]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-mq.c
blk-mq: refactor blk_mq_sched_assign_ioc
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
cf43e6be 36#include "blk-stat.h"
87760e5e 37#include "blk-wbt.h"
bd166ef1 38#include "blk-mq-sched.h"
320ae51f
JA
39
40static DEFINE_MUTEX(all_q_mutex);
41static LIST_HEAD(all_q_list);
42
34dbad5d
OS
43static void blk_mq_poll_stats_start(struct request_queue *q);
44static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
2719aa21 45static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
34dbad5d 46
720b8ccc
SB
47static int blk_mq_poll_stats_bkt(const struct request *rq)
48{
49 int ddir, bytes, bucket;
50
99c749a4 51 ddir = rq_data_dir(rq);
720b8ccc
SB
52 bytes = blk_rq_bytes(rq);
53
54 bucket = ddir + 2*(ilog2(bytes) - 9);
55
56 if (bucket < 0)
57 return -1;
58 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
59 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60
61 return bucket;
62}
63
320ae51f
JA
64/*
65 * Check if any of the ctx's have pending work in this hardware queue
66 */
50e1dab8 67bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 68{
bd166ef1
JA
69 return sbitmap_any_bit_set(&hctx->ctx_map) ||
70 !list_empty_careful(&hctx->dispatch) ||
71 blk_mq_sched_has_work(hctx);
1429d7c9
JA
72}
73
320ae51f
JA
74/*
75 * Mark this ctx as having pending work in this hardware queue
76 */
77static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78 struct blk_mq_ctx *ctx)
79{
88459642
OS
80 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
81 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
82}
83
84static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85 struct blk_mq_ctx *ctx)
86{
88459642 87 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
88}
89
1671d522 90void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 91{
4ecd4fef 92 int freeze_depth;
cddd5d17 93
4ecd4fef
CH
94 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
95 if (freeze_depth == 1) {
3ef28e83 96 percpu_ref_kill(&q->q_usage_counter);
b94ec296 97 blk_mq_run_hw_queues(q, false);
cddd5d17 98 }
f3af020b 99}
1671d522 100EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 101
6bae363e 102void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 103{
3ef28e83 104 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 105}
6bae363e 106EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 107
f91328c4
KB
108int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
109 unsigned long timeout)
110{
111 return wait_event_timeout(q->mq_freeze_wq,
112 percpu_ref_is_zero(&q->q_usage_counter),
113 timeout);
114}
115EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 116
f3af020b
TH
117/*
118 * Guarantee no request is in use, so we can change any data structure of
119 * the queue afterward.
120 */
3ef28e83 121void blk_freeze_queue(struct request_queue *q)
f3af020b 122{
3ef28e83
DW
123 /*
124 * In the !blk_mq case we are only calling this to kill the
125 * q_usage_counter, otherwise this increases the freeze depth
126 * and waits for it to return to zero. For this reason there is
127 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
128 * exported to drivers as the only user for unfreeze is blk_mq.
129 */
1671d522 130 blk_freeze_queue_start(q);
f3af020b
TH
131 blk_mq_freeze_queue_wait(q);
132}
3ef28e83
DW
133
134void blk_mq_freeze_queue(struct request_queue *q)
135{
136 /*
137 * ...just an alias to keep freeze and unfreeze actions balanced
138 * in the blk_mq_* namespace
139 */
140 blk_freeze_queue(q);
141}
c761d96b 142EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 143
b4c6a028 144void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 145{
4ecd4fef 146 int freeze_depth;
320ae51f 147
4ecd4fef
CH
148 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
149 WARN_ON_ONCE(freeze_depth < 0);
150 if (!freeze_depth) {
3ef28e83 151 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 152 wake_up_all(&q->mq_freeze_wq);
add703fd 153 }
320ae51f 154}
b4c6a028 155EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 156
6a83e74d
BVA
157/**
158 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
159 * @q: request queue.
160 *
161 * Note: this function does not prevent that the struct request end_io()
162 * callback function is invoked. Additionally, it is not prevented that
163 * new queue_rq() calls occur unless the queue has been stopped first.
164 */
165void blk_mq_quiesce_queue(struct request_queue *q)
166{
167 struct blk_mq_hw_ctx *hctx;
168 unsigned int i;
169 bool rcu = false;
170
2719aa21 171 __blk_mq_stop_hw_queues(q, true);
6a83e74d
BVA
172
173 queue_for_each_hw_ctx(q, hctx, i) {
174 if (hctx->flags & BLK_MQ_F_BLOCKING)
175 synchronize_srcu(&hctx->queue_rq_srcu);
176 else
177 rcu = true;
178 }
179 if (rcu)
180 synchronize_rcu();
181}
182EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
183
aed3ea94
JA
184void blk_mq_wake_waiters(struct request_queue *q)
185{
186 struct blk_mq_hw_ctx *hctx;
187 unsigned int i;
188
189 queue_for_each_hw_ctx(q, hctx, i)
190 if (blk_mq_hw_queue_mapped(hctx))
191 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
192
193 /*
194 * If we are called because the queue has now been marked as
195 * dying, we need to ensure that processes currently waiting on
196 * the queue are notified as well.
197 */
198 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
199}
200
320ae51f
JA
201bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
202{
203 return blk_mq_has_free_tags(hctx->tags);
204}
205EXPORT_SYMBOL(blk_mq_can_queue);
206
6e15cf2a
CH
207static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
208 struct request *rq, unsigned int op)
320ae51f 209{
af76e555
CH
210 INIT_LIST_HEAD(&rq->queuelist);
211 /* csd/requeue_work/fifo_time is initialized before use */
212 rq->q = q;
320ae51f 213 rq->mq_ctx = ctx;
ef295ecf 214 rq->cmd_flags = op;
e8064021
CH
215 if (blk_queue_io_stat(q))
216 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
217 /* do not touch atomic flags, it needs atomic ops against the timer */
218 rq->cpu = -1;
af76e555
CH
219 INIT_HLIST_NODE(&rq->hash);
220 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
221 rq->rq_disk = NULL;
222 rq->part = NULL;
3ee32372 223 rq->start_time = jiffies;
af76e555
CH
224#ifdef CONFIG_BLK_CGROUP
225 rq->rl = NULL;
0fec08b4 226 set_start_time_ns(rq);
af76e555
CH
227 rq->io_start_time_ns = 0;
228#endif
229 rq->nr_phys_segments = 0;
230#if defined(CONFIG_BLK_DEV_INTEGRITY)
231 rq->nr_integrity_segments = 0;
232#endif
af76e555
CH
233 rq->special = NULL;
234 /* tag was already set */
af76e555 235 rq->extra_len = 0;
af76e555 236
af76e555 237 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
238 rq->timeout = 0;
239
af76e555
CH
240 rq->end_io = NULL;
241 rq->end_io_data = NULL;
242 rq->next_rq = NULL;
243
ef295ecf 244 ctx->rq_dispatched[op_is_sync(op)]++;
320ae51f
JA
245}
246
2c3ad667
JA
247struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
248 unsigned int op)
5dee8577
CH
249{
250 struct request *rq;
251 unsigned int tag;
252
cb96a42c 253 tag = blk_mq_get_tag(data);
5dee8577 254 if (tag != BLK_MQ_TAG_FAIL) {
bd166ef1
JA
255 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
256
257 rq = tags->static_rqs[tag];
5dee8577 258
bd166ef1
JA
259 if (data->flags & BLK_MQ_REQ_INTERNAL) {
260 rq->tag = -1;
261 rq->internal_tag = tag;
262 } else {
200e86b3
JA
263 if (blk_mq_tag_busy(data->hctx)) {
264 rq->rq_flags = RQF_MQ_INFLIGHT;
265 atomic_inc(&data->hctx->nr_active);
266 }
bd166ef1
JA
267 rq->tag = tag;
268 rq->internal_tag = -1;
562bef42 269 data->hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
270 }
271
ef295ecf 272 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
5dee8577
CH
273 return rq;
274 }
275
276 return NULL;
277}
2c3ad667 278EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
5dee8577 279
d2c0d383
CH
280static struct request *blk_mq_get_request(struct request_queue *q,
281 struct bio *bio, unsigned int op,
282 struct blk_mq_alloc_data *data)
283{
284 struct elevator_queue *e = q->elevator;
285 struct request *rq;
286
287 blk_queue_enter_live(q);
288 data->q = q;
289 if (likely(!data->ctx))
290 data->ctx = blk_mq_get_ctx(q);
291 if (likely(!data->hctx))
292 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
293
294 if (e) {
295 data->flags |= BLK_MQ_REQ_INTERNAL;
296
297 /*
298 * Flush requests are special and go directly to the
299 * dispatch list.
300 */
301 if (!op_is_flush(op) && e->type->ops.mq.get_request) {
302 rq = e->type->ops.mq.get_request(q, op, data);
303 if (rq)
304 rq->rq_flags |= RQF_QUEUED;
037cebb8
CH
305 goto allocated;
306 }
d2c0d383
CH
307 }
308
037cebb8
CH
309 rq = __blk_mq_alloc_request(data, op);
310allocated:
311 if (!rq) {
312 blk_queue_exit(q);
313 return NULL;
d2c0d383
CH
314 }
315
037cebb8
CH
316 if (!op_is_flush(op)) {
317 rq->elv.icq = NULL;
44e8c2bf
CH
318 if (e && e->type->ops.mq.get_rq_priv) {
319 if (e->type->icq_cache && rq_ioc(bio))
320 blk_mq_sched_assign_ioc(rq, bio);
321
322 if (e->type->ops.mq.get_rq_priv(q, rq, bio)) {
323 if (rq->elv.icq)
324 put_io_context(rq->elv.icq->ioc);
325 rq->elv.icq = NULL;
326 } else {
327 rq->rq_flags |= RQF_ELVPRIV;
328 }
329 }
037cebb8
CH
330 }
331 data->hctx->queued++;
332 return rq;
d2c0d383
CH
333}
334
6f3b0e8b
CH
335struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
336 unsigned int flags)
320ae51f 337{
5a797e00 338 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 339 struct request *rq;
a492f075 340 int ret;
320ae51f 341
6f3b0e8b 342 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
343 if (ret)
344 return ERR_PTR(ret);
320ae51f 345
d2c0d383 346 rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
841bac2c 347
bd166ef1
JA
348 blk_mq_put_ctx(alloc_data.ctx);
349 blk_queue_exit(q);
350
351 if (!rq)
a492f075 352 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
353
354 rq->__data_len = 0;
355 rq->__sector = (sector_t) -1;
356 rq->bio = rq->biotail = NULL;
320ae51f
JA
357 return rq;
358}
4bb659b1 359EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 360
1f5bd336
ML
361struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
362 unsigned int flags, unsigned int hctx_idx)
363{
6d2809d5 364 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 365 struct request *rq;
6d2809d5 366 unsigned int cpu;
1f5bd336
ML
367 int ret;
368
369 /*
370 * If the tag allocator sleeps we could get an allocation for a
371 * different hardware context. No need to complicate the low level
372 * allocator for this for the rare use case of a command tied to
373 * a specific queue.
374 */
375 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
376 return ERR_PTR(-EINVAL);
377
378 if (hctx_idx >= q->nr_hw_queues)
379 return ERR_PTR(-EIO);
380
381 ret = blk_queue_enter(q, true);
382 if (ret)
383 return ERR_PTR(ret);
384
c8712c6a
CH
385 /*
386 * Check if the hardware context is actually mapped to anything.
