]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-mq.c
blk-mq: add shallow depth option for blk_mq_get_tag()
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
34#include "blk-mq-tag.h"
cf43e6be 35#include "blk-stat.h"
87760e5e 36#include "blk-wbt.h"
bd166ef1 37#include "blk-mq-sched.h"
320ae51f
JA
38
39static DEFINE_MUTEX(all_q_mutex);
40static LIST_HEAD(all_q_list);
41
34dbad5d
OS
42static void blk_mq_poll_stats_start(struct request_queue *q);
43static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
320ae51f
JA
45/*
46 * Check if any of the ctx's have pending work in this hardware queue
47 */
50e1dab8 48bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 49{
bd166ef1
JA
50 return sbitmap_any_bit_set(&hctx->ctx_map) ||
51 !list_empty_careful(&hctx->dispatch) ||
52 blk_mq_sched_has_work(hctx);
1429d7c9
JA
53}
54
320ae51f
JA
55/*
56 * Mark this ctx as having pending work in this hardware queue
57 */
58static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
59 struct blk_mq_ctx *ctx)
60{
88459642
OS
61 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
62 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
63}
64
65static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
66 struct blk_mq_ctx *ctx)
67{
88459642 68 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
69}
70
1671d522 71void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 72{
4ecd4fef 73 int freeze_depth;
cddd5d17 74
4ecd4fef
CH
75 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
76 if (freeze_depth == 1) {
3ef28e83 77 percpu_ref_kill(&q->q_usage_counter);
b94ec296 78 blk_mq_run_hw_queues(q, false);
cddd5d17 79 }
f3af020b 80}
1671d522 81EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 82
6bae363e 83void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 84{
3ef28e83 85 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 86}
6bae363e 87EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 88
f91328c4
KB
89int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
90 unsigned long timeout)
91{
92 return wait_event_timeout(q->mq_freeze_wq,
93 percpu_ref_is_zero(&q->q_usage_counter),
94 timeout);
95}
96EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 97
f3af020b
TH
98/*
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
101 */
3ef28e83 102void blk_freeze_queue(struct request_queue *q)
f3af020b 103{
3ef28e83
DW
104 /*
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
110 */
1671d522 111 blk_freeze_queue_start(q);
f3af020b
TH
112 blk_mq_freeze_queue_wait(q);
113}
3ef28e83
DW
114
115void blk_mq_freeze_queue(struct request_queue *q)
116{
117 /*
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
120 */
121 blk_freeze_queue(q);
122}
c761d96b 123EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 124
b4c6a028 125void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 126{
4ecd4fef 127 int freeze_depth;
320ae51f 128
4ecd4fef
CH
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
131 if (!freeze_depth) {
3ef28e83 132 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 133 wake_up_all(&q->mq_freeze_wq);
add703fd 134 }
320ae51f 135}
b4c6a028 136EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 137
6a83e74d
BVA
138/**
139 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
140 * @q: request queue.
141 *
142 * Note: this function does not prevent that the struct request end_io()
143 * callback function is invoked. Additionally, it is not prevented that
144 * new queue_rq() calls occur unless the queue has been stopped first.
145 */
146void blk_mq_quiesce_queue(struct request_queue *q)
147{
148 struct blk_mq_hw_ctx *hctx;
149 unsigned int i;
150 bool rcu = false;
151
152 blk_mq_stop_hw_queues(q);
153
154 queue_for_each_hw_ctx(q, hctx, i) {
155 if (hctx->flags & BLK_MQ_F_BLOCKING)
156 synchronize_srcu(&hctx->queue_rq_srcu);
157 else
158 rcu = true;
159 }
160 if (rcu)
161 synchronize_rcu();
162}
163EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
164
aed3ea94
JA
165void blk_mq_wake_waiters(struct request_queue *q)
166{
167 struct blk_mq_hw_ctx *hctx;
168 unsigned int i;
169
170 queue_for_each_hw_ctx(q, hctx, i)
171 if (blk_mq_hw_queue_mapped(hctx))
172 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
173
174 /*
175 * If we are called because the queue has now been marked as
176 * dying, we need to ensure that processes currently waiting on
177 * the queue are notified as well.
178 */
179 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
180}
181
320ae51f
JA
182bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
183{
184 return blk_mq_has_free_tags(hctx->tags);
185}
186EXPORT_SYMBOL(blk_mq_can_queue);
187
2c3ad667
JA
188void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
189 struct request *rq, unsigned int op)
320ae51f 190{
af76e555
CH
191 INIT_LIST_HEAD(&rq->queuelist);
192 /* csd/requeue_work/fifo_time is initialized before use */
193 rq->q = q;
320ae51f 194 rq->mq_ctx = ctx;
ef295ecf 195 rq->cmd_flags = op;
e8064021
CH
196 if (blk_queue_io_stat(q))
197 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
198 /* do not touch atomic flags, it needs atomic ops against the timer */
199 rq->cpu = -1;
af76e555
CH
200 INIT_HLIST_NODE(&rq->hash);
201 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
202 rq->rq_disk = NULL;
203 rq->part = NULL;
3ee32372 204 rq->start_time = jiffies;
af76e555
CH
205#ifdef CONFIG_BLK_CGROUP
206 rq->rl = NULL;
0fec08b4 207 set_start_time_ns(rq);
af76e555
CH
208 rq->io_start_time_ns = 0;
209#endif
210 rq->nr_phys_segments = 0;
211#if defined(CONFIG_BLK_DEV_INTEGRITY)
212 rq->nr_integrity_segments = 0;
213#endif
af76e555
CH
214 rq->special = NULL;
215 /* tag was already set */
216 rq->errors = 0;
af76e555 217 rq->extra_len = 0;
af76e555 218
af76e555 219 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
220 rq->timeout = 0;
221
af76e555
CH
222 rq->end_io = NULL;
223 rq->end_io_data = NULL;
224 rq->next_rq = NULL;
225
ef295ecf 226 ctx->rq_dispatched[op_is_sync(op)]++;
320ae51f 227}
2c3ad667 228EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
320ae51f 229
2c3ad667
JA
230struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
231 unsigned int op)
5dee8577
CH
232{
233 struct request *rq;
234 unsigned int tag;
235
cb96a42c 236 tag = blk_mq_get_tag(data);
5dee8577 237 if (tag != BLK_MQ_TAG_FAIL) {
bd166ef1
JA
238 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
239
240 rq = tags->static_rqs[tag];
5dee8577 241
bd166ef1
JA
242 if (data->flags & BLK_MQ_REQ_INTERNAL) {
243 rq->tag = -1;
244 rq->internal_tag = tag;
245 } else {
200e86b3
JA
246 if (blk_mq_tag_busy(data->hctx)) {
247 rq->rq_flags = RQF_MQ_INFLIGHT;
248 atomic_inc(&data->hctx->nr_active);
249 }
bd166ef1
JA
250 rq->tag = tag;
251 rq->internal_tag = -1;
562bef42 252 data->hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
253 }
254
ef295ecf 255 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
5dee8577
CH
256 return rq;
257 }
258
259 return NULL;
260}
2c3ad667 261EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
5dee8577 262
6f3b0e8b
CH
263struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
264 unsigned int flags)
320ae51f 265{
5a797e00 266 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 267 struct request *rq;
a492f075 268 int ret;
320ae51f 269
6f3b0e8b 270 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
271 if (ret)
272 return ERR_PTR(ret);
320ae51f 273
bd166ef1 274 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
841bac2c 275
bd166ef1
JA
276 blk_mq_put_ctx(alloc_data.ctx);
277 blk_queue_exit(q);
278
279 if (!rq)
a492f075 280 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
281
282 rq->__data_len = 0;
283 rq->__sector = (sector_t) -1;
284 rq->bio = rq->biotail = NULL;
320ae51f
JA
285 return rq;
286}
4bb659b1 287EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 288
1f5bd336
ML
289struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
290 unsigned int flags, unsigned int hctx_idx)
291{
6d2809d5 292 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 293 struct request *rq;
6d2809d5 294 unsigned int cpu;
1f5bd336
ML
295 int ret;
296
297 /*
298 * If the tag allocator sleeps we could get an allocation for a
299 * different hardware context. No need to complicate the low level
300 * allocator for this for the rare use case of a command tied to
301 * a specific queue.
302 */
303 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
304 return ERR_PTR(-EINVAL);
305
306 if (hctx_idx >= q->nr_hw_queues)
307 return ERR_PTR(-EIO);
308
309 ret = blk_queue_enter(q, true);
310 if (ret)
311 return ERR_PTR(ret);
312
c8712c6a
CH
313 /*
314 * Check if the hardware context is actually mapped to anything.
315 * If not tell the caller that it should skip this queue.
316 */
6d2809d5
OS
317 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
318 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
319 blk_queue_exit(q);
320 return ERR_PTR(-EXDEV);
c8712c6a 321 }
6d2809d5
OS
322 cpu = cpumask_first(alloc_data.hctx->cpumask);
323 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 324
6d2809d5 325 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
c8712c6a 326
c8712c6a 327 blk_queue_exit(q);
6d2809d5
OS
328
329 if (!rq)
330 return ERR_PTR(-EWOULDBLOCK);
331
332 return rq;
1f5bd336
ML
333}
334EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
335
bd166ef1
JA
336void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
337 struct request *rq)
320ae51f 338{
bd166ef1 339 const int sched_tag = rq->internal_tag;
320ae51f
JA
340 struct request_queue *q = rq->q;
341
e8064021 342 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 343 atomic_dec(&hctx->nr_active);
87760e5e
JA
344
345 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 346 rq->rq_flags = 0;
0d2602ca 347
af76e555 348 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 349 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
350 if (rq->tag != -1)
351 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
352 if (sched_tag != -1)
353 blk_mq_sched_completed_request(hctx, rq);
6d8c6c0f 354 blk_mq_sched_restart(hctx);
3ef28e83 355 blk_queue_exit(q);
320ae51f
JA
356}
357
bd166ef1 358static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
16a3c2a7 359 struct request *rq)
320ae51f
JA
360{
361 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
362
363 ctx->rq_completed[rq_is_sync(rq)]++;
bd166ef1
JA
364 __blk_mq_finish_request(hctx, ctx, rq);
365}
366
367void blk_mq_finish_request(struct request *rq)
368{
369 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
7c7f2f2b 370}
7c7f2f2b
JA
371
372void blk_mq_free_request(struct request *rq)
373{
bd166ef1 374 blk_mq_sched_put_request(rq);
320ae51f 375}
1a3b595a 376EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 377
c8a446ad 378inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 379{
0d11e6ac
ML
380 blk_account_io_done(rq);
381
91b63639 382 if (rq->end_io) {
87760e5e 383 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 384 rq->end_io(rq, error);
91b63639
CH
385 } else {
386 if (unlikely(blk_bidi_rq(rq)))
387 blk_mq_free_request(rq->next_rq);
320ae51f 388 blk_mq_free_request(rq);
91b63639 389 }
320ae51f 390}
c8a446ad 391EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 392
c8a446ad 393void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
394{
395 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
396 BUG();
c8a446ad 397 __blk_mq_end_request(rq, error);
63151a44 398}
c8a446ad 399EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 400
30a91cb4 401static void __blk_mq_complete_request_remote(void *data)
320ae51f 402{
3d6efbf6 403 struct request *rq = data;
320ae51f 404
30a91cb4 405 rq->q->softirq_done_fn(rq);
320ae51f 406}
320ae51f 407
ed851860 408static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
409{
410 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 411 bool shared = false;
320ae51f
JA
412 int cpu;
413
38535201 414 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
415 rq->q->softirq_done_fn(rq);
416 return;
417 }
320ae51f
JA
418
419 cpu = get_cpu();
38535201
CH
420 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
421 shared = cpus_share_cache(cpu, ctx->cpu);
422
423 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 424 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
425 rq->csd.info = rq;
426 rq->csd.flags = 0;
c46fff2a 427 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 428 } else {
30a91cb4 429 rq->q->softirq_done_fn(rq);
3d6efbf6 430 }
320ae51f
JA
431 put_cpu();
432}
30a91cb4 433
cf43e6be
JA
434static void blk_mq_stat_add(struct request *rq)
435{
436 if (rq->rq_flags & RQF_STATS) {
34dbad5d
OS
437 blk_mq_poll_stats_start(rq->q);
438 blk_stat_add(rq);
cf43e6be
JA
439 }
440}
441
1fa8cc52 442static void __blk_mq_complete_request(struct request *rq)
ed851860
JA
443{
444 struct request_queue *q = rq->q;
445
cf43e6be
JA
446 blk_mq_stat_add(rq);
447
ed851860 448 if (!q->softirq_done_fn)
c8a446ad 449 blk_mq_end_request(rq, rq->errors);
ed851860
JA
450 else
451 blk_mq_ipi_complete_request(rq);
452}
453
30a91cb4
CH
454/**
455 * blk_mq_complete_request - end I/O on a request
456 * @rq: the request being processed
457 *
458 * Description:
459 * Ends all I/O on a request. It does not handle partial completions.
