]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-mq.c
blk-stat: move BLK_RQ_STAT_BATCH definition to blk-stat.c
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
34#include "blk-mq-tag.h"
cf43e6be 35#include "blk-stat.h"
87760e5e 36#include "blk-wbt.h"
bd166ef1 37#include "blk-mq-sched.h"
320ae51f
JA
38
39static DEFINE_MUTEX(all_q_mutex);
40static LIST_HEAD(all_q_list);
41
320ae51f
JA
42/*
43 * Check if any of the ctx's have pending work in this hardware queue
44 */
50e1dab8 45bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 46{
bd166ef1
JA
47 return sbitmap_any_bit_set(&hctx->ctx_map) ||
48 !list_empty_careful(&hctx->dispatch) ||
49 blk_mq_sched_has_work(hctx);
1429d7c9
JA
50}
51
320ae51f
JA
52/*
53 * Mark this ctx as having pending work in this hardware queue
54 */
55static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
56 struct blk_mq_ctx *ctx)
57{
88459642
OS
58 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
59 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
60}
61
62static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64{
88459642 65 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
66}
67
b4c6a028 68void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 69{
4ecd4fef 70 int freeze_depth;
cddd5d17 71
4ecd4fef
CH
72 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
73 if (freeze_depth == 1) {
3ef28e83 74 percpu_ref_kill(&q->q_usage_counter);
b94ec296 75 blk_mq_run_hw_queues(q, false);
cddd5d17 76 }
f3af020b 77}
b4c6a028 78EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
f3af020b 79
6bae363e 80void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 81{
3ef28e83 82 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 83}
6bae363e 84EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 85
f91328c4
KB
86int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
87 unsigned long timeout)
88{
89 return wait_event_timeout(q->mq_freeze_wq,
90 percpu_ref_is_zero(&q->q_usage_counter),
91 timeout);
92}
93EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 94
f3af020b
TH
95/*
96 * Guarantee no request is in use, so we can change any data structure of
97 * the queue afterward.
98 */
3ef28e83 99void blk_freeze_queue(struct request_queue *q)
f3af020b 100{
3ef28e83
DW
101 /*
102 * In the !blk_mq case we are only calling this to kill the
103 * q_usage_counter, otherwise this increases the freeze depth
104 * and waits for it to return to zero. For this reason there is
105 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
106 * exported to drivers as the only user for unfreeze is blk_mq.
107 */
f3af020b
TH
108 blk_mq_freeze_queue_start(q);
109 blk_mq_freeze_queue_wait(q);
110}
3ef28e83
DW
111
112void blk_mq_freeze_queue(struct request_queue *q)
113{
114 /*
115 * ...just an alias to keep freeze and unfreeze actions balanced
116 * in the blk_mq_* namespace
117 */
118 blk_freeze_queue(q);
119}
c761d96b 120EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 121
b4c6a028 122void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 123{
4ecd4fef 124 int freeze_depth;
320ae51f 125
4ecd4fef
CH
126 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
127 WARN_ON_ONCE(freeze_depth < 0);
128 if (!freeze_depth) {
3ef28e83 129 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 130 wake_up_all(&q->mq_freeze_wq);
add703fd 131 }
320ae51f 132}
b4c6a028 133EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 134
6a83e74d
BVA
135/**
136 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
137 * @q: request queue.
138 *
139 * Note: this function does not prevent that the struct request end_io()
140 * callback function is invoked. Additionally, it is not prevented that
141 * new queue_rq() calls occur unless the queue has been stopped first.
142 */
143void blk_mq_quiesce_queue(struct request_queue *q)
144{
145 struct blk_mq_hw_ctx *hctx;
146 unsigned int i;
147 bool rcu = false;
148
149 blk_mq_stop_hw_queues(q);
150
151 queue_for_each_hw_ctx(q, hctx, i) {
152 if (hctx->flags & BLK_MQ_F_BLOCKING)
153 synchronize_srcu(&hctx->queue_rq_srcu);
154 else
155 rcu = true;
156 }
157 if (rcu)
158 synchronize_rcu();
159}
160EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
161
aed3ea94
JA
162void blk_mq_wake_waiters(struct request_queue *q)
163{
164 struct blk_mq_hw_ctx *hctx;
165 unsigned int i;
166
167 queue_for_each_hw_ctx(q, hctx, i)
168 if (blk_mq_hw_queue_mapped(hctx))
169 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
170
171 /*
172 * If we are called because the queue has now been marked as
173 * dying, we need to ensure that processes currently waiting on
174 * the queue are notified as well.