387 * If not tell the caller that it should skip this queue.
388 */
6d2809d5
OS
389 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
390 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
391 blk_queue_exit(q);
392 return ERR_PTR(-EXDEV);
c8712c6a 393 }
6d2809d5
OS
394 cpu = cpumask_first(alloc_data.hctx->cpumask);
395 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 396
d2c0d383 397 rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
c8712c6a 398
c8712c6a 399 blk_queue_exit(q);
6d2809d5
OS
400
401 if (!rq)
402 return ERR_PTR(-EWOULDBLOCK);
403
404 return rq;
1f5bd336
ML
405}
406EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
407
6af54051 408void blk_mq_free_request(struct request *rq)
320ae51f 409{
320ae51f 410 struct request_queue *q = rq->q;
6af54051
CH
411 struct elevator_queue *e = q->elevator;
412 struct blk_mq_ctx *ctx = rq->mq_ctx;
413 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
414 const int sched_tag = rq->internal_tag;
415
416 if (rq->rq_flags & (RQF_ELVPRIV | RQF_QUEUED)) {
417 if (e && e->type->ops.mq.finish_request)
418 e->type->ops.mq.finish_request(rq);
419 if (rq->elv.icq) {
420 put_io_context(rq->elv.icq->ioc);
421 rq->elv.icq = NULL;
422 }
423 }
320ae51f 424
6af54051 425 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 426 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 427 atomic_dec(&hctx->nr_active);
87760e5e
JA
428
429 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 430 rq->rq_flags = 0;
0d2602ca 431
af76e555 432 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 433 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
434 if (rq->tag != -1)
435 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
436 if (sched_tag != -1)
c05f8525 437 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
6d8c6c0f 438 blk_mq_sched_restart(hctx);
3ef28e83 439 blk_queue_exit(q);
320ae51f 440}
1a3b595a 441EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 442
2a842aca 443inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 444{
0d11e6ac
ML
445 blk_account_io_done(rq);
446
91b63639 447 if (rq->end_io) {
87760e5e 448 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 449 rq->end_io(rq, error);
91b63639
CH
450 } else {
451 if (unlikely(blk_bidi_rq(rq)))
452 blk_mq_free_request(rq->next_rq);
320ae51f 453 blk_mq_free_request(rq);
91b63639 454 }
320ae51f 455}
c8a446ad 456EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 457
2a842aca 458void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
459{
460 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
461 BUG();
c8a446ad 462 __blk_mq_end_request(rq, error);
63151a44 463}
c8a446ad 464EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 465
30a91cb4 466static void __blk_mq_complete_request_remote(void *data)
320ae51f 467{
3d6efbf6 468 struct request *rq = data;
320ae51f 469
30a91cb4 470 rq->q->softirq_done_fn(rq);
320ae51f 471}
320ae51f 472
453f8341 473static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
474{
475 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 476 bool shared = false;
320ae51f
JA
477 int cpu;
478
453f8341
CH
479 if (rq->internal_tag != -1)
480 blk_mq_sched_completed_request(rq);
481 if (rq->rq_flags & RQF_STATS) {
482 blk_mq_poll_stats_start(rq->q);
483 blk_stat_add(rq);
484 }
485
38535201 486 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
487 rq->q->softirq_done_fn(rq);
488 return;
489 }
320ae51f
JA
490
491 cpu = get_cpu();
38535201
CH
492 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
493 shared = cpus_share_cache(cpu, ctx->cpu);
494
495 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 496 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
497 rq->csd.info = rq;
498 rq->csd.flags = 0;
c46fff2a 499 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 500 } else {
30a91cb4 501 rq->q->softirq_done_fn(rq);
3d6efbf6 502 }
320ae51f
JA
503 put_cpu();
504}
30a91cb4
CH
505
506/**
507 * blk_mq_complete_request - end I/O on a request
508 * @rq: the request being processed
509 *
510 * Description:
511 * Ends all I/O on a request. It does not handle partial completions.
512 * The actual completion happens out-of-order, through a IPI handler.
513 **/
08e0029a 514void blk_mq_complete_request(struct request *rq)
30a91cb4 515{
95f09684
JA
516 struct request_queue *q = rq->q;
517
518 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 519 return;
08e0029a 520 if (!blk_mark_rq_complete(rq))
ed851860 521 __blk_mq_complete_request(rq);
30a91cb4
CH
522}
523EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 524
973c0191
KB
525int blk_mq_request_started(struct request *rq)
526{
527 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
528}
529EXPORT_SYMBOL_GPL(blk_mq_request_started);
530
e2490073 531void blk_mq_start_request(struct request *rq)
320ae51f
JA
532{
533 struct request_queue *q = rq->q;
534
bd166ef1
JA
535 blk_mq_sched_started_request(rq);
536
320ae51f
JA
537 trace_block_rq_issue(q, rq);
538
cf43e6be 539 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 540 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 541 rq->rq_flags |= RQF_STATS;
87760e5e 542 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
543 }
544
2b8393b4 545 blk_add_timer(rq);
87ee7b11 546
538b7534
JA
547 /*
548 * Ensure that ->deadline is visible before set the started
549 * flag and clear the completed flag.
550 */
551 smp_mb__before_atomic();
552
87ee7b11
JA
553 /*
554 * Mark us as started and clear complete. Complete might have been
555 * set if requeue raced with timeout, which then marked it as
556 * complete. So be sure to clear complete again when we start
557 * the request, otherwise we'll ignore the completion event.
558 */
4b570521
JA
559 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
560 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
561 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
562 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
563
564 if (q->dma_drain_size && blk_rq_bytes(rq)) {
565 /*
566 * Make sure space for the drain appears. We know we can do
567 * this because max_hw_segments has been adjusted to be one
568 * fewer than the device can handle.
569 */
570 rq->nr_phys_segments++;
571 }
320ae51f 572}
e2490073 573EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 574
d9d149a3
ML
575/*
576 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
48b99c9d 577 * flag isn't set yet, so there may be race with timeout handler,
d9d149a3
ML
578 * but given rq->deadline is just set in .queue_rq() under
579 * this situation, the race won't be possible in reality because
580 * rq->timeout should be set as big enough to cover the window
581 * between blk_mq_start_request() called from .queue_rq() and
582 * clearing REQ_ATOM_STARTED here.
583 */
ed0791b2 584static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
585{
586 struct request_queue *q = rq->q;
587
588 trace_block_rq_requeue(q, rq);
87760e5e 589 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 590 blk_mq_sched_requeue_request(rq);
49f5baa5 591
e2490073
CH
592 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
593 if (q->dma_drain_size && blk_rq_bytes(rq))
594 rq->nr_phys_segments--;
595 }
320ae51f
JA
596}
597
2b053aca 598void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 599{
ed0791b2 600 __blk_mq_requeue_request(rq);
ed0791b2 601
ed0791b2 602 BUG_ON(blk_queued_rq(rq));
2b053aca 603 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
604}
605EXPORT_SYMBOL(blk_mq_requeue_request);
606
6fca6a61
CH
607static void blk_mq_requeue_work(struct work_struct *work)
608{
609 struct request_queue *q =
2849450a 610 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
611 LIST_HEAD(rq_list);
612 struct request *rq, *next;
613 unsigned long flags;
614
615 spin_lock_irqsave(&q->requeue_lock, flags);
616 list_splice_init(&q->requeue_list, &rq_list);
617 spin_unlock_irqrestore(&q->requeue_lock, flags);
618
619 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 620 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
621 continue;
622
e8064021 623 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 624 list_del_init(&rq->queuelist);
bd6737f1 625 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
626 }
627
628 while (!list_empty(&rq_list)) {
629 rq = list_entry(rq_list.next, struct request, queuelist);
630 list_del_init(&rq->queuelist);
bd6737f1 631 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
632 }
633
52d7f1b5 634 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
635}
636
2b053aca
BVA
637void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
638 bool kick_requeue_list)
6fca6a61
CH
639{
640 struct request_queue *q = rq->q;
641 unsigned long flags;
642
643 /*
644 * We abuse this flag that is otherwise used by the I/O scheduler to
645 * request head insertation from the workqueue.
646 */
e8064021 647 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
648
649 spin_lock_irqsave(&q->requeue_lock, flags);
650 if (at_head) {
e8064021 651 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
652 list_add(&rq->queuelist, &q->requeue_list);
653 } else {
654 list_add_tail(&rq->queuelist, &q->requeue_list);
655 }
656 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
657
658 if (kick_requeue_list)
659 blk_mq_kick_requeue_list(q);
6fca6a61
CH
660}
661EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
662
663void blk_mq_kick_requeue_list(struct request_queue *q)
664{
2849450a 665 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
666}
667EXPORT_SYMBOL(blk_mq_kick_requeue_list);
668
2849450a
MS
669void blk_mq_delay_kick_requeue_list(struct request_queue *q,
670 unsigned long msecs)
671{
672 kblockd_schedule_delayed_work(&q->requeue_work,
673 msecs_to_jiffies(msecs));
674}
675EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
676
0e62f51f
JA
677struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
678{
88c7b2b7
JA
679 if (tag < tags->nr_tags) {
680 prefetch(tags->rqs[tag]);
4ee86bab 681 return tags->rqs[tag];
88c7b2b7 682 }
4ee86bab
HR
683
684 return NULL;
24d2f903
CH
685}
686EXPORT_SYMBOL(blk_mq_tag_to_rq);
687
320ae51f 688struct blk_mq_timeout_data {
46f92d42
CH
689 unsigned long next;
690 unsigned int next_set;
320ae51f
JA
691};
692
90415837 693void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 694{
f8a5b122 695 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 696 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
697
698 /*
699 * We know that complete is set at this point. If STARTED isn't set
700 * anymore, then the request isn't active and the "timeout" should
701 * just be ignored. This can happen due to the bitflag ordering.
702 * Timeout first checks if STARTED is set, and if it is, assumes
703 * the request is active. But if we race with completion, then
48b99c9d 704 * both flags will get cleared. So check here again, and ignore
87ee7b11
JA
705 * a timeout event with a request that isn't active.
706 */
46f92d42
CH
707 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
708 return;
87ee7b11 709
46f92d42 710 if (ops->timeout)
0152fb6b 711 ret = ops->timeout(req, reserved);
46f92d42
CH
712
713 switch (ret) {
714 case BLK_EH_HANDLED:
715 __blk_mq_complete_request(req);
716 break;
717 case BLK_EH_RESET_TIMER:
718 blk_add_timer(req);
719 blk_clear_rq_complete(req);
720 break;
721 case BLK_EH_NOT_HANDLED:
722 break;
723 default:
724 printk(KERN_ERR "block: bad eh return: %d\n", ret);
725 break;
726 }
87ee7b11 727}
5b3f25fc 728
81481eb4
CH
729static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
730 struct request *rq, void *priv, bool reserved)
731{
732 struct blk_mq_timeout_data *data = priv;
87ee7b11 733
95a49603 734 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 735 return;
87ee7b11 736
d9d149a3
ML
737 /*
738 * The rq being checked may have been freed and reallocated
739 * out already here, we avoid this race by checking rq->deadline
740 * and REQ_ATOM_COMPLETE flag together:
741 *
742 * - if rq->deadline is observed as new value because of
743 * reusing, the rq won't be timed out because of timing.