460 * The actual completion happens out-of-order, through a IPI handler.
461 **/
f4829a9b 462void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 463{
95f09684
JA
464 struct request_queue *q = rq->q;
465
466 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 467 return;
f4829a9b
CH
468 if (!blk_mark_rq_complete(rq)) {
469 rq->errors = error;
ed851860 470 __blk_mq_complete_request(rq);
f4829a9b 471 }
30a91cb4
CH
472}
473EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 474
973c0191
KB
475int blk_mq_request_started(struct request *rq)
476{
477 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
478}
479EXPORT_SYMBOL_GPL(blk_mq_request_started);
480
e2490073 481void blk_mq_start_request(struct request *rq)
320ae51f
JA
482{
483 struct request_queue *q = rq->q;
484
bd166ef1
JA
485 blk_mq_sched_started_request(rq);
486
320ae51f
JA
487 trace_block_rq_issue(q, rq);
488
cf43e6be 489 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 490 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 491 rq->rq_flags |= RQF_STATS;
87760e5e 492 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
493 }
494
2b8393b4 495 blk_add_timer(rq);
87ee7b11 496
538b7534
JA
497 /*
498 * Ensure that ->deadline is visible before set the started
499 * flag and clear the completed flag.
500 */
501 smp_mb__before_atomic();
502
87ee7b11
JA
503 /*
504 * Mark us as started and clear complete. Complete might have been
505 * set if requeue raced with timeout, which then marked it as
506 * complete. So be sure to clear complete again when we start
507 * the request, otherwise we'll ignore the completion event.
508 */
4b570521
JA
509 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
510 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
511 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
512 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
513
514 if (q->dma_drain_size && blk_rq_bytes(rq)) {
515 /*
516 * Make sure space for the drain appears. We know we can do
517 * this because max_hw_segments has been adjusted to be one
518 * fewer than the device can handle.
519 */
520 rq->nr_phys_segments++;
521 }
320ae51f 522}
e2490073 523EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 524
d9d149a3
ML
525/*
526 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
48b99c9d 527 * flag isn't set yet, so there may be race with timeout handler,
d9d149a3
ML
528 * but given rq->deadline is just set in .queue_rq() under
529 * this situation, the race won't be possible in reality because
530 * rq->timeout should be set as big enough to cover the window
531 * between blk_mq_start_request() called from .queue_rq() and
532 * clearing REQ_ATOM_STARTED here.
533 */
ed0791b2 534static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
535{
536 struct request_queue *q = rq->q;
537
538 trace_block_rq_requeue(q, rq);
87760e5e 539 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 540 blk_mq_sched_requeue_request(rq);
49f5baa5 541
e2490073
CH
542 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
543 if (q->dma_drain_size && blk_rq_bytes(rq))
544 rq->nr_phys_segments--;
545 }
320ae51f
JA
546}
547
2b053aca 548void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 549{
ed0791b2 550 __blk_mq_requeue_request(rq);
ed0791b2 551
ed0791b2 552 BUG_ON(blk_queued_rq(rq));
2b053aca 553 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
554}
555EXPORT_SYMBOL(blk_mq_requeue_request);
556
6fca6a61
CH
557static void blk_mq_requeue_work(struct work_struct *work)
558{
559 struct request_queue *q =
2849450a 560 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
561 LIST_HEAD(rq_list);
562 struct request *rq, *next;
563 unsigned long flags;
564
565 spin_lock_irqsave(&q->requeue_lock, flags);
566 list_splice_init(&q->requeue_list, &rq_list);
567 spin_unlock_irqrestore(&q->requeue_lock, flags);
568
569 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 570 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
571 continue;
572
e8064021 573 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 574 list_del_init(&rq->queuelist);
bd6737f1 575 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
576 }
577
578 while (!list_empty(&rq_list)) {
579 rq = list_entry(rq_list.next, struct request, queuelist);
580 list_del_init(&rq->queuelist);
bd6737f1 581 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
582 }
583
52d7f1b5 584 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
585}
586
2b053aca
BVA
587void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
588 bool kick_requeue_list)
6fca6a61
CH
589{
590 struct request_queue *q = rq->q;
591 unsigned long flags;
592
593 /*
594 * We abuse this flag that is otherwise used by the I/O scheduler to
595 * request head insertation from the workqueue.
596 */
e8064021 597 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
598
599 spin_lock_irqsave(&q->requeue_lock, flags);
600 if (at_head) {
e8064021 601 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
602 list_add(&rq->queuelist, &q->requeue_list);
603 } else {
604 list_add_tail(&rq->queuelist, &q->requeue_list);
605 }
606 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
607
608 if (kick_requeue_list)
609 blk_mq_kick_requeue_list(q);
6fca6a61
CH
610}
611EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
612
613void blk_mq_kick_requeue_list(struct request_queue *q)
614{
2849450a 615 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
616}
617EXPORT_SYMBOL(blk_mq_kick_requeue_list);
618
2849450a
MS
619void blk_mq_delay_kick_requeue_list(struct request_queue *q,
620 unsigned long msecs)
621{
622 kblockd_schedule_delayed_work(&q->requeue_work,
623 msecs_to_jiffies(msecs));
624}
625EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
626
1885b24d
JA
627void blk_mq_abort_requeue_list(struct request_queue *q)
628{
629 unsigned long flags;
630 LIST_HEAD(rq_list);
631
632 spin_lock_irqsave(&q->requeue_lock, flags);
633 list_splice_init(&q->requeue_list, &rq_list);
634 spin_unlock_irqrestore(&q->requeue_lock, flags);
635
636 while (!list_empty(&rq_list)) {
637 struct request *rq;
638
639 rq = list_first_entry(&rq_list, struct request, queuelist);
640 list_del_init(&rq->queuelist);
641 rq->errors = -EIO;
642 blk_mq_end_request(rq, rq->errors);
643 }
644}
645EXPORT_SYMBOL(blk_mq_abort_requeue_list);
646
0e62f51f
JA
647struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
648{
88c7b2b7
JA
649 if (tag < tags->nr_tags) {
650 prefetch(tags->rqs[tag]);
4ee86bab 651 return tags->rqs[tag];
88c7b2b7 652 }
4ee86bab
HR
653
654 return NULL;
24d2f903
CH
655}
656EXPORT_SYMBOL(blk_mq_tag_to_rq);
657
320ae51f 658struct blk_mq_timeout_data {
46f92d42
CH
659 unsigned long next;
660 unsigned int next_set;
320ae51f
JA
661};
662
90415837 663void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 664{
f8a5b122 665 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 666 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
667
668 /*
669 * We know that complete is set at this point. If STARTED isn't set
670 * anymore, then the request isn't active and the "timeout" should
671 * just be ignored. This can happen due to the bitflag ordering.
672 * Timeout first checks if STARTED is set, and if it is, assumes
673 * the request is active. But if we race with completion, then
48b99c9d 674 * both flags will get cleared. So check here again, and ignore
87ee7b11
JA
675 * a timeout event with a request that isn't active.
676 */
46f92d42
CH
677 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
678 return;
87ee7b11 679
46f92d42 680 if (ops->timeout)
0152fb6b 681 ret = ops->timeout(req, reserved);
46f92d42
CH
682
683 switch (ret) {
684 case BLK_EH_HANDLED:
685 __blk_mq_complete_request(req);
686 break;
687 case BLK_EH_RESET_TIMER:
688 blk_add_timer(req);
689 blk_clear_rq_complete(req);
690 break;
691 case BLK_EH_NOT_HANDLED:
692 break;
693 default:
694 printk(KERN_ERR "block: bad eh return: %d\n", ret);
695 break;
696 }
87ee7b11 697}
5b3f25fc 698
81481eb4
CH
699static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
700 struct request *rq, void *priv, bool reserved)
701{
702 struct blk_mq_timeout_data *data = priv;
87ee7b11 703
a4ef8e56 704 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 705 return;
87ee7b11 706
d9d149a3
ML
707 /*
708 * The rq being checked may have been freed and reallocated
709 * out already here, we avoid this race by checking rq->deadline
710 * and REQ_ATOM_COMPLETE flag together:
711 *
712 * - if rq->deadline is observed as new value because of
713 * reusing, the rq won't be timed out because of timing.
714 * - if rq->deadline is observed as previous value,
715 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
716 * because we put a barrier between setting rq->deadline
717 * and clearing the flag in blk_mq_start_request(), so
718 * this rq won't be timed out too.
719 */
46f92d42
CH
720 if (time_after_eq(jiffies, rq->deadline)) {
721 if (!blk_mark_rq_complete(rq))
0152fb6b 722 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
723 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
724 data->next = rq->deadline;
725 data->next_set = 1;
726 }
87ee7b11
JA
727}
728
287922eb 729static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 730{
287922eb
CH
731 struct request_queue *q =
732 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
733 struct blk_mq_timeout_data data = {
734 .next = 0,
735 .next_set = 0,
736 };
81481eb4 737 int i;
320ae51f 738
71f79fb3
GKB
739 /* A deadlock might occur if a request is stuck requiring a
740 * timeout at the same time a queue freeze is waiting
741 * completion, since the timeout code would not be able to
742 * acquire the queue reference here.
743 *
744 * That's why we don't use blk_queue_enter here; instead, we use
745 * percpu_ref_tryget directly, because we need to be able to
746 * obtain a reference even in the short window between the queue
747 * starting to freeze, by dropping the first reference in
1671d522 748 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
749 * consumed, marked by the instant q_usage_counter reaches
750 * zero.
