]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - block/blk-mq.c
block: blk-mq: don't export blk_mq_free_queue()
[mirror_ubuntu-zesty-kernel.git] / block / blk-mq.c
CommitLineData
320ae51f
JA
1#include <linux/kernel.h>
2#include <linux/module.h>
3#include <linux/backing-dev.h>
4#include <linux/bio.h>
5#include <linux/blkdev.h>
6#include <linux/mm.h>
7#include <linux/init.h>
8#include <linux/slab.h>
9#include <linux/workqueue.h>
10#include <linux/smp.h>
11#include <linux/llist.h>
12#include <linux/list_sort.h>
13#include <linux/cpu.h>
14#include <linux/cache.h>
15#include <linux/sched/sysctl.h>
16#include <linux/delay.h>
17
18#include <trace/events/block.h>
19
20#include <linux/blk-mq.h>
21#include "blk.h"
22#include "blk-mq.h"
23#include "blk-mq-tag.h"
24
25static DEFINE_MUTEX(all_q_mutex);
26static LIST_HEAD(all_q_list);
27
28static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
30DEFINE_PER_CPU(struct llist_head, ipi_lists);
31
32static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
33 unsigned int cpu)
34{
35 return per_cpu_ptr(q->queue_ctx, cpu);
36}
37
38/*
39 * This assumes per-cpu software queueing queues. They could be per-node
40 * as well, for instance. For now this is hardcoded as-is. Note that we don't
41 * care about preemption, since we know the ctx's are persistent. This does
42 * mean that we can't rely on ctx always matching the currently running CPU.
43 */
44static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
45{
46 return __blk_mq_get_ctx(q, get_cpu());
47}
48
49static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
50{
51 put_cpu();
52}
53
54/*
55 * Check if any of the ctx's have pending work in this hardware queue
56 */
57static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
58{
59 unsigned int i;
60
61 for (i = 0; i < hctx->nr_ctx_map; i++)
62 if (hctx->ctx_map[i])
63 return true;
64
65 return false;
66}
67
68/*
69 * Mark this ctx as having pending work in this hardware queue
70 */
71static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
72 struct blk_mq_ctx *ctx)
73{
74 if (!test_bit(ctx->index_hw, hctx->ctx_map))
75 set_bit(ctx->index_hw, hctx->ctx_map);
76}
77
78static struct request *blk_mq_alloc_rq(struct blk_mq_hw_ctx *hctx, gfp_t gfp,
79 bool reserved)
80{
81 struct request *rq;
82 unsigned int tag;
83
84 tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
85 if (tag != BLK_MQ_TAG_FAIL) {
86 rq = hctx->rqs[tag];
87 rq->tag = tag;
88
89 return rq;
90 }
91
92 return NULL;
93}
94
95static int blk_mq_queue_enter(struct request_queue *q)
96{
97 int ret;
98
99 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
100 smp_wmb();
101 /* we have problems to freeze the queue if it's initializing */
102 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
103 return 0;
104
105 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
106
107 spin_lock_irq(q->queue_lock);
108 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
43a5e4e2
ML
109 !blk_queue_bypass(q) || blk_queue_dying(q),
110 *q->queue_lock);
320ae51f 111 /* inc usage with lock hold to avoid freeze_queue runs here */
43a5e4e2 112 if (!ret && !blk_queue_dying(q))
320ae51f 113 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
43a5e4e2
ML
114 else if (blk_queue_dying(q))
115 ret = -ENODEV;
320ae51f
JA
116 spin_unlock_irq(q->queue_lock);
117
118 return ret;
119}
120
121static void blk_mq_queue_exit(struct request_queue *q)
122{
123 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
124}
125
43a5e4e2
ML
126static void __blk_mq_drain_queue(struct request_queue *q)
127{
128 while (true) {
129 s64 count;
130
131 spin_lock_irq(q->queue_lock);
132 count = percpu_counter_sum(&q->mq_usage_counter);
133 spin_unlock_irq(q->queue_lock);
134
135 if (count == 0)
136 break;
137 blk_mq_run_queues(q, false);
138 msleep(10);
139 }
140}
141
320ae51f
JA
142/*
143 * Guarantee no request is in use, so we can change any data structure of
144 * the queue afterward.