744 * - if rq->deadline is observed as previous value,
745 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
746 * because we put a barrier between setting rq->deadline
747 * and clearing the flag in blk_mq_start_request(), so
748 * this rq won't be timed out too.
749 */
46f92d42
CH
750 if (time_after_eq(jiffies, rq->deadline)) {
751 if (!blk_mark_rq_complete(rq))
0152fb6b 752 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
753 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
754 data->next = rq->deadline;
755 data->next_set = 1;
756 }
87ee7b11
JA
757}
758
287922eb 759static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 760{
287922eb
CH
761 struct request_queue *q =
762 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
763 struct blk_mq_timeout_data data = {
764 .next = 0,
765 .next_set = 0,
766 };
81481eb4 767 int i;
320ae51f 768
71f79fb3
GKB
769 /* A deadlock might occur if a request is stuck requiring a
770 * timeout at the same time a queue freeze is waiting
771 * completion, since the timeout code would not be able to
772 * acquire the queue reference here.
773 *
774 * That's why we don't use blk_queue_enter here; instead, we use
775 * percpu_ref_tryget directly, because we need to be able to
776 * obtain a reference even in the short window between the queue
777 * starting to freeze, by dropping the first reference in
1671d522 778 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
779 * consumed, marked by the instant q_usage_counter reaches
780 * zero.
781 */
782 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
783 return;
784
0bf6cd5b 785 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 786
81481eb4
CH
787 if (data.next_set) {
788 data.next = blk_rq_timeout(round_jiffies_up(data.next));
789 mod_timer(&q->timeout, data.next);
0d2602ca 790 } else {
0bf6cd5b
CH
791 struct blk_mq_hw_ctx *hctx;
792
f054b56c
ML
793 queue_for_each_hw_ctx(q, hctx, i) {
794 /* the hctx may be unmapped, so check it here */
795 if (blk_mq_hw_queue_mapped(hctx))
796 blk_mq_tag_idle(hctx);
797 }
0d2602ca 798 }
287922eb 799 blk_queue_exit(q);
320ae51f
JA
800}
801
88459642
OS
802struct flush_busy_ctx_data {
803 struct blk_mq_hw_ctx *hctx;
804 struct list_head *list;
805};
806
807static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
808{
809 struct flush_busy_ctx_data *flush_data = data;
810 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
811 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
812
813 sbitmap_clear_bit(sb, bitnr);
814 spin_lock(&ctx->lock);
815 list_splice_tail_init(&ctx->rq_list, flush_data->list);
816 spin_unlock(&ctx->lock);
817 return true;
818}
819
1429d7c9
JA
820/*
821 * Process software queues that have been marked busy, splicing them
822 * to the for-dispatch
823 */
2c3ad667 824void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 825{
88459642
OS
826 struct flush_busy_ctx_data data = {
827 .hctx = hctx,
828 .list = list,
829 };
1429d7c9 830
88459642 831 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 832}
2c3ad667 833EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 834
703fd1c0
JA
835static inline unsigned int queued_to_index(unsigned int queued)
836{
837 if (!queued)
838 return 0;
1429d7c9 839
703fd1c0 840 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
841}
842
bd6737f1
JA
843bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
844 bool wait)
bd166ef1
JA
845{
846 struct blk_mq_alloc_data data = {
847 .q = rq->q,
bd166ef1
JA
848 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
849 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
850 };
851
5feeacdd
JA
852 might_sleep_if(wait);
853
81380ca1
OS
854 if (rq->tag != -1)
855 goto done;
bd166ef1 856
415b806d
SG
857 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
858 data.flags |= BLK_MQ_REQ_RESERVED;
859
bd166ef1
JA
860 rq->tag = blk_mq_get_tag(&data);
861 if (rq->tag >= 0) {
200e86b3
JA
862 if (blk_mq_tag_busy(data.hctx)) {
863 rq->rq_flags |= RQF_MQ_INFLIGHT;
864 atomic_inc(&data.hctx->nr_active);
865 }
bd166ef1 866 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
867 }
868
81380ca1
OS
869done:
870 if (hctx)
871 *hctx = data.hctx;
872 return rq->tag != -1;
bd166ef1
JA
873}
874
113285b4
JA
875static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
876 struct request *rq)
99cf1dc5 877{
99cf1dc5
JA
878 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
879 rq->tag = -1;
880
881 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
882 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
883 atomic_dec(&hctx->nr_active);
884 }
885}
886
113285b4
JA
887static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
888 struct request *rq)
889{
890 if (rq->tag == -1 || rq->internal_tag == -1)
891 return;
892
893 __blk_mq_put_driver_tag(hctx, rq);
894}
895
896static void blk_mq_put_driver_tag(struct request *rq)
897{
898 struct blk_mq_hw_ctx *hctx;
899
900 if (rq->tag == -1 || rq->internal_tag == -1)
901 return;
902
903 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
904 __blk_mq_put_driver_tag(hctx, rq);
905}
906
bd166ef1
JA
907/*
908 * If we fail getting a driver tag because all the driver tags are already
909 * assigned and on the dispatch list, BUT the first entry does not have a
910 * tag, then we could deadlock. For that case, move entries with assigned
911 * driver tags to the front, leaving the set of tagged requests in the
912 * same order, and the untagged set in the same order.
913 */
914static bool reorder_tags_to_front(struct list_head *list)
915{
916 struct request *rq, *tmp, *first = NULL;
917
918 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
919 if (rq == first)
920 break;
921 if (rq->tag != -1) {
922 list_move(&rq->queuelist, list);
923 if (!first)
924 first = rq;
925 }
926 }
927
928 return first != NULL;
929}
930
da55f2cc
OS
931static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
932 void *key)
933{
934 struct blk_mq_hw_ctx *hctx;
935
936 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
937
938 list_del(&wait->task_list);
939 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
940 blk_mq_run_hw_queue(hctx, true);
941 return 1;
942}
943
944static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
945{
946 struct sbq_wait_state *ws;
947
948 /*
949 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
950 * The thread which wins the race to grab this bit adds the hardware
951 * queue to the wait queue.
952 */
953 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
954 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
955 return false;
956
957 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
958 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
959
960 /*
961 * As soon as this returns, it's no longer safe to fiddle with
962 * hctx->dispatch_wait, since a completion can wake up the wait queue
963 * and unlock the bit.
964 */
965 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
966 return true;
967}
968
81380ca1 969bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
320ae51f 970{
81380ca1 971 struct blk_mq_hw_ctx *hctx;
320ae51f 972 struct request *rq;
fc17b653 973 int errors, queued;
320ae51f 974
81380ca1
OS
975 if (list_empty(list))
976 return false;
977
320ae51f
JA
978 /*
979 * Now process all the entries, sending them to the driver.
980 */
93efe981 981 errors = queued = 0;
81380ca1 982 do {
74c45052 983 struct blk_mq_queue_data bd;
fc17b653 984 blk_status_t ret;
320ae51f 985
f04c3df3 986 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
987 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
988 if (!queued && reorder_tags_to_front(list))
989 continue;
3c782d67
JA
990
991 /*
da55f2cc
OS
992 * The initial allocation attempt failed, so we need to
993 * rerun the hardware queue when a tag is freed.
3c782d67 994 */
807b1041
OS
995 if (!blk_mq_dispatch_wait_add(hctx))
996 break;
997
998 /*
999 * It's possible that a tag was freed in the window
1000 * between the allocation failure and adding the
1001 * hardware queue to the wait queue.
1002 */
1003 if (!blk_mq_get_driver_tag(rq, &hctx, false))
3c782d67 1004 break;
bd166ef1 1005 }
da55f2cc 1006
320ae51f 1007 list_del_init(&rq->queuelist);
320ae51f 1008
74c45052 1009 bd.rq = rq;
113285b4
JA
1010
1011 /*
1012 * Flag last if we have no more requests, or if we have more
1013 * but can't assign a driver tag to it.
1014 */
1015 if (list_empty(list))
1016 bd.last = true;
1017 else {
1018 struct request *nxt;
1019
1020 nxt = list_first_entry(list, struct request, queuelist);
1021 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1022 }
74c45052
JA
1023
1024 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653 1025 if (ret == BLK_STS_RESOURCE) {
113285b4 1026 blk_mq_put_driver_tag_hctx(hctx, rq);
f04c3df3 1027 list_add(&rq->queuelist, list);
ed0791b2 1028 __blk_mq_requeue_request(rq);
320ae51f 1029 break;
fc17b653
CH
1030 }
1031
1032 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1033 errors++;
2a842aca 1034 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1035 continue;
320ae51f
JA
1036 }
1037
fc17b653 1038 queued++;
81380ca1 1039 } while (!list_empty(list));
320ae51f 1040
703fd1c0 1041 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1042
1043 /*
1044 * Any items that need requeuing? Stuff them into hctx->dispatch,
1045 * that is where we will continue on next queue run.
1046 */
f04c3df3 1047 if (!list_empty(list)) {
113285b4 1048 /*
710c785f
BVA
1049 * If an I/O scheduler has been configured and we got a driver
1050 * tag for the next request already, free it again.
113285b4
JA
1051 */
1052 rq = list_first_entry(list, struct request, queuelist);
1053 blk_mq_put_driver_tag(rq);
1054
320ae51f 1055 spin_lock(&hctx->lock);
c13660a0 1056 list_splice_init(list, &hctx->dispatch);
320ae51f 1057 spin_unlock(&hctx->lock);
f04c3df3 1058
9ba52e58 1059 /*
710c785f
BVA
1060 * If SCHED_RESTART was set by the caller of this function and
1061 * it is no longer set that means that it was cleared by another
1062 * thread and hence that a queue rerun is needed.
9ba52e58 1063 *
710c785f
BVA
1064 * If TAG_WAITING is set that means that an I/O scheduler has
1065 * been configured and another thread is waiting for a driver
1066 * tag. To guarantee fairness, do not rerun this hardware queue
1067 * but let the other thread grab the driver tag.
bd166ef1 1068 *
710c785f
BVA
1069 * If no I/O scheduler has been configured it is possible that
1070 * the hardware queue got stopped and restarted before requests
1071 * were pushed back onto the dispatch list. Rerun the queue to
1072 * avoid starvation. Notes:
1073 * - blk_mq_run_hw_queue() checks whether or not a queue has
1074 * been stopped before rerunning a queue.
1075 * - Some but not all block drivers stop a queue before
fc17b653 1076 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1077 * and dm-rq.
bd166ef1 1078 */
da55f2cc
OS
1079 if (!blk_mq_sched_needs_restart(hctx) &&
1080 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
bd166ef1 1081 blk_mq_run_hw_queue(hctx, true);
320ae51f 1082 }
f04c3df3 1083
93efe981 1084 return (queued + errors) != 0;
f04c3df3
JA
1085}
1086
6a83e74d
BVA
1087static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1088{
1089 int srcu_idx;
1090
1091 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1092 cpu_online(hctx->next_cpu));
1093
1094 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1095 rcu_read_lock();
bd166ef1 1096 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1097 rcu_read_unlock();
1098 } else {
bf4907c0
JA
1099 might_sleep();
1100
6a83e74d 1101 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
bd166ef1 1102 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1103 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1104 }
1105}
1106
506e931f
JA
1107/*
1108 * It'd be great if the workqueue API had a way to pass
1109 * in a mask and had some smarts for more clever placement.