751 */
752 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
753 return;
754
0bf6cd5b 755 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 756
81481eb4
CH
757 if (data.next_set) {
758 data.next = blk_rq_timeout(round_jiffies_up(data.next));
759 mod_timer(&q->timeout, data.next);
0d2602ca 760 } else {
0bf6cd5b
CH
761 struct blk_mq_hw_ctx *hctx;
762
f054b56c
ML
763 queue_for_each_hw_ctx(q, hctx, i) {
764 /* the hctx may be unmapped, so check it here */
765 if (blk_mq_hw_queue_mapped(hctx))
766 blk_mq_tag_idle(hctx);
767 }
0d2602ca 768 }
287922eb 769 blk_queue_exit(q);
320ae51f
JA
770}
771
772/*
773 * Reverse check our software queue for entries that we could potentially
774 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
775 * too much time checking for merges.
776 */
777static bool blk_mq_attempt_merge(struct request_queue *q,
778 struct blk_mq_ctx *ctx, struct bio *bio)
779{
780 struct request *rq;
781 int checked = 8;
782
783 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
34fe7c05 784 bool merged = false;
320ae51f
JA
785
786 if (!checked--)
787 break;
788
789 if (!blk_rq_merge_ok(rq, bio))
790 continue;
791
34fe7c05
CH
792 switch (blk_try_merge(rq, bio)) {
793 case ELEVATOR_BACK_MERGE:
794 if (blk_mq_sched_allow_merge(q, rq, bio))
795 merged = bio_attempt_back_merge(q, rq, bio);
bd166ef1 796 break;
34fe7c05
CH
797 case ELEVATOR_FRONT_MERGE:
798 if (blk_mq_sched_allow_merge(q, rq, bio))
799 merged = bio_attempt_front_merge(q, rq, bio);
320ae51f 800 break;
1e739730
CH
801 case ELEVATOR_DISCARD_MERGE:
802 merged = bio_attempt_discard_merge(q, rq, bio);
320ae51f 803 break;
34fe7c05
CH
804 default:
805 continue;
320ae51f 806 }
34fe7c05
CH
807
808 if (merged)
809 ctx->rq_merged++;
810 return merged;
320ae51f
JA
811 }
812
813 return false;
814}
815
88459642
OS
816struct flush_busy_ctx_data {
817 struct blk_mq_hw_ctx *hctx;
818 struct list_head *list;
819};
820
821static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
822{
823 struct flush_busy_ctx_data *flush_data = data;
824 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
825 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
826
827 sbitmap_clear_bit(sb, bitnr);
828 spin_lock(&ctx->lock);
829 list_splice_tail_init(&ctx->rq_list, flush_data->list);
830 spin_unlock(&ctx->lock);
831 return true;
832}
833
1429d7c9
JA
834/*
835 * Process software queues that have been marked busy, splicing them
836 * to the for-dispatch
837 */
2c3ad667 838void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 839{
88459642
OS
840 struct flush_busy_ctx_data data = {
841 .hctx = hctx,
842 .list = list,
843 };
1429d7c9 844
88459642 845 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 846}
2c3ad667 847EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 848
703fd1c0
JA
849static inline unsigned int queued_to_index(unsigned int queued)
850{
851 if (!queued)
852 return 0;
1429d7c9 853
703fd1c0 854 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
855}
856
bd6737f1
JA
857bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
858 bool wait)
bd166ef1
JA
859{
860 struct blk_mq_alloc_data data = {
861 .q = rq->q,
bd166ef1
JA
862 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
863 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
864 };
865
81380ca1
OS
866 if (rq->tag != -1)
867 goto done;
bd166ef1 868
415b806d
SG
869 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
870 data.flags |= BLK_MQ_REQ_RESERVED;
871
bd166ef1
JA
872 rq->tag = blk_mq_get_tag(&data);
873 if (rq->tag >= 0) {
200e86b3
JA
874 if (blk_mq_tag_busy(data.hctx)) {
875 rq->rq_flags |= RQF_MQ_INFLIGHT;
876 atomic_inc(&data.hctx->nr_active);
877 }
bd166ef1 878 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
879 }
880
81380ca1
OS
881done:
882 if (hctx)
883 *hctx = data.hctx;
884 return rq->tag != -1;
bd166ef1
JA
885}
886
113285b4
JA
887static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
888 struct request *rq)
99cf1dc5 889{
99cf1dc5
JA
890 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
891 rq->tag = -1;
892
893 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
894 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
895 atomic_dec(&hctx->nr_active);
896 }
897}
898
113285b4
JA
899static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
900 struct request *rq)
901{
902 if (rq->tag == -1 || rq->internal_tag == -1)
903 return;
904
905 __blk_mq_put_driver_tag(hctx, rq);
906}
907
908static void blk_mq_put_driver_tag(struct request *rq)
909{
910 struct blk_mq_hw_ctx *hctx;
911
912 if (rq->tag == -1 || rq->internal_tag == -1)
913 return;
914
915 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
916 __blk_mq_put_driver_tag(hctx, rq);
917}
918
bd166ef1
JA
919/*
920 * If we fail getting a driver tag because all the driver tags are already
921 * assigned and on the dispatch list, BUT the first entry does not have a
922 * tag, then we could deadlock. For that case, move entries with assigned
923 * driver tags to the front, leaving the set of tagged requests in the
924 * same order, and the untagged set in the same order.
925 */
926static bool reorder_tags_to_front(struct list_head *list)
927{
928 struct request *rq, *tmp, *first = NULL;
929
930 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
931 if (rq == first)
932 break;
933 if (rq->tag != -1) {
934 list_move(&rq->queuelist, list);
935 if (!first)
936 first = rq;
937 }
938 }
939
940 return first != NULL;
941}
942
da55f2cc
OS
943static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
944 void *key)
945{
946 struct blk_mq_hw_ctx *hctx;
947
948 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
949
950 list_del(&wait->task_list);
951 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
952 blk_mq_run_hw_queue(hctx, true);
953 return 1;
954}
955
956static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
957{
958 struct sbq_wait_state *ws;
959
960 /*
961 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
962 * The thread which wins the race to grab this bit adds the hardware
963 * queue to the wait queue.
964 */
965 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
966 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
967 return false;
968
969 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
970 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
971
972 /*
973 * As soon as this returns, it's no longer safe to fiddle with
974 * hctx->dispatch_wait, since a completion can wake up the wait queue
975 * and unlock the bit.
976 */
977 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
978 return true;
979}
980
81380ca1 981bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
320ae51f 982{
81380ca1 983 struct blk_mq_hw_ctx *hctx;
320ae51f 984 struct request *rq;
3e8a7069 985 int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
320ae51f 986
81380ca1
OS
987 if (list_empty(list))
988 return false;
989
320ae51f
JA
990 /*
991 * Now process all the entries, sending them to the driver.
992 */
3e8a7069 993 errors = queued = 0;
81380ca1 994 do {
74c45052 995 struct blk_mq_queue_data bd;
320ae51f 996
f04c3df3 997 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
998 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
999 if (!queued && reorder_tags_to_front(list))
1000 continue;
3c782d67
JA
1001
1002 /*
da55f2cc
OS
1003 * The initial allocation attempt failed, so we need to
1004 * rerun the hardware queue when a tag is freed.
3c782d67 1005 */
807b1041
OS
1006 if (!blk_mq_dispatch_wait_add(hctx))
1007 break;
1008
1009 /*
1010 * It's possible that a tag was freed in the window
1011 * between the allocation failure and adding the
1012 * hardware queue to the wait queue.
1013 */
1014 if (!blk_mq_get_driver_tag(rq, &hctx, false))
3c782d67 1015 break;
bd166ef1 1016 }
da55f2cc 1017
320ae51f 1018 list_del_init(&rq->queuelist);
320ae51f 1019
74c45052 1020 bd.rq = rq;
113285b4
JA
1021
1022 /*
1023 * Flag last if we have no more requests, or if we have more
1024 * but can't assign a driver tag to it.
1025 */
1026 if (list_empty(list))
1027 bd.last = true;
1028 else {
1029 struct request *nxt;
1030
1031 nxt = list_first_entry(list, struct request, queuelist);
1032 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1033 }
74c45052
JA
1034
1035 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
1036 switch (ret) {
1037 case BLK_MQ_RQ_QUEUE_OK:
1038 queued++;
52b9c330 1039 break;
320ae51f 1040 case BLK_MQ_RQ_QUEUE_BUSY:
113285b4 1041 blk_mq_put_driver_tag_hctx(hctx, rq);
f04c3df3 1042 list_add(&rq->queuelist, list);
ed0791b2 1043 __blk_mq_requeue_request(rq);
320ae51f
JA
1044 break;
1045 default:
1046 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 1047 case BLK_MQ_RQ_QUEUE_ERROR:
3e8a7069 1048 errors++;
1e93b8c2 1049 rq->errors = -EIO;
c8a446ad 1050 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
1051 break;
1052 }
1053
1054 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1055 break;
81380ca1 1056 } while (!list_empty(list));
320ae51f 1057
703fd1c0 1058 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1059
1060 /*
1061 * Any items that need requeuing? Stuff them into hctx->dispatch,
1062 * that is where we will continue on next queue run.
1063 */
f04c3df3 1064 if (!list_empty(list)) {
113285b4 1065 /*
710c785f
BVA
1066 * If an I/O scheduler has been configured and we got a driver
1067 * tag for the next request already, free it again.
113285b4
JA
1068 */
1069 rq = list_first_entry(list, struct request, queuelist);
1070 blk_mq_put_driver_tag(rq);
1071
320ae51f 1072 spin_lock(&hctx->lock);
c13660a0 1073 list_splice_init(list, &hctx->dispatch);
320ae51f 1074 spin_unlock(&hctx->lock);
f04c3df3 1075
9ba52e58 1076 /*
710c785f
BVA
1077 * If SCHED_RESTART was set by the caller of this function and
1078 * it is no longer set that means that it was cleared by another
1079 * thread and hence that a queue rerun is needed.
9ba52e58 1080 *
710c785f
BVA
1081 * If TAG_WAITING is set that means that an I/O scheduler has
1082 * been configured and another thread is waiting for a driver
1083 * tag. To guarantee fairness, do not rerun this hardware queue
1084 * but let the other thread grab the driver tag.
bd166ef1 1085 *
710c785f
BVA
1086 * If no I/O scheduler has been configured it is possible that
1087 * the hardware queue got stopped and restarted before requests
1088 * were pushed back onto the dispatch list. Rerun the queue to
1089 * avoid starvation. Notes:
1090 * - blk_mq_run_hw_queue() checks whether or not a queue has
1091 * been stopped before rerunning a queue.
