
366 return NULL;
d2c0d383
CH
367 }
368
e4cdf1a1 369 rq = blk_mq_rq_ctx_init(data, tag, op);
037cebb8
CH
370 if (!op_is_flush(op)) {
371 rq->elv.icq = NULL;
5bbf4e5a 372 if (e && e->type->ops.mq.prepare_request) {
44e8c2bf
CH
373 if (e->type->icq_cache && rq_ioc(bio))
374 blk_mq_sched_assign_ioc(rq, bio);
375
5bbf4e5a
CH
376 e->type->ops.mq.prepare_request(rq, bio);
377 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 378 }
037cebb8
CH
379 }
380 data->hctx->queued++;
381 return rq;
d2c0d383
CH
382}
383
cd6ce148 384struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 385 blk_mq_req_flags_t flags)
320ae51f 386{
5a797e00 387 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 388 struct request *rq;
a492f075 389 int ret;
320ae51f 390
3a0a5299 391 ret = blk_queue_enter(q, flags);
a492f075
JL
392 if (ret)
393 return ERR_PTR(ret);
320ae51f 394
cd6ce148 395 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 396 blk_queue_exit(q);
841bac2c 397
bd166ef1 398 if (!rq)
a492f075 399 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3 400
1ad43c00 401 blk_mq_put_ctx(alloc_data.ctx);
1ad43c00 402
0c4de0f3
CH
403 rq->__data_len = 0;
404 rq->__sector = (sector_t) -1;
405 rq->bio = rq->biotail = NULL;
320ae51f
JA
406 return rq;
407}
4bb659b1 408EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 409
cd6ce148 410struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 411 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 412{
6d2809d5 413 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 414 struct request *rq;
6d2809d5 415 unsigned int cpu;
1f5bd336
ML
416 int ret;
417
418 /*
419 * If the tag allocator sleeps we could get an allocation for a
420 * different hardware context. No need to complicate the low level
421 * allocator for this for the rare use case of a command tied to
422 * a specific queue.
423 */
424 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
425 return ERR_PTR(-EINVAL);
426
427 if (hctx_idx >= q->nr_hw_queues)
428 return ERR_PTR(-EIO);
429
3a0a5299 430 ret = blk_queue_enter(q, flags);
1f5bd336
ML
431 if (ret)
432 return ERR_PTR(ret);
433
c8712c6a
CH
434 /*
435 * Check if the hardware context is actually mapped to anything.
436 * If not tell the caller that it should skip this queue.
437 */
6d2809d5
OS
438 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
439 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
440 blk_queue_exit(q);
441 return ERR_PTR(-EXDEV);
c8712c6a 442 }
6d2809d5
OS
443 cpu = cpumask_first(alloc_data.hctx->cpumask);
444 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 445
cd6ce148 446 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 447 blk_queue_exit(q);
c8712c6a 448
6d2809d5
OS
449 if (!rq)
450 return ERR_PTR(-EWOULDBLOCK);
451
452 return rq;
1f5bd336
ML
453}
454EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
455
6af54051 456void blk_mq_free_request(struct request *rq)
320ae51f 457{
320ae51f 458 struct request_queue *q = rq->q;
6af54051
CH
459 struct elevator_queue *e = q->elevator;
460 struct blk_mq_ctx *ctx = rq->mq_ctx;
461 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
462 const int sched_tag = rq->internal_tag;
463
5bbf4e5a 464 if (rq->rq_flags & RQF_ELVPRIV) {
6af54051
CH
465 if (e && e->type->ops.mq.finish_request)
466 e->type->ops.mq.finish_request(rq);
467 if (rq->elv.icq) {
468 put_io_context(rq->elv.icq->ioc);
469 rq->elv.icq = NULL;
470 }
471 }
320ae51f 472
6af54051 473 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 474 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 475 atomic_dec(&hctx->nr_active);
87760e5e 476
7beb2f84
JA
477 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
478 laptop_io_completion(q->backing_dev_info);
479
87760e5e 480 wbt_done(q->rq_wb, &rq->issue_stat);
0d2602ca 481
85acb3ba
SL
482 if (blk_rq_rl(rq))
483 blk_put_rl(blk_rq_rl(rq));
484
1d9bd516 485 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
06426adf 486 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
487 if (rq->tag != -1)
488 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
489 if (sched_tag != -1)
c05f8525 490 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
6d8c6c0f 491 blk_mq_sched_restart(hctx);
3ef28e83 492 blk_queue_exit(q);
320ae51f 493}
1a3b595a 494EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 495
2a842aca 496inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 497{
0d11e6ac
ML
498 blk_account_io_done(rq);
499
91b63639 500 if (rq->end_io) {
87760e5e 501 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 502 rq->end_io(rq, error);
91b63639
CH
503 } else {
504 if (unlikely(blk_bidi_rq(rq)))
505 blk_mq_free_request(rq->next_rq);
320ae51f 506 blk_mq_free_request(rq);
91b63639 507 }
320ae51f 508}
c8a446ad 509EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 510
2a842aca 511void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
512{
513 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
514 BUG();
c8a446ad 515 __blk_mq_end_request(rq, error);
63151a44 516}
c8a446ad 517EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 518
30a91cb4 519static void __blk_mq_complete_request_remote(void *data)
320ae51f 520{
3d6efbf6 521 struct request *rq = data;
320ae51f 522
30a91cb4 523 rq->q->softirq_done_fn(rq);
320ae51f 524}
320ae51f 525
453f8341 526static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
527{
528 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 529 bool shared = false;
320ae51f
JA
530 int cpu;
531
1d9bd516 532 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
5a61c363 533 blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
1d9bd516 534
453f8341
CH
535 if (rq->internal_tag != -1)
536 blk_mq_sched_completed_request(rq);
537 if (rq->rq_flags & RQF_STATS) {
538 blk_mq_poll_stats_start(rq->q);
539 blk_stat_add(rq);
540 }
541
38535201 542 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
543 rq->q->softirq_done_fn(rq);
544 return;
545 }
320ae51f
JA
546
547 cpu = get_cpu();
38535201
CH
548 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
549 shared = cpus_share_cache(cpu, ctx->cpu);
550
551 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 552 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
553 rq->csd.info = rq;
554 rq->csd.flags = 0;
c46fff2a 555 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 556 } else {
30a91cb4 557 rq->q->softirq_done_fn(rq);
3d6efbf6 558 }
320ae51f
JA
559 put_cpu();
560}
30a91cb4 561
04ced159
JA
562static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
563{
564 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
565 rcu_read_unlock();
566 else
05707b64 567 srcu_read_unlock(hctx->srcu, srcu_idx);
04ced159
JA
568}
569
570static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
571{
572 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
573 rcu_read_lock();
574 else
05707b64 575 *srcu_idx = srcu_read_lock(hctx->srcu);
04ced159
JA
576}
577
1d9bd516
TH
578static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
579{
580 unsigned long flags;
581
582 /*
583 * blk_mq_rq_aborted_gstate() is used from the completion path and
584 * can thus be called from irq context. u64_stats_fetch in the
585 * middle of update on the same CPU leads to lockup. Disable irq
586 * while updating.
587 */
588 local_irq_save(flags);
589 u64_stats_update_begin(&rq->aborted_gstate_sync);
590 rq->aborted_gstate = gstate;
591 u64_stats_update_end(&rq->aborted_gstate_sync);
592 local_irq_restore(flags);
593}
594
595static u64 blk_mq_rq_aborted_gstate(struct request *rq)
596{
597 unsigned int start;
598 u64 aborted_gstate;
599
600 do {
601 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
602 aborted_gstate = rq->aborted_gstate;
603 } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
604
605 return aborted_gstate;
606}
607
30a91cb4
CH
608/**
609 * blk_mq_complete_request - end I/O on a request
610 * @rq: the request being processed
611 *
612 * Description:
613 * Ends all I/O on a request. It does not handle partial completions.
614 * The actual completion happens out-of-order, through a IPI handler.
615 **/
08e0029a 616void blk_mq_complete_request(struct request *rq)
30a91cb4 617{
95f09684 618 struct request_queue *q = rq->q;
5197c05e
TH
619 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
620 int srcu_idx;
95f09684
JA
621
622 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 623 return;
5197c05e 624
1d9bd516
TH
625 /*
626 * If @rq->aborted_gstate equals the current instance, timeout is
627 * claiming @rq and we lost. This is synchronized through
628 * hctx_lock(). See blk_mq_timeout_work() for details.
629 *
630 * Completion path never blocks and we can directly use RCU here
631 * instead of hctx_lock() which can be either RCU or SRCU.
632 * However, that would complicate paths which want to synchronize
633 * against us. Let stay in sync with the issue path so that
634 * hctx_lock() covers both issue and completion paths.
635 */
5197c05e 636 hctx_lock(hctx, &srcu_idx);
634f9e46 637 if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
ed851860 638 __blk_mq_complete_request(rq);
5197c05e 639 hctx_unlock(hctx, srcu_idx);
30a91cb4
CH
640}
641EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 642
973c0191
KB
643int blk_mq_request_started(struct request *rq)
644{
5a61c363 645 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
973c0191
KB
646}
647EXPORT_SYMBOL_GPL(blk_mq_request_started);
648
e2490073 649void blk_mq_start_request(struct request *rq)
320ae51f
JA
650{
651 struct request_queue *q = rq->q;
652
bd166ef1
JA
653 blk_mq_sched_started_request(rq);
654
320ae51f
JA
655 trace_block_rq_issue(q, rq);
656
cf43e6be 657 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 658 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 659 rq->rq_flags |= RQF_STATS;
87760e5e 660 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
661 }
662
1d9bd516 663 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
538b7534 664
87ee7b11 665 /*
1d9bd516
TH
666 * Mark @rq in-flight which also advances the generation number,
667 * and register for timeout. Protect with a seqcount to allow the
668 * timeout path to read both @rq->gstate and @rq->deadline
669 * coherently.
a7af0af3 670 *
1d9bd516
TH
671 * This is the only place where a request is marked in-flight. If
672 * the timeout path reads an in-flight @rq->gstate, the
673 * @rq->deadline it reads together under @rq->gstate_seq is
674 * guaranteed to be the matching one.
87ee7b11 675 */
1d9bd516
TH
676 preempt_disable();
677 write_seqcount_begin(&rq->gstate_seq);
678
679 blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
680 blk_add_timer(rq);
681
682 write_seqcount_end(&rq->gstate_seq);
683 preempt_enable();
684
49f5baa5
CH
685 if (q->dma_drain_size && blk_rq_bytes(rq)) {
686 /*
687 * Make sure space for the drain appears. We know we can do
688 * this because max_hw_segments has been adjusted to be one
689 * fewer than the device can handle.