175 */
176 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
177}
178
320ae51f
JA
179bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
180{
181 return blk_mq_has_free_tags(hctx->tags);
182}
183EXPORT_SYMBOL(blk_mq_can_queue);
184
2c3ad667
JA
185void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
186 struct request *rq, unsigned int op)
320ae51f 187{
af76e555
CH
188 INIT_LIST_HEAD(&rq->queuelist);
189 /* csd/requeue_work/fifo_time is initialized before use */
190 rq->q = q;
320ae51f 191 rq->mq_ctx = ctx;
ef295ecf 192 rq->cmd_flags = op;
e8064021
CH
193 if (blk_queue_io_stat(q))
194 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
195 /* do not touch atomic flags, it needs atomic ops against the timer */
196 rq->cpu = -1;
af76e555
CH
197 INIT_HLIST_NODE(&rq->hash);
198 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
199 rq->rq_disk = NULL;
200 rq->part = NULL;
3ee32372 201 rq->start_time = jiffies;
af76e555
CH
202#ifdef CONFIG_BLK_CGROUP
203 rq->rl = NULL;
0fec08b4 204 set_start_time_ns(rq);
af76e555
CH
205 rq->io_start_time_ns = 0;
206#endif
207 rq->nr_phys_segments = 0;
208#if defined(CONFIG_BLK_DEV_INTEGRITY)
209 rq->nr_integrity_segments = 0;
210#endif
af76e555
CH
211 rq->special = NULL;
212 /* tag was already set */
213 rq->errors = 0;
af76e555 214 rq->extra_len = 0;
af76e555 215
af76e555 216 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
217 rq->timeout = 0;
218
af76e555
CH
219 rq->end_io = NULL;
220 rq->end_io_data = NULL;
221 rq->next_rq = NULL;
222
ef295ecf 223 ctx->rq_dispatched[op_is_sync(op)]++;
320ae51f 224}
2c3ad667 225EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
320ae51f 226
2c3ad667
JA
227struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
228 unsigned int op)
5dee8577
CH
229{
230 struct request *rq;
231 unsigned int tag;
232
cb96a42c 233 tag = blk_mq_get_tag(data);
5dee8577 234 if (tag != BLK_MQ_TAG_FAIL) {
bd166ef1
JA
235 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
236
237 rq = tags->static_rqs[tag];
5dee8577 238
bd166ef1
JA
239 if (data->flags & BLK_MQ_REQ_INTERNAL) {
240 rq->tag = -1;
241 rq->internal_tag = tag;
242 } else {
200e86b3
JA
243 if (blk_mq_tag_busy(data->hctx)) {
244 rq->rq_flags = RQF_MQ_INFLIGHT;
245 atomic_inc(&data->hctx->nr_active);
246 }
bd166ef1
JA
247 rq->tag = tag;
248 rq->internal_tag = -1;
562bef42 249 data->hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
250 }
251
ef295ecf 252 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
5dee8577
CH
253 return rq;
254 }
255
256 return NULL;
257}
2c3ad667 258EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
5dee8577 259
6f3b0e8b
CH
260struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
261 unsigned int flags)
320ae51f 262{
5a797e00 263 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 264 struct request *rq;
a492f075 265 int ret;
320ae51f 266
6f3b0e8b 267 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
268 if (ret)
269 return ERR_PTR(ret);
320ae51f 270
bd166ef1 271 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
841bac2c 272
bd166ef1
JA
273 blk_mq_put_ctx(alloc_data.ctx);
274 blk_queue_exit(q);
275
276 if (!rq)
a492f075 277 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
278
279 rq->__data_len = 0;
280 rq->__sector = (sector_t) -1;
281 rq->bio = rq->biotail = NULL;
320ae51f
JA
282 return rq;
283}
4bb659b1 284EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 285
1f5bd336
ML
286struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
287 unsigned int flags, unsigned int hctx_idx)
288{
6d2809d5 289 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 290 struct request *rq;
6d2809d5 291 unsigned int cpu;
1f5bd336
ML
292 int ret;
293
294 /*
295 * If the tag allocator sleeps we could get an allocation for a
296 * different hardware context. No need to complicate the low level
297 * allocator for this for the rare use case of a command tied to
298 * a specific queue.
299 */
300 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
301 return ERR_PTR(-EINVAL);
302
303 if (hctx_idx >= q->nr_hw_queues)
304 return ERR_PTR(-EIO);
305
306 ret = blk_queue_enter(q, true);
307 if (ret)
308 return ERR_PTR(ret);
309
c8712c6a
CH
310 /*
311 * Check if the hardware context is actually mapped to anything.
312 * If not tell the caller that it should skip this queue.