1092 * - Some but not all block drivers stop a queue before
1093 * returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
1094 * and dm-rq.
bd166ef1 1095 */
da55f2cc
OS
1096 if (!blk_mq_sched_needs_restart(hctx) &&
1097 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
bd166ef1 1098 blk_mq_run_hw_queue(hctx, true);
320ae51f 1099 }
f04c3df3 1100
3e8a7069 1101 return (queued + errors) != 0;
f04c3df3
JA
1102}
1103
6a83e74d
BVA
1104static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1105{
1106 int srcu_idx;
1107
1108 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1109 cpu_online(hctx->next_cpu));
1110
1111 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1112 rcu_read_lock();
bd166ef1 1113 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1114 rcu_read_unlock();
1115 } else {
bf4907c0
JA
1116 might_sleep();
1117
6a83e74d 1118 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
bd166ef1 1119 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1120 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1121 }
1122}
1123
506e931f
JA
1124/*
1125 * It'd be great if the workqueue API had a way to pass
1126 * in a mask and had some smarts for more clever placement.
1127 * For now we just round-robin here, switching for every
1128 * BLK_MQ_CPU_WORK_BATCH queued items.
1129 */
1130static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1131{
b657d7e6
CH
1132 if (hctx->queue->nr_hw_queues == 1)
1133 return WORK_CPU_UNBOUND;
506e931f
JA
1134
1135 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1136 int next_cpu;
506e931f
JA
1137
1138 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1139 if (next_cpu >= nr_cpu_ids)
1140 next_cpu = cpumask_first(hctx->cpumask);
1141
1142 hctx->next_cpu = next_cpu;
1143 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1144 }
1145
b657d7e6 1146 return hctx->next_cpu;
506e931f
JA
1147}
1148
7587a5ae
BVA
1149static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1150 unsigned long msecs)
320ae51f 1151{
5d1b25c1
BVA
1152 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1153 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
1154 return;
1155
1b792f2f 1156 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1157 int cpu = get_cpu();
1158 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1159 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1160 put_cpu();
398205b8
PB
1161 return;
1162 }
e4043dcf 1163
2a90d4aa 1164 put_cpu();
e4043dcf 1165 }
398205b8 1166
7587a5ae
BVA
1167 if (msecs == 0)
1168 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx),
1169 &hctx->run_work);
1170 else
1171 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1172 &hctx->delayed_run_work,
1173 msecs_to_jiffies(msecs));
1174}
1175
1176void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1177{
1178 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1179}
1180EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1181
1182void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1183{
1184 __blk_mq_delay_run_hw_queue(hctx, async, 0);
320ae51f
JA
1185}
1186
b94ec296 1187void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1188{
1189 struct blk_mq_hw_ctx *hctx;
1190 int i;
1191
1192 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1193 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1194 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1195 continue;
1196
b94ec296 1197 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1198 }
1199}
b94ec296 1200EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1201
fd001443
BVA
1202/**
1203 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1204 * @q: request queue.
1205 *
1206 * The caller is responsible for serializing this function against
1207 * blk_mq_{start,stop}_hw_queue().
1208 */
1209bool blk_mq_queue_stopped(struct request_queue *q)
1210{
1211 struct blk_mq_hw_ctx *hctx;
1212 int i;
1213
1214 queue_for_each_hw_ctx(q, hctx, i)
1215 if (blk_mq_hctx_stopped(hctx))
1216 return true;
1217
1218 return false;
1219}
1220EXPORT_SYMBOL(blk_mq_queue_stopped);
1221
320ae51f
JA
1222void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1223{
27489a3c 1224 cancel_work(&hctx->run_work);
70f4db63 1225 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
1226 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1227}
1228EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1229
280d45f6
CH
1230void blk_mq_stop_hw_queues(struct request_queue *q)
1231{
1232 struct blk_mq_hw_ctx *hctx;
1233 int i;
1234
1235 queue_for_each_hw_ctx(q, hctx, i)
1236 blk_mq_stop_hw_queue(hctx);
1237}
1238EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1239
320ae51f
JA
1240void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1241{
1242 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1243
0ffbce80 1244 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1245}
1246EXPORT_SYMBOL(blk_mq_start_hw_queue);
1247
2f268556
CH
1248void blk_mq_start_hw_queues(struct request_queue *q)
1249{
1250 struct blk_mq_hw_ctx *hctx;
1251 int i;
1252
1253 queue_for_each_hw_ctx(q, hctx, i)
1254 blk_mq_start_hw_queue(hctx);
1255}
1256EXPORT_SYMBOL(blk_mq_start_hw_queues);
1257
ae911c5e
JA
1258void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1259{
1260 if (!blk_mq_hctx_stopped(hctx))
1261 return;
1262
1263 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1264 blk_mq_run_hw_queue(hctx, async);
1265}
1266EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1267
1b4a3258 1268void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1269{
1270 struct blk_mq_hw_ctx *hctx;
1271 int i;
1272
ae911c5e
JA
1273 queue_for_each_hw_ctx(q, hctx, i)
1274 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1275}
1276EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1277
70f4db63 1278static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1279{
1280 struct blk_mq_hw_ctx *hctx;
1281
27489a3c 1282 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
e4043dcf 1283
320ae51f
JA
1284 __blk_mq_run_hw_queue(hctx);
1285}
1286
7587a5ae
BVA
1287static void blk_mq_delayed_run_work_fn(struct work_struct *work)
1288{
1289 struct blk_mq_hw_ctx *hctx;
1290
1291 hctx = container_of(work, struct blk_mq_hw_ctx, delayed_run_work.work);
1292
1293 __blk_mq_run_hw_queue(hctx);
1294}
1295
70f4db63
CH
1296static void blk_mq_delay_work_fn(struct work_struct *work)
1297{
1298 struct blk_mq_hw_ctx *hctx;
1299
1300 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1301
1302 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1303 __blk_mq_run_hw_queue(hctx);
1304}
1305
1306void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1307{
19c66e59
ML
1308 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1309 return;
70f4db63 1310
7e79dadc 1311 blk_mq_stop_hw_queue(hctx);
b657d7e6
CH
1312 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1313 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
1314}
1315EXPORT_SYMBOL(blk_mq_delay_queue);
1316
cfd0c552 1317static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1318 struct request *rq,
1319 bool at_head)
320ae51f 1320{
e57690fe
JA
1321 struct blk_mq_ctx *ctx = rq->mq_ctx;
1322
01b983c9
JA
1323 trace_block_rq_insert(hctx->queue, rq);
1324
72a0a36e
CH
1325 if (at_head)
1326 list_add(&rq->queuelist, &ctx->rq_list);
1327 else
1328 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1329}
4bb659b1 1330
2c3ad667
JA
1331void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1332 bool at_head)
cfd0c552
ML
1333{
1334 struct blk_mq_ctx *ctx = rq->mq_ctx;
1335
e57690fe 1336 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1337 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1338}
1339
bd166ef1
JA
1340void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1341 struct list_head *list)
320ae51f
JA
1342
1343{
320ae51f
JA
1344 /*
1345 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1346 * offline now
1347 */
1348 spin_lock(&ctx->lock);
1349 while (!list_empty(list)) {
1350 struct request *rq;
1351
1352 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1353 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1354 list_del_init(&rq->queuelist);
e57690fe 1355 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1356 }
cfd0c552 1357 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1358 spin_unlock(&ctx->lock);
320ae51f
JA
1359}
1360
1361static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1362{
1363 struct request *rqa = container_of(a, struct request, queuelist);
1364 struct request *rqb = container_of(b, struct request, queuelist);
1365
1366 return !(rqa->mq_ctx < rqb->mq_ctx ||
1367 (rqa->mq_ctx == rqb->mq_ctx &&
1368 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1369}
1370
1371void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1372{
1373 struct blk_mq_ctx *this_ctx;
1374 struct request_queue *this_q;
1375 struct request *rq;
1376 LIST_HEAD(list);
1377 LIST_HEAD(ctx_list);
1378 unsigned int depth;
1379
1380 list_splice_init(&plug->mq_list, &list);
1381
1382 list_sort(NULL, &list, plug_ctx_cmp);
1383
1384 this_q = NULL;
1385 this_ctx = NULL;
1386 depth = 0;
1387
1388 while (!list_empty(&list)) {
1389 rq = list_entry_rq(list.next);
1390 list_del_init(&rq->queuelist);
1391 BUG_ON(!rq->q);
1392 if (rq->mq_ctx != this_ctx) {
1393 if (this_ctx) {
bd166ef1
JA
1394 trace_block_unplug(this_q, depth, from_schedule);
1395 blk_mq_sched_insert_requests(this_q, this_ctx,
1396 &ctx_list,
1397 from_schedule);
320ae51f
JA
1398 }
1399
1400 this_ctx = rq->mq_ctx;
1401 this_q = rq->q;
1402 depth = 0;
1403 }
1404
1405 depth++;
1406 list_add_tail(&rq->queuelist, &ctx_list);
1407 }
1408
1409 /*
1410 * If 'this_ctx' is set, we know we have entries to complete
1411 * on 'ctx_list'. Do those.