690 */
691 rq->nr_phys_segments++;
692 }
320ae51f 693}
e2490073 694EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 695
d9d149a3 696/*
5a61c363
TH
697 * When we reach here because queue is busy, it's safe to change the state
698 * to IDLE without checking @rq->aborted_gstate because we should still be
699 * holding the RCU read lock and thus protected against timeout.
d9d149a3 700 */
ed0791b2 701static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
702{
703 struct request_queue *q = rq->q;
704
923218f6
ML
705 blk_mq_put_driver_tag(rq);
706
320ae51f 707 trace_block_rq_requeue(q, rq);
87760e5e 708 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 709 blk_mq_sched_requeue_request(rq);
49f5baa5 710
5a61c363 711 if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
1d9bd516 712 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
e2490073
CH
713 if (q->dma_drain_size && blk_rq_bytes(rq))
714 rq->nr_phys_segments--;
715 }
320ae51f
JA
716}
717
2b053aca 718void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 719{
ed0791b2 720 __blk_mq_requeue_request(rq);
ed0791b2 721
ed0791b2 722 BUG_ON(blk_queued_rq(rq));
2b053aca 723 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
724}
725EXPORT_SYMBOL(blk_mq_requeue_request);
726
6fca6a61
CH
727static void blk_mq_requeue_work(struct work_struct *work)
728{
729 struct request_queue *q =
2849450a 730 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
731 LIST_HEAD(rq_list);
732 struct request *rq, *next;
6fca6a61 733
18e9781d 734 spin_lock_irq(&q->requeue_lock);
6fca6a61 735 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 736 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
737
738 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 739 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
740 continue;
741
e8064021 742 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 743 list_del_init(&rq->queuelist);
bd6737f1 744 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
745 }
746
747 while (!list_empty(&rq_list)) {
748 rq = list_entry(rq_list.next, struct request, queuelist);
749 list_del_init(&rq->queuelist);
bd6737f1 750 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
751 }
752
52d7f1b5 753 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
754}
755
2b053aca
BVA
756void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
757 bool kick_requeue_list)
6fca6a61
CH
758{
759 struct request_queue *q = rq->q;
760 unsigned long flags;
761
762 /*
763 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 764 * request head insertion from the workqueue.
6fca6a61 765 */
e8064021 766 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
767
768 spin_lock_irqsave(&q->requeue_lock, flags);
769 if (at_head) {
e8064021 770 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
771 list_add(&rq->queuelist, &q->requeue_list);
772 } else {
773 list_add_tail(&rq->queuelist, &q->requeue_list);
774 }
775 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
776
777 if (kick_requeue_list)
778 blk_mq_kick_requeue_list(q);
6fca6a61
CH
779}
780EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
781
782void blk_mq_kick_requeue_list(struct request_queue *q)
783{
2849450a 784 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
785}
786EXPORT_SYMBOL(blk_mq_kick_requeue_list);
787
2849450a
MS
788void blk_mq_delay_kick_requeue_list(struct request_queue *q,
789 unsigned long msecs)
790{
d4acf365
BVA
791 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
792 msecs_to_jiffies(msecs));
2849450a
MS
793}
794EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
795
0e62f51f
JA
796struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
797{
88c7b2b7
JA
798 if (tag < tags->nr_tags) {
799 prefetch(tags->rqs[tag]);
4ee86bab 800 return tags->rqs[tag];
88c7b2b7 801 }
4ee86bab
HR
802
803 return NULL;
24d2f903
CH
804}
805EXPORT_SYMBOL(blk_mq_tag_to_rq);
806
320ae51f 807struct blk_mq_timeout_data {
46f92d42
CH
808 unsigned long next;
809 unsigned int next_set;
1d9bd516 810 unsigned int nr_expired;
320ae51f
JA
811};
812
358f70da 813static void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 814{
f8a5b122 815 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 816 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11 817
634f9e46
TH
818 req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
819
46f92d42 820 if (ops->timeout)
0152fb6b 821 ret = ops->timeout(req, reserved);
46f92d42
CH
822
823 switch (ret) {
824 case BLK_EH_HANDLED:
825 __blk_mq_complete_request(req);
826 break;
827 case BLK_EH_RESET_TIMER:
1d9bd516
TH
828 /*
829 * As nothing prevents from completion happening while
830 * ->aborted_gstate is set, this may lead to ignored
831 * completions and further spurious timeouts.
832 */
833 blk_mq_rq_update_aborted_gstate(req, 0);
46f92d42 834 blk_add_timer(req);
46f92d42
CH
835 break;
836 case BLK_EH_NOT_HANDLED:
837 break;
838 default:
839 printk(KERN_ERR "block: bad eh return: %d\n", ret);
840 break;
841 }
87ee7b11 842}
5b3f25fc 843
81481eb4
CH
844static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
845 struct request *rq, void *priv, bool reserved)
846{
847 struct blk_mq_timeout_data *data = priv;
1d9bd516
TH
848 unsigned long gstate, deadline;
849 int start;
850
851 might_sleep();
87ee7b11 852
5a61c363 853 if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
46f92d42 854 return;
87ee7b11 855
1d9bd516
TH
856 /* read coherent snapshots of @rq->state_gen and @rq->deadline */
857 while (true) {
858 start = read_seqcount_begin(&rq->gstate_seq);
859 gstate = READ_ONCE(rq->gstate);
860 deadline = rq->deadline;
861 if (!read_seqcount_retry(&rq->gstate_seq, start))
862 break;
863 cond_resched();
864 }
a7af0af3 865
1d9bd516
TH
866 /* if in-flight && overdue, mark for abortion */
867 if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
868 time_after_eq(jiffies, deadline)) {
869 blk_mq_rq_update_aborted_gstate(rq, gstate);
870 data->nr_expired++;
871 hctx->nr_expired++;
a7af0af3
PZ
872 } else if (!data->next_set || time_after(data->next, deadline)) {
873 data->next = deadline;
46f92d42
CH
874 data->next_set = 1;
875 }
87ee7b11
JA
876}
877
1d9bd516
TH
878static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
879 struct request *rq, void *priv, bool reserved)
880{
881 /*
882 * We marked @rq->aborted_gstate and waited for RCU. If there were
883 * completions that we lost to, they would have finished and
884 * updated @rq->gstate by now; otherwise, the completion path is
885 * now guaranteed to see @rq->aborted_gstate and yield. If
886 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
887 */
634f9e46
TH
888 if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
889 READ_ONCE(rq->gstate) == rq->aborted_gstate)
1d9bd516
TH
890 blk_mq_rq_timed_out(rq, reserved);
891}
892
287922eb 893static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 894{
287922eb
CH
895 struct request_queue *q =
896 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
897 struct blk_mq_timeout_data data = {
898 .next = 0,
899 .next_set = 0,
1d9bd516 900 .nr_expired = 0,
81481eb4 901 };
1d9bd516 902 struct blk_mq_hw_ctx *hctx;
81481eb4 903 int i;
320ae51f 904
71f79fb3
GKB
905 /* A deadlock might occur if a request is stuck requiring a
906 * timeout at the same time a queue freeze is waiting
907 * completion, since the timeout code would not be able to
908 * acquire the queue reference here.
909 *
910 * That's why we don't use blk_queue_enter here; instead, we use
911 * percpu_ref_tryget directly, because we need to be able to
912 * obtain a reference even in the short window between the queue
913 * starting to freeze, by dropping the first reference in
1671d522 914 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
915 * consumed, marked by the instant q_usage_counter reaches
916 * zero.
917 */
918 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
919 return;
920
1d9bd516 921 /* scan for the expired ones and set their ->aborted_gstate */
0bf6cd5b 922 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 923
1d9bd516
TH
924 if (data.nr_expired) {
925 bool has_rcu = false;
926
927 /*
928 * Wait till everyone sees ->aborted_gstate. The
929 * sequential waits for SRCUs aren't ideal. If this ever
930 * becomes a problem, we can add per-hw_ctx rcu_head and
931 * wait in parallel.
932 */
933 queue_for_each_hw_ctx(q, hctx, i) {
934 if (!hctx->nr_expired)
935 continue;
936
937 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
938 has_rcu = true;
939 else
05707b64 940 synchronize_srcu(hctx->srcu);
1d9bd516
TH
941
942 hctx->nr_expired = 0;
943 }
944 if (has_rcu)
945 synchronize_rcu();
946
947 /* terminate the ones we won */
948 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
949 }
950
81481eb4
CH
951 if (data.next_set) {
952 data.next = blk_rq_timeout(round_jiffies_up(data.next));
953 mod_timer(&q->timeout, data.next);
0d2602ca 954 } else {
f054b56c
ML
955 queue_for_each_hw_ctx(q, hctx, i) {
956 /* the hctx may be unmapped, so check it here */
957 if (blk_mq_hw_queue_mapped(hctx))
958 blk_mq_tag_idle(hctx);
959 }
0d2602ca 960 }
287922eb 961 blk_queue_exit(q);
320ae51f
JA
962}
963
88459642
OS
964struct flush_busy_ctx_data {
965 struct blk_mq_hw_ctx *hctx;
966 struct list_head *list;
967};
968
969static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
970{
971 struct flush_busy_ctx_data *flush_data = data;
972 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
973 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
974
975 sbitmap_clear_bit(sb, bitnr);
976 spin_lock(&ctx->lock);
977 list_splice_tail_init(&ctx->rq_list, flush_data->list);
978 spin_unlock(&ctx->lock);
979 return true;
980}
981
1429d7c9
JA
982/*
983 * Process software queues that have been marked busy, splicing them
984 * to the for-dispatch
985 */
2c3ad667 986void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 987{
88459642
OS
988 struct flush_busy_ctx_data data = {
989 .hctx = hctx,
990 .list = list,
991 };
1429d7c9 992
88459642 993 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 994}
2c3ad667 995EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 996
b347689f
ML
997struct dispatch_rq_data {
998 struct blk_mq_hw_ctx *hctx;
999 struct request *rq;
1000};
1001
1002static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1003 void *data)
1004{
1005 struct dispatch_rq_data *dispatch_data = data;
1006 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1007 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1008
1009 spin_lock(&ctx->lock);
1010 if (unlikely(!list_empty(&ctx->rq_list))) {
1011 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1012 list_del_init(&dispatch_data->rq->queuelist);
1013 if (list_empty(&ctx->rq_list))
1014 sbitmap_clear_bit(sb, bitnr);
1015 }
1016 spin_unlock(&ctx->lock);
1017
1018 return !dispatch_data->rq;
1019}
1020
1021struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1022 struct blk_mq_ctx *start)
1023{
1024 unsigned off = start ? start->index_hw : 0;
1025 struct dispatch_rq_data data = {
1026 .hctx = hctx,
1027 .rq = NULL,
1028 };
1029
1030 __sbitmap_for_each_set(&hctx->ctx_map, off,
1031 dispatch_rq_from_ctx, &data);
1032
1033 return data.rq;
1034}
1035
703fd1c0
JA
1036static inline unsigned int queued_to_index(unsigned int queued)
1037{
1038 if (!queued)
1039 return 0;
1429d7c9 1040
703fd1c0 1041 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
1042}
1043
bd6737f1
JA
1044bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1045 bool wait)
bd166ef1
JA
1046{
1047 struct blk_mq_alloc_data data = {
1048 .q = rq->q,
bd166ef1
JA
1049 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1050 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1051 };
1052
5feeacdd
JA
1053 might_sleep_if(wait);
1054
81380ca1
OS
1055 if (rq->tag != -1)
1056 goto done;
bd166ef1 1057
415b806d
SG
1058 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1059 data.flags |= BLK_MQ_REQ_RESERVED;
1060
bd166ef1
JA
1061 rq->tag = blk_mq_get_tag(&data);
1062 if (rq->tag >= 0) {
200e86b3
JA
1063 if (blk_mq_tag_busy(data.hctx)) {
1064 rq->rq_flags |= RQF_MQ_INFLIGHT;
1065 atomic_inc(&data.hctx->nr_active);
1066 }
bd166ef1 1067 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
1068 }
1069
81380ca1
OS
1070done:
1071 if (hctx)
1072 *hctx = data.hctx;
1073 return rq->tag != -1;
bd166ef1
JA
1074}
1075
eb619fdb
JA
1076static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1077 int flags, void *key)
da55f2cc
OS
1078{
1079 struct blk_mq_hw_ctx *hctx;
1080
1081 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1082
eb619fdb 1083 list_del_init(&wait->entry);
da55f2cc
OS
1084 blk_mq_run_hw_queue(hctx, true);
1085 return 1;
1086}
1087
f906a6a0
JA
1088/*
1089 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1090 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1091 * restart. For both caes, take care to check the condition again after
1092 * marking us as waiting.