313 */
6d2809d5
OS
314 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
315 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
316 blk_queue_exit(q);
317 return ERR_PTR(-EXDEV);
c8712c6a 318 }
6d2809d5
OS
319 cpu = cpumask_first(alloc_data.hctx->cpumask);
320 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 321
6d2809d5 322 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
c8712c6a 323
6d2809d5 324 blk_mq_put_ctx(alloc_data.ctx);
c8712c6a 325 blk_queue_exit(q);
6d2809d5
OS
326
327 if (!rq)
328 return ERR_PTR(-EWOULDBLOCK);
329
330 return rq;
1f5bd336
ML
331}
332EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
333
bd166ef1
JA
334void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
335 struct request *rq)
320ae51f 336{
bd166ef1 337 const int sched_tag = rq->internal_tag;
320ae51f
JA
338 struct request_queue *q = rq->q;
339
e8064021 340 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 341 atomic_dec(&hctx->nr_active);
87760e5e
JA
342
343 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 344 rq->rq_flags = 0;
0d2602ca 345
af76e555 346 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 347 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
348 if (rq->tag != -1)
349 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
350 if (sched_tag != -1)
351 blk_mq_sched_completed_request(hctx, rq);
50e1dab8 352 blk_mq_sched_restart_queues(hctx);
3ef28e83 353 blk_queue_exit(q);
320ae51f
JA
354}
355
bd166ef1 356static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
16a3c2a7 357 struct request *rq)
320ae51f
JA
358{
359 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
360
361 ctx->rq_completed[rq_is_sync(rq)]++;
bd166ef1
JA
362 __blk_mq_finish_request(hctx, ctx, rq);
363}
364
365void blk_mq_finish_request(struct request *rq)
366{
367 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
7c7f2f2b 368}
7c7f2f2b
JA
369
370void blk_mq_free_request(struct request *rq)
371{
bd166ef1 372 blk_mq_sched_put_request(rq);
320ae51f 373}
1a3b595a 374EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 375
c8a446ad 376inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 377{
0d11e6ac
ML
378 blk_account_io_done(rq);
379
91b63639 380 if (rq->end_io) {
87760e5e 381 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 382 rq->end_io(rq, error);
91b63639
CH
383 } else {
384 if (unlikely(blk_bidi_rq(rq)))
385 blk_mq_free_request(rq->next_rq);
320ae51f 386 blk_mq_free_request(rq);
91b63639 387 }
320ae51f 388}
c8a446ad 389EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 390
c8a446ad 391void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
392{
393 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
394 BUG();
c8a446ad 395 __blk_mq_end_request(rq, error);
63151a44 396}
c8a446ad 397EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 398
30a91cb4 399static void __blk_mq_complete_request_remote(void *data)
320ae51f 400{
3d6efbf6 401 struct request *rq = data;
320ae51f 402
30a91cb4 403 rq->q->softirq_done_fn(rq);
320ae51f 404}
320ae51f 405
ed851860 406static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
407{
408 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 409 bool shared = false;
320ae51f
JA
410 int cpu;
411
38535201 412 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
413 rq->q->softirq_done_fn(rq);
414 return;
415 }
320ae51f
JA
416
417 cpu = get_cpu();
38535201
CH
418 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
419 shared = cpus_share_cache(cpu, ctx->cpu);
420
421 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 422 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
423 rq->csd.info = rq;
424 rq->csd.flags = 0;
c46fff2a 425 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 426 } else {
30a91cb4 427 rq->q->softirq_done_fn(rq);
3d6efbf6 428 }
320ae51f
JA
429 put_cpu();
430}
30a91cb4 431
cf43e6be
JA
432static void blk_mq_stat_add(struct request *rq)
433{
434 if (rq->rq_flags & RQF_STATS) {
435 /*
436 * We could rq->mq_ctx here, but there's less of a risk
437 * of races if we have the completion event add the stats
438 * to the local software queue.
439 */
440 struct blk_mq_ctx *ctx;
441
442 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
443 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
444 }
445}
446
1fa8cc52 447static void __blk_mq_complete_request(struct request *rq)
ed851860
JA
448{
449 struct request_queue *q = rq->q;
450
cf43e6be
JA
451 blk_mq_stat_add(rq);
452
ed851860 453 if (!q->softirq_done_fn)
c8a446ad 454 blk_mq_end_request(rq, rq->errors);
ed851860
JA
455 else
456 blk_mq_ipi_complete_request(rq);
457}
458
30a91cb4
CH
459/**
460 * blk_mq_complete_request - end I/O on a request
461 * @rq: the request being processed
462 *
463 * Description:
464 * Ends all I/O on a request. It does not handle partial completions.
465 * The actual completion happens out-of-order, through a IPI handler.
466 **/
f4829a9b 467void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 468{
95f09684
JA
469 struct request_queue *q = rq->q;
470
471 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 472 return;
f4829a9b
CH
473 if (!blk_mark_rq_complete(rq)) {
474 rq->errors = error;
ed851860 475 __blk_mq_complete_request(rq);
f4829a9b 476 }
30a91cb4
CH
477}
478EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 479
973c0191
KB
480int blk_mq_request_started(struct request *rq)
481{
482 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
483}
484EXPORT_SYMBOL_GPL(blk_mq_request_started);
485
e2490073 486void blk_mq_start_request(struct request *rq)
320ae51f
JA
487{
488 struct request_queue *q = rq->q;
489
bd166ef1
JA
490 blk_mq_sched_started_request(rq);
491
320ae51f
JA
492 trace_block_rq_issue(q, rq);
493
cf43e6be
JA
494 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
495 blk_stat_set_issue_time(&rq->issue_stat);
496 rq->rq_flags |= RQF_STATS;
87760e5e 497 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
498 }
499
2b8393b4 500 blk_add_timer(rq);
87ee7b11 501
538b7534
JA
502 /*
503 * Ensure that ->deadline is visible before set the started
504 * flag and clear the completed flag.
505 */
506 smp_mb__before_atomic();
507
87ee7b11
JA
508 /*
509 * Mark us as started and clear complete. Complete might have been
510 * set if requeue raced with timeout, which then marked it as
511 * complete. So be sure to clear complete again when we start
512 * the request, otherwise we'll ignore the completion event.
513 */
4b570521
JA
514 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
515 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
516 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
517 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
518
519 if (q->dma_drain_size && blk_rq_bytes(rq)) {
520 /*
521 * Make sure space for the drain appears. We know we can do
522 * this because max_hw_segments has been adjusted to be one
523 * fewer than the device can handle.
