]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-mq.c
block: Fix off-by-one errors in blk_status_to_errno() and print_req_error()
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
cf43e6be 36#include "blk-stat.h"
87760e5e 37#include "blk-wbt.h"
bd166ef1 38#include "blk-mq-sched.h"
320ae51f
JA
39
40static DEFINE_MUTEX(all_q_mutex);
41static LIST_HEAD(all_q_list);
42
34dbad5d
OS
43static void blk_mq_poll_stats_start(struct request_queue *q);
44static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45
720b8ccc
SB
46static int blk_mq_poll_stats_bkt(const struct request *rq)
47{
48 int ddir, bytes, bucket;
49
99c749a4 50 ddir = rq_data_dir(rq);
720b8ccc
SB
51 bytes = blk_rq_bytes(rq);
52
53 bucket = ddir + 2*(ilog2(bytes) - 9);
54
55 if (bucket < 0)
56 return -1;
57 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
58 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
59
60 return bucket;
61}
62
320ae51f
JA
63/*
64 * Check if any of the ctx's have pending work in this hardware queue
65 */
50e1dab8 66bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 67{
bd166ef1
JA
68 return sbitmap_any_bit_set(&hctx->ctx_map) ||
69 !list_empty_careful(&hctx->dispatch) ||
70 blk_mq_sched_has_work(hctx);
1429d7c9
JA
71}
72
320ae51f
JA
73/*
74 * Mark this ctx as having pending work in this hardware queue
75 */
76static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77 struct blk_mq_ctx *ctx)
78{
88459642
OS
79 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
80 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
81}
82
83static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84 struct blk_mq_ctx *ctx)
85{
88459642 86 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
87}
88
1671d522 89void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 90{
4ecd4fef 91 int freeze_depth;
cddd5d17 92
4ecd4fef
CH
93 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
94 if (freeze_depth == 1) {
3ef28e83 95 percpu_ref_kill(&q->q_usage_counter);
b94ec296 96 blk_mq_run_hw_queues(q, false);
cddd5d17 97 }
f3af020b 98}
1671d522 99EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 100
6bae363e 101void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 102{
3ef28e83 103 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 104}
6bae363e 105EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 106
f91328c4
KB
107int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
108 unsigned long timeout)
109{
110 return wait_event_timeout(q->mq_freeze_wq,
111 percpu_ref_is_zero(&q->q_usage_counter),
112 timeout);
113}
114EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 115
f3af020b
TH
116/*
117 * Guarantee no request is in use, so we can change any data structure of
118 * the queue afterward.
119 */
3ef28e83 120void blk_freeze_queue(struct request_queue *q)
f3af020b 121{
3ef28e83
DW
122 /*
123 * In the !blk_mq case we are only calling this to kill the
124 * q_usage_counter, otherwise this increases the freeze depth
125 * and waits for it to return to zero. For this reason there is
126 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
127 * exported to drivers as the only user for unfreeze is blk_mq.
128 */
1671d522 129 blk_freeze_queue_start(q);
f3af020b
TH
130 blk_mq_freeze_queue_wait(q);
131}
3ef28e83
DW
132
133void blk_mq_freeze_queue(struct request_queue *q)
134{
135 /*
136 * ...just an alias to keep freeze and unfreeze actions balanced
137 * in the blk_mq_* namespace
138 */
139 blk_freeze_queue(q);
140}
c761d96b 141EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 142
b4c6a028 143void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 144{
4ecd4fef 145 int freeze_depth;
320ae51f 146
4ecd4fef
CH
147 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
148 WARN_ON_ONCE(freeze_depth < 0);
149 if (!freeze_depth) {
3ef28e83 150 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 151 wake_up_all(&q->mq_freeze_wq);
add703fd 152 }
320ae51f 153}
b4c6a028 154EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 155
6a83e74d 156/**
69e07c4a 157 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
158 * @q: request queue.
159 *
160 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
161 * callback function is invoked. Once this function is returned, we make
162 * sure no dispatch can happen until the queue is unquiesced via
163 * blk_mq_unquiesce_queue().
6a83e74d
BVA
164 */
165void blk_mq_quiesce_queue(struct request_queue *q)
166{
167 struct blk_mq_hw_ctx *hctx;
168 unsigned int i;
169 bool rcu = false;
170
1d9e9bc6 171 blk_mq_quiesce_queue_nowait(q);
f4560ffe 172
6a83e74d
BVA
173 queue_for_each_hw_ctx(q, hctx, i) {
174 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 175 synchronize_srcu(hctx->queue_rq_srcu);
6a83e74d
BVA
176 else
177 rcu = true;
178 }
179 if (rcu)
180 synchronize_rcu();
181}
182EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
183
e4e73913
ML
184/*
185 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
186 * @q: request queue.
187 *
188 * This function recovers queue into the state before quiescing
189 * which is done by blk_mq_quiesce_queue.
190 */
191void blk_mq_unquiesce_queue(struct request_queue *q)
192{
f4560ffe
ML
193 spin_lock_irq(q->queue_lock);
194 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
195 spin_unlock_irq(q->queue_lock);
196
1d9e9bc6
ML
197 /* dispatch requests which are inserted during quiescing */
198 blk_mq_run_hw_queues(q, true);
e4e73913
ML
199}
200EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
201
aed3ea94
JA
202void blk_mq_wake_waiters(struct request_queue *q)
203{
204 struct blk_mq_hw_ctx *hctx;
205 unsigned int i;
206
207 queue_for_each_hw_ctx(q, hctx, i)
208 if (blk_mq_hw_queue_mapped(hctx))
209 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
210
211 /*
212 * If we are called because the queue has now been marked as
213 * dying, we need to ensure that processes currently waiting on
214 * the queue are notified as well.
215 */
216 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
217}
218
320ae51f
JA
219bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
220{
221 return blk_mq_has_free_tags(hctx->tags);
222}
223EXPORT_SYMBOL(blk_mq_can_queue);
224
e4cdf1a1
CH
225static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
226 unsigned int tag, unsigned int op)
320ae51f 227{
e4cdf1a1
CH
228 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
229 struct request *rq = tags->static_rqs[tag];
230
c3a148d2
BVA
231 rq->rq_flags = 0;
232
e4cdf1a1
CH
233 if (data->flags & BLK_MQ_REQ_INTERNAL) {
234 rq->tag = -1;
235 rq->internal_tag = tag;
236 } else {
237 if (blk_mq_tag_busy(data->hctx)) {
238 rq->rq_flags = RQF_MQ_INFLIGHT;
239 atomic_inc(&data->hctx->nr_active);
240 }
241 rq->tag = tag;
242 rq->internal_tag = -1;
243 data->hctx->tags->rqs[rq->tag] = rq;
244 }
245
af76e555
CH
246 INIT_LIST_HEAD(&rq->queuelist);
247 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
248 rq->q = data->q;
249 rq->mq_ctx = data->ctx;
ef295ecf 250 rq->cmd_flags = op;
e4cdf1a1 251 if (blk_queue_io_stat(data->q))
e8064021 252 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
253 /* do not touch atomic flags, it needs atomic ops against the timer */
254 rq->cpu = -1;
af76e555
CH
255 INIT_HLIST_NODE(&rq->hash);
256 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
257 rq->rq_disk = NULL;
258 rq->part = NULL;
3ee32372 259 rq->start_time = jiffies;
af76e555
CH
260#ifdef CONFIG_BLK_CGROUP
261 rq->rl = NULL;
0fec08b4 262 set_start_time_ns(rq);
af76e555
CH
263 rq->io_start_time_ns = 0;
264#endif
265 rq->nr_phys_segments = 0;
266#if defined(CONFIG_BLK_DEV_INTEGRITY)
267 rq->nr_integrity_segments = 0;
268#endif
af76e555
CH
269 rq->special = NULL;
270 /* tag was already set */
af76e555 271 rq->extra_len = 0;
af76e555 272
af76e555 273 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
274 rq->timeout = 0;
275
af76e555
CH
276 rq->end_io = NULL;
277 rq->end_io_data = NULL;
278 rq->next_rq = NULL;
279
e4cdf1a1
CH
280 data->ctx->rq_dispatched[op_is_sync(op)]++;
281 return rq;
5dee8577
CH
282}
283
d2c0d383
CH
284static struct request *blk_mq_get_request(struct request_queue *q,
285 struct bio *bio, unsigned int op,
286 struct blk_mq_alloc_data *data)
287{
288 struct elevator_queue *e = q->elevator;
289 struct request *rq;
e4cdf1a1 290 unsigned int tag;
d2c0d383
CH
291
292 blk_queue_enter_live(q);
293 data->q = q;
294 if (likely(!data->ctx))
295 data->ctx = blk_mq_get_ctx(q);
296 if (likely(!data->hctx))
297 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
03a07c92
GR
298 if (op & REQ_NOWAIT)
299 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
300
301 if (e) {
302 data->flags |= BLK_MQ_REQ_INTERNAL;
303
304 /*
305 * Flush requests are special and go directly to the
306 * dispatch list.
307 */
5bbf4e5a
CH
308 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
309 e->type->ops.mq.limit_depth(op, data);
d2c0d383
CH
310 }
311
e4cdf1a1
CH
312 tag = blk_mq_get_tag(data);
313 if (tag == BLK_MQ_TAG_FAIL) {
037cebb8
CH
314 blk_queue_exit(q);
315 return NULL;
d2c0d383
CH
316 }
317
e4cdf1a1 318 rq = blk_mq_rq_ctx_init(data, tag, op);
037cebb8
CH
319 if (!op_is_flush(op)) {
320 rq->elv.icq = NULL;
5bbf4e5a 321 if (e && e->type->ops.mq.prepare_request) {
44e8c2bf
CH
322 if (e->type->icq_cache && rq_ioc(bio))
323 blk_mq_sched_assign_ioc(rq, bio);
324
5bbf4e5a
CH
325 e->type->ops.mq.prepare_request(rq, bio);
326 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 327 }
037cebb8
CH
328 }
329 data->hctx->queued++;
330 return rq;
d2c0d383
CH
331}
332
cd6ce148 333struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
6f3b0e8b 334 unsigned int flags)
320ae51f 335{
5a797e00 336 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 337 struct request *rq;
a492f075 338 int ret;
320ae51f 339
6f3b0e8b 340 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
341 if (ret)
342 return ERR_PTR(ret);
320ae51f 343
cd6ce148 344 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
841bac2c 345
bd166ef1
JA
346 blk_mq_put_ctx(alloc_data.ctx);
347 blk_queue_exit(q);
348
349 if (!rq)
a492f075 350 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
351
352 rq->__data_len = 0;
353 rq->__sector = (sector_t) -1;
354 rq->bio = rq->biotail = NULL;
320ae51f
JA
355 return rq;
356}
4bb659b1 357EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 358
cd6ce148
BVA
359struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
360 unsigned int op, unsigned int flags, unsigned int hctx_idx)
1f5bd336 361{
6d2809d5 362 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 363 struct request *rq;
6d2809d5 364 unsigned int cpu;
1f5bd336
ML
365 int ret;
366
367 /*
368 * If the tag allocator sleeps we could get an allocation for a
369 * different hardware context. No need to complicate the low level
370 * allocator for this for the rare use case of a command tied to
371 * a specific queue.
372 */
373 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
374 return ERR_PTR(-EINVAL);
375
376 if (hctx_idx >= q->nr_hw_queues)
377 return ERR_PTR(-EIO);
378
379 ret = blk_queue_enter(q, true);
380 if (ret)
381 return ERR_PTR(ret);
382
c8712c6a
CH
383 /*
384 * Check if the hardware context is actually mapped to anything.