1412 */
1413 if (this_ctx) {
bd166ef1
JA
1414 trace_block_unplug(this_q, depth, from_schedule);
1415 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1416 from_schedule);
320ae51f
JA
1417 }
1418}
1419
1420static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1421{
1422 init_request_from_bio(rq, bio);
4b570521 1423
6e85eaf3 1424 blk_account_io_start(rq, true);
320ae51f
JA
1425}
1426
274a5843
JA
1427static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1428{
1429 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1430 !blk_queue_nomerges(hctx->queue);
1431}
1432
07068d5b
JA
1433static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1434 struct blk_mq_ctx *ctx,
1435 struct request *rq, struct bio *bio)
320ae51f 1436{
e18378a6 1437 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1438 blk_mq_bio_to_request(rq, bio);
1439 spin_lock(&ctx->lock);
1440insert_rq:
1441 __blk_mq_insert_request(hctx, rq, false);
1442 spin_unlock(&ctx->lock);
1443 return false;
1444 } else {
274a5843
JA
1445 struct request_queue *q = hctx->queue;
1446
07068d5b
JA
1447 spin_lock(&ctx->lock);
1448 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1449 blk_mq_bio_to_request(rq, bio);
1450 goto insert_rq;
1451 }
320ae51f 1452
07068d5b 1453 spin_unlock(&ctx->lock);
bd166ef1 1454 __blk_mq_finish_request(hctx, ctx, rq);
07068d5b 1455 return true;
14ec77f3 1456 }
07068d5b 1457}
14ec77f3 1458
fd2d3326
JA
1459static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1460{
bd166ef1
JA
1461 if (rq->tag != -1)
1462 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1463
1464 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1465}
1466
5eb6126e 1467static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
9c621104 1468 bool may_sleep)
f984df1f 1469{
f984df1f 1470 struct request_queue *q = rq->q;
f984df1f
SL
1471 struct blk_mq_queue_data bd = {
1472 .rq = rq,
d945a365 1473 .last = true,
f984df1f 1474 };
bd166ef1
JA
1475 struct blk_mq_hw_ctx *hctx;
1476 blk_qc_t new_cookie;
1477 int ret;
f984df1f 1478
bd166ef1 1479 if (q->elevator)
2253efc8
BVA
1480 goto insert;
1481
bd166ef1
JA
1482 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1483 goto insert;
1484
1485 new_cookie = request_to_qc_t(hctx, rq);
1486
f984df1f
SL
1487 /*
1488 * For OK queue, we are done. For error, kill it. Any other
1489 * error (busy), just add it to our list as we previously
1490 * would have done
1491 */
1492 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1493 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1494 *cookie = new_cookie;
2253efc8 1495 return;
7b371636 1496 }
f984df1f 1497
7b371636
JA
1498 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1499 *cookie = BLK_QC_T_NONE;
1500 rq->errors = -EIO;
1501 blk_mq_end_request(rq, rq->errors);
2253efc8 1502 return;
f984df1f 1503 }
7b371636 1504
b58e1769 1505 __blk_mq_requeue_request(rq);
2253efc8 1506insert:
9c621104 1507 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
f984df1f
SL
1508}
1509
5eb6126e
CH
1510static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1511 struct request *rq, blk_qc_t *cookie)
1512{
1513 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1514 rcu_read_lock();
1515 __blk_mq_try_issue_directly(rq, cookie, false);
1516 rcu_read_unlock();
1517 } else {
bf4907c0
JA
1518 unsigned int srcu_idx;
1519
1520 might_sleep();
1521
1522 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
5eb6126e
CH
1523 __blk_mq_try_issue_directly(rq, cookie, true);
1524 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1525 }
1526}
1527
dece1635 1528static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1529{
ef295ecf 1530 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1531 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1532 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1533 struct request *rq;
5eb6126e 1534 unsigned int request_count = 0;
f984df1f 1535 struct blk_plug *plug;
5b3f341f 1536 struct request *same_queue_rq = NULL;
7b371636 1537 blk_qc_t cookie;
87760e5e 1538 unsigned int wb_acct;
07068d5b
JA
1539
1540 blk_queue_bounce(q, &bio);
1541
1542 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1543 bio_io_error(bio);
dece1635 1544 return BLK_QC_T_NONE;
07068d5b
JA
1545 }
1546
54efd50b
KO
1547 blk_queue_split(q, &bio, q->bio_split);
1548
87c279e6
OS
1549 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1550 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1551 return BLK_QC_T_NONE;
f984df1f 1552
bd166ef1
JA
1553 if (blk_mq_sched_bio_merge(q, bio))
1554 return BLK_QC_T_NONE;
1555
87760e5e
JA
1556 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1557
bd166ef1
JA
1558 trace_block_getrq(q, bio, bio->bi_opf);
1559
1560 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1561 if (unlikely(!rq)) {
1562 __wbt_done(q->rq_wb, wb_acct);
dece1635 1563 return BLK_QC_T_NONE;
87760e5e
JA
1564 }
1565
1566 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1567
fd2d3326 1568 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1569
a4d907b6 1570 plug = current->plug;
07068d5b
JA
1571 if (unlikely(is_flush_fua)) {
1572 blk_mq_bio_to_request(rq, bio);
a4d907b6
CH
1573 if (q->elevator) {
1574 blk_mq_sched_insert_request(rq, false, true, true,
1575 true);
1576 } else {
1577 blk_insert_flush(rq);
1578 blk_mq_run_hw_queue(data.hctx, true);
1579 }
1580 } else if (plug && q->nr_hw_queues == 1) {
254d259d
CH
1581 struct request *last = NULL;
1582
1583 blk_mq_bio_to_request(rq, bio);
1584
1585 /*
1586 * @request_count may become stale because of schedule
1587 * out, so check the list again.
1588 */
1589 if (list_empty(&plug->mq_list))
1590 request_count = 0;
1591 else if (blk_queue_nomerges(q))
1592 request_count = blk_plug_queued_count(q);
1593
1594 if (!request_count)
1595 trace_block_plug(q);
1596 else
1597 last = list_entry_rq(plug->mq_list.prev);
1598
254d259d
CH
1599 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1600 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1601 blk_flush_plug_list(plug, false);
1602 trace_block_plug(q);
1603 }
1604
1605 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1606 } else if (plug && !blk_queue_nomerges(q)) {
07068d5b 1607 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1608
1609 /*
6a83e74d 1610 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1611 * Otherwise the existing request in the plug list will be
1612 * issued. So the plug list will have one request at most
2299722c
CH
1613 * The plug list might get flushed before this. If that happens,
1614 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1615 */
2299722c
CH
1616 if (list_empty(&plug->mq_list))
1617 same_queue_rq = NULL;
1618 if (same_queue_rq)
1619 list_del_init(&same_queue_rq->queuelist);
1620 list_add_tail(&rq->queuelist, &plug->mq_list);
1621
bf4907c0
JA
1622 blk_mq_put_ctx(data.ctx);
1623
2299722c
CH
1624 if (same_queue_rq)
1625 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1626 &cookie);
bf4907c0
JA
1627
1628 return cookie;
a4d907b6 1629 } else if (q->nr_hw_queues > 1 && is_sync) {
bf4907c0 1630 blk_mq_put_ctx(data.ctx);
2299722c 1631 blk_mq_bio_to_request(rq, bio);
2299722c 1632 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
bf4907c0 1633 return cookie;
a4d907b6 1634 } else if (q->elevator) {
bd166ef1 1635 blk_mq_bio_to_request(rq, bio);
a4d907b6 1636 blk_mq_sched_insert_request(rq, false, true, true, true);
bf4907c0 1637 } else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio))
a4d907b6 1638 blk_mq_run_hw_queue(data.hctx, true);
a4d907b6 1639
07068d5b 1640 blk_mq_put_ctx(data.ctx);
7b371636 1641 return cookie;
07068d5b
JA
1642}
1643
cc71a6f4
JA
1644void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1645 unsigned int hctx_idx)
95363efd 1646{
e9b267d9 1647 struct page *page;
320ae51f 1648
24d2f903 1649 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1650 int i;
320ae51f 1651
24d2f903 1652 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1653 struct request *rq = tags->static_rqs[i];
1654
1655 if (!rq)
e9b267d9 1656 continue;
2af8cbe3 1657 set->ops->exit_request(set->driver_data, rq,
24d2f903 1658 hctx_idx, i);
2af8cbe3 1659 tags->static_rqs[i] = NULL;
e9b267d9 1660 }
320ae51f 1661 }
320ae51f 1662
24d2f903
CH
1663 while (!list_empty(&tags->page_list)) {
1664 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1665 list_del_init(&page->lru);
f75782e4
CM
1666 /*
1667 * Remove kmemleak object previously allocated in
1668 * blk_mq_init_rq_map().
1669 */
1670 kmemleak_free(page_address(page));
320ae51f
JA
1671 __free_pages(page, page->private);
1672 }
cc71a6f4 1673}
320ae51f 1674
cc71a6f4
JA
1675void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1676{
24d2f903 1677 kfree(tags->rqs);
cc71a6f4 1678 tags->rqs = NULL;
2af8cbe3
JA
1679 kfree(tags->static_rqs);
1680 tags->static_rqs = NULL;
320ae51f 1681
24d2f903 1682 blk_mq_free_tags(tags);
320ae51f
JA
1683}
1684
cc71a6f4
JA
1685struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1686 unsigned int hctx_idx,
1687 unsigned int nr_tags,
1688 unsigned int reserved_tags)
320ae51f 1689{
24d2f903 1690 struct blk_mq_tags *tags;
59f082e4 1691 int node;
320ae51f 1692
59f082e4
SL
1693 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1694 if (node == NUMA_NO_NODE)
1695 node = set->numa_node;
1696
1697 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1698 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1699 if (!tags)
1700 return NULL;
320ae51f 1701
cc71a6f4 1702 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1703 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1704 node);
24d2f903
CH
1705 if (!tags->rqs) {
1706 blk_mq_free_tags(tags);
1707 return NULL;
1708 }
320ae51f 1709
2af8cbe3
JA
1710 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1711 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1712 node);
2af8cbe3
JA
1713 if (!tags->static_rqs) {
1714 kfree(tags->rqs);
1715 blk_mq_free_tags(tags);
1716 return NULL;
1717 }
1718
cc71a6f4
JA
1719 return tags;
1720}
1721
1722static size_t order_to_size(unsigned int order)
1723{
1724 return (size_t)PAGE_SIZE << order;
1725}
1726
1727int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1728 unsigned int hctx_idx, unsigned int depth)
1729{
1730 unsigned int i, j, entries_per_page, max_order = 4;
1731 size_t rq_size, left;
59f082e4
SL
1732 int node;
1733
1734 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1735 if (node == NUMA_NO_NODE)
1736 node = set->numa_node;
cc71a6f4
JA
1737
1738 INIT_LIST_HEAD(&tags->page_list);
1739
320ae51f
JA
1740 /*
1741 * rq_size is the size of the request plus driver payload, rounded
1742 * to the cacheline size
1743 */
24d2f903 1744 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1745 cache_line_size());
cc71a6f4 1746 left = rq_size * depth;
320ae51f 1747
cc71a6f4 1748 for (i = 0; i < depth; ) {
320ae51f
JA
1749 int this_order = max_order;
1750 struct page *page;
1751 int to_do;
1752 void *p;
1753
b3a834b1 1754 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1755 this_order--;
1756
1757 do {
59f082e4 1758 page = alloc_pages_node(node,
36e1f3d1 1759 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1760 this_order);
320ae51f
JA
1761 if (page)
1762 break;
1763 if (!this_order--)
1764 break;
1765 if (order_to_size(this_order) < rq_size)
1766 break;
1767 } while (1);
1768
1769 if (!page)
24d2f903 1770 goto fail;
320ae51f
JA
1771
1772 page->private = this_order;
24d2f903 1773 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1774
1775 p = page_address(page);
f75782e4
CM
1776 /*
1777 * Allow kmemleak to scan these pages as they contain pointers
1778 * to additional allocations like via ops->init_request().
1779 */
36e1f3d1 1780 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1781 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1782 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1783 left -= to_do * rq_size;
1784 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1785 struct request *rq = p;
1786
1787 tags->static_rqs[i] = rq;
24d2f903
CH
1788 if (set->ops->init_request) {
1789 if (set->ops->init_request(set->driver_data,
2af8cbe3 1790 rq, hctx_idx, i,
59f082e4 1791 node)) {
2af8cbe3 1792 tags->static_rqs[i] = NULL;
24d2f903 1793 goto fail;
a5164405 1794 }
e9b267d9
CH
1795 }
1796
320ae51f
JA
1797 p += rq_size;
1798 i++;
1799 }
1800 }
cc71a6f4 1801 return 0;
320ae51f 1802
24d2f903 1803fail:
cc71a6f4
JA
1804 blk_mq_free_rqs(set, tags, hctx_idx);
1805 return -ENOMEM;
320ae51f
JA
1806}
1807
e57690fe
JA
1808/*
1809 * 'cpu' is going away. splice any existing rq_list entries from this
1810 * software queue to the hw queue dispatch list, and ensure that it
1811 * gets run.