1093 */
1094static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1095 struct request *rq)
da55f2cc 1096{
eb619fdb 1097 struct blk_mq_hw_ctx *this_hctx = *hctx;
f906a6a0 1098 bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
da55f2cc 1099 struct sbq_wait_state *ws;
f906a6a0
JA
1100 wait_queue_entry_t *wait;
1101 bool ret;
da55f2cc 1102
f906a6a0
JA
1103 if (!shared_tags) {
1104 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1105 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1106 } else {
1107 wait = &this_hctx->dispatch_wait;
1108 if (!list_empty_careful(&wait->entry))
1109 return false;
1110
1111 spin_lock(&this_hctx->lock);
1112 if (!list_empty(&wait->entry)) {
1113 spin_unlock(&this_hctx->lock);
1114 return false;
1115 }
eb619fdb 1116
f906a6a0
JA
1117 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1118 add_wait_queue(&ws->wait, wait);
eb619fdb
JA
1119 }
1120
da55f2cc 1121 /*
eb619fdb
JA
1122 * It's possible that a tag was freed in the window between the
1123 * allocation failure and adding the hardware queue to the wait
1124 * queue.
da55f2cc 1125 */
f906a6a0
JA
1126 ret = blk_mq_get_driver_tag(rq, hctx, false);
1127
1128 if (!shared_tags) {
1129 /*
1130 * Don't clear RESTART here, someone else could have set it.
1131 * At most this will cost an extra queue run.
1132 */
1133 return ret;
1134 } else {
1135 if (!ret) {
1136 spin_unlock(&this_hctx->lock);
1137 return false;
1138 }
1139
1140 /*
1141 * We got a tag, remove ourselves from the wait queue to ensure
1142 * someone else gets the wakeup.
1143 */
1144 spin_lock_irq(&ws->wait.lock);
1145 list_del_init(&wait->entry);
1146 spin_unlock_irq(&ws->wait.lock);
eb619fdb 1147 spin_unlock(&this_hctx->lock);
f906a6a0 1148 return true;
eb619fdb 1149 }
da55f2cc
OS
1150}
1151
de148297 1152bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
eb619fdb 1153 bool got_budget)
320ae51f 1154{
81380ca1 1155 struct blk_mq_hw_ctx *hctx;
6d6f167c 1156 struct request *rq, *nxt;
eb619fdb 1157 bool no_tag = false;
fc17b653 1158 int errors, queued;
320ae51f 1159
81380ca1
OS
1160 if (list_empty(list))
1161 return false;
1162
de148297
ML
1163 WARN_ON(!list_is_singular(list) && got_budget);
1164
320ae51f
JA
1165 /*
1166 * Now process all the entries, sending them to the driver.
1167 */
93efe981 1168 errors = queued = 0;
81380ca1 1169 do {
74c45052 1170 struct blk_mq_queue_data bd;
fc17b653 1171 blk_status_t ret;
320ae51f 1172
f04c3df3 1173 rq = list_first_entry(list, struct request, queuelist);
bd166ef1 1174 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
3c782d67 1175 /*
da55f2cc 1176 * The initial allocation attempt failed, so we need to
eb619fdb
JA
1177 * rerun the hardware queue when a tag is freed. The
1178 * waitqueue takes care of that. If the queue is run
1179 * before we add this entry back on the dispatch list,
1180 * we'll re-run it below.
3c782d67 1181 */
f906a6a0 1182 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
de148297
ML
1183 if (got_budget)
1184 blk_mq_put_dispatch_budget(hctx);
f906a6a0
JA
1185 /*
1186 * For non-shared tags, the RESTART check
1187 * will suffice.
1188 */
1189 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1190 no_tag = true;
de148297
ML
1191 break;
1192 }
1193 }
1194
0c6af1cc
ML
1195 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1196 blk_mq_put_driver_tag(rq);
88022d72 1197 break;
0c6af1cc 1198 }
da55f2cc 1199
320ae51f 1200 list_del_init(&rq->queuelist);
320ae51f 1201
74c45052 1202 bd.rq = rq;
113285b4
JA
1203
1204 /*
1205 * Flag last if we have no more requests, or if we have more
1206 * but can't assign a driver tag to it.
1207 */
1208 if (list_empty(list))
1209 bd.last = true;
1210 else {
113285b4
JA
1211 nxt = list_first_entry(list, struct request, queuelist);
1212 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1213 }
74c45052
JA
1214
1215 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653 1216 if (ret == BLK_STS_RESOURCE) {
6d6f167c
JW
1217 /*
1218 * If an I/O scheduler has been configured and we got a
ff821d27
JA
1219 * driver tag for the next request already, free it
1220 * again.
6d6f167c
JW
1221 */
1222 if (!list_empty(list)) {
1223 nxt = list_first_entry(list, struct request, queuelist);
1224 blk_mq_put_driver_tag(nxt);
1225 }
f04c3df3 1226 list_add(&rq->queuelist, list);
ed0791b2 1227 __blk_mq_requeue_request(rq);
320ae51f 1228 break;
fc17b653
CH
1229 }
1230
1231 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1232 errors++;
2a842aca 1233 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1234 continue;
320ae51f
JA
1235 }
1236
fc17b653 1237 queued++;
81380ca1 1238 } while (!list_empty(list));
320ae51f 1239
703fd1c0 1240 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1241
1242 /*
1243 * Any items that need requeuing? Stuff them into hctx->dispatch,
1244 * that is where we will continue on next queue run.
1245 */
f04c3df3 1246 if (!list_empty(list)) {
320ae51f 1247 spin_lock(&hctx->lock);
c13660a0 1248 list_splice_init(list, &hctx->dispatch);
320ae51f 1249 spin_unlock(&hctx->lock);
f04c3df3 1250
9ba52e58 1251 /*
710c785f
BVA
1252 * If SCHED_RESTART was set by the caller of this function and
1253 * it is no longer set that means that it was cleared by another
1254 * thread and hence that a queue rerun is needed.
9ba52e58 1255 *
eb619fdb
JA
1256 * If 'no_tag' is set, that means that we failed getting
1257 * a driver tag with an I/O scheduler attached. If our dispatch
1258 * waitqueue is no longer active, ensure that we run the queue
1259 * AFTER adding our entries back to the list.
bd166ef1 1260 *
710c785f
BVA
1261 * If no I/O scheduler has been configured it is possible that
1262 * the hardware queue got stopped and restarted before requests
1263 * were pushed back onto the dispatch list. Rerun the queue to
1264 * avoid starvation. Notes:
1265 * - blk_mq_run_hw_queue() checks whether or not a queue has
1266 * been stopped before rerunning a queue.
1267 * - Some but not all block drivers stop a queue before
fc17b653 1268 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1269 * and dm-rq.
bd166ef1 1270 */
eb619fdb
JA
1271 if (!blk_mq_sched_needs_restart(hctx) ||
1272 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1273 blk_mq_run_hw_queue(hctx, true);
320ae51f 1274 }
f04c3df3 1275
93efe981 1276 return (queued + errors) != 0;
f04c3df3
JA
1277}
1278
6a83e74d
BVA
1279static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1280{
1281 int srcu_idx;
1282
b7a71e66
JA
1283 /*
1284 * We should be running this queue from one of the CPUs that
1285 * are mapped to it.
1286 */
6a83e74d
BVA
1287 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1288 cpu_online(hctx->next_cpu));
1289
b7a71e66
JA
1290 /*
1291 * We can't run the queue inline with ints disabled. Ensure that
1292 * we catch bad users of this early.
1293 */
1294 WARN_ON_ONCE(in_interrupt());
1295
04ced159 1296 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1297
04ced159
JA
1298 hctx_lock(hctx, &srcu_idx);
1299 blk_mq_sched_dispatch_requests(hctx);
1300 hctx_unlock(hctx, srcu_idx);
6a83e74d
BVA
1301}
1302
506e931f
JA
1303/*
1304 * It'd be great if the workqueue API had a way to pass
1305 * in a mask and had some smarts for more clever placement.
1306 * For now we just round-robin here, switching for every
1307 * BLK_MQ_CPU_WORK_BATCH queued items.
1308 */
1309static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1310{
b657d7e6
CH
1311 if (hctx->queue->nr_hw_queues == 1)
1312 return WORK_CPU_UNBOUND;
506e931f
JA
1313
1314 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1315 int next_cpu;
506e931f
JA
1316
1317 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1318 if (next_cpu >= nr_cpu_ids)
1319 next_cpu = cpumask_first(hctx->cpumask);
1320
1321 hctx->next_cpu = next_cpu;
1322 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1323 }
1324
b657d7e6 1325 return hctx->next_cpu;
506e931f
JA
1326}
1327
7587a5ae
BVA
1328static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1329 unsigned long msecs)
320ae51f 1330{
5435c023
BVA
1331 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1332 return;
1333
1334 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1335 return;
1336
1b792f2f 1337 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1338 int cpu = get_cpu();
1339 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1340 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1341 put_cpu();
398205b8
PB
1342 return;
1343 }
e4043dcf 1344
2a90d4aa 1345 put_cpu();
e4043dcf 1346 }
398205b8 1347
9f993737
JA
1348 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1349 &hctx->run_work,
1350 msecs_to_jiffies(msecs));
7587a5ae
BVA
1351}
1352
1353void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1354{
1355 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1356}
1357EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1358
79f720a7 1359bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 1360{
24f5a90f
ML
1361 int srcu_idx;
1362 bool need_run;
1363
1364 /*
1365 * When queue is quiesced, we may be switching io scheduler, or
1366 * updating nr_hw_queues, or other things, and we can't run queue
1367 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1368 *
1369 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1370 * quiesced.
1371 */
04ced159
JA
1372 hctx_lock(hctx, &srcu_idx);
1373 need_run = !blk_queue_quiesced(hctx->queue) &&
1374 blk_mq_hctx_has_pending(hctx);
1375 hctx_unlock(hctx, srcu_idx);
24f5a90f
ML
1376
1377 if (need_run) {
79f720a7
JA
1378 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1379 return true;
1380 }
1381
1382 return false;
320ae51f 1383}
5b727272 1384EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1385
b94ec296 1386void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1387{
1388 struct blk_mq_hw_ctx *hctx;
1389 int i;
1390
1391 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 1392 if (blk_mq_hctx_stopped(hctx))
320ae51f
JA
1393 continue;
1394
b94ec296 1395 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1396 }
1397}
b94ec296 1398EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1399
fd001443
BVA
1400/**
1401 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1402 * @q: request queue.