385 * If not tell the caller that it should skip this queue.
386 */
6d2809d5
OS
387 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
388 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
389 blk_queue_exit(q);
390 return ERR_PTR(-EXDEV);
c8712c6a 391 }
6d2809d5
OS
392 cpu = cpumask_first(alloc_data.hctx->cpumask);
393 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 394
cd6ce148 395 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
c8712c6a 396
c8712c6a 397 blk_queue_exit(q);
6d2809d5
OS
398
399 if (!rq)
400 return ERR_PTR(-EWOULDBLOCK);
401
402 return rq;
1f5bd336
ML
403}
404EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
405
6af54051 406void blk_mq_free_request(struct request *rq)
320ae51f 407{
320ae51f 408 struct request_queue *q = rq->q;
6af54051
CH
409 struct elevator_queue *e = q->elevator;
410 struct blk_mq_ctx *ctx = rq->mq_ctx;
411 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
412 const int sched_tag = rq->internal_tag;
413
5bbf4e5a 414 if (rq->rq_flags & RQF_ELVPRIV) {
6af54051
CH
415 if (e && e->type->ops.mq.finish_request)
416 e->type->ops.mq.finish_request(rq);
417 if (rq->elv.icq) {
418 put_io_context(rq->elv.icq->ioc);
419 rq->elv.icq = NULL;
420 }
421 }
320ae51f 422
6af54051 423 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 424 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 425 atomic_dec(&hctx->nr_active);
87760e5e
JA
426
427 wbt_done(q->rq_wb, &rq->issue_stat);
0d2602ca 428
af76e555 429 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 430 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
431 if (rq->tag != -1)
432 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
433 if (sched_tag != -1)
c05f8525 434 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
6d8c6c0f 435 blk_mq_sched_restart(hctx);
3ef28e83 436 blk_queue_exit(q);
320ae51f 437}
1a3b595a 438EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 439
2a842aca 440inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 441{
0d11e6ac
ML
442 blk_account_io_done(rq);
443
91b63639 444 if (rq->end_io) {
87760e5e 445 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 446 rq->end_io(rq, error);
91b63639
CH
447 } else {
448 if (unlikely(blk_bidi_rq(rq)))
449 blk_mq_free_request(rq->next_rq);
320ae51f 450 blk_mq_free_request(rq);
91b63639 451 }
320ae51f 452}
c8a446ad 453EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 454
2a842aca 455void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
456{
457 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
458 BUG();
c8a446ad 459 __blk_mq_end_request(rq, error);
63151a44 460}
c8a446ad 461EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 462
30a91cb4 463static void __blk_mq_complete_request_remote(void *data)
320ae51f 464{
3d6efbf6 465 struct request *rq = data;
320ae51f 466
30a91cb4 467 rq->q->softirq_done_fn(rq);
320ae51f 468}
320ae51f 469
453f8341 470static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
471{
472 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 473 bool shared = false;
320ae51f
JA
474 int cpu;
475
453f8341
CH
476 if (rq->internal_tag != -1)
477 blk_mq_sched_completed_request(rq);
478 if (rq->rq_flags & RQF_STATS) {
479 blk_mq_poll_stats_start(rq->q);
480 blk_stat_add(rq);
481 }
482
38535201 483 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
484 rq->q->softirq_done_fn(rq);
485 return;
486 }
320ae51f
JA
487
488 cpu = get_cpu();
38535201
CH
489 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
490 shared = cpus_share_cache(cpu, ctx->cpu);
491
492 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 493 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
494 rq->csd.info = rq;
495 rq->csd.flags = 0;
c46fff2a 496 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 497 } else {
30a91cb4 498 rq->q->softirq_done_fn(rq);
3d6efbf6 499 }
320ae51f
JA
500 put_cpu();
501}
30a91cb4
CH
502
503/**
504 * blk_mq_complete_request - end I/O on a request
505 * @rq: the request being processed
506 *
507 * Description:
508 * Ends all I/O on a request. It does not handle partial completions.
509 * The actual completion happens out-of-order, through a IPI handler.
510 **/
08e0029a 511void blk_mq_complete_request(struct request *rq)
30a91cb4 512{
95f09684
JA
513 struct request_queue *q = rq->q;
514
515 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 516 return;
08e0029a 517 if (!blk_mark_rq_complete(rq))
ed851860 518 __blk_mq_complete_request(rq);
30a91cb4
CH
519}
520EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 521
973c0191
KB
522int blk_mq_request_started(struct request *rq)
523{
524 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
525}
526EXPORT_SYMBOL_GPL(blk_mq_request_started);
527
e2490073 528void blk_mq_start_request(struct request *rq)
320ae51f
JA
529{
530 struct request_queue *q = rq->q;
531
bd166ef1
JA
532 blk_mq_sched_started_request(rq);
533
320ae51f
JA
534 trace_block_rq_issue(q, rq);
535
cf43e6be 536 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 537 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 538 rq->rq_flags |= RQF_STATS;
87760e5e 539 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
540 }
541
2b8393b4 542 blk_add_timer(rq);
87ee7b11 543
538b7534
JA
544 /*
545 * Ensure that ->deadline is visible before set the started
546 * flag and clear the completed flag.
547 */
548 smp_mb__before_atomic();
549
87ee7b11
JA
550 /*
551 * Mark us as started and clear complete. Complete might have been
552 * set if requeue raced with timeout, which then marked it as
553 * complete. So be sure to clear complete again when we start
554 * the request, otherwise we'll ignore the completion event.
555 */
4b570521
JA
556 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
557 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
558 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
559 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
560
561 if (q->dma_drain_size && blk_rq_bytes(rq)) {
562 /*
563 * Make sure space for the drain appears. We know we can do
564 * this because max_hw_segments has been adjusted to be one
565 * fewer than the device can handle.
566 */
567 rq->nr_phys_segments++;
568 }
320ae51f 569}
e2490073 570EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 571
d9d149a3
ML
572/*
573 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
48b99c9d 574 * flag isn't set yet, so there may be race with timeout handler,
d9d149a3
ML
575 * but given rq->deadline is just set in .queue_rq() under
576 * this situation, the race won't be possible in reality because
577 * rq->timeout should be set as big enough to cover the window
578 * between blk_mq_start_request() called from .queue_rq() and
579 * clearing REQ_ATOM_STARTED here.
580 */
ed0791b2 581static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
582{
583 struct request_queue *q = rq->q;
584
585 trace_block_rq_requeue(q, rq);
87760e5e 586 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 587 blk_mq_sched_requeue_request(rq);
49f5baa5 588
e2490073
CH
589 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
590 if (q->dma_drain_size && blk_rq_bytes(rq))
591 rq->nr_phys_segments--;
592 }
320ae51f
JA
593}
594
2b053aca 595void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 596{
ed0791b2 597 __blk_mq_requeue_request(rq);
ed0791b2 598
ed0791b2 599 BUG_ON(blk_queued_rq(rq));
2b053aca 600 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
601}
602EXPORT_SYMBOL(blk_mq_requeue_request);
603
6fca6a61
CH
604static void blk_mq_requeue_work(struct work_struct *work)
605{
606 struct request_queue *q =
2849450a 607 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
608 LIST_HEAD(rq_list);
609 struct request *rq, *next;
610 unsigned long flags;
611
612 spin_lock_irqsave(&q->requeue_lock, flags);
613 list_splice_init(&q->requeue_list, &rq_list);
614 spin_unlock_irqrestore(&q->requeue_lock, flags);
615
616 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 617 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
618 continue;
619
e8064021 620 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 621 list_del_init(&rq->queuelist);
bd6737f1 622 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
623 }
624
625 while (!list_empty(&rq_list)) {
626 rq = list_entry(rq_list.next, struct request, queuelist);
627 list_del_init(&rq->queuelist);
bd6737f1 628 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
629 }
630
52d7f1b5 631 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
632}
633
2b053aca
BVA
634void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
635 bool kick_requeue_list)
6fca6a61
CH
636{
637 struct request_queue *q = rq->q;
638 unsigned long flags;
639
640 /*
641 * We abuse this flag that is otherwise used by the I/O scheduler to
642 * request head insertation from the workqueue.
643 */
e8064021 644 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
645
646 spin_lock_irqsave(&q->requeue_lock, flags);
647 if (at_head) {
e8064021 648 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
649 list_add(&rq->queuelist, &q->requeue_list);
650 } else {
651 list_add_tail(&rq->queuelist, &q->requeue_list);
652 }
653 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
654
655 if (kick_requeue_list)
656 blk_mq_kick_requeue_list(q);
6fca6a61
CH
657}
658EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
659
660void blk_mq_kick_requeue_list(struct request_queue *q)
661{
2849450a 662 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
663}
664EXPORT_SYMBOL(blk_mq_kick_requeue_list);
665
2849450a
MS
666void blk_mq_delay_kick_requeue_list(struct request_queue *q,
667 unsigned long msecs)
668{
669 kblockd_schedule_delayed_work(&q->requeue_work,
670 msecs_to_jiffies(msecs));
671}
672EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
673
0e62f51f
JA
674struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
675{
88c7b2b7
JA
676 if (tag < tags->nr_tags) {
677 prefetch(tags->rqs[tag]);
4ee86bab 678 return tags->rqs[tag];
88c7b2b7 679 }
4ee86bab
HR
680
681 return NULL;
24d2f903
CH
682}
683EXPORT_SYMBOL(blk_mq_tag_to_rq);
684
320ae51f 685struct blk_mq_timeout_data {
46f92d42
CH
686 unsigned long next;
687 unsigned int next_set;
320ae51f
JA
688};
689
90415837 690void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 691{
f8a5b122 692 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 693 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
694
695 /*
696 * We know that complete is set at this point. If STARTED isn't set
697 * anymore, then the request isn't active and the "timeout" should
698 * just be ignored. This can happen due to the bitflag ordering.
699 * Timeout first checks if STARTED is set, and if it is, assumes
700 * the request is active. But if we race with completion, then
48b99c9d 701 * both flags will get cleared. So check here again, and ignore
87ee7b11
JA
702 * a timeout event with a request that isn't active.
703 */
46f92d42
CH
704 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
705 return;
87ee7b11 706
46f92d42 707 if (ops->timeout)
0152fb6b 708 ret = ops->timeout(req, reserved);
46f92d42
CH
709
710 switch (ret) {
711 case BLK_EH_HANDLED:
712 __blk_mq_complete_request(req);
713 break;
714 case BLK_EH_RESET_TIMER:
715 blk_add_timer(req);
716 blk_clear_rq_complete(req);
717 break;
718 case BLK_EH_NOT_HANDLED:
719 break;
720 default:
721 printk(KERN_ERR "block: bad eh return: %d\n", ret);
722 break;
723 }
87ee7b11 724}
5b3f25fc 725
81481eb4
CH
726static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
727 struct request *rq, void *priv, bool reserved)
728{
729 struct blk_mq_timeout_data *data = priv;
87ee7b11 730
95a49603 731 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 732 return;
87ee7b11 733
d9d149a3
ML
734 /*
735 * The rq being checked may have been freed and reallocated
736 * out already here, we avoid this race by checking rq->deadline
737 * and REQ_ATOM_COMPLETE flag together:
738 *
739 * - if rq->deadline is observed as new value because of
740 * reusing, the rq won't be timed out because of timing.