1110 * For now we just round-robin here, switching for every
1111 * BLK_MQ_CPU_WORK_BATCH queued items.
1112 */
1113static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1114{
b657d7e6
CH
1115 if (hctx->queue->nr_hw_queues == 1)
1116 return WORK_CPU_UNBOUND;
506e931f
JA
1117
1118 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1119 int next_cpu;
506e931f
JA
1120
1121 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1122 if (next_cpu >= nr_cpu_ids)
1123 next_cpu = cpumask_first(hctx->cpumask);
1124
1125 hctx->next_cpu = next_cpu;
1126 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1127 }
1128
b657d7e6 1129 return hctx->next_cpu;
506e931f
JA
1130}
1131
7587a5ae
BVA
1132static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1133 unsigned long msecs)
320ae51f 1134{
5d1b25c1
BVA
1135 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1136 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
1137 return;
1138
1b792f2f 1139 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1140 int cpu = get_cpu();
1141 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1142 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1143 put_cpu();
398205b8
PB
1144 return;
1145 }
e4043dcf 1146
2a90d4aa 1147 put_cpu();
e4043dcf 1148 }
398205b8 1149
9f993737
JA
1150 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1151 &hctx->run_work,
1152 msecs_to_jiffies(msecs));
7587a5ae
BVA
1153}
1154
1155void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1156{
1157 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1158}
1159EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1160
1161void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1162{
1163 __blk_mq_delay_run_hw_queue(hctx, async, 0);
320ae51f 1164}
5b727272 1165EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1166
b94ec296 1167void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1168{
1169 struct blk_mq_hw_ctx *hctx;
1170 int i;
1171
1172 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1173 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1174 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1175 continue;
1176
b94ec296 1177 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1178 }
1179}
b94ec296 1180EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1181
fd001443
BVA
1182/**
1183 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1184 * @q: request queue.
1185 *
1186 * The caller is responsible for serializing this function against
1187 * blk_mq_{start,stop}_hw_queue().
1188 */
1189bool blk_mq_queue_stopped(struct request_queue *q)
1190{
1191 struct blk_mq_hw_ctx *hctx;
1192 int i;
1193
1194 queue_for_each_hw_ctx(q, hctx, i)
1195 if (blk_mq_hctx_stopped(hctx))
1196 return true;
1197
1198 return false;
1199}
1200EXPORT_SYMBOL(blk_mq_queue_stopped);
1201
2719aa21 1202static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
320ae51f 1203{
2719aa21
JA
1204 if (sync)
1205 cancel_delayed_work_sync(&hctx->run_work);
1206 else
1207 cancel_delayed_work(&hctx->run_work);
1208
320ae51f
JA
1209 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1210}
2719aa21
JA
1211
1212void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1213{
1214 __blk_mq_stop_hw_queue(hctx, false);
1215}
320ae51f
JA
1216EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1217
ebd76857 1218static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
280d45f6
CH
1219{
1220 struct blk_mq_hw_ctx *hctx;
1221 int i;
1222
1223 queue_for_each_hw_ctx(q, hctx, i)
2719aa21
JA
1224 __blk_mq_stop_hw_queue(hctx, sync);
1225}
1226
1227void blk_mq_stop_hw_queues(struct request_queue *q)
1228{
1229 __blk_mq_stop_hw_queues(q, false);
280d45f6
CH
1230}
1231EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1232
320ae51f
JA
1233void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1234{
1235 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1236
0ffbce80 1237 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1238}
1239EXPORT_SYMBOL(blk_mq_start_hw_queue);
1240
2f268556
CH
1241void blk_mq_start_hw_queues(struct request_queue *q)
1242{
1243 struct blk_mq_hw_ctx *hctx;
1244 int i;
1245
1246 queue_for_each_hw_ctx(q, hctx, i)
1247 blk_mq_start_hw_queue(hctx);
1248}
1249EXPORT_SYMBOL(blk_mq_start_hw_queues);
1250
ae911c5e
JA
1251void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1252{
1253 if (!blk_mq_hctx_stopped(hctx))
1254 return;
1255
1256 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1257 blk_mq_run_hw_queue(hctx, async);
1258}
1259EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1260
1b4a3258 1261void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1262{
1263 struct blk_mq_hw_ctx *hctx;
1264 int i;
1265
ae911c5e
JA
1266 queue_for_each_hw_ctx(q, hctx, i)
1267 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1268}
1269EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1270
70f4db63 1271static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1272{
1273 struct blk_mq_hw_ctx *hctx;
1274
9f993737 1275 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1276
21c6e939
JA
1277 /*
1278 * If we are stopped, don't run the queue. The exception is if
1279 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1280 * the STOPPED bit and run it.
1281 */
1282 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1283 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1284 return;
7587a5ae 1285
21c6e939
JA
1286 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1287 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1288 }
7587a5ae
BVA
1289
1290 __blk_mq_run_hw_queue(hctx);
1291}
1292
70f4db63
CH
1293
1294void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1295{
19c66e59
ML
1296 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1297 return;
70f4db63 1298
21c6e939
JA
1299 /*
1300 * Stop the hw queue, then modify currently delayed work.
1301 * This should prevent us from running the queue prematurely.
1302 * Mark the queue as auto-clearing STOPPED when it runs.
1303 */
7e79dadc 1304 blk_mq_stop_hw_queue(hctx);
21c6e939
JA
1305 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1306 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1307 &hctx->run_work,
1308 msecs_to_jiffies(msecs));
70f4db63
CH
1309}
1310EXPORT_SYMBOL(blk_mq_delay_queue);
1311
cfd0c552 1312static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1313 struct request *rq,
1314 bool at_head)
320ae51f 1315{
e57690fe
JA
1316 struct blk_mq_ctx *ctx = rq->mq_ctx;
1317
01b983c9
JA
1318 trace_block_rq_insert(hctx->queue, rq);
1319
72a0a36e
CH
1320 if (at_head)
1321 list_add(&rq->queuelist, &ctx->rq_list);
1322 else
1323 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1324}
4bb659b1 1325
2c3ad667
JA
1326void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1327 bool at_head)
cfd0c552
ML
1328{
1329 struct blk_mq_ctx *ctx = rq->mq_ctx;
1330
e57690fe 1331 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1332 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1333}
1334
bd166ef1
JA
1335void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1336 struct list_head *list)
320ae51f
JA
1337
1338{
320ae51f
JA
1339 /*
1340 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1341 * offline now
1342 */
1343 spin_lock(&ctx->lock);
1344 while (!list_empty(list)) {
1345 struct request *rq;
1346
1347 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1348 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1349 list_del_init(&rq->queuelist);
e57690fe 1350 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1351 }
cfd0c552 1352 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1353 spin_unlock(&ctx->lock);
320ae51f
JA
1354}
1355
1356static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1357{
1358 struct request *rqa = container_of(a, struct request, queuelist);
1359 struct request *rqb = container_of(b, struct request, queuelist);
1360
1361 return !(rqa->mq_ctx < rqb->mq_ctx ||
1362 (rqa->mq_ctx == rqb->mq_ctx &&
1363 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1364}
1365
1366void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1367{
1368 struct blk_mq_ctx *this_ctx;
1369 struct request_queue *this_q;
1370 struct request *rq;
1371 LIST_HEAD(list);
1372 LIST_HEAD(ctx_list);
1373 unsigned int depth;
1374
1375 list_splice_init(&plug->mq_list, &list);
1376
1377 list_sort(NULL, &list, plug_ctx_cmp);
1378
1379 this_q = NULL;
1380 this_ctx = NULL;
1381 depth = 0;
1382
1383 while (!list_empty(&list)) {
1384 rq = list_entry_rq(list.next);
1385 list_del_init(&rq->queuelist);
1386 BUG_ON(!rq->q);
1387 if (rq->mq_ctx != this_ctx) {
1388 if (this_ctx) {
bd166ef1
JA
1389 trace_block_unplug(this_q, depth, from_schedule);
1390 blk_mq_sched_insert_requests(this_q, this_ctx,
1391 &ctx_list,
1392 from_schedule);
320ae51f
JA
1393 }
1394
1395 this_ctx = rq->mq_ctx;
1396 this_q = rq->q;
1397 depth = 0;
1398 }
1399
1400 depth++;
1401 list_add_tail(&rq->queuelist, &ctx_list);
1402 }
1403
1404 /*
1405 * If 'this_ctx' is set, we know we have entries to complete
1406 * on 'ctx_list'. Do those.
1407 */
1408 if (this_ctx) {
bd166ef1
JA
1409 trace_block_unplug(this_q, depth, from_schedule);
1410 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1411 from_schedule);
320ae51f
JA
1412 }
1413}
1414
1415static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1416{
da8d7f07 1417 blk_init_request_from_bio(rq, bio);
4b570521 1418
6e85eaf3 1419 blk_account_io_start(rq, true);
320ae51f
JA
1420}
1421
274a5843
JA
1422static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1423{
1424 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1425 !blk_queue_nomerges(hctx->queue);
1426}
1427
ab42f35d
ML
1428static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1429 struct blk_mq_ctx *ctx,
1430 struct request *rq)
1431{
1432 spin_lock(&ctx->lock);
1433 __blk_mq_insert_request(hctx, rq, false);
1434 spin_unlock(&ctx->lock);
07068d5b 1435}
14ec77f3 1436
fd2d3326
JA
1437static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1438{
bd166ef1
JA
1439 if (rq->tag != -1)
1440 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1441
1442 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1443}
1444
d964f04a
ML
1445static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1446 struct request *rq,
1447 blk_qc_t *cookie, bool may_sleep)
f984df1f 1448{
f984df1f 1449 struct request_queue *q = rq->q;
f984df1f
SL
1450 struct blk_mq_queue_data bd = {
1451 .rq = rq,
d945a365 1452 .last = true,
f984df1f 1453 };
bd166ef1 1454 blk_qc_t new_cookie;
f06345ad 1455 blk_status_t ret;
d964f04a
ML
1456 bool run_queue = true;
1457
1458 if (blk_mq_hctx_stopped(hctx)) {
1459 run_queue = false;
1460 goto insert;
1461 }
f984df1f 1462
bd166ef1 1463 if (q->elevator)
2253efc8
BVA
1464 goto insert;
1465
d964f04a 1466 if (!blk_mq_get_driver_tag(rq, NULL, false))
bd166ef1
JA
1467 goto insert;
1468
1469 new_cookie = request_to_qc_t(hctx, rq);
1470
f984df1f
SL
1471 /*
1472 * For OK queue, we are done. For error, kill it. Any other
1473 * error (busy), just add it to our list as we previously
1474 * would have done
1475 */
1476 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653
CH
1477 switch (ret) {
1478 case BLK_STS_OK:
7b371636 1479 *cookie = new_cookie;
2253efc8 1480 return;
fc17b653
CH
1481 case BLK_STS_RESOURCE:
1482 __blk_mq_requeue_request(rq);
1483 goto insert;
1484 default:
7b371636 1485 *cookie = BLK_QC_T_NONE;
fc17b653 1486 blk_mq_end_request(rq, ret);
2253efc8 1487 return;
f984df1f 1488 }
7b371636 1489
2253efc8 1490insert:
d964f04a 1491 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
f984df1f
SL
1492}
1493
5eb6126e
CH
1494static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1495 struct request *rq, blk_qc_t *cookie)
1496{
1497 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1498 rcu_read_lock();
d964f04a 1499 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
5eb6126e
CH
1500 rcu_read_unlock();
1501 } else {
bf4907c0
JA
1502 unsigned int srcu_idx;
1503
1504 might_sleep();
1505
1506 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
d964f04a 1507 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
5eb6126e
CH
1508 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1509 }
1510}
1511
dece1635 1512static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1513{
ef295ecf 1514 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1515 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1516 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1517 struct request *rq;
5eb6126e 1518 unsigned int request_count = 0;
f984df1f 1519 struct blk_plug *plug;
5b3f341f 1520 struct request *same_queue_rq = NULL;
7b371636 1521 blk_qc_t cookie;
87760e5e 1522 unsigned int wb_acct;
07068d5b
JA
1523
1524 blk_queue_bounce(q, &bio);
1525
f36ea50c
WX
1526 blk_queue_split(q, &bio, q->bio_split);
1527
07068d5b 1528 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1529 bio_io_error(bio);
dece1635 1530 return BLK_QC_T_NONE;
07068d5b
JA
1531 }
1532
87c279e6
OS
1533 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1534 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1535 return BLK_QC_T_NONE;
f984df1f 1536
bd166ef1
JA
1537 if (blk_mq_sched_bio_merge(q, bio))
1538 return BLK_QC_T_NONE;
1539
87760e5e
JA
1540 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1541
bd166ef1
JA
1542 trace_block_getrq(q, bio, bio->bi_opf);
1543
d2c0d383 1544 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1545 if (unlikely(!rq)) {
1546 __wbt_done(q->rq_wb, wb_acct);
dece1635 1547 return BLK_QC_T_NONE;
87760e5e
JA
1548 }
1549
1550 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1551
fd2d3326 1552 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1553
f984df1f 1554 plug = current->plug;
07068d5b 1555 if (unlikely(is_flush_fua)) {
f984df1f 1556 blk_mq_put_ctx(data.ctx);
07068d5b 1557 blk_mq_bio_to_request(rq, bio);
a4d907b6
CH
1558 if (q->elevator) {
1559 blk_mq_sched_insert_request(rq, false, true, true,
1560 true);
6a83e74d 1561 } else {
a4d907b6
CH
1562 blk_insert_flush(rq);
1563 blk_mq_run_hw_queue(data.hctx, true);
6a83e74d 1564 }
a4d907b6 1565 } else if (plug && q->nr_hw_queues == 1) {
600271d9
SL
1566 struct request *last = NULL;
1567
b00c53e8 1568 blk_mq_put_ctx(data.ctx);
e6c4438b 1569 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1570
1571 /*
1572 * @request_count may become stale because of schedule
1573 * out, so check the list again.