145 */
146static void blk_mq_freeze_queue(struct request_queue *q)
147{
148 bool drain;
149
150 spin_lock_irq(q->queue_lock);
151 drain = !q->bypass_depth++;
152 queue_flag_set(QUEUE_FLAG_BYPASS, q);
153 spin_unlock_irq(q->queue_lock);
154
43a5e4e2
ML
155 if (drain)
156 __blk_mq_drain_queue(q);
157}
320ae51f 158
43a5e4e2
ML
159void blk_mq_drain_queue(struct request_queue *q)
160{
161 __blk_mq_drain_queue(q);
320ae51f
JA
162}
163
164static void blk_mq_unfreeze_queue(struct request_queue *q)
165{
166 bool wake = false;
167
168 spin_lock_irq(q->queue_lock);
169 if (!--q->bypass_depth) {
170 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
171 wake = true;
172 }
173 WARN_ON_ONCE(q->bypass_depth < 0);
174 spin_unlock_irq(q->queue_lock);
175 if (wake)
176 wake_up_all(&q->mq_freeze_wq);
177}
178
179bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
180{
181 return blk_mq_has_free_tags(hctx->tags);
182}
183EXPORT_SYMBOL(blk_mq_can_queue);
184
94eddfbe
JA
185static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
186 struct request *rq, unsigned int rw_flags)
320ae51f 187{
94eddfbe
JA
188 if (blk_queue_io_stat(q))
189 rw_flags |= REQ_IO_STAT;
190
320ae51f
JA
191 rq->mq_ctx = ctx;
192 rq->cmd_flags = rw_flags;
193 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
194}
195
196static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
197 gfp_t gfp, bool reserved)
198{
199 return blk_mq_alloc_rq(hctx, gfp, reserved);
200}
201
202static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
203 int rw, gfp_t gfp,
204 bool reserved)
205{
206 struct request *rq;
207
208 do {
209 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
210 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
211
212 rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved);
213 if (rq) {
94eddfbe 214 blk_mq_rq_ctx_init(q, ctx, rq, rw);
320ae51f 215 break;
959a35f1 216 }
320ae51f
JA
217
218 blk_mq_put_ctx(ctx);
959a35f1
JM
219 if (!(gfp & __GFP_WAIT))
220 break;
221
320ae51f
JA
222 __blk_mq_run_hw_queue(hctx);
223 blk_mq_wait_for_tags(hctx->tags);
224 } while (1);
225
226 return rq;
227}
228
3228f48b
CH
229struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
230 gfp_t gfp, bool reserved)
320ae51f
JA
231{
232 struct request *rq;
233
234 if (blk_mq_queue_enter(q))
235 return NULL;
236
3228f48b 237 rq = blk_mq_alloc_request_pinned(q, rw, gfp, reserved);
959a35f1
JM
238 if (rq)
239 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
240 return rq;
241}
242
243struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
244 gfp_t gfp)
245{
246 struct request *rq;
247
248 if (blk_mq_queue_enter(q))
249 return NULL;
250
251 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
959a35f1
JM
252 if (rq)
253 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
254 return rq;
255}
256EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
257
258/*
259 * Re-init and set pdu, if we have it
260 */
261static void blk_mq_rq_init(struct blk_mq_hw_ctx *hctx, struct request *rq)
262{
263 blk_rq_init(hctx->queue, rq);
264
265 if (hctx->cmd_size)
266 rq->special = blk_mq_rq_to_pdu(rq);
267}
268
269static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
270 struct blk_mq_ctx *ctx, struct request *rq)
271{
272 const int tag = rq->tag;
273 struct request_queue *q = rq->q;
274
275 blk_mq_rq_init(hctx, rq);
276 blk_mq_put_tag(hctx->tags, tag);
277
278 blk_mq_queue_exit(q);
279}
280
281void blk_mq_free_request(struct request *rq)
282{
283 struct blk_mq_ctx *ctx = rq->mq_ctx;
284 struct blk_mq_hw_ctx *hctx;
285 struct request_queue *q = rq->q;
286
287 ctx->rq_completed[rq_is_sync(rq)]++;
288
289 hctx = q->mq_ops->map_queue(q, ctx->cpu);
290 __blk_mq_free_request(hctx, ctx, rq);
291}
292
293static void blk_mq_bio_endio(struct request *rq, struct bio *bio, int error)
294{
295 if (error)
296 clear_bit(BIO_UPTODATE, &bio->bi_flags);
297 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
298 error = -EIO;
299
300 if (unlikely(rq->cmd_flags & REQ_QUIET))
301 set_bit(BIO_QUIET, &bio->bi_flags);
302
303 /* don't actually finish bio if it's part of flush sequence */
304 if (!(rq->cmd_flags & REQ_FLUSH_SEQ))
305 bio_endio(bio, error);
306}
307
308void blk_mq_complete_request(struct request *rq, int error)
309{
310 struct bio *bio = rq->bio;
311 unsigned int bytes = 0;
312
313 trace_block_rq_complete(rq->q, rq);
314
315 while (bio) {
316 struct bio *next = bio->bi_next;
317
318 bio->bi_next = NULL;
4f024f37 319 bytes += bio->bi_iter.bi_size;
320ae51f
JA
320 blk_mq_bio_endio(rq, bio, error);
321 bio = next;
322 }
323
324 blk_account_io_completion(rq, bytes);
325
0d11e6ac
ML
326 blk_account_io_done(rq);
327
320ae51f
JA
328 if (rq->end_io)
329 rq->end_io(rq, error);
330 else
331 blk_mq_free_request(rq);
320ae51f
JA
332}
333
334void __blk_mq_end_io(struct request *rq, int error)
335{
336 if (!blk_mark_rq_complete(rq))
337 blk_mq_complete_request(rq, error);
338}
339
0a06ff06 340#if defined(CONFIG_SMP)
320ae51f
JA
341
342/*
343 * Called with interrupts disabled.
344 */
345static void ipi_end_io(void *data)
346{
347 struct llist_head *list = &per_cpu(ipi_lists, smp_processor_id());
348 struct llist_node *entry, *next;
349 struct request *rq;
350
351 entry = llist_del_all(list);
352
353 while (entry) {
354 next = entry->next;
355 rq = llist_entry(entry, struct request, ll_list);
356 __blk_mq_end_io(rq, rq->errors);
357 entry = next;
358 }
359}
360
361static int ipi_remote_cpu(struct blk_mq_ctx *ctx, const int cpu,
362 struct request *rq, const int error)
363{
364 struct call_single_data *data = &rq->csd;
365
366 rq->errors = error;
367 rq->ll_list.next = NULL;
368
369 /*
370 * If the list is non-empty, an existing IPI must already
371 * be "in flight". If that is the case, we need not schedule
372 * a new one.
373 */
374 if (llist_add(&rq->ll_list, &per_cpu(ipi_lists, ctx->cpu))) {
375 data->func = ipi_end_io;
376 data->flags = 0;
377 __smp_call_function_single(ctx->cpu, data, 0);
378 }
379
380 return true;
381}
0a06ff06 382#else /* CONFIG_SMP */
320ae51f
JA
383static int ipi_remote_cpu(struct blk_mq_ctx *ctx, const int cpu,
384 struct request *rq, const int error)
385{
386 return false;
387}
388#endif
389
390/*
391 * End IO on this request on a multiqueue enabled driver. We'll either do
392 * it directly inline, or punt to a local IPI handler on the matching
393 * remote CPU.