1812 */
9467f859 1813static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1814{
9467f859 1815 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1816 struct blk_mq_ctx *ctx;
1817 LIST_HEAD(tmp);
1818
9467f859 1819 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1820 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1821
1822 spin_lock(&ctx->lock);
1823 if (!list_empty(&ctx->rq_list)) {
1824 list_splice_init(&ctx->rq_list, &tmp);
1825 blk_mq_hctx_clear_pending(hctx, ctx);
1826 }
1827 spin_unlock(&ctx->lock);
1828
1829 if (list_empty(&tmp))
9467f859 1830 return 0;
484b4061 1831
e57690fe
JA
1832 spin_lock(&hctx->lock);
1833 list_splice_tail_init(&tmp, &hctx->dispatch);
1834 spin_unlock(&hctx->lock);
484b4061
JA
1835
1836 blk_mq_run_hw_queue(hctx, true);
9467f859 1837 return 0;
484b4061
JA
1838}
1839
9467f859 1840static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1841{
9467f859
TG
1842 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1843 &hctx->cpuhp_dead);
484b4061
JA
1844}
1845
c3b4afca 1846/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1847static void blk_mq_exit_hctx(struct request_queue *q,
1848 struct blk_mq_tag_set *set,
1849 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1850{
f70ced09
ML
1851 unsigned flush_start_tag = set->queue_depth;
1852
08e98fc6
ML
1853 blk_mq_tag_idle(hctx);
1854
f70ced09
ML
1855 if (set->ops->exit_request)
1856 set->ops->exit_request(set->driver_data,
1857 hctx->fq->flush_rq, hctx_idx,
1858 flush_start_tag + hctx_idx);
1859
93252632
OS
1860 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1861
08e98fc6
ML
1862 if (set->ops->exit_hctx)
1863 set->ops->exit_hctx(hctx, hctx_idx);
1864
6a83e74d
BVA
1865 if (hctx->flags & BLK_MQ_F_BLOCKING)
1866 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1867
9467f859 1868 blk_mq_remove_cpuhp(hctx);
f70ced09 1869 blk_free_flush_queue(hctx->fq);
88459642 1870 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1871}
1872
624dbe47
ML
1873static void blk_mq_exit_hw_queues(struct request_queue *q,
1874 struct blk_mq_tag_set *set, int nr_queue)
1875{
1876 struct blk_mq_hw_ctx *hctx;
1877 unsigned int i;
1878
1879 queue_for_each_hw_ctx(q, hctx, i) {
1880 if (i == nr_queue)
1881 break;
08e98fc6 1882 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1883 }
624dbe47
ML
1884}
1885
08e98fc6
ML
1886static int blk_mq_init_hctx(struct request_queue *q,
1887 struct blk_mq_tag_set *set,
1888 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1889{
08e98fc6 1890 int node;
f70ced09 1891 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1892
1893 node = hctx->numa_node;
1894 if (node == NUMA_NO_NODE)
1895 node = hctx->numa_node = set->numa_node;
1896
27489a3c 1897 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
7587a5ae 1898 INIT_DELAYED_WORK(&hctx->delayed_run_work, blk_mq_delayed_run_work_fn);
08e98fc6
ML
1899 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1900 spin_lock_init(&hctx->lock);
1901 INIT_LIST_HEAD(&hctx->dispatch);
1902 hctx->queue = q;
1903 hctx->queue_num = hctx_idx;
2404e607 1904 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1905
9467f859 1906 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1907
1908 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1909
1910 /*
08e98fc6
ML
1911 * Allocate space for all possible cpus to avoid allocation at
1912 * runtime
320ae51f 1913 */
08e98fc6
ML
1914 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1915 GFP_KERNEL, node);
1916 if (!hctx->ctxs)
1917 goto unregister_cpu_notifier;
320ae51f 1918
88459642
OS
1919 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1920 node))
08e98fc6 1921 goto free_ctxs;
320ae51f 1922
08e98fc6 1923 hctx->nr_ctx = 0;
320ae51f 1924
08e98fc6
ML
1925 if (set->ops->init_hctx &&
1926 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1927 goto free_bitmap;
320ae51f 1928
93252632
OS
1929 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1930 goto exit_hctx;
1931
f70ced09
ML
1932 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1933 if (!hctx->fq)
93252632 1934 goto sched_exit_hctx;
320ae51f 1935
f70ced09
ML
1936 if (set->ops->init_request &&
1937 set->ops->init_request(set->driver_data,
1938 hctx->fq->flush_rq, hctx_idx,
1939 flush_start_tag + hctx_idx, node))
1940 goto free_fq;
320ae51f 1941
6a83e74d
BVA
1942 if (hctx->flags & BLK_MQ_F_BLOCKING)
1943 init_srcu_struct(&hctx->queue_rq_srcu);
1944
08e98fc6 1945 return 0;
320ae51f 1946
f70ced09
ML
1947 free_fq:
1948 kfree(hctx->fq);
93252632
OS
1949 sched_exit_hctx:
1950 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
1951 exit_hctx:
1952 if (set->ops->exit_hctx)
1953 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1954 free_bitmap:
88459642 1955 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1956 free_ctxs:
1957 kfree(hctx->ctxs);
1958 unregister_cpu_notifier:
9467f859 1959 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
1960 return -1;
1961}
320ae51f 1962
320ae51f
JA
1963static void blk_mq_init_cpu_queues(struct request_queue *q,
1964 unsigned int nr_hw_queues)
1965{
1966 unsigned int i;
1967
1968 for_each_possible_cpu(i) {
1969 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1970 struct blk_mq_hw_ctx *hctx;
1971
320ae51f
JA
1972 __ctx->cpu = i;
1973 spin_lock_init(&__ctx->lock);
1974 INIT_LIST_HEAD(&__ctx->rq_list);
1975 __ctx->queue = q;
1976
1977 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1978 if (!cpu_online(i))
1979 continue;
1980
7d7e0f90 1981 hctx = blk_mq_map_queue(q, i);
e4043dcf 1982
320ae51f
JA
1983 /*
1984 * Set local node, IFF we have more than one hw queue. If
1985 * not, we remain on the home node of the device
1986 */
1987 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1988 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
1989 }
1990}
1991
cc71a6f4
JA
1992static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1993{
1994 int ret = 0;
1995
1996 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1997 set->queue_depth, set->reserved_tags);
1998 if (!set->tags[hctx_idx])
1999 return false;
2000
2001 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2002 set->queue_depth);
2003 if (!ret)
2004 return true;
2005
2006 blk_mq_free_rq_map(set->tags[hctx_idx]);
2007 set->tags[hctx_idx] = NULL;
2008 return false;
2009}
2010
2011static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2012 unsigned int hctx_idx)
2013{
bd166ef1
JA
2014 if (set->tags[hctx_idx]) {
2015 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2016 blk_mq_free_rq_map(set->tags[hctx_idx]);
2017 set->tags[hctx_idx] = NULL;
2018 }
cc71a6f4
JA
2019}
2020
5778322e
AM
2021static void blk_mq_map_swqueue(struct request_queue *q,
2022 const struct cpumask *online_mask)
320ae51f 2023{
d1b1cea1 2024 unsigned int i, hctx_idx;
320ae51f
JA
2025 struct blk_mq_hw_ctx *hctx;
2026 struct blk_mq_ctx *ctx;
2a34c087 2027 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2028
60de074b
AM
2029 /*
2030 * Avoid others reading imcomplete hctx->cpumask through sysfs
2031 */
2032 mutex_lock(&q->sysfs_lock);
2033
320ae51f 2034 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2035 cpumask_clear(hctx->cpumask);
320ae51f
JA
2036 hctx->nr_ctx = 0;
2037 }
2038
2039 /*
2040 * Map software to hardware queues
2041 */
897bb0c7 2042 for_each_possible_cpu(i) {
320ae51f 2043 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 2044 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
2045 continue;
2046
d1b1cea1
GKB
2047 hctx_idx = q->mq_map[i];
2048 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2049 if (!set->tags[hctx_idx] &&
2050 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2051 /*
2052 * If tags initialization fail for some hctx,
2053 * that hctx won't be brought online. In this
2054 * case, remap the current ctx to hctx[0] which
2055 * is guaranteed to always have tags allocated
2056 */
cc71a6f4 2057 q->mq_map[i] = 0;
d1b1cea1
GKB
2058 }
2059
897bb0c7 2060 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2061 hctx = blk_mq_map_queue(q, i);
868f2f0b 2062
e4043dcf 2063 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2064 ctx->index_hw = hctx->nr_ctx;
2065 hctx->ctxs[hctx->nr_ctx++] = ctx;
2066 }
506e931f 2067
60de074b
AM
2068 mutex_unlock(&q->sysfs_lock);
2069
506e931f 2070 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2071 /*
a68aafa5
JA
2072 * If no software queues are mapped to this hardware queue,
2073 * disable it and free the request entries.
484b4061
JA
2074 */
2075 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2076 /* Never unmap queue 0. We need it as a
2077 * fallback in case of a new remap fails
2078 * allocation
2079 */
cc71a6f4
JA
2080 if (i && set->tags[i])
2081 blk_mq_free_map_and_requests(set, i);
2082
2a34c087 2083 hctx->tags = NULL;
484b4061
JA
2084 continue;
2085 }
2086
2a34c087
ML
2087 hctx->tags = set->tags[i];
2088 WARN_ON(!hctx->tags);
2089
889fa31f
CY
2090 /*
2091 * Set the map size to the number of mapped software queues.
2092 * This is more accurate and more efficient than looping
2093 * over all possibly mapped software queues.
2094 */
88459642 2095 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2096
484b4061
JA
2097 /*
2098 * Initialize batch roundrobin counts
2099 */
506e931f
JA
2100 hctx->next_cpu = cpumask_first(hctx->cpumask);
2101 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2102 }
320ae51f
JA
2103}
2104
2404e607 2105static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2106{
2107 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2108 int i;
2109
2404e607
JM
2110 queue_for_each_hw_ctx(q, hctx, i) {
2111 if (shared)
2112 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2113 else
2114 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2115 }
2116}
2117
2118static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2119{
2120 struct request_queue *q;
0d2602ca 2121
705cda97
BVA
2122 lockdep_assert_held(&set->tag_list_lock);
2123
0d2602ca
JA
2124 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2125 blk_mq_freeze_queue(q);
2404e607 2126 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2127 blk_mq_unfreeze_queue(q);
2128 }
2129}
2130
2131static void blk_mq_del_queue_tag_set(struct request_queue *q)
2132{
2133 struct blk_mq_tag_set *set = q->tag_set;
2134
0d2602ca 2135 mutex_lock(&set->tag_list_lock);
705cda97
BVA
2136 list_del_rcu(&q->tag_set_list);
2137 INIT_LIST_HEAD(&q->tag_set_list);
2404e607
JM
2138 if (list_is_singular(&set->tag_list)) {
2139 /* just transitioned to unshared */
2140 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2141 /* update existing queue */
2142 blk_mq_update_tag_set_depth(set, false);
2143 }
0d2602ca 2144 mutex_unlock(&set->tag_list_lock);
705cda97
BVA
2145
2146 synchronize_rcu();
0d2602ca
JA
2147}
2148
2149static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2150 struct request_queue *q)
2151{
2152 q->tag_set = set;
2153
2154 mutex_lock(&set->tag_list_lock);
2404e607
JM
2155
2156 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2157 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2158 set->flags |= BLK_MQ_F_TAG_SHARED;
2159 /* update existing queue */
2160 blk_mq_update_tag_set_depth(set, true);
2161 }
2162 if (set->flags & BLK_MQ_F_TAG_SHARED)
2163 queue_set_hctx_shared(q, true);
705cda97 2164 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2165
0d2602ca
JA
2166 mutex_unlock(&set->tag_list_lock);
2167}
2168
e09aae7e
ML
2169/*
2170 * It is the actual release handler for mq, but we do it from
2171 * request queue's release handler for avoiding use-after-free
2172 * and headache because q->mq_kobj shouldn't have been introduced,
2173 * but we can't group ctx/kctx kobj without it.