1574 */
1575 if (list_empty(&plug->mq_list))
1576 request_count = 0;
254d259d
CH
1577 else if (blk_queue_nomerges(q))
1578 request_count = blk_plug_queued_count(q);
1579
676d0607 1580 if (!request_count)
e6c4438b 1581 trace_block_plug(q);
600271d9
SL
1582 else
1583 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1584
600271d9
SL
1585 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1586 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1587 blk_flush_plug_list(plug, false);
1588 trace_block_plug(q);
320ae51f 1589 }
b094f89c 1590
e6c4438b 1591 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1592 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1593 blk_mq_bio_to_request(rq, bio);
07068d5b 1594
07068d5b 1595 /*
6a83e74d 1596 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1597 * Otherwise the existing request in the plug list will be
1598 * issued. So the plug list will have one request at most
2299722c
CH
1599 * The plug list might get flushed before this. If that happens,
1600 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1601 */
2299722c
CH
1602 if (list_empty(&plug->mq_list))
1603 same_queue_rq = NULL;
1604 if (same_queue_rq)
1605 list_del_init(&same_queue_rq->queuelist);
1606 list_add_tail(&rq->queuelist, &plug->mq_list);
1607
bf4907c0
JA
1608 blk_mq_put_ctx(data.ctx);
1609
dad7a3be
ML
1610 if (same_queue_rq) {
1611 data.hctx = blk_mq_map_queue(q,
1612 same_queue_rq->mq_ctx->cpu);
2299722c
CH
1613 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1614 &cookie);
dad7a3be 1615 }
a4d907b6 1616 } else if (q->nr_hw_queues > 1 && is_sync) {
bf4907c0 1617 blk_mq_put_ctx(data.ctx);
2299722c 1618 blk_mq_bio_to_request(rq, bio);
2299722c 1619 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
a4d907b6 1620 } else if (q->elevator) {
b00c53e8 1621 blk_mq_put_ctx(data.ctx);
bd166ef1 1622 blk_mq_bio_to_request(rq, bio);
a4d907b6 1623 blk_mq_sched_insert_request(rq, false, true, true, true);
ab42f35d 1624 } else {
b00c53e8 1625 blk_mq_put_ctx(data.ctx);
ab42f35d
ML
1626 blk_mq_bio_to_request(rq, bio);
1627 blk_mq_queue_io(data.hctx, data.ctx, rq);
a4d907b6 1628 blk_mq_run_hw_queue(data.hctx, true);
ab42f35d 1629 }
320ae51f 1630
7b371636 1631 return cookie;
320ae51f
JA
1632}
1633
cc71a6f4
JA
1634void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1635 unsigned int hctx_idx)
95363efd 1636{
e9b267d9 1637 struct page *page;
320ae51f 1638
24d2f903 1639 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1640 int i;
320ae51f 1641
24d2f903 1642 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1643 struct request *rq = tags->static_rqs[i];
1644
1645 if (!rq)
e9b267d9 1646 continue;
d6296d39 1647 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 1648 tags->static_rqs[i] = NULL;
e9b267d9 1649 }
320ae51f 1650 }
320ae51f 1651
24d2f903
CH
1652 while (!list_empty(&tags->page_list)) {
1653 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1654 list_del_init(&page->lru);
f75782e4
CM
1655 /*
1656 * Remove kmemleak object previously allocated in
1657 * blk_mq_init_rq_map().
1658 */
1659 kmemleak_free(page_address(page));
320ae51f
JA
1660 __free_pages(page, page->private);
1661 }
cc71a6f4 1662}
320ae51f 1663
cc71a6f4
JA
1664void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1665{
24d2f903 1666 kfree(tags->rqs);
cc71a6f4 1667 tags->rqs = NULL;
2af8cbe3
JA
1668 kfree(tags->static_rqs);
1669 tags->static_rqs = NULL;
320ae51f 1670
24d2f903 1671 blk_mq_free_tags(tags);
320ae51f
JA
1672}
1673
cc71a6f4
JA
1674struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1675 unsigned int hctx_idx,
1676 unsigned int nr_tags,
1677 unsigned int reserved_tags)
320ae51f 1678{
24d2f903 1679 struct blk_mq_tags *tags;
59f082e4 1680 int node;
320ae51f 1681
59f082e4
SL
1682 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1683 if (node == NUMA_NO_NODE)
1684 node = set->numa_node;
1685
1686 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1687 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1688 if (!tags)
1689 return NULL;
320ae51f 1690
cc71a6f4 1691 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1692 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1693 node);
24d2f903
CH
1694 if (!tags->rqs) {
1695 blk_mq_free_tags(tags);
1696 return NULL;
1697 }
320ae51f 1698
2af8cbe3
JA
1699 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1700 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1701 node);
2af8cbe3
JA
1702 if (!tags->static_rqs) {
1703 kfree(tags->rqs);
1704 blk_mq_free_tags(tags);
1705 return NULL;
1706 }
1707
cc71a6f4
JA
1708 return tags;
1709}
1710
1711static size_t order_to_size(unsigned int order)
1712{
1713 return (size_t)PAGE_SIZE << order;
1714}
1715
1716int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1717 unsigned int hctx_idx, unsigned int depth)
1718{
1719 unsigned int i, j, entries_per_page, max_order = 4;
1720 size_t rq_size, left;
59f082e4
SL
1721 int node;
1722
1723 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1724 if (node == NUMA_NO_NODE)
1725 node = set->numa_node;
cc71a6f4
JA
1726
1727 INIT_LIST_HEAD(&tags->page_list);
1728
320ae51f
JA
1729 /*
1730 * rq_size is the size of the request plus driver payload, rounded
1731 * to the cacheline size
1732 */
24d2f903 1733 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1734 cache_line_size());
cc71a6f4 1735 left = rq_size * depth;
320ae51f 1736
cc71a6f4 1737 for (i = 0; i < depth; ) {
320ae51f
JA
1738 int this_order = max_order;
1739 struct page *page;
1740 int to_do;
1741 void *p;
1742
b3a834b1 1743 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1744 this_order--;
1745
1746 do {
59f082e4 1747 page = alloc_pages_node(node,
36e1f3d1 1748 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1749 this_order);
320ae51f
JA
1750 if (page)
1751 break;
1752 if (!this_order--)
1753 break;
1754 if (order_to_size(this_order) < rq_size)
1755 break;
1756 } while (1);
1757
1758 if (!page)
24d2f903 1759 goto fail;
320ae51f
JA
1760
1761 page->private = this_order;
24d2f903 1762 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1763
1764 p = page_address(page);
f75782e4
CM
1765 /*
1766 * Allow kmemleak to scan these pages as they contain pointers
1767 * to additional allocations like via ops->init_request().
1768 */
36e1f3d1 1769 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1770 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1771 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1772 left -= to_do * rq_size;
1773 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1774 struct request *rq = p;
1775
1776 tags->static_rqs[i] = rq;
24d2f903 1777 if (set->ops->init_request) {
d6296d39 1778 if (set->ops->init_request(set, rq, hctx_idx,
59f082e4 1779 node)) {
2af8cbe3 1780 tags->static_rqs[i] = NULL;
24d2f903 1781 goto fail;
a5164405 1782 }
e9b267d9
CH
1783 }
1784
320ae51f
JA
1785 p += rq_size;
1786 i++;
1787 }
1788 }
cc71a6f4 1789 return 0;
320ae51f 1790
24d2f903 1791fail:
cc71a6f4
JA
1792 blk_mq_free_rqs(set, tags, hctx_idx);
1793 return -ENOMEM;
320ae51f
JA
1794}
1795
e57690fe
JA
1796/*
1797 * 'cpu' is going away. splice any existing rq_list entries from this
1798 * software queue to the hw queue dispatch list, and ensure that it
1799 * gets run.