1403 *
1404 * The caller is responsible for serializing this function against
1405 * blk_mq_{start,stop}_hw_queue().
1406 */
1407bool blk_mq_queue_stopped(struct request_queue *q)
1408{
1409 struct blk_mq_hw_ctx *hctx;
1410 int i;
1411
1412 queue_for_each_hw_ctx(q, hctx, i)
1413 if (blk_mq_hctx_stopped(hctx))
1414 return true;
1415
1416 return false;
1417}
1418EXPORT_SYMBOL(blk_mq_queue_stopped);
1419
39a70c76
ML
1420/*
1421 * This function is often used for pausing .queue_rq() by driver when
1422 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1423 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1424 *
1425 * We do not guarantee that dispatch can be drained or blocked
1426 * after blk_mq_stop_hw_queue() returns. Please use
1427 * blk_mq_quiesce_queue() for that requirement.
1428 */
2719aa21
JA
1429void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1430{
641a9ed6 1431 cancel_delayed_work(&hctx->run_work);
280d45f6 1432
641a9ed6 1433 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1434}
641a9ed6 1435EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1436
39a70c76
ML
1437/*
1438 * This function is often used for pausing .queue_rq() by driver when
1439 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1440 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1441 *
1442 * We do not guarantee that dispatch can be drained or blocked
1443 * after blk_mq_stop_hw_queues() returns. Please use
1444 * blk_mq_quiesce_queue() for that requirement.
1445 */
2719aa21
JA
1446void blk_mq_stop_hw_queues(struct request_queue *q)
1447{
641a9ed6
ML
1448 struct blk_mq_hw_ctx *hctx;
1449 int i;
1450
1451 queue_for_each_hw_ctx(q, hctx, i)
1452 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1453}
1454EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1455
320ae51f
JA
1456void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1457{
1458 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1459
0ffbce80 1460 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1461}
1462EXPORT_SYMBOL(blk_mq_start_hw_queue);
1463
2f268556
CH
1464void blk_mq_start_hw_queues(struct request_queue *q)
1465{
1466 struct blk_mq_hw_ctx *hctx;
1467 int i;
1468
1469 queue_for_each_hw_ctx(q, hctx, i)
1470 blk_mq_start_hw_queue(hctx);
1471}
1472EXPORT_SYMBOL(blk_mq_start_hw_queues);
1473
ae911c5e
JA
1474void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1475{
1476 if (!blk_mq_hctx_stopped(hctx))
1477 return;
1478
1479 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1480 blk_mq_run_hw_queue(hctx, async);
1481}
1482EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1483
1b4a3258 1484void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1485{
1486 struct blk_mq_hw_ctx *hctx;
1487 int i;
1488
ae911c5e
JA
1489 queue_for_each_hw_ctx(q, hctx, i)
1490 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1491}
1492EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1493
70f4db63 1494static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1495{
1496 struct blk_mq_hw_ctx *hctx;
1497
9f993737 1498 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1499
21c6e939
JA
1500 /*
1501 * If we are stopped, don't run the queue. The exception is if
1502 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1503 * the STOPPED bit and run it.
1504 */
1505 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1506 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1507 return;
7587a5ae 1508
21c6e939
JA
1509 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1510 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1511 }
7587a5ae
BVA
1512
1513 __blk_mq_run_hw_queue(hctx);
1514}
1515
70f4db63
CH
1516
1517void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1518{
5435c023 1519 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
19c66e59 1520 return;
70f4db63 1521
21c6e939
JA
1522 /*
1523 * Stop the hw queue, then modify currently delayed work.
1524 * This should prevent us from running the queue prematurely.
1525 * Mark the queue as auto-clearing STOPPED when it runs.
1526 */
7e79dadc 1527 blk_mq_stop_hw_queue(hctx);
21c6e939
JA
1528 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1529 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1530 &hctx->run_work,
1531 msecs_to_jiffies(msecs));
70f4db63
CH
1532}
1533EXPORT_SYMBOL(blk_mq_delay_queue);
1534
cfd0c552 1535static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1536 struct request *rq,
1537 bool at_head)
320ae51f 1538{
e57690fe
JA
1539 struct blk_mq_ctx *ctx = rq->mq_ctx;
1540
7b607814
BVA
1541 lockdep_assert_held(&ctx->lock);
1542
01b983c9
JA
1543 trace_block_rq_insert(hctx->queue, rq);
1544
72a0a36e
CH
1545 if (at_head)
1546 list_add(&rq->queuelist, &ctx->rq_list);
1547 else
1548 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1549}
4bb659b1 1550
2c3ad667
JA
1551void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1552 bool at_head)
cfd0c552
ML
1553{
1554 struct blk_mq_ctx *ctx = rq->mq_ctx;
1555
7b607814
BVA
1556 lockdep_assert_held(&ctx->lock);
1557
e57690fe 1558 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1559 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1560}
1561
157f377b
JA
1562/*
1563 * Should only be used carefully, when the caller knows we want to
1564 * bypass a potential IO scheduler on the target device.
1565 */
b0850297 1566void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
157f377b
JA
1567{
1568 struct blk_mq_ctx *ctx = rq->mq_ctx;
1569 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1570
1571 spin_lock(&hctx->lock);
1572 list_add_tail(&rq->queuelist, &hctx->dispatch);
1573 spin_unlock(&hctx->lock);
1574
b0850297
ML
1575 if (run_queue)
1576 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1577}
1578
bd166ef1
JA
1579void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1580 struct list_head *list)
320ae51f
JA
1581
1582{
320ae51f
JA
1583 /*
1584 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1585 * offline now
1586 */
1587 spin_lock(&ctx->lock);
1588 while (!list_empty(list)) {
1589 struct request *rq;
1590
1591 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1592 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1593 list_del_init(&rq->queuelist);
e57690fe 1594 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1595 }
cfd0c552 1596 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1597 spin_unlock(&ctx->lock);
320ae51f
JA
1598}
1599
1600static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1601{
1602 struct request *rqa = container_of(a, struct request, queuelist);
1603 struct request *rqb = container_of(b, struct request, queuelist);
1604
1605 return !(rqa->mq_ctx < rqb->mq_ctx ||
1606 (rqa->mq_ctx == rqb->mq_ctx &&
1607 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1608}
1609
1610void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1611{
1612 struct blk_mq_ctx *this_ctx;
1613 struct request_queue *this_q;
1614 struct request *rq;
1615 LIST_HEAD(list);
1616 LIST_HEAD(ctx_list);
1617 unsigned int depth;
1618
1619 list_splice_init(&plug->mq_list, &list);
1620
1621 list_sort(NULL, &list, plug_ctx_cmp);
1622
1623 this_q = NULL;
1624 this_ctx = NULL;
1625 depth = 0;
1626
1627 while (!list_empty(&list)) {
1628 rq = list_entry_rq(list.next);
1629 list_del_init(&rq->queuelist);
1630 BUG_ON(!rq->q);
1631 if (rq->mq_ctx != this_ctx) {
1632 if (this_ctx) {
bd166ef1
JA
1633 trace_block_unplug(this_q, depth, from_schedule);
1634 blk_mq_sched_insert_requests(this_q, this_ctx,
1635 &ctx_list,
1636 from_schedule);
320ae51f
JA
1637 }
1638
1639 this_ctx = rq->mq_ctx;
1640 this_q = rq->q;
1641 depth = 0;
1642 }
1643
1644 depth++;
1645 list_add_tail(&rq->queuelist, &ctx_list);
1646 }
1647
1648 /*
1649 * If 'this_ctx' is set, we know we have entries to complete
1650 * on 'ctx_list'. Do those.
1651 */
1652 if (this_ctx) {
bd166ef1
JA
1653 trace_block_unplug(this_q, depth, from_schedule);
1654 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1655 from_schedule);
320ae51f
JA
1656 }
1657}
1658
1659static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1660{
da8d7f07 1661 blk_init_request_from_bio(rq, bio);
4b570521 1662
85acb3ba
SL
1663 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1664
6e85eaf3 1665 blk_account_io_start(rq, true);
320ae51f
JA
1666}
1667
ab42f35d
ML
1668static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1669 struct blk_mq_ctx *ctx,
1670 struct request *rq)
1671{
1672 spin_lock(&ctx->lock);
1673 __blk_mq_insert_request(hctx, rq, false);
1674 spin_unlock(&ctx->lock);
07068d5b 1675}
14ec77f3 1676
fd2d3326
JA
1677static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1678{
bd166ef1
JA
1679 if (rq->tag != -1)
1680 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1681
1682 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1683}
1684
d964f04a
ML
1685static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1686 struct request *rq,
04ced159 1687 blk_qc_t *cookie)
f984df1f 1688{
f984df1f 1689 struct request_queue *q = rq->q;
f984df1f
SL
1690 struct blk_mq_queue_data bd = {
1691 .rq = rq,
d945a365 1692 .last = true,
f984df1f 1693 };
bd166ef1 1694 blk_qc_t new_cookie;
f06345ad 1695 blk_status_t ret;
d964f04a
ML
1696 bool run_queue = true;
1697
f4560ffe
ML
1698 /* RCU or SRCU read lock is needed before checking quiesced flag */
1699 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a
ML
1700 run_queue = false;
1701 goto insert;
1702 }
f984df1f 1703
bd166ef1 1704 if (q->elevator)
2253efc8
BVA
1705 goto insert;
1706
d964f04a 1707 if (!blk_mq_get_driver_tag(rq, NULL, false))
bd166ef1
JA
1708 goto insert;
1709
88022d72 1710 if (!blk_mq_get_dispatch_budget(hctx)) {
de148297
ML
1711 blk_mq_put_driver_tag(rq);
1712 goto insert;
88022d72 1713 }
de148297 1714
bd166ef1
JA
1715 new_cookie = request_to_qc_t(hctx, rq);
1716
f984df1f
SL
1717 /*
1718 * For OK queue, we are done. For error, kill it. Any other
1719 * error (busy), just add it to our list as we previously
1720 * would have done
1721 */
1722 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653
CH
1723 switch (ret) {
1724 case BLK_STS_OK:
7b371636 1725 *cookie = new_cookie;
2253efc8 1726 return;
fc17b653
CH
1727 case BLK_STS_RESOURCE:
1728 __blk_mq_requeue_request(rq);
1729 goto insert;
1730 default:
7b371636 1731 *cookie = BLK_QC_T_NONE;
fc17b653 1732 blk_mq_end_request(rq, ret);
2253efc8 1733 return;
f984df1f 1734 }
7b371636 1735
2253efc8 1736insert:
04ced159
JA
1737 blk_mq_sched_insert_request(rq, false, run_queue, false,
1738 hctx->flags & BLK_MQ_F_BLOCKING);
f984df1f
SL
1739}
1740
5eb6126e
CH
1741static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1742 struct request *rq, blk_qc_t *cookie)
1743{
04ced159 1744 int srcu_idx;
bf4907c0 1745
04ced159 1746 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1747
04ced159
JA
1748 hctx_lock(hctx, &srcu_idx);
1749 __blk_mq_try_issue_directly(hctx, rq, cookie);
1750 hctx_unlock(hctx, srcu_idx);
5eb6126e
CH
1751}
1752
dece1635 1753static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1754{
ef295ecf 1755 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1756 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1757 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1758 struct request *rq;
5eb6126e 1759 unsigned int request_count = 0;
f984df1f 1760 struct blk_plug *plug;
5b3f341f 1761 struct request *same_queue_rq = NULL;
7b371636 1762 blk_qc_t cookie;
87760e5e 1763 unsigned int wb_acct;
07068d5b
JA
1764
1765 blk_queue_bounce(q, &bio);
1766
af67c31f 1767 blk_queue_split(q, &bio);
f36ea50c 1768
e23947bd 1769 if (!bio_integrity_prep(bio))
dece1635 1770 return BLK_QC_T_NONE;
07068d5b 1771
87c279e6
OS
1772 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1773 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1774 return BLK_QC_T_NONE;
f984df1f 1775
bd166ef1
JA
1776 if (blk_mq_sched_bio_merge(q, bio))
1777 return BLK_QC_T_NONE;
1778
87760e5e
JA
1779 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1780
bd166ef1
JA
1781 trace_block_getrq(q, bio, bio->bi_opf);
1782
d2c0d383 1783 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1784 if (unlikely(!rq)) {
1785 __wbt_done(q->rq_wb, wb_acct);
03a07c92
GR
1786 if (bio->bi_opf & REQ_NOWAIT)
1787 bio_wouldblock_error(bio);
dece1635 1788 return BLK_QC_T_NONE;
87760e5e
JA
1789 }
1790
1791 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1792
fd2d3326 1793 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1794
f984df1f 1795 plug = current->plug;
07068d5b 1796 if (unlikely(is_flush_fua)) {
f984df1f 1797 blk_mq_put_ctx(data.ctx);
07068d5b 1798 blk_mq_bio_to_request(rq, bio);
923218f6
ML
1799
1800 /* bypass scheduler for flush rq */
1801 blk_insert_flush(rq);
1802 blk_mq_run_hw_queue(data.hctx, true);
a4d907b6 1803 } else if (plug && q->nr_hw_queues == 1) {
600271d9
SL
1804 struct request *last = NULL;
1805
b00c53e8 1806 blk_mq_put_ctx(data.ctx);
e6c4438b 1807 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1808
1809 /*
1810 * @request_count may become stale because of schedule
1811 * out, so check the list again.