2174 */
2175void blk_mq_release(struct request_queue *q)
2176{
2177 struct blk_mq_hw_ctx *hctx;
2178 unsigned int i;
2179
2180 /* hctx kobj stays in hctx */
c3b4afca
ML
2181 queue_for_each_hw_ctx(q, hctx, i) {
2182 if (!hctx)
2183 continue;
6c8b232e 2184 kobject_put(&hctx->kobj);
c3b4afca 2185 }
e09aae7e 2186
a723bab3
AM
2187 q->mq_map = NULL;
2188
e09aae7e
ML
2189 kfree(q->queue_hw_ctx);
2190
7ea5fe31
ML
2191 /*
2192 * release .mq_kobj and sw queue's kobject now because
2193 * both share lifetime with request queue.
2194 */
2195 blk_mq_sysfs_deinit(q);
2196
e09aae7e
ML
2197 free_percpu(q->queue_ctx);
2198}
2199
24d2f903 2200struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2201{
2202 struct request_queue *uninit_q, *q;
2203
2204 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2205 if (!uninit_q)
2206 return ERR_PTR(-ENOMEM);
2207
2208 q = blk_mq_init_allocated_queue(set, uninit_q);
2209 if (IS_ERR(q))
2210 blk_cleanup_queue(uninit_q);
2211
2212 return q;
2213}
2214EXPORT_SYMBOL(blk_mq_init_queue);
2215
868f2f0b
KB
2216static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2217 struct request_queue *q)
320ae51f 2218{
868f2f0b
KB
2219 int i, j;
2220 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2221
868f2f0b 2222 blk_mq_sysfs_unregister(q);
24d2f903 2223 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2224 int node;
f14bbe77 2225
868f2f0b
KB
2226 if (hctxs[i])
2227 continue;
2228
2229 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2230 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2231 GFP_KERNEL, node);
320ae51f 2232 if (!hctxs[i])
868f2f0b 2233 break;
320ae51f 2234
a86073e4 2235 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2236 node)) {
2237 kfree(hctxs[i]);
2238 hctxs[i] = NULL;
2239 break;
2240 }
e4043dcf 2241
0d2602ca 2242 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2243 hctxs[i]->numa_node = node;
320ae51f 2244 hctxs[i]->queue_num = i;
868f2f0b
KB
2245
2246 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2247 free_cpumask_var(hctxs[i]->cpumask);
2248 kfree(hctxs[i]);
2249 hctxs[i] = NULL;
2250 break;
2251 }
2252 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2253 }
868f2f0b
KB
2254 for (j = i; j < q->nr_hw_queues; j++) {
2255 struct blk_mq_hw_ctx *hctx = hctxs[j];
2256
2257 if (hctx) {
cc71a6f4
JA
2258 if (hctx->tags)
2259 blk_mq_free_map_and_requests(set, j);
868f2f0b 2260 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2261 kobject_put(&hctx->kobj);
868f2f0b
KB
2262 hctxs[j] = NULL;
2263
2264 }
2265 }
2266 q->nr_hw_queues = i;
2267 blk_mq_sysfs_register(q);
2268}
2269
2270struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2271 struct request_queue *q)
2272{
66841672
ML
2273 /* mark the queue as mq asap */
2274 q->mq_ops = set->ops;
2275
34dbad5d
OS
2276 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2277 blk_stat_rq_ddir, 2, q);
2278 if (!q->poll_cb)
2279 goto err_exit;
2280
868f2f0b
KB
2281 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2282 if (!q->queue_ctx)
c7de5726 2283 goto err_exit;
868f2f0b 2284
737f98cf
ML
2285 /* init q->mq_kobj and sw queues' kobjects */
2286 blk_mq_sysfs_init(q);
2287
868f2f0b
KB
2288 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2289 GFP_KERNEL, set->numa_node);
2290 if (!q->queue_hw_ctx)
2291 goto err_percpu;
2292
bdd17e75 2293 q->mq_map = set->mq_map;
868f2f0b
KB
2294
2295 blk_mq_realloc_hw_ctxs(set, q);
2296 if (!q->nr_hw_queues)
2297 goto err_hctxs;
320ae51f 2298
287922eb 2299 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2300 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2301
2302 q->nr_queues = nr_cpu_ids;
320ae51f 2303
94eddfbe 2304 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2305
05f1dd53
JA
2306 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2307 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2308
1be036e9
CH
2309 q->sg_reserved_size = INT_MAX;
2310
2849450a 2311 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2312 INIT_LIST_HEAD(&q->requeue_list);
2313 spin_lock_init(&q->requeue_lock);
2314
254d259d 2315 blk_queue_make_request(q, blk_mq_make_request);
07068d5b 2316
eba71768
JA
2317 /*
2318 * Do this after blk_queue_make_request() overrides it...
2319 */
2320 q->nr_requests = set->queue_depth;
2321
64f1c21e
JA
2322 /*
2323 * Default to classic polling
2324 */
2325 q->poll_nsec = -1;
2326
24d2f903
CH
2327 if (set->ops->complete)
2328 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2329
24d2f903 2330 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2331
5778322e 2332 get_online_cpus();
320ae51f 2333 mutex_lock(&all_q_mutex);
320ae51f 2334
4593fdbe 2335 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2336 blk_mq_add_queue_tag_set(set, q);
5778322e 2337 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2338
4593fdbe 2339 mutex_unlock(&all_q_mutex);
5778322e 2340 put_online_cpus();
4593fdbe 2341
d3484991
JA
2342 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2343 int ret;
2344
2345 ret = blk_mq_sched_init(q);
2346 if (ret)
2347 return ERR_PTR(ret);
2348 }
2349
320ae51f 2350 return q;
18741986 2351
320ae51f 2352err_hctxs:
868f2f0b 2353 kfree(q->queue_hw_ctx);
320ae51f 2354err_percpu:
868f2f0b 2355 free_percpu(q->queue_ctx);
c7de5726
ML
2356err_exit:
2357 q->mq_ops = NULL;
320ae51f
JA
2358 return ERR_PTR(-ENOMEM);
2359}
b62c21b7 2360EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2361
2362void blk_mq_free_queue(struct request_queue *q)
2363{
624dbe47 2364 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2365
0e626368
AM
2366 mutex_lock(&all_q_mutex);
2367 list_del_init(&q->all_q_node);
2368 mutex_unlock(&all_q_mutex);
2369
0d2602ca
JA
2370 blk_mq_del_queue_tag_set(q);
2371
624dbe47 2372 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2373}
320ae51f
JA
2374
2375/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2376static void blk_mq_queue_reinit(struct request_queue *q,
2377 const struct cpumask *online_mask)
320ae51f 2378{
4ecd4fef 2379 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2380
67aec14c
JA
2381 blk_mq_sysfs_unregister(q);
2382
320ae51f
JA
2383 /*
2384 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2385 * we should change hctx numa_node according to new topology (this
2386 * involves free and re-allocate memory, worthy doing?)
2387 */
2388
5778322e 2389 blk_mq_map_swqueue(q, online_mask);
320ae51f 2390
67aec14c 2391 blk_mq_sysfs_register(q);
320ae51f
JA
2392}
2393
65d5291e
SAS
2394/*
2395 * New online cpumask which is going to be set in this hotplug event.
2396 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2397 * one-by-one and dynamically allocating this could result in a failure.
2398 */
2399static struct cpumask cpuhp_online_new;
2400
2401static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2402{
2403 struct request_queue *q;
320ae51f
JA
2404
2405 mutex_lock(&all_q_mutex);
f3af020b
TH
2406 /*
2407 * We need to freeze and reinit all existing queues. Freezing
2408 * involves synchronous wait for an RCU grace period and doing it
2409 * one by one may take a long time. Start freezing all queues in
2410 * one swoop and then wait for the completions so that freezing can
2411 * take place in parallel.
2412 */
2413 list_for_each_entry(q, &all_q_list, all_q_node)
1671d522 2414 blk_freeze_queue_start(q);
415d3dab 2415 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2416 blk_mq_freeze_queue_wait(q);
2417
320ae51f 2418 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2419 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2420
2421 list_for_each_entry(q, &all_q_list, all_q_node)
2422 blk_mq_unfreeze_queue(q);
2423
320ae51f 2424 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2425}
2426
2427static int blk_mq_queue_reinit_dead(unsigned int cpu)
2428{
97a32864 2429 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2430 blk_mq_queue_reinit_work();
2431 return 0;
2432}
2433
2434/*
2435 * Before hotadded cpu starts handling requests, new mappings must be
2436 * established. Otherwise, these requests in hw queue might never be
2437 * dispatched.
2438 *
2439 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2440 * for CPU0, and ctx1 for CPU1).
2441 *
2442 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2443 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2444 *
2c3ad667
JA
2445 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2446 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2447 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2448 * ignored.
65d5291e
SAS
2449 */
2450static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2451{
2452 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2453 cpumask_set_cpu(cpu, &cpuhp_online_new);
2454 blk_mq_queue_reinit_work();
2455 return 0;
320ae51f
JA
2456}
2457
a5164405
JA
2458static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2459{
2460 int i;
2461
cc71a6f4
JA
2462 for (i = 0; i < set->nr_hw_queues; i++)
2463 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2464 goto out_unwind;
a5164405
JA
2465
2466 return 0;
2467
2468out_unwind:
2469 while (--i >= 0)
cc71a6f4 2470 blk_mq_free_rq_map(set->tags[i]);
a5164405 2471
a5164405
JA
2472 return -ENOMEM;
2473}
2474
2475/*
2476 * Allocate the request maps associated with this tag_set. Note that this
2477 * may reduce the depth asked for, if memory is tight. set->queue_depth
2478 * will be updated to reflect the allocated depth.
2479 */
2480static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2481{
2482 unsigned int depth;
2483 int err;
2484
2485 depth = set->queue_depth;
2486 do {
2487 err = __blk_mq_alloc_rq_maps(set);
2488 if (!err)
2489 break;
2490
2491 set->queue_depth >>= 1;
2492 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2493 err = -ENOMEM;
2494 break;
2495 }
2496 } while (set->queue_depth);
2497
2498 if (!set->queue_depth || err) {
2499 pr_err("blk-mq: failed to allocate request map\n");
2500 return -ENOMEM;
2501 }
2502
2503 if (depth != set->queue_depth)
2504 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2505 depth, set->queue_depth);
2506
2507 return 0;
2508}
2509
ebe8bddb
OS
2510static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2511{
2512 if (set->ops->map_queues)
2513 return set->ops->map_queues(set);
2514 else
2515 return blk_mq_map_queues(set);
2516}
2517
a4391c64
JA
2518/*
2519 * Alloc a tag set to be associated with one or more request queues.
2520 * May fail with EINVAL for various error conditions. May adjust the
2521 * requested depth down, if if it too large. In that case, the set
2522 * value will be stored in set->queue_depth.