741 * - if rq->deadline is observed as previous value,
742 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
743 * because we put a barrier between setting rq->deadline
744 * and clearing the flag in blk_mq_start_request(), so
745 * this rq won't be timed out too.
746 */
46f92d42
CH
747 if (time_after_eq(jiffies, rq->deadline)) {
748 if (!blk_mark_rq_complete(rq))
0152fb6b 749 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
750 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
751 data->next = rq->deadline;
752 data->next_set = 1;
753 }
87ee7b11
JA
754}
755
287922eb 756static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 757{
287922eb
CH
758 struct request_queue *q =
759 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
760 struct blk_mq_timeout_data data = {
761 .next = 0,
762 .next_set = 0,
763 };
81481eb4 764 int i;
320ae51f 765
71f79fb3
GKB
766 /* A deadlock might occur if a request is stuck requiring a
767 * timeout at the same time a queue freeze is waiting
768 * completion, since the timeout code would not be able to
769 * acquire the queue reference here.
770 *
771 * That's why we don't use blk_queue_enter here; instead, we use
772 * percpu_ref_tryget directly, because we need to be able to
773 * obtain a reference even in the short window between the queue
774 * starting to freeze, by dropping the first reference in
1671d522 775 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
776 * consumed, marked by the instant q_usage_counter reaches
777 * zero.
778 */
779 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
780 return;
781
0bf6cd5b 782 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 783
81481eb4
CH
784 if (data.next_set) {
785 data.next = blk_rq_timeout(round_jiffies_up(data.next));
786 mod_timer(&q->timeout, data.next);
0d2602ca 787 } else {
0bf6cd5b
CH
788 struct blk_mq_hw_ctx *hctx;
789
f054b56c
ML
790 queue_for_each_hw_ctx(q, hctx, i) {
791 /* the hctx may be unmapped, so check it here */
792 if (blk_mq_hw_queue_mapped(hctx))
793 blk_mq_tag_idle(hctx);
794 }
0d2602ca 795 }
287922eb 796 blk_queue_exit(q);
320ae51f
JA
797}
798
88459642
OS
799struct flush_busy_ctx_data {
800 struct blk_mq_hw_ctx *hctx;
801 struct list_head *list;
802};
803
804static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
805{
806 struct flush_busy_ctx_data *flush_data = data;
807 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
808 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
809
810 sbitmap_clear_bit(sb, bitnr);
811 spin_lock(&ctx->lock);
812 list_splice_tail_init(&ctx->rq_list, flush_data->list);
813 spin_unlock(&ctx->lock);
814 return true;
815}
816
1429d7c9
JA
817/*
818 * Process software queues that have been marked busy, splicing them
819 * to the for-dispatch
820 */
2c3ad667 821void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 822{
88459642
OS
823 struct flush_busy_ctx_data data = {
824 .hctx = hctx,
825 .list = list,
826 };
1429d7c9 827
88459642 828 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 829}
2c3ad667 830EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 831
703fd1c0
JA
832static inline unsigned int queued_to_index(unsigned int queued)
833{
834 if (!queued)
835 return 0;
1429d7c9 836
703fd1c0 837 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
838}
839
bd6737f1
JA
840bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
841 bool wait)
bd166ef1
JA
842{
843 struct blk_mq_alloc_data data = {
844 .q = rq->q,
bd166ef1
JA
845 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
846 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
847 };
848
5feeacdd
JA
849 might_sleep_if(wait);
850
81380ca1
OS
851 if (rq->tag != -1)
852 goto done;
bd166ef1 853
415b806d
SG
854 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
855 data.flags |= BLK_MQ_REQ_RESERVED;
856
bd166ef1
JA
857 rq->tag = blk_mq_get_tag(&data);
858 if (rq->tag >= 0) {
200e86b3
JA
859 if (blk_mq_tag_busy(data.hctx)) {
860 rq->rq_flags |= RQF_MQ_INFLIGHT;
861 atomic_inc(&data.hctx->nr_active);
862 }
bd166ef1 863 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
864 }
865
81380ca1
OS
866done:
867 if (hctx)
868 *hctx = data.hctx;
869 return rq->tag != -1;
bd166ef1
JA
870}
871
113285b4
JA
872static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
873 struct request *rq)
99cf1dc5 874{
99cf1dc5
JA
875 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
876 rq->tag = -1;
877
878 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
879 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
880 atomic_dec(&hctx->nr_active);
881 }
882}
883
113285b4
JA
884static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
885 struct request *rq)
886{
887 if (rq->tag == -1 || rq->internal_tag == -1)
888 return;
889
890 __blk_mq_put_driver_tag(hctx, rq);
891}
892
893static void blk_mq_put_driver_tag(struct request *rq)
894{
895 struct blk_mq_hw_ctx *hctx;
896
897 if (rq->tag == -1 || rq->internal_tag == -1)
898 return;
899
900 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
901 __blk_mq_put_driver_tag(hctx, rq);
902}
903
bd166ef1
JA
904/*
905 * If we fail getting a driver tag because all the driver tags are already
906 * assigned and on the dispatch list, BUT the first entry does not have a
907 * tag, then we could deadlock. For that case, move entries with assigned
908 * driver tags to the front, leaving the set of tagged requests in the
909 * same order, and the untagged set in the same order.
910 */
911static bool reorder_tags_to_front(struct list_head *list)
912{
913 struct request *rq, *tmp, *first = NULL;
914
915 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
916 if (rq == first)
917 break;
918 if (rq->tag != -1) {
919 list_move(&rq->queuelist, list);
920 if (!first)
921 first = rq;
922 }
923 }
924
925 return first != NULL;
926}
927
da55f2cc
OS
928static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
929 void *key)
930{
931 struct blk_mq_hw_ctx *hctx;
932
933 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
934
935 list_del(&wait->task_list);
936 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
937 blk_mq_run_hw_queue(hctx, true);
938 return 1;
939}
940
941static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
942{
943 struct sbq_wait_state *ws;
944
945 /*
946 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
947 * The thread which wins the race to grab this bit adds the hardware
948 * queue to the wait queue.
949 */
950 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
951 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
952 return false;
953
954 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
955 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
956
957 /*
958 * As soon as this returns, it's no longer safe to fiddle with
959 * hctx->dispatch_wait, since a completion can wake up the wait queue
960 * and unlock the bit.
961 */
962 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
963 return true;
964}
965
81380ca1 966bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
320ae51f 967{
81380ca1 968 struct blk_mq_hw_ctx *hctx;
320ae51f 969 struct request *rq;
fc17b653 970 int errors, queued;
320ae51f 971
81380ca1
OS
972 if (list_empty(list))
973 return false;
974
320ae51f
JA
975 /*
976 * Now process all the entries, sending them to the driver.
977 */
93efe981 978 errors = queued = 0;
81380ca1 979 do {
74c45052 980 struct blk_mq_queue_data bd;
fc17b653 981 blk_status_t ret;
320ae51f 982
f04c3df3 983 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
984 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
985 if (!queued && reorder_tags_to_front(list))
986 continue;
3c782d67
JA
987
988 /*
da55f2cc
OS
989 * The initial allocation attempt failed, so we need to
990 * rerun the hardware queue when a tag is freed.
3c782d67 991 */
807b1041
OS
992 if (!blk_mq_dispatch_wait_add(hctx))
993 break;
994
995 /*
996 * It's possible that a tag was freed in the window
997 * between the allocation failure and adding the
998 * hardware queue to the wait queue.
999 */
1000 if (!blk_mq_get_driver_tag(rq, &hctx, false))
3c782d67 1001 break;
bd166ef1 1002 }
da55f2cc 1003
320ae51f 1004 list_del_init(&rq->queuelist);
320ae51f 1005
74c45052 1006 bd.rq = rq;
113285b4
JA
1007
1008 /*
1009 * Flag last if we have no more requests, or if we have more
1010 * but can't assign a driver tag to it.
1011 */
1012 if (list_empty(list))
1013 bd.last = true;
1014 else {
1015 struct request *nxt;
1016
1017 nxt = list_first_entry(list, struct request, queuelist);
1018 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1019 }
74c45052
JA
1020
1021 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653 1022 if (ret == BLK_STS_RESOURCE) {
113285b4 1023 blk_mq_put_driver_tag_hctx(hctx, rq);
f04c3df3 1024 list_add(&rq->queuelist, list);
ed0791b2 1025 __blk_mq_requeue_request(rq);
320ae51f 1026 break;
fc17b653
CH
1027 }
1028
1029 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1030 errors++;
2a842aca 1031 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1032 continue;
320ae51f
JA
1033 }
1034
fc17b653 1035 queued++;
81380ca1 1036 } while (!list_empty(list));
320ae51f 1037
703fd1c0 1038 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1039
1040 /*
1041 * Any items that need requeuing? Stuff them into hctx->dispatch,
1042 * that is where we will continue on next queue run.
1043 */
f04c3df3 1044 if (!list_empty(list)) {
113285b4 1045 /*
710c785f
BVA
1046 * If an I/O scheduler has been configured and we got a driver
1047 * tag for the next request already, free it again.
113285b4
JA
1048 */
1049 rq = list_first_entry(list, struct request, queuelist);
1050 blk_mq_put_driver_tag(rq);
1051
320ae51f 1052 spin_lock(&hctx->lock);
c13660a0 1053 list_splice_init(list, &hctx->dispatch);
320ae51f 1054 spin_unlock(&hctx->lock);
f04c3df3 1055
9ba52e58 1056 /*
710c785f
BVA
1057 * If SCHED_RESTART was set by the caller of this function and
1058 * it is no longer set that means that it was cleared by another
1059 * thread and hence that a queue rerun is needed.
9ba52e58 1060 *
710c785f
BVA
1061 * If TAG_WAITING is set that means that an I/O scheduler has
1062 * been configured and another thread is waiting for a driver
1063 * tag. To guarantee fairness, do not rerun this hardware queue
1064 * but let the other thread grab the driver tag.
bd166ef1 1065 *
710c785f
BVA
1066 * If no I/O scheduler has been configured it is possible that
1067 * the hardware queue got stopped and restarted before requests
1068 * were pushed back onto the dispatch list. Rerun the queue to
1069 * avoid starvation. Notes:
1070 * - blk_mq_run_hw_queue() checks whether or not a queue has
1071 * been stopped before rerunning a queue.
1072 * - Some but not all block drivers stop a queue before
fc17b653 1073 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1074 * and dm-rq.
bd166ef1 1075 */
da55f2cc
OS
1076 if (!blk_mq_sched_needs_restart(hctx) &&
1077 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
bd166ef1 1078 blk_mq_run_hw_queue(hctx, true);
320ae51f 1079 }
f04c3df3 1080
93efe981 1081 return (queued + errors) != 0;
f04c3df3
JA
1082}
1083
6a83e74d
BVA
1084static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1085{
1086 int srcu_idx;
1087
1088 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1089 cpu_online(hctx->next_cpu));
1090
1091 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1092 rcu_read_lock();
bd166ef1 1093 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1094 rcu_read_unlock();
1095 } else {
bf4907c0
JA
1096 might_sleep();
1097
07319678 1098 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
bd166ef1 1099 blk_mq_sched_dispatch_requests(hctx);
07319678 1100 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
6a83e74d
BVA
1101 }
1102}
1103
506e931f
JA
1104/*
1105 * It'd be great if the workqueue API had a way to pass
1106 * in a mask and had some smarts for more clever placement.
1107 * For now we just round-robin here, switching for every
1108 * BLK_MQ_CPU_WORK_BATCH queued items.