394 */
395void blk_mq_end_io(struct request *rq, int error)
396{
397 struct blk_mq_ctx *ctx = rq->mq_ctx;
398 int cpu;
399
400 if (!ctx->ipi_redirect)
401 return __blk_mq_end_io(rq, error);
402
403 cpu = get_cpu();
404
405 if (cpu == ctx->cpu || !cpu_online(ctx->cpu) ||
406 !ipi_remote_cpu(ctx, cpu, rq, error))
407 __blk_mq_end_io(rq, error);
408
409 put_cpu();
410}
411EXPORT_SYMBOL(blk_mq_end_io);
412
413static void blk_mq_start_request(struct request *rq)
414{
415 struct request_queue *q = rq->q;
416
417 trace_block_rq_issue(q, rq);
418
419 /*
420 * Just mark start time and set the started bit. Due to memory
421 * ordering, we know we'll see the correct deadline as long as
422 * REQ_ATOMIC_STARTED is seen.
423 */
424 rq->deadline = jiffies + q->rq_timeout;
425 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
426}
427
428static void blk_mq_requeue_request(struct request *rq)
429{
430 struct request_queue *q = rq->q;
431
432 trace_block_rq_requeue(q, rq);
433 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
434}
435
436struct blk_mq_timeout_data {
437 struct blk_mq_hw_ctx *hctx;
438 unsigned long *next;
439 unsigned int *next_set;
440};
441
442static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
443{
444 struct blk_mq_timeout_data *data = __data;
445 struct blk_mq_hw_ctx *hctx = data->hctx;
446 unsigned int tag;
447
448 /* It may not be in flight yet (this is where
449 * the REQ_ATOMIC_STARTED flag comes in). The requests are
450 * statically allocated, so we know it's always safe to access the
451 * memory associated with a bit offset into ->rqs[].
452 */
453 tag = 0;
454 do {
455 struct request *rq;
456
457 tag = find_next_zero_bit(free_tags, hctx->queue_depth, tag);
458 if (tag >= hctx->queue_depth)
459 break;
460
461 rq = hctx->rqs[tag++];
462
463 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
464 continue;
465
466 blk_rq_check_expired(rq, data->next, data->next_set);
467 } while (1);
468}
469
470static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
471 unsigned long *next,
472 unsigned int *next_set)
473{
474 struct blk_mq_timeout_data data = {
475 .hctx = hctx,
476 .next = next,
477 .next_set = next_set,
478 };
479
480 /*
481 * Ask the tagging code to iterate busy requests, so we can
482 * check them for timeout.
483 */
484 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
485}
486
487static void blk_mq_rq_timer(unsigned long data)
488{
489 struct request_queue *q = (struct request_queue *) data;
490 struct blk_mq_hw_ctx *hctx;
491 unsigned long next = 0;
492 int i, next_set = 0;
493
494 queue_for_each_hw_ctx(q, hctx, i)
495 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
496
497 if (next_set)
498 mod_timer(&q->timeout, round_jiffies_up(next));
499}
500
501/*
502 * Reverse check our software queue for entries that we could potentially
503 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
504 * too much time checking for merges.
505 */
506static bool blk_mq_attempt_merge(struct request_queue *q,
507 struct blk_mq_ctx *ctx, struct bio *bio)
508{
509 struct request *rq;
510 int checked = 8;
511
512 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
513 int el_ret;
514
515 if (!checked--)
516 break;
517
518 if (!blk_rq_merge_ok(rq, bio))
519 continue;
520
521 el_ret = blk_try_merge(rq, bio);
522 if (el_ret == ELEVATOR_BACK_MERGE) {
523 if (bio_attempt_back_merge(q, rq, bio)) {
524 ctx->rq_merged++;
525 return true;
526 }
527 break;
528 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
529 if (bio_attempt_front_merge(q, rq, bio)) {
530 ctx->rq_merged++;
531 return true;
532 }
533 break;
534 }
535 }
536
537 return false;
538}
539
540void blk_mq_add_timer(struct request *rq)
541{
542 __blk_add_timer(rq, NULL);
543}
544
545/*
546 * Run this hardware queue, pulling any software queues mapped to it in.
547 * Note that this function currently has various problems around ordering
548 * of IO. In particular, we'd like FIFO behaviour on handling existing
549 * items on the hctx->dispatch list. Ignore that for now.
550 */
551static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
552{
553 struct request_queue *q = hctx->queue;
554 struct blk_mq_ctx *ctx;
555 struct request *rq;
556 LIST_HEAD(rq_list);
557 int bit, queued;
558
559 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
560 return;
561
562 hctx->run++;
563
564 /*
565 * Touch any software queue that has pending entries.
566 */
567 for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
568 clear_bit(bit, hctx->ctx_map);
569 ctx = hctx->ctxs[bit];
570 BUG_ON(bit != ctx->index_hw);
571
572 spin_lock(&ctx->lock);
573 list_splice_tail_init(&ctx->rq_list, &rq_list);
574 spin_unlock(&ctx->lock);
575 }
576
577 /*
578 * If we have previous entries on our dispatch list, grab them
579 * and stuff them at the front for more fair dispatch.
580 */
581 if (!list_empty_careful(&hctx->dispatch)) {
582 spin_lock(&hctx->lock);
583 if (!list_empty(&hctx->dispatch))
584 list_splice_init(&hctx->dispatch, &rq_list);
585 spin_unlock(&hctx->lock);
586 }
587
588 /*
589 * Delete and return all entries from our dispatch list
590 */
591 queued = 0;
592
593 /*
594 * Now process all the entries, sending them to the driver.
595 */
596 while (!list_empty(&rq_list)) {
597 int ret;
598
599 rq = list_first_entry(&rq_list, struct request, queuelist);
600 list_del_init(&rq->queuelist);
601 blk_mq_start_request(rq);
602
603 /*
604 * Last request in the series. Flag it as such, this
605 * enables drivers to know when IO should be kicked off,
606 * if they don't do it on a per-request basis.