524 */
525 rq->nr_phys_segments++;
526 }
320ae51f 527}
e2490073 528EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 529
ed0791b2 530static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
531{
532 struct request_queue *q = rq->q;
533
534 trace_block_rq_requeue(q, rq);
87760e5e 535 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 536 blk_mq_sched_requeue_request(rq);
49f5baa5 537
e2490073
CH
538 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
539 if (q->dma_drain_size && blk_rq_bytes(rq))
540 rq->nr_phys_segments--;
541 }
320ae51f
JA
542}
543
2b053aca 544void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 545{
ed0791b2 546 __blk_mq_requeue_request(rq);
ed0791b2 547
ed0791b2 548 BUG_ON(blk_queued_rq(rq));
2b053aca 549 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
550}
551EXPORT_SYMBOL(blk_mq_requeue_request);
552
6fca6a61
CH
553static void blk_mq_requeue_work(struct work_struct *work)
554{
555 struct request_queue *q =
2849450a 556 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
557 LIST_HEAD(rq_list);
558 struct request *rq, *next;
559 unsigned long flags;
560
561 spin_lock_irqsave(&q->requeue_lock, flags);
562 list_splice_init(&q->requeue_list, &rq_list);
563 spin_unlock_irqrestore(&q->requeue_lock, flags);
564
565 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 566 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
567 continue;
568
e8064021 569 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 570 list_del_init(&rq->queuelist);
bd6737f1 571 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
572 }
573
574 while (!list_empty(&rq_list)) {
575 rq = list_entry(rq_list.next, struct request, queuelist);
576 list_del_init(&rq->queuelist);
bd6737f1 577 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
578 }
579
52d7f1b5 580 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
581}
582
2b053aca
BVA
583void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
584 bool kick_requeue_list)
6fca6a61
CH
585{
586 struct request_queue *q = rq->q;
587 unsigned long flags;
588
589 /*
590 * We abuse this flag that is otherwise used by the I/O scheduler to
591 * request head insertation from the workqueue.
592 */
e8064021 593 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
594
595 spin_lock_irqsave(&q->requeue_lock, flags);
596 if (at_head) {
e8064021 597 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
598 list_add(&rq->queuelist, &q->requeue_list);
599 } else {
600 list_add_tail(&rq->queuelist, &q->requeue_list);
601 }
602 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
603
604 if (kick_requeue_list)
605 blk_mq_kick_requeue_list(q);
6fca6a61
CH
606}
607EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
608
609void blk_mq_kick_requeue_list(struct request_queue *q)
610{
2849450a 611 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
612}
613EXPORT_SYMBOL(blk_mq_kick_requeue_list);
614
2849450a
MS
615void blk_mq_delay_kick_requeue_list(struct request_queue *q,
616 unsigned long msecs)
617{
618 kblockd_schedule_delayed_work(&q->requeue_work,
619 msecs_to_jiffies(msecs));
620}
621EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
622
1885b24d
JA
623void blk_mq_abort_requeue_list(struct request_queue *q)
624{
625 unsigned long flags;
626 LIST_HEAD(rq_list);
627
628 spin_lock_irqsave(&q->requeue_lock, flags);
629 list_splice_init(&q->requeue_list, &rq_list);
630 spin_unlock_irqrestore(&q->requeue_lock, flags);
631
632 while (!list_empty(&rq_list)) {
633 struct request *rq;
634
635 rq = list_first_entry(&rq_list, struct request, queuelist);
636 list_del_init(&rq->queuelist);
637 rq->errors = -EIO;
638 blk_mq_end_request(rq, rq->errors);
639 }
640}
641EXPORT_SYMBOL(blk_mq_abort_requeue_list);
642
0e62f51f
JA
643struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
644{
88c7b2b7
JA
645 if (tag < tags->nr_tags) {
646 prefetch(tags->rqs[tag]);
4ee86bab 647 return tags->rqs[tag];
88c7b2b7 648 }
4ee86bab
HR
649
650 return NULL;
24d2f903
CH
651}
652EXPORT_SYMBOL(blk_mq_tag_to_rq);
653
320ae51f 654struct blk_mq_timeout_data {
46f92d42
CH
655 unsigned long next;
656 unsigned int next_set;
320ae51f
JA
657};
658
90415837 659void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 660{
f8a5b122 661 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 662 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
663
664 /*
665 * We know that complete is set at this point. If STARTED isn't set
666 * anymore, then the request isn't active and the "timeout" should
667 * just be ignored. This can happen due to the bitflag ordering.
668 * Timeout first checks if STARTED is set, and if it is, assumes
669 * the request is active. But if we race with completion, then
670 * we both flags will get cleared. So check here again, and ignore
671 * a timeout event with a request that isn't active.
672 */
46f92d42
CH
673 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
674 return;
87ee7b11 675
46f92d42 676 if (ops->timeout)
0152fb6b 677 ret = ops->timeout(req, reserved);
46f92d42
CH
678
679 switch (ret) {
680 case BLK_EH_HANDLED:
681 __blk_mq_complete_request(req);
682 break;
683 case BLK_EH_RESET_TIMER:
684 blk_add_timer(req);
685 blk_clear_rq_complete(req);
686 break;
687 case BLK_EH_NOT_HANDLED:
688 break;
689 default:
690 printk(KERN_ERR "block: bad eh return: %d\n", ret);
691 break;
692 }
87ee7b11 693}
5b3f25fc 694
81481eb4
CH
695static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
696 struct request *rq, void *priv, bool reserved)
697{
698 struct blk_mq_timeout_data *data = priv;
87ee7b11 699
eb130dbf
KB
700 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
701 /*
702 * If a request wasn't started before the queue was
703 * marked dying, kill it here or it'll go unnoticed.