2523 */
24d2f903
CH
2524int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2525{
da695ba2
CH
2526 int ret;
2527
205fb5f5
BVA
2528 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2529
24d2f903
CH
2530 if (!set->nr_hw_queues)
2531 return -EINVAL;
a4391c64 2532 if (!set->queue_depth)
24d2f903
CH
2533 return -EINVAL;
2534 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2535 return -EINVAL;
2536
7d7e0f90 2537 if (!set->ops->queue_rq)
24d2f903
CH
2538 return -EINVAL;
2539
a4391c64
JA
2540 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2541 pr_info("blk-mq: reduced tag depth to %u\n",
2542 BLK_MQ_MAX_DEPTH);
2543 set->queue_depth = BLK_MQ_MAX_DEPTH;
2544 }
24d2f903 2545
6637fadf
SL
2546 /*
2547 * If a crashdump is active, then we are potentially in a very
2548 * memory constrained environment. Limit us to 1 queue and
2549 * 64 tags to prevent using too much memory.
2550 */
2551 if (is_kdump_kernel()) {
2552 set->nr_hw_queues = 1;
2553 set->queue_depth = min(64U, set->queue_depth);
2554 }
868f2f0b
KB
2555 /*
2556 * There is no use for more h/w queues than cpus.
2557 */
2558 if (set->nr_hw_queues > nr_cpu_ids)
2559 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2560
868f2f0b 2561 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2562 GFP_KERNEL, set->numa_node);
2563 if (!set->tags)
a5164405 2564 return -ENOMEM;
24d2f903 2565
da695ba2
CH
2566 ret = -ENOMEM;
2567 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2568 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2569 if (!set->mq_map)
2570 goto out_free_tags;
2571
ebe8bddb 2572 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2573 if (ret)
2574 goto out_free_mq_map;
2575
2576 ret = blk_mq_alloc_rq_maps(set);
2577 if (ret)
bdd17e75 2578 goto out_free_mq_map;
24d2f903 2579
0d2602ca
JA
2580 mutex_init(&set->tag_list_lock);
2581 INIT_LIST_HEAD(&set->tag_list);
2582
24d2f903 2583 return 0;
bdd17e75
CH
2584
2585out_free_mq_map:
2586 kfree(set->mq_map);
2587 set->mq_map = NULL;
2588out_free_tags:
5676e7b6
RE
2589 kfree(set->tags);
2590 set->tags = NULL;
da695ba2 2591 return ret;
24d2f903
CH
2592}
2593EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2594
2595void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2596{
2597 int i;
2598
cc71a6f4
JA
2599 for (i = 0; i < nr_cpu_ids; i++)
2600 blk_mq_free_map_and_requests(set, i);
484b4061 2601
bdd17e75
CH
2602 kfree(set->mq_map);
2603 set->mq_map = NULL;
2604
981bd189 2605 kfree(set->tags);
5676e7b6 2606 set->tags = NULL;
24d2f903
CH
2607}
2608EXPORT_SYMBOL(blk_mq_free_tag_set);
2609
e3a2b3f9
JA
2610int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2611{
2612 struct blk_mq_tag_set *set = q->tag_set;
2613 struct blk_mq_hw_ctx *hctx;
2614 int i, ret;
2615
bd166ef1 2616 if (!set)
e3a2b3f9
JA
2617 return -EINVAL;
2618
70f36b60
JA
2619 blk_mq_freeze_queue(q);
2620 blk_mq_quiesce_queue(q);
2621
e3a2b3f9
JA
2622 ret = 0;
2623 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2624 if (!hctx->tags)
2625 continue;
bd166ef1
JA
2626 /*
2627 * If we're using an MQ scheduler, just update the scheduler
2628 * queue depth. This is similar to what the old code would do.
2629 */
70f36b60
JA
2630 if (!hctx->sched_tags) {
2631 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2632 min(nr, set->queue_depth),
2633 false);
2634 } else {
2635 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2636 nr, true);
2637 }
e3a2b3f9
JA
2638 if (ret)
2639 break;
2640 }
2641
2642 if (!ret)
2643 q->nr_requests = nr;
2644
70f36b60
JA
2645 blk_mq_unfreeze_queue(q);
2646 blk_mq_start_stopped_hw_queues(q, true);
2647
e3a2b3f9
JA
2648 return ret;
2649}
2650
868f2f0b
KB
2651void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2652{
2653 struct request_queue *q;
2654
705cda97
BVA
2655 lockdep_assert_held(&set->tag_list_lock);
2656
868f2f0b
KB
2657 if (nr_hw_queues > nr_cpu_ids)
2658 nr_hw_queues = nr_cpu_ids;
2659 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2660 return;
2661
2662 list_for_each_entry(q, &set->tag_list, tag_set_list)
2663 blk_mq_freeze_queue(q);
2664
2665 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2666 blk_mq_update_queue_map(set);
868f2f0b
KB
2667 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2668 blk_mq_realloc_hw_ctxs(set, q);
868f2f0b
KB
2669 blk_mq_queue_reinit(q, cpu_online_mask);
2670 }
2671
2672 list_for_each_entry(q, &set->tag_list, tag_set_list)
2673 blk_mq_unfreeze_queue(q);
2674}
2675EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2676
34dbad5d
OS
2677/* Enable polling stats and return whether they were already enabled. */
2678static bool blk_poll_stats_enable(struct request_queue *q)
2679{
2680 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2681 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2682 return true;
2683 blk_stat_add_callback(q, q->poll_cb);
2684 return false;
2685}
2686
2687static void blk_mq_poll_stats_start(struct request_queue *q)
2688{
2689 /*
2690 * We don't arm the callback if polling stats are not enabled or the
2691 * callback is already active.
2692 */
2693 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2694 blk_stat_is_active(q->poll_cb))
2695 return;
2696
2697 blk_stat_activate_msecs(q->poll_cb, 100);
2698}
2699
2700static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2701{
2702 struct request_queue *q = cb->data;
2703
2704 if (cb->stat[READ].nr_samples)
2705 q->poll_stat[READ] = cb->stat[READ];
2706 if (cb->stat[WRITE].nr_samples)
2707 q->poll_stat[WRITE] = cb->stat[WRITE];
2708}
2709
64f1c21e
JA
2710static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2711 struct blk_mq_hw_ctx *hctx,
2712 struct request *rq)
2713{
64f1c21e
JA
2714 unsigned long ret = 0;
2715
2716 /*
2717 * If stats collection isn't on, don't sleep but turn it on for
2718 * future users
2719 */
34dbad5d 2720 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2721 return 0;
2722
64f1c21e
JA
2723 /*
2724 * As an optimistic guess, use half of the mean service time
2725 * for this type of request. We can (and should) make this smarter.
2726 * For instance, if the completion latencies are tight, we can
2727 * get closer than just half the mean. This is especially
2728 * important on devices where the completion latencies are longer
2729 * than ~10 usec.
2730 */
34dbad5d
OS
2731 if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
2732 ret = (q->poll_stat[READ].mean + 1) / 2;
2733 else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
2734 ret = (q->poll_stat[WRITE].mean + 1) / 2;
64f1c21e
JA
2735
2736 return ret;
2737}
2738
06426adf 2739static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2740 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2741 struct request *rq)
2742{
2743 struct hrtimer_sleeper hs;
2744 enum hrtimer_mode mode;
64f1c21e 2745 unsigned int nsecs;
06426adf
JA
2746 ktime_t kt;
2747
64f1c21e
JA
2748 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2749 return false;
2750
2751 /*
2752 * poll_nsec can be:
2753 *
2754 * -1: don't ever hybrid sleep
2755 * 0: use half of prev avg
2756 * >0: use this specific value
2757 */
2758 if (q->poll_nsec == -1)
2759 return false;
2760 else if (q->poll_nsec > 0)
2761 nsecs = q->poll_nsec;
2762 else
2763 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2764
2765 if (!nsecs)
06426adf
JA
2766 return false;
2767
2768 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2769
2770 /*
2771 * This will be replaced with the stats tracking code, using
2772 * 'avg_completion_time / 2' as the pre-sleep target.
2773 */
8b0e1953 2774 kt = nsecs;
06426adf
JA
2775
2776 mode = HRTIMER_MODE_REL;
2777 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2778 hrtimer_set_expires(&hs.timer, kt);
2779
2780 hrtimer_init_sleeper(&hs, current);
2781 do {
2782 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2783 break;
2784 set_current_state(TASK_UNINTERRUPTIBLE);
2785 hrtimer_start_expires(&hs.timer, mode);
2786 if (hs.task)
2787 io_schedule();
2788 hrtimer_cancel(&hs.timer);
2789 mode = HRTIMER_MODE_ABS;
2790 } while (hs.task && !signal_pending(current));
2791
2792 __set_current_state(TASK_RUNNING);
2793 destroy_hrtimer_on_stack(&hs.timer);
2794 return true;
2795}
2796
bbd7bb70
JA
2797static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2798{
2799 struct request_queue *q = hctx->queue;
2800 long state;
2801
06426adf
JA
2802 /*
2803 * If we sleep, have the caller restart the poll loop to reset
2804 * the state. Like for the other success return cases, the
2805 * caller is responsible for checking if the IO completed. If
2806 * the IO isn't complete, we'll get called again and will go
2807 * straight to the busy poll loop.
2808 */
64f1c21e 2809 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2810 return true;
2811
bbd7bb70
JA
2812 hctx->poll_considered++;
2813
2814 state = current->state;
2815 while (!need_resched()) {
2816 int ret;
2817
2818 hctx->poll_invoked++;
2819
2820 ret = q->mq_ops->poll(hctx, rq->tag);
2821 if (ret > 0) {
2822 hctx->poll_success++;
2823 set_current_state(TASK_RUNNING);
2824 return true;
2825 }
2826
2827 if (signal_pending_state(state, current))
2828 set_current_state(TASK_RUNNING);
2829
2830 if (current->state == TASK_RUNNING)
2831 return true;
2832 if (ret < 0)
2833 break;
2834 cpu_relax();
2835 }
2836
2837 return false;
2838}
2839
2840bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2841{
2842 struct blk_mq_hw_ctx *hctx;
2843 struct blk_plug *plug;
2844 struct request *rq;
2845
2846 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2847 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2848 return false;
2849
2850 plug = current->plug;
2851 if (plug)
2852 blk_flush_plug_list(plug, false);
2853
2854 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2855 if (!blk_qc_t_is_internal(cookie))
2856 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2857 else
2858 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
bbd7bb70
JA
2859
2860 return __blk_mq_poll(hctx, rq);
2861}
2862EXPORT_SYMBOL_GPL(blk_mq_poll);
2863
676141e4
JA
2864void blk_mq_disable_hotplug(void)
2865{
2866 mutex_lock(&all_q_mutex);
2867}
2868
2869void blk_mq_enable_hotplug(void)
2870{
2871 mutex_unlock(&all_q_mutex);
2872}
2873
320ae51f
JA
2874static int __init blk_mq_init(void)
2875{
9467f859
TG
2876 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2877 blk_mq_hctx_notify_dead);
320ae51f 2878
65d5291e
SAS
2879 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2880 blk_mq_queue_reinit_prepare,
2881 blk_mq_queue_reinit_dead);
320ae51f
JA
2882 return 0;
2883}
2884subsys_initcall(blk_mq_init);