1109 */
1110static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1111{
b657d7e6
CH
1112 if (hctx->queue->nr_hw_queues == 1)
1113 return WORK_CPU_UNBOUND;
506e931f
JA
1114
1115 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1116 int next_cpu;
506e931f
JA
1117
1118 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1119 if (next_cpu >= nr_cpu_ids)
1120 next_cpu = cpumask_first(hctx->cpumask);
1121
1122 hctx->next_cpu = next_cpu;
1123 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1124 }
1125
b657d7e6 1126 return hctx->next_cpu;
506e931f
JA
1127}
1128
7587a5ae
BVA
1129static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1130 unsigned long msecs)
320ae51f 1131{
5435c023
BVA
1132 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1133 return;
1134
1135 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1136 return;
1137
1b792f2f 1138 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1139 int cpu = get_cpu();
1140 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1141 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1142 put_cpu();
398205b8
PB
1143 return;
1144 }
e4043dcf 1145
2a90d4aa 1146 put_cpu();
e4043dcf 1147 }
398205b8 1148
9f993737
JA
1149 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1150 &hctx->run_work,
1151 msecs_to_jiffies(msecs));
7587a5ae
BVA
1152}
1153
1154void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1155{
1156 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1157}
1158EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1159
1160void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1161{
1162 __blk_mq_delay_run_hw_queue(hctx, async, 0);
320ae51f 1163}
5b727272 1164EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1165
b94ec296 1166void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1167{
1168 struct blk_mq_hw_ctx *hctx;
1169 int i;
1170
1171 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1172 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1173 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1174 continue;
1175
b94ec296 1176 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1177 }
1178}
b94ec296 1179EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1180
fd001443
BVA
1181/**
1182 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1183 * @q: request queue.
1184 *
1185 * The caller is responsible for serializing this function against
1186 * blk_mq_{start,stop}_hw_queue().
1187 */
1188bool blk_mq_queue_stopped(struct request_queue *q)
1189{
1190 struct blk_mq_hw_ctx *hctx;
1191 int i;
1192
1193 queue_for_each_hw_ctx(q, hctx, i)
1194 if (blk_mq_hctx_stopped(hctx))
1195 return true;
1196
1197 return false;
1198}
1199EXPORT_SYMBOL(blk_mq_queue_stopped);
1200
39a70c76
ML
1201/*
1202 * This function is often used for pausing .queue_rq() by driver when
1203 * there isn't enough resource or some conditions aren't satisfied, and
1204 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1205 *
1206 * We do not guarantee that dispatch can be drained or blocked
1207 * after blk_mq_stop_hw_queue() returns. Please use
1208 * blk_mq_quiesce_queue() for that requirement.
1209 */
2719aa21
JA
1210void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1211{
641a9ed6 1212 cancel_delayed_work(&hctx->run_work);
280d45f6 1213
641a9ed6 1214 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1215}
641a9ed6 1216EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1217
39a70c76
ML
1218/*
1219 * This function is often used for pausing .queue_rq() by driver when
1220 * there isn't enough resource or some conditions aren't satisfied, and
1221 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1222 *
1223 * We do not guarantee that dispatch can be drained or blocked
1224 * after blk_mq_stop_hw_queues() returns. Please use
1225 * blk_mq_quiesce_queue() for that requirement.
1226 */
2719aa21
JA
1227void blk_mq_stop_hw_queues(struct request_queue *q)
1228{
641a9ed6
ML
1229 struct blk_mq_hw_ctx *hctx;
1230 int i;
1231
1232 queue_for_each_hw_ctx(q, hctx, i)
1233 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1234}
1235EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1236
320ae51f
JA
1237void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1238{
1239 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1240
0ffbce80 1241 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1242}
1243EXPORT_SYMBOL(blk_mq_start_hw_queue);
1244
2f268556
CH
1245void blk_mq_start_hw_queues(struct request_queue *q)
1246{
1247 struct blk_mq_hw_ctx *hctx;
1248 int i;
1249
1250 queue_for_each_hw_ctx(q, hctx, i)
1251 blk_mq_start_hw_queue(hctx);
1252}
1253EXPORT_SYMBOL(blk_mq_start_hw_queues);
1254
ae911c5e
JA
1255void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1256{
1257 if (!blk_mq_hctx_stopped(hctx))
1258 return;
1259
1260 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1261 blk_mq_run_hw_queue(hctx, async);
1262}
1263EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1264
1b4a3258 1265void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1266{
1267 struct blk_mq_hw_ctx *hctx;
1268 int i;
1269
ae911c5e
JA
1270 queue_for_each_hw_ctx(q, hctx, i)
1271 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1272}
1273EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1274
70f4db63 1275static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1276{
1277 struct blk_mq_hw_ctx *hctx;
1278
9f993737 1279 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1280
21c6e939
JA
1281 /*
1282 * If we are stopped, don't run the queue. The exception is if
1283 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1284 * the STOPPED bit and run it.
1285 */
1286 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1287 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1288 return;
7587a5ae 1289
21c6e939
JA
1290 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1291 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1292 }
7587a5ae
BVA
1293
1294 __blk_mq_run_hw_queue(hctx);
1295}
1296
70f4db63
CH
1297
1298void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1299{
5435c023 1300 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
19c66e59 1301 return;
70f4db63 1302
21c6e939
JA
1303 /*
1304 * Stop the hw queue, then modify currently delayed work.
1305 * This should prevent us from running the queue prematurely.
1306 * Mark the queue as auto-clearing STOPPED when it runs.
1307 */
7e79dadc 1308 blk_mq_stop_hw_queue(hctx);
21c6e939
JA
1309 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1310 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1311 &hctx->run_work,
1312 msecs_to_jiffies(msecs));
70f4db63
CH
1313}
1314EXPORT_SYMBOL(blk_mq_delay_queue);
1315
cfd0c552 1316static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1317 struct request *rq,
1318 bool at_head)
320ae51f 1319{
e57690fe
JA
1320 struct blk_mq_ctx *ctx = rq->mq_ctx;
1321
7b607814
BVA
1322 lockdep_assert_held(&ctx->lock);
1323
01b983c9
JA
1324 trace_block_rq_insert(hctx->queue, rq);
1325
72a0a36e
CH
1326 if (at_head)
1327 list_add(&rq->queuelist, &ctx->rq_list);
1328 else
1329 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1330}
4bb659b1 1331
2c3ad667
JA
1332void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1333 bool at_head)
cfd0c552
ML
1334{
1335 struct blk_mq_ctx *ctx = rq->mq_ctx;
1336
7b607814
BVA
1337 lockdep_assert_held(&ctx->lock);
1338
e57690fe 1339 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1340 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1341}
1342
bd166ef1
JA
1343void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1344 struct list_head *list)
320ae51f
JA
1345
1346{
320ae51f
JA
1347 /*
1348 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1349 * offline now
1350 */
1351 spin_lock(&ctx->lock);
1352 while (!list_empty(list)) {
1353 struct request *rq;
1354
1355 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1356 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1357 list_del_init(&rq->queuelist);
e57690fe 1358 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1359 }
cfd0c552 1360 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1361 spin_unlock(&ctx->lock);
320ae51f
JA
1362}
1363
1364static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1365{
1366 struct request *rqa = container_of(a, struct request, queuelist);
1367 struct request *rqb = container_of(b, struct request, queuelist);
1368
1369 return !(rqa->mq_ctx < rqb->mq_ctx ||
1370 (rqa->mq_ctx == rqb->mq_ctx &&
1371 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1372}
1373
1374void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1375{
1376 struct blk_mq_ctx *this_ctx;
1377 struct request_queue *this_q;
1378 struct request *rq;
1379 LIST_HEAD(list);
1380 LIST_HEAD(ctx_list);
1381 unsigned int depth;
1382
1383 list_splice_init(&plug->mq_list, &list);
1384
1385 list_sort(NULL, &list, plug_ctx_cmp);
1386
1387 this_q = NULL;
1388 this_ctx = NULL;
1389 depth = 0;
1390
1391 while (!list_empty(&list)) {
1392 rq = list_entry_rq(list.next);
1393 list_del_init(&rq->queuelist);
1394 BUG_ON(!rq->q);
1395 if (rq->mq_ctx != this_ctx) {
1396 if (this_ctx) {
bd166ef1
JA
1397 trace_block_unplug(this_q, depth, from_schedule);
1398 blk_mq_sched_insert_requests(this_q, this_ctx,
1399 &ctx_list,
1400 from_schedule);
320ae51f
JA
1401 }
1402
1403 this_ctx = rq->mq_ctx;
1404 this_q = rq->q;
1405 depth = 0;
1406 }
1407
1408 depth++;
1409 list_add_tail(&rq->queuelist, &ctx_list);
1410 }
1411
1412 /*
1413 * If 'this_ctx' is set, we know we have entries to complete
1414 * on 'ctx_list'. Do those.