607 *
608 * Note: the flag isn't the only condition drivers
609 * should do kick off. If drive is busy, the last
610 * request might not have the bit set.
611 */
612 if (list_empty(&rq_list))
613 rq->cmd_flags |= REQ_END;
614
615 ret = q->mq_ops->queue_rq(hctx, rq);
616 switch (ret) {
617 case BLK_MQ_RQ_QUEUE_OK:
618 queued++;
619 continue;
620 case BLK_MQ_RQ_QUEUE_BUSY:
621 /*
622 * FIXME: we should have a mechanism to stop the queue
623 * like blk_stop_queue, otherwise we will waste cpu
624 * time
625 */
626 list_add(&rq->queuelist, &rq_list);
627 blk_mq_requeue_request(rq);
628 break;
629 default:
630 pr_err("blk-mq: bad return on queue: %d\n", ret);
631 rq->errors = -EIO;
632 case BLK_MQ_RQ_QUEUE_ERROR:
633 blk_mq_end_io(rq, rq->errors);
634 break;
635 }
636
637 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
638 break;
639 }
640
641 if (!queued)
642 hctx->dispatched[0]++;
643 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
644 hctx->dispatched[ilog2(queued) + 1]++;
645
646 /*
647 * Any items that need requeuing? Stuff them into hctx->dispatch,
648 * that is where we will continue on next queue run.
649 */
650 if (!list_empty(&rq_list)) {
651 spin_lock(&hctx->lock);
652 list_splice(&rq_list, &hctx->dispatch);
653 spin_unlock(&hctx->lock);
654 }
655}
656
657void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
658{
659 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
660 return;
661
662 if (!async)
663 __blk_mq_run_hw_queue(hctx);
664 else {
665 struct request_queue *q = hctx->queue;
666
667 kblockd_schedule_delayed_work(q, &hctx->delayed_work, 0);
668 }
669}
670
671void blk_mq_run_queues(struct request_queue *q, bool async)
672{
673 struct blk_mq_hw_ctx *hctx;
674 int i;
675
676 queue_for_each_hw_ctx(q, hctx, i) {
677 if ((!blk_mq_hctx_has_pending(hctx) &&
678 list_empty_careful(&hctx->dispatch)) ||
679 test_bit(BLK_MQ_S_STOPPED, &hctx->flags))
680 continue;
681
682 blk_mq_run_hw_queue(hctx, async);
683 }
684}
685EXPORT_SYMBOL(blk_mq_run_queues);
686
687void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
688{
689 cancel_delayed_work(&hctx->delayed_work);
690 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
691}
692EXPORT_SYMBOL(blk_mq_stop_hw_queue);
693
280d45f6
CH
694void blk_mq_stop_hw_queues(struct request_queue *q)
695{
696 struct blk_mq_hw_ctx *hctx;
697 int i;
698
699 queue_for_each_hw_ctx(q, hctx, i)
700 blk_mq_stop_hw_queue(hctx);
701}
702EXPORT_SYMBOL(blk_mq_stop_hw_queues);
703
320ae51f
JA
704void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
705{
706 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
707 __blk_mq_run_hw_queue(hctx);
708}
709EXPORT_SYMBOL(blk_mq_start_hw_queue);
710
711void blk_mq_start_stopped_hw_queues(struct request_queue *q)
712{
713 struct blk_mq_hw_ctx *hctx;
714 int i;
715
716 queue_for_each_hw_ctx(q, hctx, i) {
717 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
718 continue;
719
720 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
721 blk_mq_run_hw_queue(hctx, true);
722 }
723}
724EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
725
726static void blk_mq_work_fn(struct work_struct *work)
727{
728 struct blk_mq_hw_ctx *hctx;
729
730 hctx = container_of(work, struct blk_mq_hw_ctx, delayed_work.work);
731 __blk_mq_run_hw_queue(hctx);
732}
733
734static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
735 struct request *rq)
736{
737 struct blk_mq_ctx *ctx = rq->mq_ctx;
738
01b983c9
JA
739 trace_block_rq_insert(hctx->queue, rq);
740
320ae51f
JA
741 list_add_tail(&rq->queuelist, &ctx->rq_list);
742 blk_mq_hctx_mark_pending(hctx, ctx);
743
744 /*
745 * We do this early, to ensure we are on the right CPU.
746 */
747 blk_mq_add_timer(rq);
748}
749
750void blk_mq_insert_request(struct request_queue *q, struct request *rq,
751 bool run_queue)
752{
753 struct blk_mq_hw_ctx *hctx;
754 struct blk_mq_ctx *ctx, *current_ctx;
755
756 ctx = rq->mq_ctx;
757 hctx = q->mq_ops->map_queue(q, ctx->cpu);
758
759 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) {
760 blk_insert_flush(rq);
761 } else {
762 current_ctx = blk_mq_get_ctx(q);
763
764 if (!cpu_online(ctx->cpu)) {
765 ctx = current_ctx;
766 hctx = q->mq_ops->map_queue(q, ctx->cpu);
767 rq->mq_ctx = ctx;
768 }
769 spin_lock(&ctx->lock);
770 __blk_mq_insert_request(hctx, rq);
771 spin_unlock(&ctx->lock);
772
773 blk_mq_put_ctx(current_ctx);
774 }
775
776 if (run_queue)
777 __blk_mq_run_hw_queue(hctx);
778}
779EXPORT_SYMBOL(blk_mq_insert_request);
780
781/*
782 * This is a special version of blk_mq_insert_request to bypass FLUSH request
783 * check. Should only be used internally.