704 */
a59e0f57
KB
705 if (unlikely(blk_queue_dying(rq->q))) {
706 rq->errors = -EIO;
707 blk_mq_end_request(rq, rq->errors);
708 }
46f92d42 709 return;
eb130dbf 710 }
87ee7b11 711
46f92d42
CH
712 if (time_after_eq(jiffies, rq->deadline)) {
713 if (!blk_mark_rq_complete(rq))
0152fb6b 714 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
715 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
716 data->next = rq->deadline;
717 data->next_set = 1;
718 }
87ee7b11
JA
719}
720
287922eb 721static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 722{
287922eb
CH
723 struct request_queue *q =
724 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
725 struct blk_mq_timeout_data data = {
726 .next = 0,
727 .next_set = 0,
728 };
81481eb4 729 int i;
320ae51f 730
71f79fb3
GKB
731 /* A deadlock might occur if a request is stuck requiring a
732 * timeout at the same time a queue freeze is waiting
733 * completion, since the timeout code would not be able to
734 * acquire the queue reference here.
735 *
736 * That's why we don't use blk_queue_enter here; instead, we use
737 * percpu_ref_tryget directly, because we need to be able to
738 * obtain a reference even in the short window between the queue
739 * starting to freeze, by dropping the first reference in
740 * blk_mq_freeze_queue_start, and the moment the last request is
741 * consumed, marked by the instant q_usage_counter reaches
742 * zero.
743 */
744 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
745 return;
746
0bf6cd5b 747 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 748
81481eb4
CH
749 if (data.next_set) {
750 data.next = blk_rq_timeout(round_jiffies_up(data.next));
751 mod_timer(&q->timeout, data.next);
0d2602ca 752 } else {
0bf6cd5b
CH
753 struct blk_mq_hw_ctx *hctx;
754
f054b56c
ML
755 queue_for_each_hw_ctx(q, hctx, i) {
756 /* the hctx may be unmapped, so check it here */
757 if (blk_mq_hw_queue_mapped(hctx))
758 blk_mq_tag_idle(hctx);
759 }
0d2602ca 760 }
287922eb 761 blk_queue_exit(q);
320ae51f
JA
762}
763
764/*
765 * Reverse check our software queue for entries that we could potentially
766 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
767 * too much time checking for merges.
768 */
769static bool blk_mq_attempt_merge(struct request_queue *q,
770 struct blk_mq_ctx *ctx, struct bio *bio)
771{
772 struct request *rq;
773 int checked = 8;
774
775 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
34fe7c05 776 bool merged = false;
320ae51f
JA
777
778 if (!checked--)
779 break;
780
781 if (!blk_rq_merge_ok(rq, bio))
782 continue;
783
34fe7c05
CH
784 switch (blk_try_merge(rq, bio)) {
785 case ELEVATOR_BACK_MERGE:
786 if (blk_mq_sched_allow_merge(q, rq, bio))
787 merged = bio_attempt_back_merge(q, rq, bio);
bd166ef1 788 break;
34fe7c05
CH
789 case ELEVATOR_FRONT_MERGE:
790 if (blk_mq_sched_allow_merge(q, rq, bio))
791 merged = bio_attempt_front_merge(q, rq, bio);
320ae51f 792 break;
1e739730
CH
793 case ELEVATOR_DISCARD_MERGE:
794 merged = bio_attempt_discard_merge(q, rq, bio);
320ae51f 795 break;
34fe7c05
CH
796 default:
797 continue;
320ae51f 798 }
34fe7c05
CH
799
800 if (merged)
801 ctx->rq_merged++;
802 return merged;
320ae51f
JA
803 }
804
805 return false;
806}
807
88459642
OS
808struct flush_busy_ctx_data {
809 struct blk_mq_hw_ctx *hctx;
810 struct list_head *list;
811};
812
813static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
814{
815 struct flush_busy_ctx_data *flush_data = data;
816 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
817 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
818
819 sbitmap_clear_bit(sb, bitnr);
820 spin_lock(&ctx->lock);
821 list_splice_tail_init(&ctx->rq_list, flush_data->list);
822 spin_unlock(&ctx->lock);
823 return true;
824}
825
1429d7c9
JA
826/*
827 * Process software queues that have been marked busy, splicing them
828 * to the for-dispatch
829 */
2c3ad667 830void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 831{
88459642
OS
832 struct flush_busy_ctx_data data = {
833 .hctx = hctx,
834 .list = list,
835 };
1429d7c9 836
88459642 837 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 838}
2c3ad667 839EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 840
703fd1c0
JA
841static inline unsigned int queued_to_index(unsigned int queued)
842{
843 if (!queued)
844 return 0;
1429d7c9 845
703fd1c0 846 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
847}
848
bd6737f1
JA
849bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
850 bool wait)
bd166ef1
JA
851{
852 struct blk_mq_alloc_data data = {
853 .q = rq->q,
bd166ef1
JA
854 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
855 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
856 };
857
bd166ef1
JA
858 if (rq->tag != -1) {
859done:
860 if (hctx)
861 *hctx = data.hctx;
862 return true;
863 }
864
415b806d
SG
865 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
866 data.flags |= BLK_MQ_REQ_RESERVED;
867
bd166ef1
JA
868 rq->tag = blk_mq_get_tag(&data);
869 if (rq->tag >= 0) {
200e86b3
JA
870 if (blk_mq_tag_busy(data.hctx)) {
871 rq->rq_flags |= RQF_MQ_INFLIGHT;
872 atomic_inc(&data.hctx->nr_active);
873 }
bd166ef1
JA
874 data.hctx->tags->rqs[rq->tag] = rq;
875 goto done;
876 }
877
878 return false;
879}
880
113285b4
JA
881static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
882 struct request *rq)
99cf1dc5 883{