1415 */
1416 if (this_ctx) {
bd166ef1
JA
1417 trace_block_unplug(this_q, depth, from_schedule);
1418 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1419 from_schedule);
320ae51f
JA
1420 }
1421}
1422
1423static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1424{
da8d7f07 1425 blk_init_request_from_bio(rq, bio);
4b570521 1426
6e85eaf3 1427 blk_account_io_start(rq, true);
320ae51f
JA
1428}
1429
274a5843
JA
1430static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1431{
1432 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1433 !blk_queue_nomerges(hctx->queue);
1434}
1435
ab42f35d
ML
1436static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1437 struct blk_mq_ctx *ctx,
1438 struct request *rq)
1439{
1440 spin_lock(&ctx->lock);
1441 __blk_mq_insert_request(hctx, rq, false);
1442 spin_unlock(&ctx->lock);
07068d5b 1443}
14ec77f3 1444
fd2d3326
JA
1445static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1446{
bd166ef1
JA
1447 if (rq->tag != -1)
1448 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1449
1450 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1451}
1452
d964f04a
ML
1453static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1454 struct request *rq,
1455 blk_qc_t *cookie, bool may_sleep)
f984df1f 1456{
f984df1f 1457 struct request_queue *q = rq->q;
f984df1f
SL
1458 struct blk_mq_queue_data bd = {
1459 .rq = rq,
d945a365 1460 .last = true,
f984df1f 1461 };
bd166ef1 1462 blk_qc_t new_cookie;
f06345ad 1463 blk_status_t ret;
d964f04a
ML
1464 bool run_queue = true;
1465
f4560ffe
ML
1466 /* RCU or SRCU read lock is needed before checking quiesced flag */
1467 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a
ML
1468 run_queue = false;
1469 goto insert;
1470 }
f984df1f 1471
bd166ef1 1472 if (q->elevator)
2253efc8
BVA
1473 goto insert;
1474
d964f04a 1475 if (!blk_mq_get_driver_tag(rq, NULL, false))
bd166ef1
JA
1476 goto insert;
1477
1478 new_cookie = request_to_qc_t(hctx, rq);
1479
f984df1f
SL
1480 /*
1481 * For OK queue, we are done. For error, kill it. Any other
1482 * error (busy), just add it to our list as we previously
1483 * would have done
1484 */
1485 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653
CH
1486 switch (ret) {
1487 case BLK_STS_OK:
7b371636 1488 *cookie = new_cookie;
2253efc8 1489 return;
fc17b653
CH
1490 case BLK_STS_RESOURCE:
1491 __blk_mq_requeue_request(rq);
1492 goto insert;
1493 default:
7b371636 1494 *cookie = BLK_QC_T_NONE;
fc17b653 1495 blk_mq_end_request(rq, ret);
2253efc8 1496 return;
f984df1f 1497 }
7b371636 1498
2253efc8 1499insert:
d964f04a 1500 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
f984df1f
SL
1501}
1502
5eb6126e
CH
1503static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1504 struct request *rq, blk_qc_t *cookie)
1505{
1506 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1507 rcu_read_lock();
d964f04a 1508 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
5eb6126e
CH
1509 rcu_read_unlock();
1510 } else {
bf4907c0
JA
1511 unsigned int srcu_idx;
1512
1513 might_sleep();
1514
07319678 1515 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
d964f04a 1516 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
07319678 1517 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
5eb6126e
CH
1518 }
1519}
1520
dece1635 1521static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1522{
ef295ecf 1523 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1524 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1525 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1526 struct request *rq;
5eb6126e 1527 unsigned int request_count = 0;
f984df1f 1528 struct blk_plug *plug;
5b3f341f 1529 struct request *same_queue_rq = NULL;
7b371636 1530 blk_qc_t cookie;
87760e5e 1531 unsigned int wb_acct;
07068d5b
JA
1532
1533 blk_queue_bounce(q, &bio);
1534
af67c31f 1535 blk_queue_split(q, &bio);
f36ea50c 1536
07068d5b 1537 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1538 bio_io_error(bio);
dece1635 1539 return BLK_QC_T_NONE;
07068d5b
JA
1540 }
1541
87c279e6
OS
1542 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1543 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1544 return BLK_QC_T_NONE;
f984df1f 1545
bd166ef1
JA
1546 if (blk_mq_sched_bio_merge(q, bio))
1547 return BLK_QC_T_NONE;
1548
87760e5e
JA
1549 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1550
bd166ef1
JA
1551 trace_block_getrq(q, bio, bio->bi_opf);
1552
d2c0d383 1553 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1554 if (unlikely(!rq)) {
1555 __wbt_done(q->rq_wb, wb_acct);
03a07c92
GR
1556 if (bio->bi_opf & REQ_NOWAIT)
1557 bio_wouldblock_error(bio);
dece1635 1558 return BLK_QC_T_NONE;
87760e5e
JA
1559 }
1560
1561 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1562
fd2d3326 1563 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1564
f984df1f 1565 plug = current->plug;
07068d5b 1566 if (unlikely(is_flush_fua)) {
f984df1f 1567 blk_mq_put_ctx(data.ctx);
07068d5b 1568 blk_mq_bio_to_request(rq, bio);
a4d907b6
CH
1569 if (q->elevator) {
1570 blk_mq_sched_insert_request(rq, false, true, true,
1571 true);
6a83e74d 1572 } else {
a4d907b6
CH
1573 blk_insert_flush(rq);
1574 blk_mq_run_hw_queue(data.hctx, true);
6a83e74d 1575 }
a4d907b6 1576 } else if (plug && q->nr_hw_queues == 1) {
600271d9
SL
1577 struct request *last = NULL;
1578
b00c53e8 1579 blk_mq_put_ctx(data.ctx);
e6c4438b 1580 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1581
1582 /*
1583 * @request_count may become stale because of schedule
1584 * out, so check the list again.
1585 */
1586 if (list_empty(&plug->mq_list))
1587 request_count = 0;
254d259d
CH
1588 else if (blk_queue_nomerges(q))
1589 request_count = blk_plug_queued_count(q);
1590
676d0607 1591 if (!request_count)
e6c4438b 1592 trace_block_plug(q);
600271d9
SL
1593 else
1594 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1595
600271d9
SL
1596 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1597 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1598 blk_flush_plug_list(plug, false);
1599 trace_block_plug(q);
320ae51f 1600 }
b094f89c 1601
e6c4438b 1602 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1603 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1604 blk_mq_bio_to_request(rq, bio);
07068d5b 1605
07068d5b 1606 /*
6a83e74d 1607 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1608 * Otherwise the existing request in the plug list will be
1609 * issued. So the plug list will have one request at most
2299722c
CH
1610 * The plug list might get flushed before this. If that happens,
1611 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1612 */
2299722c
CH
1613 if (list_empty(&plug->mq_list))
1614 same_queue_rq = NULL;
1615 if (same_queue_rq)
1616 list_del_init(&same_queue_rq->queuelist);
1617 list_add_tail(&rq->queuelist, &plug->mq_list);
1618
bf4907c0
JA
1619 blk_mq_put_ctx(data.ctx);
1620
dad7a3be
ML
1621 if (same_queue_rq) {
1622 data.hctx = blk_mq_map_queue(q,
1623 same_queue_rq->mq_ctx->cpu);
2299722c
CH
1624 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1625 &cookie);
dad7a3be 1626 }
a4d907b6 1627 } else if (q->nr_hw_queues > 1 && is_sync) {
bf4907c0 1628 blk_mq_put_ctx(data.ctx);
2299722c 1629 blk_mq_bio_to_request(rq, bio);
2299722c 1630 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
a4d907b6 1631 } else if (q->elevator) {
b00c53e8 1632 blk_mq_put_ctx(data.ctx);
bd166ef1 1633 blk_mq_bio_to_request(rq, bio);
a4d907b6 1634 blk_mq_sched_insert_request(rq, false, true, true, true);
ab42f35d 1635 } else {
b00c53e8 1636 blk_mq_put_ctx(data.ctx);
ab42f35d
ML
1637 blk_mq_bio_to_request(rq, bio);
1638 blk_mq_queue_io(data.hctx, data.ctx, rq);
a4d907b6 1639 blk_mq_run_hw_queue(data.hctx, true);
ab42f35d 1640 }
320ae51f 1641
7b371636 1642 return cookie;
320ae51f
JA
1643}
1644
cc71a6f4
JA
1645void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1646 unsigned int hctx_idx)
95363efd 1647{
e9b267d9 1648 struct page *page;
320ae51f 1649
24d2f903 1650 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1651 int i;
320ae51f 1652
24d2f903 1653 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1654 struct request *rq = tags->static_rqs[i];
1655
1656 if (!rq)
e9b267d9 1657 continue;
d6296d39 1658 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 1659 tags->static_rqs[i] = NULL;
e9b267d9 1660 }
320ae51f 1661 }
320ae51f 1662
24d2f903
CH
1663 while (!list_empty(&tags->page_list)) {
1664 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1665 list_del_init(&page->lru);
f75782e4
CM
1666 /*
1667 * Remove kmemleak object previously allocated in
1668 * blk_mq_init_rq_map().
1669 */
1670 kmemleak_free(page_address(page));
320ae51f
JA
1671 __free_pages(page, page->private);
1672 }
cc71a6f4 1673}
320ae51f 1674
cc71a6f4
JA
1675void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1676{
24d2f903 1677 kfree(tags->rqs);
cc71a6f4 1678 tags->rqs = NULL;
2af8cbe3
JA
1679 kfree(tags->static_rqs);
1680 tags->static_rqs = NULL;
320ae51f 1681
24d2f903 1682 blk_mq_free_tags(tags);
320ae51f
JA
1683}
1684
cc71a6f4
JA
1685struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1686 unsigned int hctx_idx,
1687 unsigned int nr_tags,
1688 unsigned int reserved_tags)
320ae51f 1689{
24d2f903 1690 struct blk_mq_tags *tags;
59f082e4 1691 int node;
320ae51f 1692
59f082e4
SL
1693 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1694 if (node == NUMA_NO_NODE)
1695 node = set->numa_node;
1696
1697 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1698 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1699 if (!tags)
1700 return NULL;
320ae51f 1701
cc71a6f4 1702 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1703 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1704 node);
24d2f903
CH
1705 if (!tags->rqs) {
1706 blk_mq_free_tags(tags);
1707 return NULL;
1708 }
320ae51f 1709
2af8cbe3
JA
1710 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1711 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1712 node);
2af8cbe3
JA
1713 if (!tags->static_rqs) {
1714 kfree(tags->rqs);
1715 blk_mq_free_tags(tags);
1716 return NULL;
1717 }
1718
cc71a6f4
JA
1719 return tags;
1720}
1721
1722static size_t order_to_size(unsigned int order)
1723{
1724 return (size_t)PAGE_SIZE << order;
1725}
1726
1727int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1728 unsigned int hctx_idx, unsigned int depth)
1729{
1730 unsigned int i, j, entries_per_page, max_order = 4;
1731 size_t rq_size, left;
59f082e4
SL
1732 int node;
1733
1734 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1735 if (node == NUMA_NO_NODE)
1736 node = set->numa_node;
cc71a6f4
JA
1737
1738 INIT_LIST_HEAD(&tags->page_list);
1739
320ae51f
JA
1740 /*
1741 * rq_size is the size of the request plus driver payload, rounded
1742 * to the cacheline size
1743 */
24d2f903 1744 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1745 cache_line_size());
cc71a6f4 1746 left = rq_size * depth;
320ae51f 1747
cc71a6f4 1748 for (i = 0; i < depth; ) {
320ae51f
JA
1749 int this_order = max_order;
1750 struct page *page;
1751 int to_do;
1752 void *p;
1753
b3a834b1 1754 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1755 this_order--;
1756
1757 do {
59f082e4 1758 page = alloc_pages_node(node,
36e1f3d1 1759 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1760 this_order);
320ae51f
JA
1761 if (page)
1762 break;
1763 if (!this_order--)
1764 break;
1765 if (order_to_size(this_order) < rq_size)
1766 break;
1767 } while (1);
1768
1769 if (!page)
24d2f903 1770 goto fail;
320ae51f
JA
1771
1772 page->private = this_order;
24d2f903 1773 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1774
1775 p = page_address(page);
f75782e4
CM
1776 /*
1777 * Allow kmemleak to scan these pages as they contain pointers
1778 * to additional allocations like via ops->init_request().
1779 */
36e1f3d1 1780 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1781 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1782 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1783 left -= to_do * rq_size;
1784 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1785 struct request *rq = p;
1786
1787 tags->static_rqs[i] = rq;
24d2f903 1788 if (set->ops->init_request) {
d6296d39 1789 if (set->ops->init_request(set, rq, hctx_idx,
59f082e4 1790 node)) {
2af8cbe3 1791 tags->static_rqs[i] = NULL;
24d2f903 1792 goto fail;
a5164405 1793 }
e9b267d9
CH
1794 }
1795
320ae51f
JA
1796 p += rq_size;
1797 i++;
1798 }
1799 }
cc71a6f4 1800 return 0;
320ae51f 1801
24d2f903 1802fail:
cc71a6f4
JA
1803 blk_mq_free_rqs(set, tags, hctx_idx);
1804 return -ENOMEM;
320ae51f
JA
1805}
1806
e57690fe
JA
1807/*
1808 * 'cpu' is going away. splice any existing rq_list entries from this
1809 * software queue to the hw queue dispatch list, and ensure that it
1810 * gets run.