1812 */
1813 if (list_empty(&plug->mq_list))
1814 request_count = 0;
254d259d
CH
1815 else if (blk_queue_nomerges(q))
1816 request_count = blk_plug_queued_count(q);
1817
676d0607 1818 if (!request_count)
e6c4438b 1819 trace_block_plug(q);
600271d9
SL
1820 else
1821 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1822
600271d9
SL
1823 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1824 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1825 blk_flush_plug_list(plug, false);
1826 trace_block_plug(q);
320ae51f 1827 }
b094f89c 1828
e6c4438b 1829 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1830 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1831 blk_mq_bio_to_request(rq, bio);
07068d5b 1832
07068d5b 1833 /*
6a83e74d 1834 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1835 * Otherwise the existing request in the plug list will be
1836 * issued. So the plug list will have one request at most
2299722c
CH
1837 * The plug list might get flushed before this. If that happens,
1838 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1839 */
2299722c
CH
1840 if (list_empty(&plug->mq_list))
1841 same_queue_rq = NULL;
1842 if (same_queue_rq)
1843 list_del_init(&same_queue_rq->queuelist);
1844 list_add_tail(&rq->queuelist, &plug->mq_list);
1845
bf4907c0
JA
1846 blk_mq_put_ctx(data.ctx);
1847
dad7a3be
ML
1848 if (same_queue_rq) {
1849 data.hctx = blk_mq_map_queue(q,
1850 same_queue_rq->mq_ctx->cpu);
2299722c
CH
1851 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1852 &cookie);
dad7a3be 1853 }
a4d907b6 1854 } else if (q->nr_hw_queues > 1 && is_sync) {
bf4907c0 1855 blk_mq_put_ctx(data.ctx);
2299722c 1856 blk_mq_bio_to_request(rq, bio);
2299722c 1857 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
a4d907b6 1858 } else if (q->elevator) {
b00c53e8 1859 blk_mq_put_ctx(data.ctx);
bd166ef1 1860 blk_mq_bio_to_request(rq, bio);
a4d907b6 1861 blk_mq_sched_insert_request(rq, false, true, true, true);
ab42f35d 1862 } else {
b00c53e8 1863 blk_mq_put_ctx(data.ctx);
ab42f35d
ML
1864 blk_mq_bio_to_request(rq, bio);
1865 blk_mq_queue_io(data.hctx, data.ctx, rq);
a4d907b6 1866 blk_mq_run_hw_queue(data.hctx, true);
ab42f35d 1867 }
320ae51f 1868
7b371636 1869 return cookie;
320ae51f
JA
1870}
1871
cc71a6f4
JA
1872void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1873 unsigned int hctx_idx)
95363efd 1874{
e9b267d9 1875 struct page *page;
320ae51f 1876
24d2f903 1877 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1878 int i;
320ae51f 1879
24d2f903 1880 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1881 struct request *rq = tags->static_rqs[i];
1882
1883 if (!rq)
e9b267d9 1884 continue;
d6296d39 1885 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 1886 tags->static_rqs[i] = NULL;
e9b267d9 1887 }
320ae51f 1888 }
320ae51f 1889
24d2f903
CH
1890 while (!list_empty(&tags->page_list)) {
1891 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1892 list_del_init(&page->lru);
f75782e4
CM
1893 /*
1894 * Remove kmemleak object previously allocated in
1895 * blk_mq_init_rq_map().
1896 */
1897 kmemleak_free(page_address(page));
320ae51f
JA
1898 __free_pages(page, page->private);
1899 }
cc71a6f4 1900}
320ae51f 1901
cc71a6f4
JA
1902void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1903{
24d2f903 1904 kfree(tags->rqs);
cc71a6f4 1905 tags->rqs = NULL;
2af8cbe3
JA
1906 kfree(tags->static_rqs);
1907 tags->static_rqs = NULL;
320ae51f 1908
24d2f903 1909 blk_mq_free_tags(tags);
320ae51f
JA
1910}
1911
cc71a6f4
JA
1912struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1913 unsigned int hctx_idx,
1914 unsigned int nr_tags,
1915 unsigned int reserved_tags)
320ae51f 1916{
24d2f903 1917 struct blk_mq_tags *tags;
59f082e4 1918 int node;
320ae51f 1919
59f082e4
SL
1920 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1921 if (node == NUMA_NO_NODE)
1922 node = set->numa_node;
1923
1924 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1925 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1926 if (!tags)
1927 return NULL;
320ae51f 1928
cc71a6f4 1929 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1930 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1931 node);
24d2f903
CH
1932 if (!tags->rqs) {
1933 blk_mq_free_tags(tags);
1934 return NULL;
1935 }
320ae51f 1936
2af8cbe3
JA
1937 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1938 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1939 node);
2af8cbe3
JA
1940 if (!tags->static_rqs) {
1941 kfree(tags->rqs);
1942 blk_mq_free_tags(tags);
1943 return NULL;
1944 }
1945
cc71a6f4
JA
1946 return tags;
1947}
1948
1949static size_t order_to_size(unsigned int order)
1950{
1951 return (size_t)PAGE_SIZE << order;
1952}
1953
1d9bd516
TH
1954static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1955 unsigned int hctx_idx, int node)
1956{
1957 int ret;
1958
1959 if (set->ops->init_request) {
1960 ret = set->ops->init_request(set, rq, hctx_idx, node);
1961 if (ret)
1962 return ret;
1963 }
1964
1965 seqcount_init(&rq->gstate_seq);
1966 u64_stats_init(&rq->aborted_gstate_sync);
1967 return 0;
1968}
1969
cc71a6f4
JA
1970int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1971 unsigned int hctx_idx, unsigned int depth)
1972{
1973 unsigned int i, j, entries_per_page, max_order = 4;
1974 size_t rq_size, left;
59f082e4
SL
1975 int node;
1976
1977 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1978 if (node == NUMA_NO_NODE)
1979 node = set->numa_node;
cc71a6f4
JA
1980
1981 INIT_LIST_HEAD(&tags->page_list);
1982
320ae51f
JA
1983 /*
1984 * rq_size is the size of the request plus driver payload, rounded
1985 * to the cacheline size
1986 */
24d2f903 1987 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1988 cache_line_size());
cc71a6f4 1989 left = rq_size * depth;
320ae51f 1990
cc71a6f4 1991 for (i = 0; i < depth; ) {
320ae51f
JA
1992 int this_order = max_order;
1993 struct page *page;
1994 int to_do;
1995 void *p;
1996
b3a834b1 1997 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1998 this_order--;
1999
2000 do {
59f082e4 2001 page = alloc_pages_node(node,
36e1f3d1 2002 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 2003 this_order);
320ae51f
JA
2004 if (page)
2005 break;
2006 if (!this_order--)
2007 break;
2008 if (order_to_size(this_order) < rq_size)
2009 break;
2010 } while (1);
2011
2012 if (!page)
24d2f903 2013 goto fail;
320ae51f
JA
2014
2015 page->private = this_order;
24d2f903 2016 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
2017
2018 p = page_address(page);
f75782e4
CM
2019 /*
2020 * Allow kmemleak to scan these pages as they contain pointers
2021 * to additional allocations like via ops->init_request().
2022 */
36e1f3d1 2023 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 2024 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 2025 to_do = min(entries_per_page, depth - i);
320ae51f
JA
2026 left -= to_do * rq_size;
2027 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
2028 struct request *rq = p;
2029
2030 tags->static_rqs[i] = rq;
1d9bd516
TH
2031 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2032 tags->static_rqs[i] = NULL;
2033 goto fail;
e9b267d9
CH
2034 }
2035
320ae51f
JA
2036 p += rq_size;
2037 i++;
2038 }
2039 }
cc71a6f4 2040 return 0;
320ae51f 2041
24d2f903 2042fail:
cc71a6f4
JA
2043 blk_mq_free_rqs(set, tags, hctx_idx);
2044 return -ENOMEM;
320ae51f
JA
2045}
2046
e57690fe
JA
2047/*
2048 * 'cpu' is going away. splice any existing rq_list entries from this
2049 * software queue to the hw queue dispatch list, and ensure that it
2050 * gets run.