99cf1dc5
JA
884 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
885 rq->tag = -1;
886
887 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
888 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
889 atomic_dec(&hctx->nr_active);
890 }
891}
892
113285b4
JA
893static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
894 struct request *rq)
895{
896 if (rq->tag == -1 || rq->internal_tag == -1)
897 return;
898
899 __blk_mq_put_driver_tag(hctx, rq);
900}
901
902static void blk_mq_put_driver_tag(struct request *rq)
903{
904 struct blk_mq_hw_ctx *hctx;
905
906 if (rq->tag == -1 || rq->internal_tag == -1)
907 return;
908
909 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
910 __blk_mq_put_driver_tag(hctx, rq);
911}
912
bd166ef1
JA
913/*
914 * If we fail getting a driver tag because all the driver tags are already
915 * assigned and on the dispatch list, BUT the first entry does not have a
916 * tag, then we could deadlock. For that case, move entries with assigned
917 * driver tags to the front, leaving the set of tagged requests in the
918 * same order, and the untagged set in the same order.
919 */
920static bool reorder_tags_to_front(struct list_head *list)
921{
922 struct request *rq, *tmp, *first = NULL;
923
924 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
925 if (rq == first)
926 break;
927 if (rq->tag != -1) {
928 list_move(&rq->queuelist, list);
929 if (!first)
930 first = rq;
931 }
932 }
933
934 return first != NULL;
935}
936
da55f2cc
OS
937static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
938 void *key)
939{
940 struct blk_mq_hw_ctx *hctx;
941
942 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
943
944 list_del(&wait->task_list);
945 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
946 blk_mq_run_hw_queue(hctx, true);
947 return 1;
948}
949
950static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
951{
952 struct sbq_wait_state *ws;
953
954 /*
955 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
956 * The thread which wins the race to grab this bit adds the hardware
957 * queue to the wait queue.
958 */
959 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
960 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
961 return false;
962
963 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
964 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
965
966 /*
967 * As soon as this returns, it's no longer safe to fiddle with
968 * hctx->dispatch_wait, since a completion can wake up the wait queue
969 * and unlock the bit.
970 */
971 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
972 return true;
973}
974
f04c3df3 975bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
320ae51f
JA
976{
977 struct request_queue *q = hctx->queue;
320ae51f 978 struct request *rq;
74c45052
JA
979 LIST_HEAD(driver_list);
980 struct list_head *dptr;
f04c3df3 981 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
320ae51f 982
74c45052
JA
983 /*
984 * Start off with dptr being NULL, so we start the first request
985 * immediately, even if we have more pending.
986 */
987 dptr = NULL;
988
320ae51f
JA
989 /*
990 * Now process all the entries, sending them to the driver.
991 */
1429d7c9 992 queued = 0;
f04c3df3 993 while (!list_empty(list)) {
74c45052 994 struct blk_mq_queue_data bd;
320ae51f 995
f04c3df3 996 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
997 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
998 if (!queued && reorder_tags_to_front(list))
999 continue;
3c782d67
JA
1000
1001 /*
da55f2cc
OS
1002 * The initial allocation attempt failed, so we need to
1003 * rerun the hardware queue when a tag is freed.
3c782d67 1004 */
da55f2cc
OS
1005 if (blk_mq_dispatch_wait_add(hctx)) {
1006 /*
1007 * It's possible that a tag was freed in the
1008 * window between the allocation failure and
1009 * adding the hardware queue to the wait queue.
1010 */
1011 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1012 break;
1013 } else {
3c782d67 1014 break;
da55f2cc 1015 }
bd166ef1 1016 }
da55f2cc 1017
320ae51f 1018 list_del_init(&rq->queuelist);
320ae51f 1019
74c45052
JA
1020 bd.rq = rq;
1021 bd.list = dptr;
113285b4
JA
1022
1023 /*
1024 * Flag last if we have no more requests, or if we have more
1025 * but can't assign a driver tag to it.
1026 */
1027 if (list_empty(list))
1028 bd.last = true;
1029 else {
1030 struct request *nxt;
1031
1032 nxt = list_first_entry(list, struct request, queuelist);
1033 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1034 }
74c45052
JA
1035
1036 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
1037 switch (ret) {
1038 case BLK_MQ_RQ_QUEUE_OK:
1039 queued++;
52b9c330 1040 break;
320ae51f 1041 case BLK_MQ_RQ_QUEUE_BUSY:
113285b4 1042 blk_mq_put_driver_tag_hctx(hctx, rq);
f04c3df3 1043 list_add(&rq->queuelist, list);
ed0791b2 1044 __blk_mq_requeue_request(rq);
320ae51f
JA
1045 break;
1046 default:
1047 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 1048 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 1049 rq->errors = -EIO;
c8a446ad 1050 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
1051 break;
1052 }
1053
1054 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1055 break;
74c45052
JA
1056
1057 /*
1058 * We've done the first request. If we have more than 1
1059 * left in the list, set dptr to defer issue.