1800 */
9467f859 1801static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1802{
9467f859 1803 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1804 struct blk_mq_ctx *ctx;
1805 LIST_HEAD(tmp);
1806
9467f859 1807 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1808 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1809
1810 spin_lock(&ctx->lock);
1811 if (!list_empty(&ctx->rq_list)) {
1812 list_splice_init(&ctx->rq_list, &tmp);
1813 blk_mq_hctx_clear_pending(hctx, ctx);
1814 }
1815 spin_unlock(&ctx->lock);
1816
1817 if (list_empty(&tmp))
9467f859 1818 return 0;
484b4061 1819
e57690fe
JA
1820 spin_lock(&hctx->lock);
1821 list_splice_tail_init(&tmp, &hctx->dispatch);
1822 spin_unlock(&hctx->lock);
484b4061
JA
1823
1824 blk_mq_run_hw_queue(hctx, true);
9467f859 1825 return 0;
484b4061
JA
1826}
1827
9467f859 1828static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1829{
9467f859
TG
1830 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1831 &hctx->cpuhp_dead);
484b4061
JA
1832}
1833
c3b4afca 1834/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1835static void blk_mq_exit_hctx(struct request_queue *q,
1836 struct blk_mq_tag_set *set,
1837 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1838{
9c1051aa
OS
1839 blk_mq_debugfs_unregister_hctx(hctx);
1840
08e98fc6
ML
1841 blk_mq_tag_idle(hctx);
1842
f70ced09 1843 if (set->ops->exit_request)
d6296d39 1844 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 1845
93252632
OS
1846 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1847
08e98fc6
ML
1848 if (set->ops->exit_hctx)
1849 set->ops->exit_hctx(hctx, hctx_idx);
1850
6a83e74d
BVA
1851 if (hctx->flags & BLK_MQ_F_BLOCKING)
1852 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1853
9467f859 1854 blk_mq_remove_cpuhp(hctx);
f70ced09 1855 blk_free_flush_queue(hctx->fq);
88459642 1856 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1857}
1858
624dbe47
ML
1859static void blk_mq_exit_hw_queues(struct request_queue *q,
1860 struct blk_mq_tag_set *set, int nr_queue)
1861{
1862 struct blk_mq_hw_ctx *hctx;
1863 unsigned int i;
1864
1865 queue_for_each_hw_ctx(q, hctx, i) {
1866 if (i == nr_queue)
1867 break;
08e98fc6 1868 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1869 }
624dbe47
ML
1870}
1871
08e98fc6
ML
1872static int blk_mq_init_hctx(struct request_queue *q,
1873 struct blk_mq_tag_set *set,
1874 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1875{
08e98fc6
ML
1876 int node;
1877
1878 node = hctx->numa_node;
1879 if (node == NUMA_NO_NODE)
1880 node = hctx->numa_node = set->numa_node;
1881
9f993737 1882 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1883 spin_lock_init(&hctx->lock);
1884 INIT_LIST_HEAD(&hctx->dispatch);
1885 hctx->queue = q;
1886 hctx->queue_num = hctx_idx;
2404e607 1887 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1888
9467f859 1889 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1890
1891 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1892
1893 /*
08e98fc6
ML
1894 * Allocate space for all possible cpus to avoid allocation at
1895 * runtime
320ae51f 1896 */
08e98fc6
ML
1897 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1898 GFP_KERNEL, node);
1899 if (!hctx->ctxs)
1900 goto unregister_cpu_notifier;
320ae51f 1901
88459642
OS
1902 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1903 node))
08e98fc6 1904 goto free_ctxs;
320ae51f 1905
08e98fc6 1906 hctx->nr_ctx = 0;
320ae51f 1907
08e98fc6
ML
1908 if (set->ops->init_hctx &&
1909 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1910 goto free_bitmap;
320ae51f 1911
93252632
OS
1912 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1913 goto exit_hctx;
1914
f70ced09
ML
1915 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1916 if (!hctx->fq)
93252632 1917 goto sched_exit_hctx;
320ae51f 1918
f70ced09 1919 if (set->ops->init_request &&
d6296d39
CH
1920 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1921 node))
f70ced09 1922 goto free_fq;
320ae51f 1923
6a83e74d
BVA
1924 if (hctx->flags & BLK_MQ_F_BLOCKING)
1925 init_srcu_struct(&hctx->queue_rq_srcu);
1926
9c1051aa
OS
1927 blk_mq_debugfs_register_hctx(q, hctx);
1928
08e98fc6 1929 return 0;
320ae51f 1930
f70ced09
ML
1931 free_fq:
1932 kfree(hctx->fq);
93252632
OS
1933 sched_exit_hctx:
1934 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
1935 exit_hctx:
1936 if (set->ops->exit_hctx)
1937 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1938 free_bitmap:
88459642 1939 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1940 free_ctxs:
1941 kfree(hctx->ctxs);
1942 unregister_cpu_notifier:
9467f859 1943 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
1944 return -1;
1945}
320ae51f 1946
320ae51f
JA
1947static void blk_mq_init_cpu_queues(struct request_queue *q,
1948 unsigned int nr_hw_queues)
1949{
1950 unsigned int i;
1951
1952 for_each_possible_cpu(i) {
1953 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1954 struct blk_mq_hw_ctx *hctx;
1955
320ae51f
JA
1956 __ctx->cpu = i;
1957 spin_lock_init(&__ctx->lock);
1958 INIT_LIST_HEAD(&__ctx->rq_list);
1959 __ctx->queue = q;
1960
1961 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1962 if (!cpu_online(i))
1963 continue;
1964
7d7e0f90 1965 hctx = blk_mq_map_queue(q, i);
e4043dcf 1966
320ae51f
JA
1967 /*
1968 * Set local node, IFF we have more than one hw queue. If
1969 * not, we remain on the home node of the device
1970 */
1971 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1972 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
1973 }
1974}
1975
cc71a6f4
JA
1976static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1977{
1978 int ret = 0;
1979
1980 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1981 set->queue_depth, set->reserved_tags);
1982 if (!set->tags[hctx_idx])
1983 return false;
1984
1985 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1986 set->queue_depth);
1987 if (!ret)
1988 return true;
1989
1990 blk_mq_free_rq_map(set->tags[hctx_idx]);
1991 set->tags[hctx_idx] = NULL;
1992 return false;
1993}
1994
1995static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1996 unsigned int hctx_idx)
1997{
bd166ef1
JA
1998 if (set->tags[hctx_idx]) {
1999 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2000 blk_mq_free_rq_map(set->tags[hctx_idx]);
2001 set->tags[hctx_idx] = NULL;
2002 }
cc71a6f4
JA
2003}
2004
5778322e
AM
2005static void blk_mq_map_swqueue(struct request_queue *q,
2006 const struct cpumask *online_mask)
320ae51f 2007{
d1b1cea1 2008 unsigned int i, hctx_idx;
320ae51f
JA
2009 struct blk_mq_hw_ctx *hctx;
2010 struct blk_mq_ctx *ctx;
2a34c087 2011 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2012
60de074b
AM
2013 /*
2014 * Avoid others reading imcomplete hctx->cpumask through sysfs
2015 */
2016 mutex_lock(&q->sysfs_lock);
2017
320ae51f 2018 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2019 cpumask_clear(hctx->cpumask);
320ae51f
JA
2020 hctx->nr_ctx = 0;
2021 }
2022
2023 /*
2024 * Map software to hardware queues
2025 */
897bb0c7 2026 for_each_possible_cpu(i) {
320ae51f 2027 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 2028 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
2029 continue;
2030
d1b1cea1
GKB
2031 hctx_idx = q->mq_map[i];
2032 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2033 if (!set->tags[hctx_idx] &&
2034 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2035 /*
2036 * If tags initialization fail for some hctx,
2037 * that hctx won't be brought online. In this
2038 * case, remap the current ctx to hctx[0] which
2039 * is guaranteed to always have tags allocated
2040 */
cc71a6f4 2041 q->mq_map[i] = 0;
d1b1cea1
GKB
2042 }
2043
897bb0c7 2044 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2045 hctx = blk_mq_map_queue(q, i);
868f2f0b 2046
e4043dcf 2047 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2048 ctx->index_hw = hctx->nr_ctx;
2049 hctx->ctxs[hctx->nr_ctx++] = ctx;
2050 }
506e931f 2051
60de074b
AM
2052 mutex_unlock(&q->sysfs_lock);
2053
506e931f 2054 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2055 /*
a68aafa5
JA
2056 * If no software queues are mapped to this hardware queue,
2057 * disable it and free the request entries.
484b4061
JA
2058 */
2059 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2060 /* Never unmap queue 0. We need it as a
2061 * fallback in case of a new remap fails
2062 * allocation
2063 */
cc71a6f4
JA
2064 if (i && set->tags[i])
2065 blk_mq_free_map_and_requests(set, i);
2066
2a34c087 2067 hctx->tags = NULL;
484b4061
JA
2068 continue;
2069 }
2070
2a34c087
ML
2071 hctx->tags = set->tags[i];
2072 WARN_ON(!hctx->tags);
2073
889fa31f
CY
2074 /*
2075 * Set the map size to the number of mapped software queues.
2076 * This is more accurate and more efficient than looping
2077 * over all possibly mapped software queues.
2078 */
88459642 2079 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2080
484b4061
JA
2081 /*
2082 * Initialize batch roundrobin counts
2083 */
506e931f
JA
2084 hctx->next_cpu = cpumask_first(hctx->cpumask);
2085 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2086 }
320ae51f
JA
2087}
2088
2404e607 2089static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2090{
2091 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2092 int i;
2093
2404e607
JM
2094 queue_for_each_hw_ctx(q, hctx, i) {
2095 if (shared)
2096 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2097 else
2098 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2099 }
2100}
2101
2102static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2103{
2104 struct request_queue *q;
0d2602ca 2105
705cda97
BVA
2106 lockdep_assert_held(&set->tag_list_lock);
2107
0d2602ca
JA
2108 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2109 blk_mq_freeze_queue(q);
2404e607 2110 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2111 blk_mq_unfreeze_queue(q);
2112 }
2113}
2114
2115static void blk_mq_del_queue_tag_set(struct request_queue *q)
2116{
2117 struct blk_mq_tag_set *set = q->tag_set;
2118
0d2602ca 2119 mutex_lock(&set->tag_list_lock);
705cda97
BVA
2120 list_del_rcu(&q->tag_set_list);
2121 INIT_LIST_HEAD(&q->tag_set_list);
2404e607
JM
2122 if (list_is_singular(&set->tag_list)) {
2123 /* just transitioned to unshared */
2124 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2125 /* update existing queue */
2126 blk_mq_update_tag_set_depth(set, false);
2127 }
0d2602ca 2128 mutex_unlock(&set->tag_list_lock);
705cda97
BVA
2129
2130 synchronize_rcu();
0d2602ca
JA
2131}
2132
2133static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2134 struct request_queue *q)
2135{
2136 q->tag_set = set;
2137
2138 mutex_lock(&set->tag_list_lock);
2404e607
JM
2139
2140 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2141 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2142 set->flags |= BLK_MQ_F_TAG_SHARED;
2143 /* update existing queue */
2144 blk_mq_update_tag_set_depth(set, true);
2145 }
2146 if (set->flags & BLK_MQ_F_TAG_SHARED)
2147 queue_set_hctx_shared(q, true);
705cda97 2148 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2149
0d2602ca
JA
2150 mutex_unlock(&set->tag_list_lock);
2151}
2152
e09aae7e
ML
2153/*
2154 * It is the actual release handler for mq, but we do it from
2155 * request queue's release handler for avoiding use-after-free
2156 * and headache because q->mq_kobj shouldn't have been introduced,
2157 * but we can't group ctx/kctx kobj without it.