2051 */
9467f859 2052static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 2053{
9467f859 2054 struct blk_mq_hw_ctx *hctx;
484b4061
JA
2055 struct blk_mq_ctx *ctx;
2056 LIST_HEAD(tmp);
2057
9467f859 2058 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 2059 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
2060
2061 spin_lock(&ctx->lock);
2062 if (!list_empty(&ctx->rq_list)) {
2063 list_splice_init(&ctx->rq_list, &tmp);
2064 blk_mq_hctx_clear_pending(hctx, ctx);
2065 }
2066 spin_unlock(&ctx->lock);
2067
2068 if (list_empty(&tmp))
9467f859 2069 return 0;
484b4061 2070
e57690fe
JA
2071 spin_lock(&hctx->lock);
2072 list_splice_tail_init(&tmp, &hctx->dispatch);
2073 spin_unlock(&hctx->lock);
484b4061
JA
2074
2075 blk_mq_run_hw_queue(hctx, true);
9467f859 2076 return 0;
484b4061
JA
2077}
2078
9467f859 2079static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 2080{
9467f859
TG
2081 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2082 &hctx->cpuhp_dead);
484b4061
JA
2083}
2084
c3b4afca 2085/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
2086static void blk_mq_exit_hctx(struct request_queue *q,
2087 struct blk_mq_tag_set *set,
2088 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2089{
9c1051aa
OS
2090 blk_mq_debugfs_unregister_hctx(hctx);
2091
8ab0b7dc
ML
2092 if (blk_mq_hw_queue_mapped(hctx))
2093 blk_mq_tag_idle(hctx);
08e98fc6 2094
f70ced09 2095 if (set->ops->exit_request)
d6296d39 2096 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 2097
93252632
OS
2098 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2099
08e98fc6
ML
2100 if (set->ops->exit_hctx)
2101 set->ops->exit_hctx(hctx, hctx_idx);
2102
6a83e74d 2103 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2104 cleanup_srcu_struct(hctx->srcu);
6a83e74d 2105
9467f859 2106 blk_mq_remove_cpuhp(hctx);
f70ced09 2107 blk_free_flush_queue(hctx->fq);
88459642 2108 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2109}
2110
624dbe47
ML
2111static void blk_mq_exit_hw_queues(struct request_queue *q,
2112 struct blk_mq_tag_set *set, int nr_queue)
2113{
2114 struct blk_mq_hw_ctx *hctx;
2115 unsigned int i;
2116
2117 queue_for_each_hw_ctx(q, hctx, i) {
2118 if (i == nr_queue)
2119 break;
08e98fc6 2120 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 2121 }
624dbe47
ML
2122}
2123
08e98fc6
ML
2124static int blk_mq_init_hctx(struct request_queue *q,
2125 struct blk_mq_tag_set *set,
2126 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 2127{
08e98fc6
ML
2128 int node;
2129
2130 node = hctx->numa_node;
2131 if (node == NUMA_NO_NODE)
2132 node = hctx->numa_node = set->numa_node;
2133
9f993737 2134 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2135 spin_lock_init(&hctx->lock);
2136 INIT_LIST_HEAD(&hctx->dispatch);
2137 hctx->queue = q;
2404e607 2138 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2139
9467f859 2140 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
2141
2142 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
2143
2144 /*
08e98fc6
ML
2145 * Allocate space for all possible cpus to avoid allocation at
2146 * runtime
320ae51f 2147 */
d904bfa7 2148 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
08e98fc6
ML
2149 GFP_KERNEL, node);
2150 if (!hctx->ctxs)
2151 goto unregister_cpu_notifier;
320ae51f 2152
88459642
OS
2153 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2154 node))
08e98fc6 2155 goto free_ctxs;
320ae51f 2156
08e98fc6 2157 hctx->nr_ctx = 0;
320ae51f 2158
eb619fdb
JA
2159 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2160 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2161
08e98fc6
ML
2162 if (set->ops->init_hctx &&
2163 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2164 goto free_bitmap;
320ae51f 2165
93252632
OS
2166 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2167 goto exit_hctx;
2168
f70ced09
ML
2169 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2170 if (!hctx->fq)
93252632 2171 goto sched_exit_hctx;
320ae51f 2172
1d9bd516 2173 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
f70ced09 2174 goto free_fq;
320ae51f 2175
6a83e74d 2176 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2177 init_srcu_struct(hctx->srcu);
6a83e74d 2178
9c1051aa
OS
2179 blk_mq_debugfs_register_hctx(q, hctx);
2180
08e98fc6 2181 return 0;
320ae51f 2182
f70ced09
ML
2183 free_fq:
2184 kfree(hctx->fq);
93252632
OS
2185 sched_exit_hctx:
2186 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
2187 exit_hctx:
2188 if (set->ops->exit_hctx)
2189 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 2190 free_bitmap:
88459642 2191 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2192 free_ctxs:
2193 kfree(hctx->ctxs);
2194 unregister_cpu_notifier:
9467f859 2195 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
2196 return -1;
2197}
320ae51f 2198
320ae51f
JA
2199static void blk_mq_init_cpu_queues(struct request_queue *q,
2200 unsigned int nr_hw_queues)
2201{
2202 unsigned int i;
2203
2204 for_each_possible_cpu(i) {
2205 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2206 struct blk_mq_hw_ctx *hctx;
2207
320ae51f
JA
2208 __ctx->cpu = i;
2209 spin_lock_init(&__ctx->lock);
2210 INIT_LIST_HEAD(&__ctx->rq_list);
2211 __ctx->queue = q;
2212
4b855ad3
CH
2213 /* If the cpu isn't present, the cpu is mapped to first hctx */
2214 if (!cpu_present(i))
320ae51f
JA
2215 continue;
2216
7d7e0f90 2217 hctx = blk_mq_map_queue(q, i);
e4043dcf 2218
320ae51f
JA
2219 /*
2220 * Set local node, IFF we have more than one hw queue. If
2221 * not, we remain on the home node of the device
2222 */
2223 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 2224 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
2225 }
2226}
2227
cc71a6f4
JA
2228static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2229{
2230 int ret = 0;
2231
2232 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2233 set->queue_depth, set->reserved_tags);
2234 if (!set->tags[hctx_idx])
2235 return false;
2236
2237 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2238 set->queue_depth);
2239 if (!ret)
2240 return true;
2241
2242 blk_mq_free_rq_map(set->tags[hctx_idx]);
2243 set->tags[hctx_idx] = NULL;
2244 return false;
2245}
2246
2247static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2248 unsigned int hctx_idx)
2249{
bd166ef1
JA
2250 if (set->tags[hctx_idx]) {
2251 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2252 blk_mq_free_rq_map(set->tags[hctx_idx]);
2253 set->tags[hctx_idx] = NULL;
2254 }
cc71a6f4
JA
2255}
2256
4b855ad3 2257static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2258{
d1b1cea1 2259 unsigned int i, hctx_idx;
320ae51f
JA
2260 struct blk_mq_hw_ctx *hctx;
2261 struct blk_mq_ctx *ctx;
2a34c087 2262 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2263
60de074b
AM
2264 /*
2265 * Avoid others reading imcomplete hctx->cpumask through sysfs
2266 */
2267 mutex_lock(&q->sysfs_lock);
2268
320ae51f 2269 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2270 cpumask_clear(hctx->cpumask);
320ae51f
JA
2271 hctx->nr_ctx = 0;
2272 }
2273
2274 /*
4b855ad3
CH
2275 * Map software to hardware queues.
2276 *
2277 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2278 */
4b855ad3 2279 for_each_present_cpu(i) {
d1b1cea1
GKB
2280 hctx_idx = q->mq_map[i];
2281 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2282 if (!set->tags[hctx_idx] &&
2283 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2284 /*
2285 * If tags initialization fail for some hctx,
2286 * that hctx won't be brought online. In this
2287 * case, remap the current ctx to hctx[0] which
2288 * is guaranteed to always have tags allocated
2289 */
cc71a6f4 2290 q->mq_map[i] = 0;
d1b1cea1
GKB
2291 }
2292
897bb0c7 2293 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2294 hctx = blk_mq_map_queue(q, i);
868f2f0b 2295
e4043dcf 2296 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2297 ctx->index_hw = hctx->nr_ctx;
2298 hctx->ctxs[hctx->nr_ctx++] = ctx;
2299 }
506e931f 2300
60de074b
AM
2301 mutex_unlock(&q->sysfs_lock);
2302
506e931f 2303 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2304 /*
a68aafa5
JA
2305 * If no software queues are mapped to this hardware queue,
2306 * disable it and free the request entries.
484b4061
JA
2307 */
2308 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2309 /* Never unmap queue 0. We need it as a
2310 * fallback in case of a new remap fails
2311 * allocation
2312 */
cc71a6f4
JA
2313 if (i && set->tags[i])
2314 blk_mq_free_map_and_requests(set, i);
2315
2a34c087 2316 hctx->tags = NULL;
484b4061
JA
2317 continue;
2318 }
2319
2a34c087
ML
2320 hctx->tags = set->tags[i];
2321 WARN_ON(!hctx->tags);
2322
889fa31f
CY
2323 /*
2324 * Set the map size to the number of mapped software queues.
2325 * This is more accurate and more efficient than looping
2326 * over all possibly mapped software queues.
2327 */
88459642 2328 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2329
484b4061
JA
2330 /*
2331 * Initialize batch roundrobin counts
2332 */
506e931f
JA
2333 hctx->next_cpu = cpumask_first(hctx->cpumask);
2334 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2335 }
320ae51f
JA
2336}
2337
8e8320c9
JA
2338/*
2339 * Caller needs to ensure that we're either frozen/quiesced, or that
2340 * the queue isn't live yet.
2341 */
2404e607 2342static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2343{
2344 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2345 int i;
2346
2404e607 2347 queue_for_each_hw_ctx(q, hctx, i) {
8e8320c9
JA
2348 if (shared) {
2349 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2350 atomic_inc(&q->shared_hctx_restart);
2404e607 2351 hctx->flags |= BLK_MQ_F_TAG_SHARED;
8e8320c9
JA
2352 } else {
2353 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2354 atomic_dec(&q->shared_hctx_restart);
2404e607 2355 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
8e8320c9 2356 }
2404e607
JM
2357 }
2358}
2359
8e8320c9
JA
2360static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2361 bool shared)
2404e607
JM
2362{
2363 struct request_queue *q;
0d2602ca 2364
705cda97
BVA
2365 lockdep_assert_held(&set->tag_list_lock);
2366
0d2602ca
JA
2367 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2368 blk_mq_freeze_queue(q);
2404e607 2369 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2370 blk_mq_unfreeze_queue(q);
2371 }
2372}
2373
2374static void blk_mq_del_queue_tag_set(struct request_queue *q)
2375{
2376 struct blk_mq_tag_set *set = q->tag_set;
2377
0d2602ca 2378 mutex_lock(&set->tag_list_lock);
705cda97
BVA
2379 list_del_rcu(&q->tag_set_list);
2380 INIT_LIST_HEAD(&q->tag_set_list);
2404e607
JM
2381 if (list_is_singular(&set->tag_list)) {
2382 /* just transitioned to unshared */
2383 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2384 /* update existing queue */
2385 blk_mq_update_tag_set_depth(set, false);
2386 }
0d2602ca 2387 mutex_unlock(&set->tag_list_lock);
705cda97
BVA
2388
2389 synchronize_rcu();
0d2602ca
JA
2390}
2391
2392static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2393 struct request_queue *q)
2394{
2395 q->tag_set = set;
2396
2397 mutex_lock(&set->tag_list_lock);
2404e607 2398
ff821d27
JA
2399 /*
2400 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2401 */
2402 if (!list_empty(&set->tag_list) &&
2403 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2404e607
JM
2404 set->flags |= BLK_MQ_F_TAG_SHARED;
2405 /* update existing queue */
2406 blk_mq_update_tag_set_depth(set, true);
2407 }
2408 if (set->flags & BLK_MQ_F_TAG_SHARED)
2409 queue_set_hctx_shared(q, true);
705cda97 2410 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2411
0d2602ca
JA
2412 mutex_unlock(&set->tag_list_lock);
2413}
2414
e09aae7e
ML
2415/*
2416 * It is the actual release handler for mq, but we do it from
2417 * request queue's release handler for avoiding use-after-free
2418 * and headache because q->mq_kobj shouldn't have been introduced,
2419 * but we can't group ctx/kctx kobj without it.