784 */
785void blk_mq_run_request(struct request *rq, bool run_queue, bool async)
786{
787 struct request_queue *q = rq->q;
788 struct blk_mq_hw_ctx *hctx;
789 struct blk_mq_ctx *ctx, *current_ctx;
790
791 current_ctx = blk_mq_get_ctx(q);
792
793 ctx = rq->mq_ctx;
794 if (!cpu_online(ctx->cpu)) {
795 ctx = current_ctx;
796 rq->mq_ctx = ctx;
797 }
798 hctx = q->mq_ops->map_queue(q, ctx->cpu);
799
800 /* ctx->cpu might be offline */
801 spin_lock(&ctx->lock);
802 __blk_mq_insert_request(hctx, rq);
803 spin_unlock(&ctx->lock);
804
805 blk_mq_put_ctx(current_ctx);
806
807 if (run_queue)
808 blk_mq_run_hw_queue(hctx, async);
809}
810
811static void blk_mq_insert_requests(struct request_queue *q,
812 struct blk_mq_ctx *ctx,
813 struct list_head *list,
814 int depth,
815 bool from_schedule)
816
817{
818 struct blk_mq_hw_ctx *hctx;
819 struct blk_mq_ctx *current_ctx;
820
821 trace_block_unplug(q, depth, !from_schedule);
822
823 current_ctx = blk_mq_get_ctx(q);
824
825 if (!cpu_online(ctx->cpu))
826 ctx = current_ctx;
827 hctx = q->mq_ops->map_queue(q, ctx->cpu);
828
829 /*
830 * preemption doesn't flush plug list, so it's possible ctx->cpu is
831 * offline now
832 */
833 spin_lock(&ctx->lock);
834 while (!list_empty(list)) {
835 struct request *rq;
836
837 rq = list_first_entry(list, struct request, queuelist);
838 list_del_init(&rq->queuelist);
839 rq->mq_ctx = ctx;
840 __blk_mq_insert_request(hctx, rq);
841 }
842 spin_unlock(&ctx->lock);
843
844 blk_mq_put_ctx(current_ctx);
845
846 blk_mq_run_hw_queue(hctx, from_schedule);
847}
848
849static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
850{
851 struct request *rqa = container_of(a, struct request, queuelist);
852 struct request *rqb = container_of(b, struct request, queuelist);
853
854 return !(rqa->mq_ctx < rqb->mq_ctx ||
855 (rqa->mq_ctx == rqb->mq_ctx &&
856 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
857}
858
859void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
860{
861 struct blk_mq_ctx *this_ctx;
862 struct request_queue *this_q;
863 struct request *rq;
864 LIST_HEAD(list);
865 LIST_HEAD(ctx_list);
866 unsigned int depth;
867
868 list_splice_init(&plug->mq_list, &list);
869
870 list_sort(NULL, &list, plug_ctx_cmp);
871
872 this_q = NULL;
873 this_ctx = NULL;
874 depth = 0;
875
876 while (!list_empty(&list)) {
877 rq = list_entry_rq(list.next);
878 list_del_init(&rq->queuelist);
879 BUG_ON(!rq->q);
880 if (rq->mq_ctx != this_ctx) {
881 if (this_ctx) {
882 blk_mq_insert_requests(this_q, this_ctx,
883 &ctx_list, depth,
884 from_schedule);
885 }
886
887 this_ctx = rq->mq_ctx;
888 this_q = rq->q;
889 depth = 0;
890 }
891
892 depth++;
893 list_add_tail(&rq->queuelist, &ctx_list);
894 }
895
896 /*
897 * If 'this_ctx' is set, we know we have entries to complete
898 * on 'ctx_list'. Do those.
899 */
900 if (this_ctx) {
901 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
902 from_schedule);
903 }
904}
905
906static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
907{
908 init_request_from_bio(rq, bio);
909 blk_account_io_start(rq, 1);
910}
911
912static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
913{
914 struct blk_mq_hw_ctx *hctx;
915 struct blk_mq_ctx *ctx;
916 const int is_sync = rw_is_sync(bio->bi_rw);
917 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
918 int rw = bio_data_dir(bio);
919 struct request *rq;
920 unsigned int use_plug, request_count = 0;
921
922 /*
923 * If we have multiple hardware queues, just go directly to
924 * one of those for sync IO.
925 */
926 use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
927
928 blk_queue_bounce(q, &bio);
929
930 if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
931 return;
932
933 if (blk_mq_queue_enter(q)) {
934 bio_endio(bio, -EIO);
935 return;
936 }
937
938 ctx = blk_mq_get_ctx(q);
939 hctx = q->mq_ops->map_queue(q, ctx->cpu);
940
941 trace_block_getrq(q, bio, rw);
942 rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false);
943 if (likely(rq))
94eddfbe 944 blk_mq_rq_ctx_init(q, ctx, rq, rw);
320ae51f
JA
945 else {
946 blk_mq_put_ctx(ctx);
947 trace_block_sleeprq(q, bio, rw);
948 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
949 false);
950 ctx = rq->mq_ctx;
951 hctx = q->mq_ops->map_queue(q, ctx->cpu);
952 }
953
954 hctx->queued++;
955
956 if (unlikely(is_flush_fua)) {
957 blk_mq_bio_to_request(rq, bio);
958 blk_mq_put_ctx(ctx);
959 blk_insert_flush(rq);
960 goto run_queue;
961 }
962
963 /*
964 * A task plug currently exists. Since this is completely lockless,
965 * utilize that to temporarily store requests until the task is
966 * either done or scheduled away.