1060 */
f04c3df3 1061 if (!dptr && list->next != list->prev)
74c45052 1062 dptr = &driver_list;
320ae51f
JA
1063 }
1064
703fd1c0 1065 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1066
1067 /*
1068 * Any items that need requeuing? Stuff them into hctx->dispatch,
1069 * that is where we will continue on next queue run.
1070 */
f04c3df3 1071 if (!list_empty(list)) {
113285b4
JA
1072 /*
1073 * If we got a driver tag for the next request already,
1074 * free it again.
1075 */
1076 rq = list_first_entry(list, struct request, queuelist);
1077 blk_mq_put_driver_tag(rq);
1078
320ae51f 1079 spin_lock(&hctx->lock);
c13660a0 1080 list_splice_init(list, &hctx->dispatch);
320ae51f 1081 spin_unlock(&hctx->lock);
f04c3df3 1082
9ba52e58
SL
1083 /*
1084 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1085 * it's possible the queue is stopped and restarted again
1086 * before this. Queue restart will dispatch requests. And since
1087 * requests in rq_list aren't added into hctx->dispatch yet,
1088 * the requests in rq_list might get lost.
1089 *
1090 * blk_mq_run_hw_queue() already checks the STOPPED bit
bd166ef1 1091 *
da55f2cc
OS
1092 * If RESTART or TAG_WAITING is set, then let completion restart
1093 * the queue instead of potentially looping here.
bd166ef1 1094 */
da55f2cc
OS
1095 if (!blk_mq_sched_needs_restart(hctx) &&
1096 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
bd166ef1 1097 blk_mq_run_hw_queue(hctx, true);
320ae51f 1098 }
f04c3df3 1099
2aa0f21d 1100 return queued != 0;
f04c3df3
JA
1101}
1102
6a83e74d
BVA
1103static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1104{
1105 int srcu_idx;
1106
1107 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1108 cpu_online(hctx->next_cpu));
1109
1110 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1111 rcu_read_lock();
bd166ef1 1112 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1113 rcu_read_unlock();
1114 } else {
1115 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
bd166ef1 1116 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1117 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1118 }
1119}
1120
506e931f
JA
1121/*
1122 * It'd be great if the workqueue API had a way to pass
1123 * in a mask and had some smarts for more clever placement.
1124 * For now we just round-robin here, switching for every
1125 * BLK_MQ_CPU_WORK_BATCH queued items.
1126 */
1127static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1128{
b657d7e6
CH
1129 if (hctx->queue->nr_hw_queues == 1)
1130 return WORK_CPU_UNBOUND;
506e931f
JA
1131
1132 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1133 int next_cpu;
506e931f
JA
1134
1135 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1136 if (next_cpu >= nr_cpu_ids)
1137 next_cpu = cpumask_first(hctx->cpumask);
1138
1139 hctx->next_cpu = next_cpu;
1140 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1141 }
1142
b657d7e6 1143 return hctx->next_cpu;
506e931f
JA
1144}
1145
320ae51f
JA
1146void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1147{
5d1b25c1
BVA
1148 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1149 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
1150 return;
1151
1b792f2f 1152 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1153 int cpu = get_cpu();
1154 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1155 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1156 put_cpu();
398205b8
PB
1157 return;
1158 }
e4043dcf 1159
2a90d4aa 1160 put_cpu();
e4043dcf 1161 }
398205b8 1162
27489a3c 1163 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
320ae51f
JA
1164}
1165
b94ec296 1166void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1167{
1168 struct blk_mq_hw_ctx *hctx;
1169 int i;
1170
1171 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1172 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1173 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1174 continue;
1175
b94ec296 1176 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1177 }
1178}
b94ec296 1179EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1180
fd001443
BVA
1181/**
1182 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1183 * @q: request queue.
1184 *
1185 * The caller is responsible for serializing this function against
1186 * blk_mq_{start,stop}_hw_queue().