2158 */
2159void blk_mq_release(struct request_queue *q)
2160{
2161 struct blk_mq_hw_ctx *hctx;
2162 unsigned int i;
2163
2164 /* hctx kobj stays in hctx */
c3b4afca
ML
2165 queue_for_each_hw_ctx(q, hctx, i) {
2166 if (!hctx)
2167 continue;
6c8b232e 2168 kobject_put(&hctx->kobj);
c3b4afca 2169 }
e09aae7e 2170
a723bab3
AM
2171 q->mq_map = NULL;
2172
e09aae7e
ML
2173 kfree(q->queue_hw_ctx);
2174
7ea5fe31
ML
2175 /*
2176 * release .mq_kobj and sw queue's kobject now because
2177 * both share lifetime with request queue.
2178 */
2179 blk_mq_sysfs_deinit(q);
2180
e09aae7e
ML
2181 free_percpu(q->queue_ctx);
2182}
2183
24d2f903 2184struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2185{
2186 struct request_queue *uninit_q, *q;
2187
2188 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2189 if (!uninit_q)
2190 return ERR_PTR(-ENOMEM);
2191
2192 q = blk_mq_init_allocated_queue(set, uninit_q);
2193 if (IS_ERR(q))
2194 blk_cleanup_queue(uninit_q);
2195
2196 return q;
2197}
2198EXPORT_SYMBOL(blk_mq_init_queue);
2199
868f2f0b
KB
2200static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2201 struct request_queue *q)
320ae51f 2202{
868f2f0b
KB
2203 int i, j;
2204 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2205
868f2f0b 2206 blk_mq_sysfs_unregister(q);
24d2f903 2207 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2208 int node;
f14bbe77 2209
868f2f0b
KB
2210 if (hctxs[i])
2211 continue;
2212
2213 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2214 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2215 GFP_KERNEL, node);
320ae51f 2216 if (!hctxs[i])
868f2f0b 2217 break;
320ae51f 2218
a86073e4 2219 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2220 node)) {
2221 kfree(hctxs[i]);
2222 hctxs[i] = NULL;
2223 break;
2224 }
e4043dcf 2225
0d2602ca 2226 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2227 hctxs[i]->numa_node = node;
320ae51f 2228 hctxs[i]->queue_num = i;
868f2f0b
KB
2229
2230 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2231 free_cpumask_var(hctxs[i]->cpumask);
2232 kfree(hctxs[i]);
2233 hctxs[i] = NULL;
2234 break;
2235 }
2236 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2237 }
868f2f0b
KB
2238 for (j = i; j < q->nr_hw_queues; j++) {
2239 struct blk_mq_hw_ctx *hctx = hctxs[j];
2240
2241 if (hctx) {
cc71a6f4
JA
2242 if (hctx->tags)
2243 blk_mq_free_map_and_requests(set, j);
868f2f0b 2244 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2245 kobject_put(&hctx->kobj);
868f2f0b
KB
2246 hctxs[j] = NULL;
2247
2248 }
2249 }
2250 q->nr_hw_queues = i;
2251 blk_mq_sysfs_register(q);
2252}
2253
2254struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2255 struct request_queue *q)
2256{
66841672
ML
2257 /* mark the queue as mq asap */
2258 q->mq_ops = set->ops;
2259
34dbad5d 2260 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2261 blk_mq_poll_stats_bkt,
2262 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2263 if (!q->poll_cb)
2264 goto err_exit;
2265
868f2f0b
KB
2266 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2267 if (!q->queue_ctx)
c7de5726 2268 goto err_exit;
868f2f0b 2269
737f98cf
ML
2270 /* init q->mq_kobj and sw queues' kobjects */
2271 blk_mq_sysfs_init(q);
2272
868f2f0b
KB
2273 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2274 GFP_KERNEL, set->numa_node);
2275 if (!q->queue_hw_ctx)
2276 goto err_percpu;
2277
bdd17e75 2278 q->mq_map = set->mq_map;
868f2f0b
KB
2279
2280 blk_mq_realloc_hw_ctxs(set, q);
2281 if (!q->nr_hw_queues)
2282 goto err_hctxs;
320ae51f 2283
287922eb 2284 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2285 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2286
2287 q->nr_queues = nr_cpu_ids;
320ae51f 2288
94eddfbe 2289 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2290
05f1dd53
JA
2291 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2292 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2293
1be036e9
CH
2294 q->sg_reserved_size = INT_MAX;
2295
2849450a 2296 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2297 INIT_LIST_HEAD(&q->requeue_list);
2298 spin_lock_init(&q->requeue_lock);
2299
254d259d 2300 blk_queue_make_request(q, blk_mq_make_request);
07068d5b 2301
eba71768
JA
2302 /*
2303 * Do this after blk_queue_make_request() overrides it...
2304 */
2305 q->nr_requests = set->queue_depth;
2306
64f1c21e
JA
2307 /*
2308 * Default to classic polling
2309 */
2310 q->poll_nsec = -1;
2311
24d2f903
CH
2312 if (set->ops->complete)
2313 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2314
24d2f903 2315 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2316
eabe0659 2317 get_online_cpus();
51d638b1 2318 mutex_lock(&all_q_mutex);
320ae51f 2319
4593fdbe 2320 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2321 blk_mq_add_queue_tag_set(set, q);
5778322e 2322 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2323
eabe0659 2324 mutex_unlock(&all_q_mutex);
51d638b1 2325 put_online_cpus();
4593fdbe 2326
d3484991
JA
2327 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2328 int ret;
2329
2330 ret = blk_mq_sched_init(q);
2331 if (ret)
2332 return ERR_PTR(ret);
2333 }
2334
320ae51f 2335 return q;
18741986 2336
320ae51f 2337err_hctxs:
868f2f0b 2338 kfree(q->queue_hw_ctx);
320ae51f 2339err_percpu:
868f2f0b 2340 free_percpu(q->queue_ctx);
c7de5726
ML
2341err_exit:
2342 q->mq_ops = NULL;
320ae51f
JA
2343 return ERR_PTR(-ENOMEM);
2344}
b62c21b7 2345EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2346
2347void blk_mq_free_queue(struct request_queue *q)
2348{
624dbe47 2349 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2350
0e626368
AM
2351 mutex_lock(&all_q_mutex);
2352 list_del_init(&q->all_q_node);
2353 mutex_unlock(&all_q_mutex);
2354
0d2602ca
JA
2355 blk_mq_del_queue_tag_set(q);
2356
624dbe47 2357 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2358}
320ae51f
JA
2359
2360/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2361static void blk_mq_queue_reinit(struct request_queue *q,
2362 const struct cpumask *online_mask)
320ae51f 2363{
4ecd4fef 2364 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2365
9c1051aa 2366 blk_mq_debugfs_unregister_hctxs(q);
67aec14c
JA
2367 blk_mq_sysfs_unregister(q);
2368
320ae51f
JA
2369 /*
2370 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2371 * we should change hctx numa_node according to new topology (this
2372 * involves free and re-allocate memory, worthy doing?)
2373 */
2374
5778322e 2375 blk_mq_map_swqueue(q, online_mask);
320ae51f 2376
67aec14c 2377 blk_mq_sysfs_register(q);
9c1051aa 2378 blk_mq_debugfs_register_hctxs(q);
320ae51f
JA
2379}
2380
65d5291e
SAS
2381/*
2382 * New online cpumask which is going to be set in this hotplug event.
2383 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2384 * one-by-one and dynamically allocating this could result in a failure.
2385 */
2386static struct cpumask cpuhp_online_new;
2387
2388static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2389{
2390 struct request_queue *q;
320ae51f
JA
2391
2392 mutex_lock(&all_q_mutex);
f3af020b
TH
2393 /*
2394 * We need to freeze and reinit all existing queues. Freezing
2395 * involves synchronous wait for an RCU grace period and doing it
2396 * one by one may take a long time. Start freezing all queues in
2397 * one swoop and then wait for the completions so that freezing can
2398 * take place in parallel.
2399 */
2400 list_for_each_entry(q, &all_q_list, all_q_node)
1671d522 2401 blk_freeze_queue_start(q);
415d3dab 2402 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2403 blk_mq_freeze_queue_wait(q);
2404
320ae51f 2405 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2406 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2407
2408 list_for_each_entry(q, &all_q_list, all_q_node)
2409 blk_mq_unfreeze_queue(q);
2410
320ae51f 2411 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2412}
2413
2414static int blk_mq_queue_reinit_dead(unsigned int cpu)
2415{
97a32864 2416 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2417 blk_mq_queue_reinit_work();
2418 return 0;
2419}
2420
2421/*
2422 * Before hotadded cpu starts handling requests, new mappings must be
2423 * established. Otherwise, these requests in hw queue might never be
2424 * dispatched.
2425 *
2426 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2427 * for CPU0, and ctx1 for CPU1).
2428 *
2429 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2430 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2431 *
2c3ad667
JA
2432 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2433 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2434 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2435 * ignored.
65d5291e
SAS
2436 */
2437static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2438{
2439 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2440 cpumask_set_cpu(cpu, &cpuhp_online_new);
2441 blk_mq_queue_reinit_work();
2442 return 0;
320ae51f
JA
2443}
2444
a5164405
JA
2445static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2446{
2447 int i;
2448
cc71a6f4
JA
2449 for (i = 0; i < set->nr_hw_queues; i++)
2450 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2451 goto out_unwind;
a5164405
JA
2452
2453 return 0;
2454
2455out_unwind:
2456 while (--i >= 0)
cc71a6f4 2457 blk_mq_free_rq_map(set->tags[i]);
a5164405 2458
a5164405
JA
2459 return -ENOMEM;
2460}
2461
2462/*
2463 * Allocate the request maps associated with this tag_set. Note that this
2464 * may reduce the depth asked for, if memory is tight. set->queue_depth
2465 * will be updated to reflect the allocated depth.
2466 */
2467static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2468{
2469 unsigned int depth;
2470 int err;
2471
2472 depth = set->queue_depth;
2473 do {
2474 err = __blk_mq_alloc_rq_maps(set);
2475 if (!err)
2476 break;
2477
2478 set->queue_depth >>= 1;
2479 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2480 err = -ENOMEM;
2481 break;
2482 }
2483 } while (set->queue_depth);
2484
2485 if (!set->queue_depth || err) {
2486 pr_err("blk-mq: failed to allocate request map\n");
2487 return -ENOMEM;
2488 }
2489
2490 if (depth != set->queue_depth)
2491 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2492 depth, set->queue_depth);
2493
2494 return 0;
2495}
2496
ebe8bddb
OS
2497static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2498{
2499 if (set->ops->map_queues)
2500 return set->ops->map_queues(set);
2501 else
2502 return blk_mq_map_queues(set);
2503}
2504
a4391c64
JA
2505/*
2506 * Alloc a tag set to be associated with one or more request queues.
2507 * May fail with EINVAL for various error conditions. May adjust the
2508 * requested depth down, if if it too large. In that case, the set
2509 * value will be stored in set->queue_depth.
2510 */
24d2f903
CH
2511int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2512{
da695ba2
CH
2513 int ret;
2514
205fb5f5
BVA
2515 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2516
24d2f903
CH
2517 if (!set->nr_hw_queues)
2518 return -EINVAL;
a4391c64 2519 if (!set->queue_depth)
24d2f903
CH
2520 return -EINVAL;
2521 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2522 return -EINVAL;
2523
7d7e0f90 2524 if (!set->ops->queue_rq)
24d2f903
CH
2525 return -EINVAL;
2526
a4391c64
JA
2527 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2528 pr_info("blk-mq: reduced tag depth to %u\n",
2529 BLK_MQ_MAX_DEPTH);
2530 set->queue_depth = BLK_MQ_MAX_DEPTH;
2531 }
24d2f903 2532
6637fadf
SL
2533 /*
2534 * If a crashdump is active, then we are potentially in a very
2535 * memory constrained environment. Limit us to 1 queue and
2536 * 64 tags to prevent using too much memory.