967 */
968 if (use_plug) {
969 struct blk_plug *plug = current->plug;
970
971 if (plug) {
972 blk_mq_bio_to_request(rq, bio);
92f399c7 973 if (list_empty(&plug->mq_list))
320ae51f
JA
974 trace_block_plug(q);
975 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
976 blk_flush_plug_list(plug, false);
977 trace_block_plug(q);
978 }
979 list_add_tail(&rq->queuelist, &plug->mq_list);
980 blk_mq_put_ctx(ctx);
981 return;
982 }
983 }
984
985 spin_lock(&ctx->lock);
986
987 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
988 blk_mq_attempt_merge(q, ctx, bio))
989 __blk_mq_free_request(hctx, ctx, rq);
990 else {
991 blk_mq_bio_to_request(rq, bio);
992 __blk_mq_insert_request(hctx, rq);
993 }
994
995 spin_unlock(&ctx->lock);
996 blk_mq_put_ctx(ctx);
997
998 /*
999 * For a SYNC request, send it to the hardware immediately. For an
1000 * ASYNC request, just ensure that we run it later on. The latter
1001 * allows for merging opportunities and more efficient dispatching.
1002 */
1003run_queue:
1004 blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
1005}
1006
1007/*
1008 * Default mapping to a software queue, since we use one per CPU.
1009 */
1010struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1011{
1012 return q->queue_hw_ctx[q->mq_map[cpu]];
1013}
1014EXPORT_SYMBOL(blk_mq_map_queue);
1015
1016struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_reg *reg,
1017 unsigned int hctx_index)
1018{
1019 return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
1020 GFP_KERNEL | __GFP_ZERO, reg->numa_node);
1021}
1022EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1023
1024void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1025 unsigned int hctx_index)
1026{
1027 kfree(hctx);
1028}
1029EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1030
1031static void blk_mq_hctx_notify(void *data, unsigned long action,
1032 unsigned int cpu)
1033{
1034 struct blk_mq_hw_ctx *hctx = data;
1035 struct blk_mq_ctx *ctx;
1036 LIST_HEAD(tmp);
1037
1038 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1039 return;
1040
1041 /*
1042 * Move ctx entries to new CPU, if this one is going away.
1043 */
1044 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1045
1046 spin_lock(&ctx->lock);
1047 if (!list_empty(&ctx->rq_list)) {
1048 list_splice_init(&ctx->rq_list, &tmp);
1049 clear_bit(ctx->index_hw, hctx->ctx_map);
1050 }
1051 spin_unlock(&ctx->lock);
1052
1053 if (list_empty(&tmp))
1054 return;
1055
1056 ctx = blk_mq_get_ctx(hctx->queue);
1057 spin_lock(&ctx->lock);
1058
1059 while (!list_empty(&tmp)) {
1060 struct request *rq;
1061
1062 rq = list_first_entry(&tmp, struct request, queuelist);
1063 rq->mq_ctx = ctx;
1064 list_move_tail(&rq->queuelist, &ctx->rq_list);
1065 }
1066
1067 blk_mq_hctx_mark_pending(hctx, ctx);
1068
1069 spin_unlock(&ctx->lock);
1070 blk_mq_put_ctx(ctx);
1071}
1072
1073static void blk_mq_init_hw_commands(struct blk_mq_hw_ctx *hctx,
1074 void (*init)(void *, struct blk_mq_hw_ctx *,
1075 struct request *, unsigned int),
1076 void *data)
1077{
1078 unsigned int i;
1079
1080 for (i = 0; i < hctx->queue_depth; i++) {
1081 struct request *rq = hctx->rqs[i];
1082
1083 init(data, hctx, rq, i);
1084 }
1085}
1086
1087void blk_mq_init_commands(struct request_queue *q,
1088 void (*init)(void *, struct blk_mq_hw_ctx *,
1089 struct request *, unsigned int),
1090 void *data)
1091{
1092 struct blk_mq_hw_ctx *hctx;
1093 unsigned int i;
1094
1095 queue_for_each_hw_ctx(q, hctx, i)
1096 blk_mq_init_hw_commands(hctx, init, data);
1097}
1098EXPORT_SYMBOL(blk_mq_init_commands);
1099
1100static void blk_mq_free_rq_map(struct blk_mq_hw_ctx *hctx)
1101{
1102 struct page *page;
1103
1104 while (!list_empty(&hctx->page_list)) {
1105 page = list_first_entry(&hctx->page_list, struct page, list);
1106 list_del_init(&page->list);
1107 __free_pages(page, page->private);
1108 }
1109
1110 kfree(hctx->rqs);
1111
1112 if (hctx->tags)
1113 blk_mq_free_tags(hctx->tags);
1114}
1115
1116static size_t order_to_size(unsigned int order)
1117{
1118 size_t ret = PAGE_SIZE;
1119
1120 while (order--)
1121 ret *= 2;
1122
1123 return ret;
1124}
1125
1126static int blk_mq_init_rq_map(struct blk_mq_hw_ctx *hctx,
1127 unsigned int reserved_tags, int node)
1128{
1129 unsigned int i, j, entries_per_page, max_order = 4;
1130 size_t rq_size, left;
1131
1132 INIT_LIST_HEAD(&hctx->page_list);
1133
1134 hctx->rqs = kmalloc_node(hctx->queue_depth * sizeof(struct request *),
1135 GFP_KERNEL, node);
1136 if (!hctx->rqs)
1137 return -ENOMEM;
1138
1139 /*
1140 * rq_size is the size of the request plus driver payload, rounded
1141 * to the cacheline size
1142 */
1143 rq_size = round_up(sizeof(struct request) + hctx->cmd_size,
1144 cache_line_size());
1145 left = rq_size * hctx->queue_depth;
1146
1147 for (i = 0; i < hctx->queue_depth;) {
1148 int this_order = max_order;
1149 struct page *page;
1150 int to_do;
1151 void *p;
1152
1153 while (left < order_to_size(this_order - 1) && this_order)
1154 this_order--;
1155
1156 do {
1157 page = alloc_pages_node(node, GFP_KERNEL, this_order);
1158 if (page)
1159 break;