1811 */
9467f859 1812static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1813{
9467f859 1814 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1815 struct blk_mq_ctx *ctx;
1816 LIST_HEAD(tmp);
1817
9467f859 1818 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1819 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1820
1821 spin_lock(&ctx->lock);
1822 if (!list_empty(&ctx->rq_list)) {
1823 list_splice_init(&ctx->rq_list, &tmp);
1824 blk_mq_hctx_clear_pending(hctx, ctx);
1825 }
1826 spin_unlock(&ctx->lock);
1827
1828 if (list_empty(&tmp))
9467f859 1829 return 0;
484b4061 1830
e57690fe
JA
1831 spin_lock(&hctx->lock);
1832 list_splice_tail_init(&tmp, &hctx->dispatch);
1833 spin_unlock(&hctx->lock);
484b4061
JA
1834
1835 blk_mq_run_hw_queue(hctx, true);
9467f859 1836 return 0;
484b4061
JA
1837}
1838
9467f859 1839static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1840{
9467f859
TG
1841 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1842 &hctx->cpuhp_dead);
484b4061
JA
1843}
1844
c3b4afca 1845/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1846static void blk_mq_exit_hctx(struct request_queue *q,
1847 struct blk_mq_tag_set *set,
1848 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1849{
9c1051aa
OS
1850 blk_mq_debugfs_unregister_hctx(hctx);
1851
08e98fc6
ML
1852 blk_mq_tag_idle(hctx);
1853
f70ced09 1854 if (set->ops->exit_request)
d6296d39 1855 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 1856
93252632
OS
1857 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1858
08e98fc6
ML
1859 if (set->ops->exit_hctx)
1860 set->ops->exit_hctx(hctx, hctx_idx);
1861
6a83e74d 1862 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 1863 cleanup_srcu_struct(hctx->queue_rq_srcu);
6a83e74d 1864
9467f859 1865 blk_mq_remove_cpuhp(hctx);
f70ced09 1866 blk_free_flush_queue(hctx->fq);
88459642 1867 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1868}
1869
624dbe47
ML
1870static void blk_mq_exit_hw_queues(struct request_queue *q,
1871 struct blk_mq_tag_set *set, int nr_queue)
1872{
1873 struct blk_mq_hw_ctx *hctx;
1874 unsigned int i;
1875
1876 queue_for_each_hw_ctx(q, hctx, i) {
1877 if (i == nr_queue)
1878 break;
08e98fc6 1879 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1880 }
624dbe47
ML
1881}
1882
08e98fc6
ML
1883static int blk_mq_init_hctx(struct request_queue *q,
1884 struct blk_mq_tag_set *set,
1885 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1886{
08e98fc6
ML
1887 int node;
1888
1889 node = hctx->numa_node;
1890 if (node == NUMA_NO_NODE)
1891 node = hctx->numa_node = set->numa_node;
1892
9f993737 1893 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1894 spin_lock_init(&hctx->lock);
1895 INIT_LIST_HEAD(&hctx->dispatch);
1896 hctx->queue = q;
1897 hctx->queue_num = hctx_idx;
2404e607 1898 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1899
9467f859 1900 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1901
1902 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1903
1904 /*
08e98fc6
ML
1905 * Allocate space for all possible cpus to avoid allocation at
1906 * runtime
320ae51f 1907 */
08e98fc6
ML
1908 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1909 GFP_KERNEL, node);
1910 if (!hctx->ctxs)
1911 goto unregister_cpu_notifier;
320ae51f 1912
88459642
OS
1913 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1914 node))
08e98fc6 1915 goto free_ctxs;
320ae51f 1916
08e98fc6 1917 hctx->nr_ctx = 0;
320ae51f 1918
08e98fc6
ML
1919 if (set->ops->init_hctx &&
1920 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1921 goto free_bitmap;
320ae51f 1922
93252632
OS
1923 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1924 goto exit_hctx;
1925
f70ced09
ML
1926 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1927 if (!hctx->fq)
93252632 1928 goto sched_exit_hctx;
320ae51f 1929
f70ced09 1930 if (set->ops->init_request &&
d6296d39
CH
1931 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1932 node))
f70ced09 1933 goto free_fq;
320ae51f 1934
6a83e74d 1935 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 1936 init_srcu_struct(hctx->queue_rq_srcu);
6a83e74d 1937
9c1051aa
OS
1938 blk_mq_debugfs_register_hctx(q, hctx);
1939
08e98fc6 1940 return 0;
320ae51f 1941
f70ced09
ML
1942 free_fq:
1943 kfree(hctx->fq);
93252632
OS
1944 sched_exit_hctx:
1945 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
1946 exit_hctx:
1947 if (set->ops->exit_hctx)
1948 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1949 free_bitmap:
88459642 1950 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1951 free_ctxs:
1952 kfree(hctx->ctxs);
1953 unregister_cpu_notifier:
9467f859 1954 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
1955 return -1;
1956}
320ae51f 1957
320ae51f
JA
1958static void blk_mq_init_cpu_queues(struct request_queue *q,
1959 unsigned int nr_hw_queues)
1960{
1961 unsigned int i;
1962
1963 for_each_possible_cpu(i) {
1964 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1965 struct blk_mq_hw_ctx *hctx;
1966
320ae51f
JA
1967 __ctx->cpu = i;
1968 spin_lock_init(&__ctx->lock);
1969 INIT_LIST_HEAD(&__ctx->rq_list);
1970 __ctx->queue = q;
1971
1972 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1973 if (!cpu_online(i))
1974 continue;
1975
7d7e0f90 1976 hctx = blk_mq_map_queue(q, i);
e4043dcf 1977
320ae51f
JA
1978 /*
1979 * Set local node, IFF we have more than one hw queue. If
1980 * not, we remain on the home node of the device
1981 */
1982 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1983 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
1984 }
1985}
1986
cc71a6f4
JA
1987static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1988{
1989 int ret = 0;
1990
1991 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1992 set->queue_depth, set->reserved_tags);
1993 if (!set->tags[hctx_idx])
1994 return false;
1995
1996 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1997 set->queue_depth);
1998 if (!ret)
1999 return true;
2000
2001 blk_mq_free_rq_map(set->tags[hctx_idx]);
2002 set->tags[hctx_idx] = NULL;
2003 return false;
2004}
2005
2006static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2007 unsigned int hctx_idx)
2008{
bd166ef1
JA
2009 if (set->tags[hctx_idx]) {
2010 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2011 blk_mq_free_rq_map(set->tags[hctx_idx]);
2012 set->tags[hctx_idx] = NULL;
2013 }
cc71a6f4
JA
2014}
2015
5778322e
AM
2016static void blk_mq_map_swqueue(struct request_queue *q,
2017 const struct cpumask *online_mask)
320ae51f 2018{
d1b1cea1 2019 unsigned int i, hctx_idx;
320ae51f
JA
2020 struct blk_mq_hw_ctx *hctx;
2021 struct blk_mq_ctx *ctx;
2a34c087 2022 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2023
60de074b
AM
2024 /*
2025 * Avoid others reading imcomplete hctx->cpumask through sysfs
2026 */
2027 mutex_lock(&q->sysfs_lock);
2028
320ae51f 2029 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2030 cpumask_clear(hctx->cpumask);
320ae51f
JA
2031 hctx->nr_ctx = 0;
2032 }
2033
2034 /*
2035 * Map software to hardware queues
2036 */
897bb0c7 2037 for_each_possible_cpu(i) {
320ae51f 2038 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 2039 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
2040 continue;
2041
d1b1cea1
GKB
2042 hctx_idx = q->mq_map[i];
2043 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2044 if (!set->tags[hctx_idx] &&
2045 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2046 /*
2047 * If tags initialization fail for some hctx,
2048 * that hctx won't be brought online. In this
2049 * case, remap the current ctx to hctx[0] which
2050 * is guaranteed to always have tags allocated
2051 */
cc71a6f4 2052 q->mq_map[i] = 0;
d1b1cea1
GKB
2053 }
2054
897bb0c7 2055 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2056 hctx = blk_mq_map_queue(q, i);
868f2f0b 2057
e4043dcf 2058 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2059 ctx->index_hw = hctx->nr_ctx;
2060 hctx->ctxs[hctx->nr_ctx++] = ctx;
2061 }
506e931f 2062
60de074b
AM
2063 mutex_unlock(&q->sysfs_lock);
2064
506e931f 2065 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2066 /*
a68aafa5
JA
2067 * If no software queues are mapped to this hardware queue,
2068 * disable it and free the request entries.
484b4061
JA
2069 */
2070 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2071 /* Never unmap queue 0. We need it as a
2072 * fallback in case of a new remap fails
2073 * allocation
2074 */
cc71a6f4
JA
2075 if (i && set->tags[i])
2076 blk_mq_free_map_and_requests(set, i);
2077
2a34c087 2078 hctx->tags = NULL;
484b4061
JA
2079 continue;
2080 }
2081
2a34c087
ML
2082 hctx->tags = set->tags[i];
2083 WARN_ON(!hctx->tags);
2084
889fa31f
CY
2085 /*
2086 * Set the map size to the number of mapped software queues.
2087 * This is more accurate and more efficient than looping
2088 * over all possibly mapped software queues.
2089 */
88459642 2090 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2091
484b4061
JA
2092 /*
2093 * Initialize batch roundrobin counts
2094 */
506e931f
JA
2095 hctx->next_cpu = cpumask_first(hctx->cpumask);
2096 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2097 }
320ae51f
JA
2098}
2099
2404e607 2100static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2101{
2102 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2103 int i;
2104
2404e607
JM
2105 queue_for_each_hw_ctx(q, hctx, i) {
2106 if (shared)
2107 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2108 else
2109 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2110 }
2111}
2112
2113static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2114{
2115 struct request_queue *q;
0d2602ca 2116
705cda97
BVA
2117 lockdep_assert_held(&set->tag_list_lock);
2118
0d2602ca
JA
2119 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2120 blk_mq_freeze_queue(q);
2404e607 2121 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2122 blk_mq_unfreeze_queue(q);
2123 }
2124}
2125
2126static void blk_mq_del_queue_tag_set(struct request_queue *q)
2127{
2128 struct blk_mq_tag_set *set = q->tag_set;
2129
0d2602ca 2130 mutex_lock(&set->tag_list_lock);
705cda97
BVA
2131 list_del_rcu(&q->tag_set_list);
2132 INIT_LIST_HEAD(&q->tag_set_list);
2404e607
JM
2133 if (list_is_singular(&set->tag_list)) {
2134 /* just transitioned to unshared */
2135 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2136 /* update existing queue */
2137 blk_mq_update_tag_set_depth(set, false);
2138 }
0d2602ca 2139 mutex_unlock(&set->tag_list_lock);
705cda97
BVA
2140
2141 synchronize_rcu();
0d2602ca
JA
2142}
2143
2144static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2145 struct request_queue *q)
2146{
2147 q->tag_set = set;
2148
2149 mutex_lock(&set->tag_list_lock);
2404e607
JM
2150
2151 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2152 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2153 set->flags |= BLK_MQ_F_TAG_SHARED;
2154 /* update existing queue */
2155 blk_mq_update_tag_set_depth(set, true);
2156 }
2157 if (set->flags & BLK_MQ_F_TAG_SHARED)
2158 queue_set_hctx_shared(q, true);
705cda97 2159 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2160
0d2602ca
JA
2161 mutex_unlock(&set->tag_list_lock);
2162}
2163
e09aae7e
ML
2164/*
2165 * It is the actual release handler for mq, but we do it from
2166 * request queue's release handler for avoiding use-after-free
2167 * and headache because q->mq_kobj shouldn't have been introduced,
2168 * but we can't group ctx/kctx kobj without it.
2169 */
2170void blk_mq_release(struct request_queue *q)
2171{
2172 struct blk_mq_hw_ctx *hctx;
2173 unsigned int i;
2174
2175 /* hctx kobj stays in hctx */
c3b4afca
ML
2176 queue_for_each_hw_ctx(q, hctx, i) {
2177 if (!hctx)
2178 continue;
6c8b232e 2179 kobject_put(&hctx->kobj);
c3b4afca 2180 }
e09aae7e 2181
a723bab3
AM
2182 q->mq_map = NULL;
2183
e09aae7e
ML
2184 kfree(q->queue_hw_ctx);
2185
7ea5fe31
ML
2186 /*
2187 * release .mq_kobj and sw queue's kobject now because
2188 * both share lifetime with request queue.