2420 */
2421void blk_mq_release(struct request_queue *q)
2422{
2423 struct blk_mq_hw_ctx *hctx;
2424 unsigned int i;
2425
2426 /* hctx kobj stays in hctx */
c3b4afca
ML
2427 queue_for_each_hw_ctx(q, hctx, i) {
2428 if (!hctx)
2429 continue;
6c8b232e 2430 kobject_put(&hctx->kobj);
c3b4afca 2431 }
e09aae7e 2432
a723bab3
AM
2433 q->mq_map = NULL;
2434
e09aae7e
ML
2435 kfree(q->queue_hw_ctx);
2436
7ea5fe31
ML
2437 /*
2438 * release .mq_kobj and sw queue's kobject now because
2439 * both share lifetime with request queue.
2440 */
2441 blk_mq_sysfs_deinit(q);
2442
e09aae7e
ML
2443 free_percpu(q->queue_ctx);
2444}
2445
24d2f903 2446struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2447{
2448 struct request_queue *uninit_q, *q;
2449
2450 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2451 if (!uninit_q)
2452 return ERR_PTR(-ENOMEM);
2453
2454 q = blk_mq_init_allocated_queue(set, uninit_q);
2455 if (IS_ERR(q))
2456 blk_cleanup_queue(uninit_q);
2457
2458 return q;
2459}
2460EXPORT_SYMBOL(blk_mq_init_queue);
2461
07319678
BVA
2462static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2463{
2464 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2465
05707b64 2466 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
07319678
BVA
2467 __alignof__(struct blk_mq_hw_ctx)) !=
2468 sizeof(struct blk_mq_hw_ctx));
2469
2470 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2471 hw_ctx_size += sizeof(struct srcu_struct);
2472
2473 return hw_ctx_size;
2474}
2475
868f2f0b
KB
2476static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2477 struct request_queue *q)
320ae51f 2478{
868f2f0b
KB
2479 int i, j;
2480 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2481
868f2f0b 2482 blk_mq_sysfs_unregister(q);
fb350e0a
ML
2483
2484 /* protect against switching io scheduler */
2485 mutex_lock(&q->sysfs_lock);
24d2f903 2486 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2487 int node;
f14bbe77 2488
868f2f0b
KB
2489 if (hctxs[i])
2490 continue;
2491
2492 node = blk_mq_hw_queue_to_node(q->mq_map, i);
07319678 2493 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
cdef54dd 2494 GFP_KERNEL, node);
320ae51f 2495 if (!hctxs[i])
868f2f0b 2496 break;
320ae51f 2497
a86073e4 2498 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2499 node)) {
2500 kfree(hctxs[i]);
2501 hctxs[i] = NULL;
2502 break;
2503 }
e4043dcf 2504
0d2602ca 2505 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2506 hctxs[i]->numa_node = node;
320ae51f 2507 hctxs[i]->queue_num = i;
868f2f0b
KB
2508
2509 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2510 free_cpumask_var(hctxs[i]->cpumask);
2511 kfree(hctxs[i]);
2512 hctxs[i] = NULL;
2513 break;
2514 }
2515 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2516 }
868f2f0b
KB
2517 for (j = i; j < q->nr_hw_queues; j++) {
2518 struct blk_mq_hw_ctx *hctx = hctxs[j];
2519
2520 if (hctx) {
cc71a6f4
JA
2521 if (hctx->tags)
2522 blk_mq_free_map_and_requests(set, j);
868f2f0b 2523 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2524 kobject_put(&hctx->kobj);
868f2f0b
KB
2525 hctxs[j] = NULL;
2526
2527 }
2528 }
2529 q->nr_hw_queues = i;
fb350e0a 2530 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
2531 blk_mq_sysfs_register(q);
2532}
2533
2534struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2535 struct request_queue *q)
2536{
66841672
ML
2537 /* mark the queue as mq asap */
2538 q->mq_ops = set->ops;
2539
34dbad5d 2540 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2541 blk_mq_poll_stats_bkt,
2542 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2543 if (!q->poll_cb)
2544 goto err_exit;
2545
868f2f0b
KB
2546 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2547 if (!q->queue_ctx)
c7de5726 2548 goto err_exit;
868f2f0b 2549
737f98cf
ML
2550 /* init q->mq_kobj and sw queues' kobjects */
2551 blk_mq_sysfs_init(q);
2552
868f2f0b
KB
2553 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2554 GFP_KERNEL, set->numa_node);
2555 if (!q->queue_hw_ctx)
2556 goto err_percpu;
2557
bdd17e75 2558 q->mq_map = set->mq_map;
868f2f0b
KB
2559
2560 blk_mq_realloc_hw_ctxs(set, q);
2561 if (!q->nr_hw_queues)
2562 goto err_hctxs;
320ae51f 2563
287922eb 2564 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2565 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2566
2567 q->nr_queues = nr_cpu_ids;
320ae51f 2568
94eddfbe 2569 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2570
05f1dd53
JA
2571 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2572 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2573
1be036e9
CH
2574 q->sg_reserved_size = INT_MAX;
2575
2849450a 2576 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2577 INIT_LIST_HEAD(&q->requeue_list);
2578 spin_lock_init(&q->requeue_lock);
2579
254d259d 2580 blk_queue_make_request(q, blk_mq_make_request);
ea435e1b
CH
2581 if (q->mq_ops->poll)
2582 q->poll_fn = blk_mq_poll;
07068d5b 2583
eba71768
JA
2584 /*
2585 * Do this after blk_queue_make_request() overrides it...
2586 */
2587 q->nr_requests = set->queue_depth;
2588
64f1c21e
JA
2589 /*
2590 * Default to classic polling
2591 */
2592 q->poll_nsec = -1;
2593
24d2f903
CH
2594 if (set->ops->complete)
2595 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2596
24d2f903 2597 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2598 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2599 blk_mq_map_swqueue(q);
4593fdbe 2600
d3484991
JA
2601 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2602 int ret;
2603
2604 ret = blk_mq_sched_init(q);
2605 if (ret)
2606 return ERR_PTR(ret);
2607 }
2608
320ae51f 2609 return q;
18741986 2610
320ae51f 2611err_hctxs:
868f2f0b 2612 kfree(q->queue_hw_ctx);
320ae51f 2613err_percpu:
868f2f0b 2614 free_percpu(q->queue_ctx);
c7de5726
ML
2615err_exit:
2616 q->mq_ops = NULL;
320ae51f
JA
2617 return ERR_PTR(-ENOMEM);
2618}
b62c21b7 2619EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2620
2621void blk_mq_free_queue(struct request_queue *q)
2622{
624dbe47 2623 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2624
0d2602ca 2625 blk_mq_del_queue_tag_set(q);
624dbe47 2626 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2627}
320ae51f
JA
2628
2629/* Basically redo blk_mq_init_queue with queue frozen */
4b855ad3 2630static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f 2631{
4ecd4fef 2632 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2633
9c1051aa 2634 blk_mq_debugfs_unregister_hctxs(q);
67aec14c
JA
2635 blk_mq_sysfs_unregister(q);
2636
320ae51f
JA
2637 /*
2638 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
ff821d27
JA
2639 * we should change hctx numa_node according to the new topology (this
2640 * involves freeing and re-allocating memory, worth doing?)
320ae51f 2641 */
4b855ad3 2642 blk_mq_map_swqueue(q);
320ae51f 2643
67aec14c 2644 blk_mq_sysfs_register(q);
9c1051aa 2645 blk_mq_debugfs_register_hctxs(q);
320ae51f
JA
2646}
2647
a5164405
JA
2648static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2649{
2650 int i;
2651
cc71a6f4
JA
2652 for (i = 0; i < set->nr_hw_queues; i++)
2653 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2654 goto out_unwind;
a5164405
JA
2655
2656 return 0;
2657
2658out_unwind:
2659 while (--i >= 0)
cc71a6f4 2660 blk_mq_free_rq_map(set->tags[i]);
a5164405 2661
a5164405
JA
2662 return -ENOMEM;
2663}
2664
2665/*
2666 * Allocate the request maps associated with this tag_set. Note that this
2667 * may reduce the depth asked for, if memory is tight. set->queue_depth
2668 * will be updated to reflect the allocated depth.
2669 */
2670static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2671{
2672 unsigned int depth;
2673 int err;
2674
2675 depth = set->queue_depth;
2676 do {
2677 err = __blk_mq_alloc_rq_maps(set);
2678 if (!err)
2679 break;
2680
2681 set->queue_depth >>= 1;
2682 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2683 err = -ENOMEM;
2684 break;
2685 }
2686 } while (set->queue_depth);
2687
2688 if (!set->queue_depth || err) {
2689 pr_err("blk-mq: failed to allocate request map\n");
2690 return -ENOMEM;
2691 }
2692
2693 if (depth != set->queue_depth)
2694 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2695 depth, set->queue_depth);
2696
2697 return 0;
2698}
2699
ebe8bddb
OS
2700static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2701{
7d4901a9
ML
2702 if (set->ops->map_queues) {
2703 int cpu;
2704 /*
2705 * transport .map_queues is usually done in the following
2706 * way:
2707 *
2708 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2709 * mask = get_cpu_mask(queue)
2710 * for_each_cpu(cpu, mask)
2711 * set->mq_map[cpu] = queue;
2712 * }
2713 *
2714 * When we need to remap, the table has to be cleared for
2715 * killing stale mapping since one CPU may not be mapped
2716 * to any hw queue.
2717 */
2718 for_each_possible_cpu(cpu)
2719 set->mq_map[cpu] = 0;
2720
ebe8bddb 2721 return set->ops->map_queues(set);
7d4901a9 2722 } else
ebe8bddb
OS
2723 return blk_mq_map_queues(set);
2724}
2725
a4391c64
JA
2726/*
2727 * Alloc a tag set to be associated with one or more request queues.
2728 * May fail with EINVAL for various error conditions. May adjust the
2729 * requested depth down, if if it too large. In that case, the set
2730 * value will be stored in set->queue_depth.