1160 if (!this_order--)
1161 break;
1162 if (order_to_size(this_order) < rq_size)
1163 break;
1164 } while (1);
1165
1166 if (!page)
1167 break;
1168
1169 page->private = this_order;
1170 list_add_tail(&page->list, &hctx->page_list);
1171
1172 p = page_address(page);
1173 entries_per_page = order_to_size(this_order) / rq_size;
1174 to_do = min(entries_per_page, hctx->queue_depth - i);
1175 left -= to_do * rq_size;
1176 for (j = 0; j < to_do; j++) {
1177 hctx->rqs[i] = p;
1178 blk_mq_rq_init(hctx, hctx->rqs[i]);
1179 p += rq_size;
1180 i++;
1181 }
1182 }
1183
1184 if (i < (reserved_tags + BLK_MQ_TAG_MIN))
1185 goto err_rq_map;
1186 else if (i != hctx->queue_depth) {
1187 hctx->queue_depth = i;
1188 pr_warn("%s: queue depth set to %u because of low memory\n",
1189 __func__, i);
1190 }
1191
1192 hctx->tags = blk_mq_init_tags(hctx->queue_depth, reserved_tags, node);
1193 if (!hctx->tags) {
1194err_rq_map:
1195 blk_mq_free_rq_map(hctx);
1196 return -ENOMEM;
1197 }
1198
1199 return 0;
1200}
1201
1202static int blk_mq_init_hw_queues(struct request_queue *q,
1203 struct blk_mq_reg *reg, void *driver_data)
1204{
1205 struct blk_mq_hw_ctx *hctx;
1206 unsigned int i, j;
1207
1208 /*
1209 * Initialize hardware queues
1210 */
1211 queue_for_each_hw_ctx(q, hctx, i) {
1212 unsigned int num_maps;
1213 int node;
1214
1215 node = hctx->numa_node;
1216 if (node == NUMA_NO_NODE)
1217 node = hctx->numa_node = reg->numa_node;
1218
1219 INIT_DELAYED_WORK(&hctx->delayed_work, blk_mq_work_fn);
1220 spin_lock_init(&hctx->lock);
1221 INIT_LIST_HEAD(&hctx->dispatch);
1222 hctx->queue = q;
1223 hctx->queue_num = i;
1224 hctx->flags = reg->flags;
1225 hctx->queue_depth = reg->queue_depth;
1226 hctx->cmd_size = reg->cmd_size;
1227
1228 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1229 blk_mq_hctx_notify, hctx);
1230 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1231
1232 if (blk_mq_init_rq_map(hctx, reg->reserved_tags, node))
1233 break;
1234
1235 /*
1236 * Allocate space for all possible cpus to avoid allocation in
1237 * runtime
1238 */
1239 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1240 GFP_KERNEL, node);
1241 if (!hctx->ctxs)
1242 break;
1243
1244 num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1245 hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1246 GFP_KERNEL, node);
1247 if (!hctx->ctx_map)
1248 break;
1249
1250 hctx->nr_ctx_map = num_maps;
1251 hctx->nr_ctx = 0;
1252
1253 if (reg->ops->init_hctx &&
1254 reg->ops->init_hctx(hctx, driver_data, i))
1255 break;
1256 }
1257
1258 if (i == q->nr_hw_queues)
1259 return 0;
1260
1261 /*
1262 * Init failed
1263 */
1264 queue_for_each_hw_ctx(q, hctx, j) {
1265 if (i == j)
1266 break;
1267
1268 if (reg->ops->exit_hctx)
1269 reg->ops->exit_hctx(hctx, j);
1270
1271 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1272 blk_mq_free_rq_map(hctx);
1273 kfree(hctx->ctxs);
1274 }
1275
1276 return 1;
1277}
1278
1279static void blk_mq_init_cpu_queues(struct request_queue *q,
1280 unsigned int nr_hw_queues)
1281{
1282 unsigned int i;
1283
1284 for_each_possible_cpu(i) {
1285 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1286 struct blk_mq_hw_ctx *hctx;
1287
1288 memset(__ctx, 0, sizeof(*__ctx));
1289 __ctx->cpu = i;
1290 spin_lock_init(&__ctx->lock);
1291 INIT_LIST_HEAD(&__ctx->rq_list);
1292 __ctx->queue = q;
1293
1294 /* If the cpu isn't online, the cpu is mapped to first hctx */
1295 hctx = q->mq_ops->map_queue(q, i);
1296 hctx->nr_ctx++;
1297
1298 if (!cpu_online(i))
1299 continue;
1300
1301 /*
1302 * Set local node, IFF we have more than one hw queue. If
1303 * not, we remain on the home node of the device
1304 */
1305 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1306 hctx->numa_node = cpu_to_node(i);
1307 }
1308}
1309
1310static void blk_mq_map_swqueue(struct request_queue *q)
1311{
1312 unsigned int i;
1313 struct blk_mq_hw_ctx *hctx;
1314 struct blk_mq_ctx *ctx;
1315
1316 queue_for_each_hw_ctx(q, hctx, i) {
1317 hctx->nr_ctx = 0;
1318 }
1319
1320 /*
1321 * Map software to hardware queues
1322 */
1323 queue_for_each_ctx(q, ctx, i) {
1324 /* If the cpu isn't online, the cpu is mapped to first hctx */
1325 hctx = q->mq_ops->map_queue(q, i);
1326 ctx->index_hw = hctx->nr_ctx;
1327 hctx->ctxs[hctx->nr_ctx++] = ctx;
1328 }
1329}
1330
1331struct request_queue *blk_mq_init_queue(struct blk_mq_reg *reg,
1332 void *driver_data)
1333{
1334 struct blk_mq_hw_ctx **hctxs;
1335 struct blk_mq_ctx *ctx;
1336 struct request_queue *q;
1337 int i;
1338
1339 if (!reg->nr_hw_queues ||
1340 !reg->ops->queue_rq || !reg->ops->map_queue ||
1341 !reg->ops->alloc_hctx || !reg->ops->free_hctx)
1342 return ERR_PTR(-EINVAL);
1343
1344 if (!reg->queue_depth)
1345 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1346 else if (reg->queue_depth > BLK_MQ_MAX_DEPTH) {
1347 pr_err("blk-mq: queuedepth too large (%u)\n", reg->queue_depth);
1348 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1349 }
1350
3228f48b
CH
1351 /*
1352 * Set aside a tag for flush requests. It will only be used while
1353 * another flush request is in progress but outside the driver.