2537 */
2538 if (is_kdump_kernel()) {
2539 set->nr_hw_queues = 1;
2540 set->queue_depth = min(64U, set->queue_depth);
2541 }
868f2f0b
KB
2542 /*
2543 * There is no use for more h/w queues than cpus.
2544 */
2545 if (set->nr_hw_queues > nr_cpu_ids)
2546 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2547
868f2f0b 2548 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2549 GFP_KERNEL, set->numa_node);
2550 if (!set->tags)
a5164405 2551 return -ENOMEM;
24d2f903 2552
da695ba2
CH
2553 ret = -ENOMEM;
2554 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2555 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2556 if (!set->mq_map)
2557 goto out_free_tags;
2558
ebe8bddb 2559 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2560 if (ret)
2561 goto out_free_mq_map;
2562
2563 ret = blk_mq_alloc_rq_maps(set);
2564 if (ret)
bdd17e75 2565 goto out_free_mq_map;
24d2f903 2566
0d2602ca
JA
2567 mutex_init(&set->tag_list_lock);
2568 INIT_LIST_HEAD(&set->tag_list);
2569
24d2f903 2570 return 0;
bdd17e75
CH
2571
2572out_free_mq_map:
2573 kfree(set->mq_map);
2574 set->mq_map = NULL;
2575out_free_tags:
5676e7b6
RE
2576 kfree(set->tags);
2577 set->tags = NULL;
da695ba2 2578 return ret;
24d2f903
CH
2579}
2580EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2581
2582void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2583{
2584 int i;
2585
cc71a6f4
JA
2586 for (i = 0; i < nr_cpu_ids; i++)
2587 blk_mq_free_map_and_requests(set, i);
484b4061 2588
bdd17e75
CH
2589 kfree(set->mq_map);
2590 set->mq_map = NULL;
2591
981bd189 2592 kfree(set->tags);
5676e7b6 2593 set->tags = NULL;
24d2f903
CH
2594}
2595EXPORT_SYMBOL(blk_mq_free_tag_set);
2596
e3a2b3f9
JA
2597int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2598{
2599 struct blk_mq_tag_set *set = q->tag_set;
2600 struct blk_mq_hw_ctx *hctx;
2601 int i, ret;
2602
bd166ef1 2603 if (!set)
e3a2b3f9
JA
2604 return -EINVAL;
2605
70f36b60 2606 blk_mq_freeze_queue(q);
70f36b60 2607
e3a2b3f9
JA
2608 ret = 0;
2609 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2610 if (!hctx->tags)
2611 continue;
bd166ef1
JA
2612 /*
2613 * If we're using an MQ scheduler, just update the scheduler
2614 * queue depth. This is similar to what the old code would do.
2615 */
70f36b60
JA
2616 if (!hctx->sched_tags) {
2617 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2618 min(nr, set->queue_depth),
2619 false);
2620 } else {
2621 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2622 nr, true);
2623 }
e3a2b3f9
JA
2624 if (ret)
2625 break;
2626 }
2627
2628 if (!ret)
2629 q->nr_requests = nr;
2630
70f36b60 2631 blk_mq_unfreeze_queue(q);
70f36b60 2632
e3a2b3f9
JA
2633 return ret;
2634}
2635
e4dc2b32
KB
2636static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2637 int nr_hw_queues)
868f2f0b
KB
2638{
2639 struct request_queue *q;
2640
705cda97
BVA
2641 lockdep_assert_held(&set->tag_list_lock);
2642
868f2f0b
KB
2643 if (nr_hw_queues > nr_cpu_ids)
2644 nr_hw_queues = nr_cpu_ids;
2645 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2646 return;
2647
2648 list_for_each_entry(q, &set->tag_list, tag_set_list)
2649 blk_mq_freeze_queue(q);
2650
2651 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2652 blk_mq_update_queue_map(set);
868f2f0b
KB
2653 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2654 blk_mq_realloc_hw_ctxs(set, q);
868f2f0b
KB
2655 blk_mq_queue_reinit(q, cpu_online_mask);
2656 }
2657
2658 list_for_each_entry(q, &set->tag_list, tag_set_list)
2659 blk_mq_unfreeze_queue(q);
2660}
e4dc2b32
KB
2661
2662void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2663{
2664 mutex_lock(&set->tag_list_lock);
2665 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2666 mutex_unlock(&set->tag_list_lock);
2667}
868f2f0b
KB
2668EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2669
34dbad5d
OS
2670/* Enable polling stats and return whether they were already enabled. */
2671static bool blk_poll_stats_enable(struct request_queue *q)
2672{
2673 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2674 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2675 return true;
2676 blk_stat_add_callback(q, q->poll_cb);
2677 return false;
2678}
2679
2680static void blk_mq_poll_stats_start(struct request_queue *q)
2681{
2682 /*
2683 * We don't arm the callback if polling stats are not enabled or the
2684 * callback is already active.
2685 */
2686 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2687 blk_stat_is_active(q->poll_cb))
2688 return;
2689
2690 blk_stat_activate_msecs(q->poll_cb, 100);
2691}
2692
2693static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2694{
2695 struct request_queue *q = cb->data;
720b8ccc 2696 int bucket;
34dbad5d 2697
720b8ccc
SB
2698 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2699 if (cb->stat[bucket].nr_samples)
2700 q->poll_stat[bucket] = cb->stat[bucket];
2701 }
34dbad5d
OS
2702}
2703
64f1c21e
JA
2704static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2705 struct blk_mq_hw_ctx *hctx,
2706 struct request *rq)
2707{
64f1c21e 2708 unsigned long ret = 0;
720b8ccc 2709 int bucket;
64f1c21e
JA
2710
2711 /*
2712 * If stats collection isn't on, don't sleep but turn it on for
2713 * future users
2714 */
34dbad5d 2715 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2716 return 0;
2717
64f1c21e
JA
2718 /*
2719 * As an optimistic guess, use half of the mean service time
2720 * for this type of request. We can (and should) make this smarter.
2721 * For instance, if the completion latencies are tight, we can
2722 * get closer than just half the mean. This is especially
2723 * important on devices where the completion latencies are longer
720b8ccc
SB
2724 * than ~10 usec. We do use the stats for the relevant IO size
2725 * if available which does lead to better estimates.
64f1c21e 2726 */
720b8ccc
SB
2727 bucket = blk_mq_poll_stats_bkt(rq);
2728 if (bucket < 0)
2729 return ret;
2730
2731 if (q->poll_stat[bucket].nr_samples)
2732 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
2733
2734 return ret;
2735}
2736
06426adf 2737static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2738 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2739 struct request *rq)
2740{
2741 struct hrtimer_sleeper hs;
2742 enum hrtimer_mode mode;
64f1c21e 2743 unsigned int nsecs;
06426adf
JA
2744 ktime_t kt;
2745
64f1c21e
JA
2746 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2747 return false;
2748
2749 /*
2750 * poll_nsec can be:
2751 *
2752 * -1: don't ever hybrid sleep
2753 * 0: use half of prev avg
2754 * >0: use this specific value
2755 */
2756 if (q->poll_nsec == -1)
2757 return false;
2758 else if (q->poll_nsec > 0)
2759 nsecs = q->poll_nsec;
2760 else
2761 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2762
2763 if (!nsecs)
06426adf
JA
2764 return false;
2765
2766 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2767
2768 /*
2769 * This will be replaced with the stats tracking code, using
2770 * 'avg_completion_time / 2' as the pre-sleep target.
2771 */
8b0e1953 2772 kt = nsecs;
06426adf
JA
2773
2774 mode = HRTIMER_MODE_REL;
2775 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2776 hrtimer_set_expires(&hs.timer, kt);
2777
2778 hrtimer_init_sleeper(&hs, current);
2779 do {
2780 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2781 break;
2782 set_current_state(TASK_UNINTERRUPTIBLE);
2783 hrtimer_start_expires(&hs.timer, mode);
2784 if (hs.task)
2785 io_schedule();
2786 hrtimer_cancel(&hs.timer);
2787 mode = HRTIMER_MODE_ABS;
2788 } while (hs.task && !signal_pending(current));
2789
2790 __set_current_state(TASK_RUNNING);
2791 destroy_hrtimer_on_stack(&hs.timer);
2792 return true;
2793}
2794
bbd7bb70
JA
2795static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2796{
2797 struct request_queue *q = hctx->queue;
2798 long state;
2799
06426adf
JA
2800 /*
2801 * If we sleep, have the caller restart the poll loop to reset
2802 * the state. Like for the other success return cases, the
2803 * caller is responsible for checking if the IO completed. If
2804 * the IO isn't complete, we'll get called again and will go
2805 * straight to the busy poll loop.
2806 */
64f1c21e 2807 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2808 return true;
2809
bbd7bb70
JA
2810 hctx->poll_considered++;
2811
2812 state = current->state;
2813 while (!need_resched()) {
2814 int ret;
2815
2816 hctx->poll_invoked++;
2817
2818 ret = q->mq_ops->poll(hctx, rq->tag);
2819 if (ret > 0) {
2820 hctx->poll_success++;
2821 set_current_state(TASK_RUNNING);
2822 return true;
2823 }
2824
2825 if (signal_pending_state(state, current))
2826 set_current_state(TASK_RUNNING);
2827
2828 if (current->state == TASK_RUNNING)
2829 return true;
2830 if (ret < 0)
2831 break;
2832 cpu_relax();
2833 }
2834
2835 return false;
2836}
2837
2838bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2839{
2840 struct blk_mq_hw_ctx *hctx;
2841 struct blk_plug *plug;
2842 struct request *rq;
2843
2844 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2845 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2846 return false;
2847
2848 plug = current->plug;
2849 if (plug)
2850 blk_flush_plug_list(plug, false);
2851
2852 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2853 if (!blk_qc_t_is_internal(cookie))
2854 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3a07bb1d 2855 else {
bd166ef1 2856 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3a07bb1d
JA
2857 /*
2858 * With scheduling, if the request has completed, we'll
2859 * get a NULL return here, as we clear the sched tag when
2860 * that happens. The request still remains valid, like always,
2861 * so we should be safe with just the NULL check.
2862 */
2863 if (!rq)
2864 return false;
2865 }
bbd7bb70
JA
2866
2867 return __blk_mq_poll(hctx, rq);
2868}
2869EXPORT_SYMBOL_GPL(blk_mq_poll);
2870
676141e4
JA
2871void blk_mq_disable_hotplug(void)
2872{
2873 mutex_lock(&all_q_mutex);
2874}
2875
2876void blk_mq_enable_hotplug(void)
2877{
2878 mutex_unlock(&all_q_mutex);
2879}
2880
320ae51f
JA
2881static int __init blk_mq_init(void)
2882{
9467f859
TG
2883 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2884 blk_mq_hctx_notify_dead);
320ae51f 2885
65d5291e
SAS
2886 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2887 blk_mq_queue_reinit_prepare,
2888 blk_mq_queue_reinit_dead);
320ae51f
JA
2889 return 0;
2890}
2891subsys_initcall(blk_mq_init);