2189 */
2190 blk_mq_sysfs_deinit(q);
2191
e09aae7e
ML
2192 free_percpu(q->queue_ctx);
2193}
2194
24d2f903 2195struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2196{
2197 struct request_queue *uninit_q, *q;
2198
2199 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2200 if (!uninit_q)
2201 return ERR_PTR(-ENOMEM);
2202
2203 q = blk_mq_init_allocated_queue(set, uninit_q);
2204 if (IS_ERR(q))
2205 blk_cleanup_queue(uninit_q);
2206
2207 return q;
2208}
2209EXPORT_SYMBOL(blk_mq_init_queue);
2210
07319678
BVA
2211static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2212{
2213 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2214
2215 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2216 __alignof__(struct blk_mq_hw_ctx)) !=
2217 sizeof(struct blk_mq_hw_ctx));
2218
2219 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2220 hw_ctx_size += sizeof(struct srcu_struct);
2221
2222 return hw_ctx_size;
2223}
2224
868f2f0b
KB
2225static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2226 struct request_queue *q)
320ae51f 2227{
868f2f0b
KB
2228 int i, j;
2229 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2230
868f2f0b 2231 blk_mq_sysfs_unregister(q);
24d2f903 2232 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2233 int node;
f14bbe77 2234
868f2f0b
KB
2235 if (hctxs[i])
2236 continue;
2237
2238 node = blk_mq_hw_queue_to_node(q->mq_map, i);
07319678 2239 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
cdef54dd 2240 GFP_KERNEL, node);
320ae51f 2241 if (!hctxs[i])
868f2f0b 2242 break;
320ae51f 2243
a86073e4 2244 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2245 node)) {
2246 kfree(hctxs[i]);
2247 hctxs[i] = NULL;
2248 break;
2249 }
e4043dcf 2250
0d2602ca 2251 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2252 hctxs[i]->numa_node = node;
320ae51f 2253 hctxs[i]->queue_num = i;
868f2f0b
KB
2254
2255 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2256 free_cpumask_var(hctxs[i]->cpumask);
2257 kfree(hctxs[i]);
2258 hctxs[i] = NULL;
2259 break;
2260 }
2261 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2262 }
868f2f0b
KB
2263 for (j = i; j < q->nr_hw_queues; j++) {
2264 struct blk_mq_hw_ctx *hctx = hctxs[j];
2265
2266 if (hctx) {
cc71a6f4
JA
2267 if (hctx->tags)
2268 blk_mq_free_map_and_requests(set, j);
868f2f0b 2269 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2270 kobject_put(&hctx->kobj);
868f2f0b
KB
2271 hctxs[j] = NULL;
2272
2273 }
2274 }
2275 q->nr_hw_queues = i;
2276 blk_mq_sysfs_register(q);
2277}
2278
2279struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2280 struct request_queue *q)
2281{
66841672
ML
2282 /* mark the queue as mq asap */
2283 q->mq_ops = set->ops;
2284
34dbad5d 2285 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2286 blk_mq_poll_stats_bkt,
2287 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2288 if (!q->poll_cb)
2289 goto err_exit;
2290
868f2f0b
KB
2291 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2292 if (!q->queue_ctx)
c7de5726 2293 goto err_exit;
868f2f0b 2294
737f98cf
ML
2295 /* init q->mq_kobj and sw queues' kobjects */
2296 blk_mq_sysfs_init(q);
2297
868f2f0b
KB
2298 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2299 GFP_KERNEL, set->numa_node);
2300 if (!q->queue_hw_ctx)
2301 goto err_percpu;
2302
bdd17e75 2303 q->mq_map = set->mq_map;
868f2f0b
KB
2304
2305 blk_mq_realloc_hw_ctxs(set, q);
2306 if (!q->nr_hw_queues)
2307 goto err_hctxs;
320ae51f 2308
287922eb 2309 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2310 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2311
2312 q->nr_queues = nr_cpu_ids;
320ae51f 2313
94eddfbe 2314 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2315
05f1dd53
JA
2316 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2317 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2318
1be036e9
CH
2319 q->sg_reserved_size = INT_MAX;
2320
2849450a 2321 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2322 INIT_LIST_HEAD(&q->requeue_list);
2323 spin_lock_init(&q->requeue_lock);
2324
254d259d 2325 blk_queue_make_request(q, blk_mq_make_request);
07068d5b 2326
eba71768
JA
2327 /*
2328 * Do this after blk_queue_make_request() overrides it...
2329 */
2330 q->nr_requests = set->queue_depth;
2331
64f1c21e
JA
2332 /*
2333 * Default to classic polling
2334 */
2335 q->poll_nsec = -1;
2336
24d2f903
CH
2337 if (set->ops->complete)
2338 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2339
24d2f903 2340 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2341
eabe0659 2342 get_online_cpus();
51d638b1 2343 mutex_lock(&all_q_mutex);
320ae51f 2344
4593fdbe 2345 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2346 blk_mq_add_queue_tag_set(set, q);
5778322e 2347 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2348
eabe0659 2349 mutex_unlock(&all_q_mutex);
51d638b1 2350 put_online_cpus();
4593fdbe 2351
d3484991
JA
2352 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2353 int ret;
2354
2355 ret = blk_mq_sched_init(q);
2356 if (ret)
2357 return ERR_PTR(ret);
2358 }
2359
320ae51f 2360 return q;
18741986 2361
320ae51f 2362err_hctxs:
868f2f0b 2363 kfree(q->queue_hw_ctx);
320ae51f 2364err_percpu:
868f2f0b 2365 free_percpu(q->queue_ctx);
c7de5726
ML
2366err_exit:
2367 q->mq_ops = NULL;
320ae51f
JA
2368 return ERR_PTR(-ENOMEM);
2369}
b62c21b7 2370EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2371
2372void blk_mq_free_queue(struct request_queue *q)
2373{
624dbe47 2374 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2375
0e626368
AM
2376 mutex_lock(&all_q_mutex);
2377 list_del_init(&q->all_q_node);
2378 mutex_unlock(&all_q_mutex);
2379
0d2602ca
JA
2380 blk_mq_del_queue_tag_set(q);
2381
624dbe47 2382 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2383}
320ae51f
JA
2384
2385/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2386static void blk_mq_queue_reinit(struct request_queue *q,
2387 const struct cpumask *online_mask)
320ae51f 2388{
4ecd4fef 2389 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2390
9c1051aa 2391 blk_mq_debugfs_unregister_hctxs(q);
67aec14c
JA
2392 blk_mq_sysfs_unregister(q);
2393
320ae51f
JA
2394 /*
2395 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2396 * we should change hctx numa_node according to new topology (this
2397 * involves free and re-allocate memory, worthy doing?)
2398 */
2399
5778322e 2400 blk_mq_map_swqueue(q, online_mask);
320ae51f 2401
67aec14c 2402 blk_mq_sysfs_register(q);
9c1051aa 2403 blk_mq_debugfs_register_hctxs(q);
320ae51f
JA
2404}
2405
65d5291e
SAS
2406/*
2407 * New online cpumask which is going to be set in this hotplug event.
2408 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2409 * one-by-one and dynamically allocating this could result in a failure.
2410 */
2411static struct cpumask cpuhp_online_new;
2412
2413static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2414{
2415 struct request_queue *q;
320ae51f
JA
2416
2417 mutex_lock(&all_q_mutex);
f3af020b
TH
2418 /*
2419 * We need to freeze and reinit all existing queues. Freezing
2420 * involves synchronous wait for an RCU grace period and doing it
2421 * one by one may take a long time. Start freezing all queues in
2422 * one swoop and then wait for the completions so that freezing can
2423 * take place in parallel.
2424 */
2425 list_for_each_entry(q, &all_q_list, all_q_node)
1671d522 2426 blk_freeze_queue_start(q);
415d3dab 2427 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2428 blk_mq_freeze_queue_wait(q);
2429
320ae51f 2430 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2431 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2432
2433 list_for_each_entry(q, &all_q_list, all_q_node)
2434 blk_mq_unfreeze_queue(q);
2435
320ae51f 2436 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2437}
2438
2439static int blk_mq_queue_reinit_dead(unsigned int cpu)
2440{
97a32864 2441 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2442 blk_mq_queue_reinit_work();
2443 return 0;
2444}
2445
2446/*
2447 * Before hotadded cpu starts handling requests, new mappings must be
2448 * established. Otherwise, these requests in hw queue might never be
2449 * dispatched.
2450 *
2451 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2452 * for CPU0, and ctx1 for CPU1).
2453 *
2454 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2455 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2456 *
2c3ad667
JA
2457 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2458 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2459 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2460 * ignored.
65d5291e
SAS
2461 */
2462static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2463{
2464 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2465 cpumask_set_cpu(cpu, &cpuhp_online_new);
2466 blk_mq_queue_reinit_work();
2467 return 0;
320ae51f
JA
2468}
2469
a5164405
JA
2470static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2471{
2472 int i;
2473
cc71a6f4
JA
2474 for (i = 0; i < set->nr_hw_queues; i++)
2475 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2476 goto out_unwind;
a5164405
JA
2477
2478 return 0;
2479
2480out_unwind:
2481 while (--i >= 0)
cc71a6f4 2482 blk_mq_free_rq_map(set->tags[i]);
a5164405 2483
a5164405
JA
2484 return -ENOMEM;
2485}
2486
2487/*
2488 * Allocate the request maps associated with this tag_set. Note that this
2489 * may reduce the depth asked for, if memory is tight. set->queue_depth
2490 * will be updated to reflect the allocated depth.
2491 */
2492static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2493{
2494 unsigned int depth;
2495 int err;
2496
2497 depth = set->queue_depth;
2498 do {
2499 err = __blk_mq_alloc_rq_maps(set);
2500 if (!err)
2501 break;
2502
2503 set->queue_depth >>= 1;
2504 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2505 err = -ENOMEM;
2506 break;
2507 }
2508 } while (set->queue_depth);
2509
2510 if (!set->queue_depth || err) {
2511 pr_err("blk-mq: failed to allocate request map\n");
2512 return -ENOMEM;
2513 }
2514
2515 if (depth != set->queue_depth)
2516 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2517 depth, set->queue_depth);
2518
2519 return 0;
2520}
2521
ebe8bddb
OS
2522static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2523{
2524 if (set->ops->map_queues)
2525 return set->ops->map_queues(set);
2526 else
2527 return blk_mq_map_queues(set);
2528}
2529
a4391c64
JA
2530/*
2531 * Alloc a tag set to be associated with one or more request queues.
2532 * May fail with EINVAL for various error conditions. May adjust the
2533 * requested depth down, if if it too large. In that case, the set
2534 * value will be stored in set->queue_depth.
2535 */
24d2f903
CH
2536int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2537{
da695ba2
CH
2538 int ret;
2539
205fb5f5
BVA
2540 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2541
24d2f903
CH
2542 if (!set->nr_hw_queues)
2543 return -EINVAL;
a4391c64 2544 if (!set->queue_depth)
24d2f903
CH
2545 return -EINVAL;
2546 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2547 return -EINVAL;
2548
7d7e0f90 2549 if (!set->ops->queue_rq)
24d2f903
CH
2550 return -EINVAL;
2551
a4391c64
JA
2552 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2553 pr_info("blk-mq: reduced tag depth to %u\n",
2554 BLK_MQ_MAX_DEPTH);
2555 set->queue_depth = BLK_MQ_MAX_DEPTH;
2556 }
24d2f903 2557
6637fadf
SL
2558 /*
2559 * If a crashdump is active, then we are potentially in a very
2560 * memory constrained environment. Limit us to 1 queue and
2561 * 64 tags to prevent using too much memory.