2731 */
24d2f903
CH
2732int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2733{
da695ba2
CH
2734 int ret;
2735
205fb5f5
BVA
2736 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2737
24d2f903
CH
2738 if (!set->nr_hw_queues)
2739 return -EINVAL;
a4391c64 2740 if (!set->queue_depth)
24d2f903
CH
2741 return -EINVAL;
2742 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2743 return -EINVAL;
2744
7d7e0f90 2745 if (!set->ops->queue_rq)
24d2f903
CH
2746 return -EINVAL;
2747
de148297
ML
2748 if (!set->ops->get_budget ^ !set->ops->put_budget)
2749 return -EINVAL;
2750
a4391c64
JA
2751 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2752 pr_info("blk-mq: reduced tag depth to %u\n",
2753 BLK_MQ_MAX_DEPTH);
2754 set->queue_depth = BLK_MQ_MAX_DEPTH;
2755 }
24d2f903 2756
6637fadf
SL
2757 /*
2758 * If a crashdump is active, then we are potentially in a very
2759 * memory constrained environment. Limit us to 1 queue and
2760 * 64 tags to prevent using too much memory.
2761 */
2762 if (is_kdump_kernel()) {
2763 set->nr_hw_queues = 1;
2764 set->queue_depth = min(64U, set->queue_depth);
2765 }
868f2f0b
KB
2766 /*
2767 * There is no use for more h/w queues than cpus.
2768 */
2769 if (set->nr_hw_queues > nr_cpu_ids)
2770 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2771
868f2f0b 2772 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2773 GFP_KERNEL, set->numa_node);
2774 if (!set->tags)
a5164405 2775 return -ENOMEM;
24d2f903 2776
da695ba2
CH
2777 ret = -ENOMEM;
2778 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2779 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2780 if (!set->mq_map)
2781 goto out_free_tags;
2782
ebe8bddb 2783 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2784 if (ret)
2785 goto out_free_mq_map;
2786
2787 ret = blk_mq_alloc_rq_maps(set);
2788 if (ret)
bdd17e75 2789 goto out_free_mq_map;
24d2f903 2790
0d2602ca
JA
2791 mutex_init(&set->tag_list_lock);
2792 INIT_LIST_HEAD(&set->tag_list);
2793
24d2f903 2794 return 0;
bdd17e75
CH
2795
2796out_free_mq_map:
2797 kfree(set->mq_map);
2798 set->mq_map = NULL;
2799out_free_tags:
5676e7b6
RE
2800 kfree(set->tags);
2801 set->tags = NULL;
da695ba2 2802 return ret;
24d2f903
CH
2803}
2804EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2805
2806void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2807{
2808 int i;
2809
cc71a6f4
JA
2810 for (i = 0; i < nr_cpu_ids; i++)
2811 blk_mq_free_map_and_requests(set, i);
484b4061 2812
bdd17e75
CH
2813 kfree(set->mq_map);
2814 set->mq_map = NULL;
2815
981bd189 2816 kfree(set->tags);
5676e7b6 2817 set->tags = NULL;
24d2f903
CH
2818}
2819EXPORT_SYMBOL(blk_mq_free_tag_set);
2820
e3a2b3f9
JA
2821int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2822{
2823 struct blk_mq_tag_set *set = q->tag_set;
2824 struct blk_mq_hw_ctx *hctx;
2825 int i, ret;
2826
bd166ef1 2827 if (!set)
e3a2b3f9
JA
2828 return -EINVAL;
2829
70f36b60 2830 blk_mq_freeze_queue(q);
24f5a90f 2831 blk_mq_quiesce_queue(q);
70f36b60 2832
e3a2b3f9
JA
2833 ret = 0;
2834 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2835 if (!hctx->tags)
2836 continue;
bd166ef1
JA
2837 /*
2838 * If we're using an MQ scheduler, just update the scheduler
2839 * queue depth. This is similar to what the old code would do.
2840 */
70f36b60 2841 if (!hctx->sched_tags) {
c2e82a23 2842 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
2843 false);
2844 } else {
2845 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2846 nr, true);
2847 }
e3a2b3f9
JA
2848 if (ret)
2849 break;
2850 }
2851
2852 if (!ret)
2853 q->nr_requests = nr;
2854
24f5a90f 2855 blk_mq_unquiesce_queue(q);
70f36b60 2856 blk_mq_unfreeze_queue(q);
70f36b60 2857
e3a2b3f9
JA
2858 return ret;
2859}
2860
e4dc2b32
KB
2861static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2862 int nr_hw_queues)
868f2f0b
KB
2863{
2864 struct request_queue *q;
2865
705cda97
BVA
2866 lockdep_assert_held(&set->tag_list_lock);
2867
868f2f0b
KB
2868 if (nr_hw_queues > nr_cpu_ids)
2869 nr_hw_queues = nr_cpu_ids;
2870 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2871 return;
2872
2873 list_for_each_entry(q, &set->tag_list, tag_set_list)
2874 blk_mq_freeze_queue(q);
2875
2876 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2877 blk_mq_update_queue_map(set);
868f2f0b
KB
2878 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2879 blk_mq_realloc_hw_ctxs(set, q);
4b855ad3 2880 blk_mq_queue_reinit(q);
868f2f0b
KB
2881 }
2882
2883 list_for_each_entry(q, &set->tag_list, tag_set_list)
2884 blk_mq_unfreeze_queue(q);
2885}
e4dc2b32
KB
2886
2887void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2888{
2889 mutex_lock(&set->tag_list_lock);
2890 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2891 mutex_unlock(&set->tag_list_lock);
2892}
868f2f0b
KB
2893EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2894
34dbad5d
OS
2895/* Enable polling stats and return whether they were already enabled. */
2896static bool blk_poll_stats_enable(struct request_queue *q)
2897{
2898 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2899 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2900 return true;
2901 blk_stat_add_callback(q, q->poll_cb);
2902 return false;
2903}
2904
2905static void blk_mq_poll_stats_start(struct request_queue *q)
2906{
2907 /*
2908 * We don't arm the callback if polling stats are not enabled or the
2909 * callback is already active.
2910 */
2911 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2912 blk_stat_is_active(q->poll_cb))
2913 return;
2914
2915 blk_stat_activate_msecs(q->poll_cb, 100);
2916}
2917
2918static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2919{
2920 struct request_queue *q = cb->data;
720b8ccc 2921 int bucket;
34dbad5d 2922
720b8ccc
SB
2923 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2924 if (cb->stat[bucket].nr_samples)
2925 q->poll_stat[bucket] = cb->stat[bucket];
2926 }
34dbad5d
OS
2927}
2928
64f1c21e
JA
2929static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2930 struct blk_mq_hw_ctx *hctx,
2931 struct request *rq)
2932{
64f1c21e 2933 unsigned long ret = 0;
720b8ccc 2934 int bucket;
64f1c21e
JA
2935
2936 /*
2937 * If stats collection isn't on, don't sleep but turn it on for
2938 * future users
2939 */
34dbad5d 2940 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2941 return 0;
2942
64f1c21e
JA
2943 /*
2944 * As an optimistic guess, use half of the mean service time
2945 * for this type of request. We can (and should) make this smarter.
2946 * For instance, if the completion latencies are tight, we can
2947 * get closer than just half the mean. This is especially
2948 * important on devices where the completion latencies are longer
720b8ccc
SB
2949 * than ~10 usec. We do use the stats for the relevant IO size
2950 * if available which does lead to better estimates.
64f1c21e 2951 */
720b8ccc
SB
2952 bucket = blk_mq_poll_stats_bkt(rq);
2953 if (bucket < 0)
2954 return ret;
2955
2956 if (q->poll_stat[bucket].nr_samples)
2957 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
2958
2959 return ret;
2960}
2961
06426adf 2962static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2963 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2964 struct request *rq)
2965{
2966 struct hrtimer_sleeper hs;
2967 enum hrtimer_mode mode;
64f1c21e 2968 unsigned int nsecs;
06426adf
JA
2969 ktime_t kt;
2970
64f1c21e
JA
2971 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2972 return false;
2973
2974 /*
2975 * poll_nsec can be:
2976 *
2977 * -1: don't ever hybrid sleep
2978 * 0: use half of prev avg
2979 * >0: use this specific value
2980 */
2981 if (q->poll_nsec == -1)
2982 return false;
2983 else if (q->poll_nsec > 0)
2984 nsecs = q->poll_nsec;
2985 else
2986 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2987
2988 if (!nsecs)
06426adf
JA
2989 return false;
2990
2991 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2992
2993 /*
2994 * This will be replaced with the stats tracking code, using
2995 * 'avg_completion_time / 2' as the pre-sleep target.
2996 */
8b0e1953 2997 kt = nsecs;
06426adf
JA
2998
2999 mode = HRTIMER_MODE_REL;
3000 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3001 hrtimer_set_expires(&hs.timer, kt);
3002
3003 hrtimer_init_sleeper(&hs, current);
3004 do {
5a61c363 3005 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
06426adf
JA
3006 break;
3007 set_current_state(TASK_UNINTERRUPTIBLE);
3008 hrtimer_start_expires(&hs.timer, mode);
3009 if (hs.task)
3010 io_schedule();
3011 hrtimer_cancel(&hs.timer);
3012 mode = HRTIMER_MODE_ABS;
3013 } while (hs.task && !signal_pending(current));
3014
3015 __set_current_state(TASK_RUNNING);
3016 destroy_hrtimer_on_stack(&hs.timer);
3017 return true;
3018}
3019
bbd7bb70
JA
3020static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3021{
3022 struct request_queue *q = hctx->queue;
3023 long state;
3024
06426adf
JA
3025 /*
3026 * If we sleep, have the caller restart the poll loop to reset
3027 * the state. Like for the other success return cases, the
3028 * caller is responsible for checking if the IO completed. If
3029 * the IO isn't complete, we'll get called again and will go
3030 * straight to the busy poll loop.
3031 */
64f1c21e 3032 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
3033 return true;
3034
bbd7bb70
JA
3035 hctx->poll_considered++;
3036
3037 state = current->state;
3038 while (!need_resched()) {
3039 int ret;
3040
3041 hctx->poll_invoked++;
3042
3043 ret = q->mq_ops->poll(hctx, rq->tag);
3044 if (ret > 0) {
3045 hctx->poll_success++;
3046 set_current_state(TASK_RUNNING);
3047 return true;
3048 }
3049
3050 if (signal_pending_state(state, current))
3051 set_current_state(TASK_RUNNING);
3052
3053 if (current->state == TASK_RUNNING)
3054 return true;
3055 if (ret < 0)
3056 break;
3057 cpu_relax();
3058 }
3059
3060 return false;
3061}
3062
ea435e1b 3063static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
bbd7bb70
JA
3064{
3065 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
3066 struct request *rq;
3067
ea435e1b 3068 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
bbd7bb70
JA
3069 return false;
3070
bbd7bb70 3071 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
3072 if (!blk_qc_t_is_internal(cookie))
3073 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3a07bb1d 3074 else {
bd166ef1 3075 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3a07bb1d
JA
3076 /*
3077 * With scheduling, if the request has completed, we'll
3078 * get a NULL return here, as we clear the sched tag when
3079 * that happens. The request still remains valid, like always,
3080 * so we should be safe with just the NULL check.
3081 */
3082 if (!rq)
3083 return false;
3084 }
bbd7bb70
JA
3085
3086 return __blk_mq_poll(hctx, rq);
3087}
bbd7bb70 3088
320ae51f
JA
3089static int __init blk_mq_init(void)
3090{
9467f859
TG
3091 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3092 blk_mq_hctx_notify_dead);
320ae51f
JA
3093 return 0;
3094}
3095subsys_initcall(blk_mq_init);