1354 *
1355 * TODO: only allocate if flushes are supported
1356 */
1357 reg->queue_depth++;
1358 reg->reserved_tags++;
1359
320ae51f
JA
1360 if (reg->queue_depth < (reg->reserved_tags + BLK_MQ_TAG_MIN))
1361 return ERR_PTR(-EINVAL);
1362
1363 ctx = alloc_percpu(struct blk_mq_ctx);
1364 if (!ctx)
1365 return ERR_PTR(-ENOMEM);
1366
1367 hctxs = kmalloc_node(reg->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1368 reg->numa_node);
1369
1370 if (!hctxs)
1371 goto err_percpu;
1372
1373 for (i = 0; i < reg->nr_hw_queues; i++) {
1374 hctxs[i] = reg->ops->alloc_hctx(reg, i);
1375 if (!hctxs[i])
1376 goto err_hctxs;
1377
1378 hctxs[i]->numa_node = NUMA_NO_NODE;
1379 hctxs[i]->queue_num = i;
1380 }
1381
1382 q = blk_alloc_queue_node(GFP_KERNEL, reg->numa_node);
1383 if (!q)
1384 goto err_hctxs;
1385
1386 q->mq_map = blk_mq_make_queue_map(reg);
1387 if (!q->mq_map)
1388 goto err_map;
1389
1390 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1391 blk_queue_rq_timeout(q, 30000);
1392
1393 q->nr_queues = nr_cpu_ids;
1394 q->nr_hw_queues = reg->nr_hw_queues;
1395
1396 q->queue_ctx = ctx;
1397 q->queue_hw_ctx = hctxs;
1398
1399 q->mq_ops = reg->ops;
94eddfbe 1400 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f
JA
1401
1402 blk_queue_make_request(q, blk_mq_make_request);
1403 blk_queue_rq_timed_out(q, reg->ops->timeout);
1404 if (reg->timeout)
1405 blk_queue_rq_timeout(q, reg->timeout);
1406
1407 blk_mq_init_flush(q);
1408 blk_mq_init_cpu_queues(q, reg->nr_hw_queues);
1409
1410 if (blk_mq_init_hw_queues(q, reg, driver_data))
1411 goto err_hw;
1412
1413 blk_mq_map_swqueue(q);
1414
1415 mutex_lock(&all_q_mutex);
1416 list_add_tail(&q->all_q_node, &all_q_list);
1417 mutex_unlock(&all_q_mutex);
1418
1419 return q;
1420err_hw:
1421 kfree(q->mq_map);
1422err_map:
1423 blk_cleanup_queue(q);
1424err_hctxs:
1425 for (i = 0; i < reg->nr_hw_queues; i++) {
1426 if (!hctxs[i])
1427 break;
1428 reg->ops->free_hctx(hctxs[i], i);
1429 }
1430 kfree(hctxs);
1431err_percpu:
1432 free_percpu(ctx);
1433 return ERR_PTR(-ENOMEM);
1434}
1435EXPORT_SYMBOL(blk_mq_init_queue);
1436
1437void blk_mq_free_queue(struct request_queue *q)
1438{
1439 struct blk_mq_hw_ctx *hctx;
1440 int i;
1441
1442 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f
JA
1443 kfree(hctx->ctx_map);
1444 kfree(hctx->ctxs);
1445 blk_mq_free_rq_map(hctx);
1446 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1447 if (q->mq_ops->exit_hctx)
1448 q->mq_ops->exit_hctx(hctx, i);
1449 q->mq_ops->free_hctx(hctx, i);
1450 }
1451
1452 free_percpu(q->queue_ctx);
1453 kfree(q->queue_hw_ctx);
1454 kfree(q->mq_map);
1455
1456 q->queue_ctx = NULL;
1457 q->queue_hw_ctx = NULL;
1458 q->mq_map = NULL;
1459
1460 mutex_lock(&all_q_mutex);
1461 list_del_init(&q->all_q_node);
1462 mutex_unlock(&all_q_mutex);
1463}
320ae51f
JA
1464
1465/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1466static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1467{
1468 blk_mq_freeze_queue(q);
1469
1470 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1471
1472 /*
1473 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1474 * we should change hctx numa_node according to new topology (this
1475 * involves free and re-allocate memory, worthy doing?)
1476 */
1477
1478 blk_mq_map_swqueue(q);
1479
1480 blk_mq_unfreeze_queue(q);
1481}
1482
f618ef7c
PG
1483static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1484 unsigned long action, void *hcpu)
320ae51f
JA
1485{
1486 struct request_queue *q;
1487
1488 /*
1489 * Before new mapping is established, hotadded cpu might already start
1490 * handling requests. This doesn't break anything as we map offline
1491 * CPUs to first hardware queue. We will re-init queue below to get
1492 * optimal settings.
1493 */
1494 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1495 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1496 return NOTIFY_OK;
1497
1498 mutex_lock(&all_q_mutex);
1499 list_for_each_entry(q, &all_q_list, all_q_node)
1500 blk_mq_queue_reinit(q);
1501 mutex_unlock(&all_q_mutex);
1502 return NOTIFY_OK;
1503}
1504
1505static int __init blk_mq_init(void)
1506{
1507 unsigned int i;
1508
1509 for_each_possible_cpu(i)
1510 init_llist_head(&per_cpu(ipi_lists, i));
1511
1512 blk_mq_cpu_init();
1513
1514 /* Must be called after percpu_counter_hotcpu_callback() */
1515 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1516
1517 return 0;
1518}
1519subsys_initcall(blk_mq_init);