2562 */
2563 if (is_kdump_kernel()) {
2564 set->nr_hw_queues = 1;
2565 set->queue_depth = min(64U, set->queue_depth);
2566 }
868f2f0b
KB
2567 /*
2568 * There is no use for more h/w queues than cpus.
2569 */
2570 if (set->nr_hw_queues > nr_cpu_ids)
2571 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2572
868f2f0b 2573 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2574 GFP_KERNEL, set->numa_node);
2575 if (!set->tags)
a5164405 2576 return -ENOMEM;
24d2f903 2577
da695ba2
CH
2578 ret = -ENOMEM;
2579 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2580 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2581 if (!set->mq_map)
2582 goto out_free_tags;
2583
ebe8bddb 2584 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2585 if (ret)
2586 goto out_free_mq_map;
2587
2588 ret = blk_mq_alloc_rq_maps(set);
2589 if (ret)
bdd17e75 2590 goto out_free_mq_map;
24d2f903 2591
0d2602ca
JA
2592 mutex_init(&set->tag_list_lock);
2593 INIT_LIST_HEAD(&set->tag_list);
2594
24d2f903 2595 return 0;
bdd17e75
CH
2596
2597out_free_mq_map:
2598 kfree(set->mq_map);
2599 set->mq_map = NULL;
2600out_free_tags:
5676e7b6
RE
2601 kfree(set->tags);
2602 set->tags = NULL;
da695ba2 2603 return ret;
24d2f903
CH
2604}
2605EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2606
2607void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2608{
2609 int i;
2610
cc71a6f4
JA
2611 for (i = 0; i < nr_cpu_ids; i++)
2612 blk_mq_free_map_and_requests(set, i);
484b4061 2613
bdd17e75
CH
2614 kfree(set->mq_map);
2615 set->mq_map = NULL;
2616
981bd189 2617 kfree(set->tags);
5676e7b6 2618 set->tags = NULL;
24d2f903
CH
2619}
2620EXPORT_SYMBOL(blk_mq_free_tag_set);
2621
e3a2b3f9
JA
2622int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2623{
2624 struct blk_mq_tag_set *set = q->tag_set;
2625 struct blk_mq_hw_ctx *hctx;
2626 int i, ret;
2627
bd166ef1 2628 if (!set)
e3a2b3f9
JA
2629 return -EINVAL;
2630
70f36b60 2631 blk_mq_freeze_queue(q);
70f36b60 2632
e3a2b3f9
JA
2633 ret = 0;
2634 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2635 if (!hctx->tags)
2636 continue;
bd166ef1
JA
2637 /*
2638 * If we're using an MQ scheduler, just update the scheduler
2639 * queue depth. This is similar to what the old code would do.
2640 */
70f36b60
JA
2641 if (!hctx->sched_tags) {
2642 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2643 min(nr, set->queue_depth),
2644 false);
2645 } else {
2646 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2647 nr, true);
2648 }
e3a2b3f9
JA
2649 if (ret)
2650 break;
2651 }
2652
2653 if (!ret)
2654 q->nr_requests = nr;
2655
70f36b60 2656 blk_mq_unfreeze_queue(q);
70f36b60 2657
e3a2b3f9
JA
2658 return ret;
2659}
2660
e4dc2b32
KB
2661static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2662 int nr_hw_queues)
868f2f0b
KB
2663{
2664 struct request_queue *q;
2665
705cda97
BVA
2666 lockdep_assert_held(&set->tag_list_lock);
2667
868f2f0b
KB
2668 if (nr_hw_queues > nr_cpu_ids)
2669 nr_hw_queues = nr_cpu_ids;
2670 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2671 return;
2672
2673 list_for_each_entry(q, &set->tag_list, tag_set_list)
2674 blk_mq_freeze_queue(q);
2675
2676 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2677 blk_mq_update_queue_map(set);
868f2f0b
KB
2678 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2679 blk_mq_realloc_hw_ctxs(set, q);
868f2f0b
KB
2680 blk_mq_queue_reinit(q, cpu_online_mask);
2681 }
2682
2683 list_for_each_entry(q, &set->tag_list, tag_set_list)
2684 blk_mq_unfreeze_queue(q);
2685}
e4dc2b32
KB
2686
2687void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2688{
2689 mutex_lock(&set->tag_list_lock);
2690 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2691 mutex_unlock(&set->tag_list_lock);
2692}
868f2f0b
KB
2693EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2694
34dbad5d
OS
2695/* Enable polling stats and return whether they were already enabled. */
2696static bool blk_poll_stats_enable(struct request_queue *q)
2697{
2698 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2699 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2700 return true;
2701 blk_stat_add_callback(q, q->poll_cb);
2702 return false;
2703}
2704
2705static void blk_mq_poll_stats_start(struct request_queue *q)
2706{
2707 /*
2708 * We don't arm the callback if polling stats are not enabled or the
2709 * callback is already active.
2710 */
2711 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2712 blk_stat_is_active(q->poll_cb))
2713 return;
2714
2715 blk_stat_activate_msecs(q->poll_cb, 100);
2716}
2717
2718static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2719{
2720 struct request_queue *q = cb->data;
720b8ccc 2721 int bucket;
34dbad5d 2722
720b8ccc
SB
2723 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2724 if (cb->stat[bucket].nr_samples)
2725 q->poll_stat[bucket] = cb->stat[bucket];
2726 }
34dbad5d
OS
2727}
2728
64f1c21e
JA
2729static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2730 struct blk_mq_hw_ctx *hctx,
2731 struct request *rq)
2732{
64f1c21e 2733 unsigned long ret = 0;
720b8ccc 2734 int bucket;
64f1c21e
JA
2735
2736 /*
2737 * If stats collection isn't on, don't sleep but turn it on for
2738 * future users
2739 */
34dbad5d 2740 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2741 return 0;
2742
64f1c21e
JA
2743 /*
2744 * As an optimistic guess, use half of the mean service time
2745 * for this type of request. We can (and should) make this smarter.
2746 * For instance, if the completion latencies are tight, we can
2747 * get closer than just half the mean. This is especially
2748 * important on devices where the completion latencies are longer
720b8ccc
SB
2749 * than ~10 usec. We do use the stats for the relevant IO size
2750 * if available which does lead to better estimates.
64f1c21e 2751 */
720b8ccc
SB
2752 bucket = blk_mq_poll_stats_bkt(rq);
2753 if (bucket < 0)
2754 return ret;
2755
2756 if (q->poll_stat[bucket].nr_samples)
2757 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
2758
2759 return ret;
2760}
2761
06426adf 2762static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2763 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2764 struct request *rq)
2765{
2766 struct hrtimer_sleeper hs;
2767 enum hrtimer_mode mode;
64f1c21e 2768 unsigned int nsecs;
06426adf
JA
2769 ktime_t kt;
2770
64f1c21e
JA
2771 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2772 return false;
2773
2774 /*
2775 * poll_nsec can be:
2776 *
2777 * -1: don't ever hybrid sleep
2778 * 0: use half of prev avg
2779 * >0: use this specific value
2780 */
2781 if (q->poll_nsec == -1)
2782 return false;
2783 else if (q->poll_nsec > 0)
2784 nsecs = q->poll_nsec;
2785 else
2786 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2787
2788 if (!nsecs)
06426adf
JA
2789 return false;
2790
2791 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2792
2793 /*
2794 * This will be replaced with the stats tracking code, using
2795 * 'avg_completion_time / 2' as the pre-sleep target.
2796 */
8b0e1953 2797 kt = nsecs;
06426adf
JA
2798
2799 mode = HRTIMER_MODE_REL;
2800 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2801 hrtimer_set_expires(&hs.timer, kt);
2802
2803 hrtimer_init_sleeper(&hs, current);
2804 do {
2805 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2806 break;
2807 set_current_state(TASK_UNINTERRUPTIBLE);
2808 hrtimer_start_expires(&hs.timer, mode);
2809 if (hs.task)
2810 io_schedule();
2811 hrtimer_cancel(&hs.timer);
2812 mode = HRTIMER_MODE_ABS;
2813 } while (hs.task && !signal_pending(current));
2814
2815 __set_current_state(TASK_RUNNING);
2816 destroy_hrtimer_on_stack(&hs.timer);
2817 return true;
2818}
2819
bbd7bb70
JA
2820static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2821{
2822 struct request_queue *q = hctx->queue;
2823 long state;
2824
06426adf
JA
2825 /*
2826 * If we sleep, have the caller restart the poll loop to reset
2827 * the state. Like for the other success return cases, the
2828 * caller is responsible for checking if the IO completed. If
2829 * the IO isn't complete, we'll get called again and will go
2830 * straight to the busy poll loop.
2831 */
64f1c21e 2832 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2833 return true;
2834
bbd7bb70
JA
2835 hctx->poll_considered++;
2836
2837 state = current->state;
2838 while (!need_resched()) {
2839 int ret;
2840
2841 hctx->poll_invoked++;
2842
2843 ret = q->mq_ops->poll(hctx, rq->tag);
2844 if (ret > 0) {
2845 hctx->poll_success++;
2846 set_current_state(TASK_RUNNING);
2847 return true;
2848 }
2849
2850 if (signal_pending_state(state, current))
2851 set_current_state(TASK_RUNNING);
2852
2853 if (current->state == TASK_RUNNING)
2854 return true;
2855 if (ret < 0)
2856 break;
2857 cpu_relax();
2858 }
2859
2860 return false;
2861}
2862
2863bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2864{
2865 struct blk_mq_hw_ctx *hctx;
2866 struct blk_plug *plug;
2867 struct request *rq;
2868
2869 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2870 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2871 return false;
2872
2873 plug = current->plug;
2874 if (plug)
2875 blk_flush_plug_list(plug, false);
2876
2877 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2878 if (!blk_qc_t_is_internal(cookie))
2879 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3a07bb1d 2880 else {
bd166ef1 2881 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3a07bb1d
JA
2882 /*
2883 * With scheduling, if the request has completed, we'll
2884 * get a NULL return here, as we clear the sched tag when
2885 * that happens. The request still remains valid, like always,
2886 * so we should be safe with just the NULL check.
2887 */
2888 if (!rq)
2889 return false;
2890 }
bbd7bb70
JA
2891
2892 return __blk_mq_poll(hctx, rq);
2893}
2894EXPORT_SYMBOL_GPL(blk_mq_poll);
2895
676141e4
JA
2896void blk_mq_disable_hotplug(void)
2897{
2898 mutex_lock(&all_q_mutex);
2899}
2900
2901void blk_mq_enable_hotplug(void)
2902{
2903 mutex_unlock(&all_q_mutex);
2904}
2905
320ae51f
JA
2906static int __init blk_mq_init(void)
2907{
9467f859
TG
2908 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2909 blk_mq_hctx_notify_dead);
320ae51f 2910
65d5291e
SAS
2911 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2912 blk_mq_queue_reinit_prepare,
2913 blk_mq_queue_reinit_dead);
320ae51f
JA
2914 return 0;
2915}
2916subsys_initcall(blk_mq_init);