1187 */
1188bool blk_mq_queue_stopped(struct request_queue *q)
1189{
1190 struct blk_mq_hw_ctx *hctx;
1191 int i;
1192
1193 queue_for_each_hw_ctx(q, hctx, i)
1194 if (blk_mq_hctx_stopped(hctx))
1195 return true;
1196
1197 return false;
1198}
1199EXPORT_SYMBOL(blk_mq_queue_stopped);
1200
320ae51f
JA
1201void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1202{
27489a3c 1203 cancel_work(&hctx->run_work);
70f4db63 1204 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
1205 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1206}
1207EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1208
280d45f6
CH
1209void blk_mq_stop_hw_queues(struct request_queue *q)
1210{
1211 struct blk_mq_hw_ctx *hctx;
1212 int i;
1213
1214 queue_for_each_hw_ctx(q, hctx, i)
1215 blk_mq_stop_hw_queue(hctx);
1216}
1217EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1218
320ae51f
JA
1219void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1220{
1221 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1222
0ffbce80 1223 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1224}
1225EXPORT_SYMBOL(blk_mq_start_hw_queue);
1226
2f268556
CH
1227void blk_mq_start_hw_queues(struct request_queue *q)
1228{
1229 struct blk_mq_hw_ctx *hctx;
1230 int i;
1231
1232 queue_for_each_hw_ctx(q, hctx, i)
1233 blk_mq_start_hw_queue(hctx);
1234}
1235EXPORT_SYMBOL(blk_mq_start_hw_queues);
1236
ae911c5e
JA
1237void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1238{
1239 if (!blk_mq_hctx_stopped(hctx))
1240 return;
1241
1242 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1243 blk_mq_run_hw_queue(hctx, async);
1244}
1245EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1246
1b4a3258 1247void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1248{
1249 struct blk_mq_hw_ctx *hctx;
1250 int i;
1251
ae911c5e
JA
1252 queue_for_each_hw_ctx(q, hctx, i)
1253 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1254}
1255EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1256
70f4db63 1257static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1258{
1259 struct blk_mq_hw_ctx *hctx;
1260
27489a3c 1261 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
e4043dcf 1262
320ae51f
JA
1263 __blk_mq_run_hw_queue(hctx);
1264}
1265
70f4db63
CH
1266static void blk_mq_delay_work_fn(struct work_struct *work)
1267{
1268 struct blk_mq_hw_ctx *hctx;
1269
1270 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1271
1272 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1273 __blk_mq_run_hw_queue(hctx);
1274}
1275
1276void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1277{
19c66e59
ML
1278 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1279 return;
70f4db63 1280
7e79dadc 1281 blk_mq_stop_hw_queue(hctx);
b657d7e6
CH
1282 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1283 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
1284}
1285EXPORT_SYMBOL(blk_mq_delay_queue);
1286
cfd0c552 1287static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1288 struct request *rq,
1289 bool at_head)
320ae51f 1290{
e57690fe
JA
1291 struct blk_mq_ctx *ctx = rq->mq_ctx;
1292
01b983c9
JA
1293 trace_block_rq_insert(hctx->queue, rq);
1294
72a0a36e
CH
1295 if (at_head)
1296 list_add(&rq->queuelist, &ctx->rq_list);
1297 else
1298 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1299}
4bb659b1 1300
2c3ad667
JA
1301void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1302 bool at_head)
cfd0c552
ML
1303{
1304 struct blk_mq_ctx *ctx = rq->mq_ctx;
1305
e57690fe 1306 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1307 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1308}
1309
bd166ef1
JA
1310void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1311 struct list_head *list)
320ae51f
JA
1312
1313{
320ae51f
JA
1314 /*
1315 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1316 * offline now
1317 */
1318 spin_lock(&ctx->lock);
1319 while (!list_empty(list)) {
1320 struct request *rq;
1321
1322 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1323 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1324 list_del_init(&rq->queuelist);
e57690fe 1325 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1326 }
cfd0c552 1327 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1328 spin_unlock(&ctx->lock);
320ae51f
JA
1329}
1330
1331static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1332{
1333 struct request *rqa = container_of(a, struct request, queuelist);
1334 struct request *rqb = container_of(b, struct request, queuelist);
1335
1336 return !(rqa->mq_ctx < rqb->mq_ctx ||
1337 (rqa->mq_ctx == rqb->mq_ctx &&
1338 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1339}
1340
1341void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1342{
1343 struct blk_mq_ctx *this_ctx;
1344 struct request_queue *this_q;
1345 struct request *rq;
1346 LIST_HEAD(list);
1347 LIST_HEAD(ctx_list);
1348 unsigned int depth;
1349
1350 list_splice_init(&plug->mq_list, &list);
1351
1352 list_sort(NULL, &list, plug_ctx_cmp);
1353
1354 this_q = NULL;
1355 this_ctx = NULL;
1356 depth = 0;
1357
1358 while (!list_empty(&list)) {
1359 rq = list_entry_rq(list.next);
1360 list_del_init(&rq->queuelist);
1361 BUG_ON(!rq->q);
1362 if (rq->mq_ctx != this_ctx) {
1363 if (this_ctx) {
bd166ef1
JA
1364 trace_block_unplug(this_q, depth, from_schedule);
1365 blk_mq_sched_insert_requests(this_q, this_ctx,
1366 &ctx_list,
1367 from_schedule);
320ae51f
JA
1368 }
1369
1370 this_ctx = rq->mq_ctx;
1371 this_q = rq->q;
1372 depth = 0;
1373 }
1374
1375 depth++;
1376 list_add_tail(&rq->queuelist, &ctx_list);
1377 }
1378
1379 /*
1380 * If 'this_ctx' is set, we know we have entries to complete
1381 * on 'ctx_list'. Do those.
1382 */
1383 if (this_ctx) {
bd166ef1
JA
1384 trace_block_unplug(this_q, depth, from_schedule);
1385 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1386 from_schedule);
320ae51f
JA
1387 }
1388}
1389
1390static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1391{
1392 init_request_from_bio(rq, bio);
4b570521 1393
6e85eaf3 1394 blk_account_io_start(rq, true);
320ae51f
JA
1395}
1396
274a5843
JA
1397static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1398{
1399 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1400 !blk_queue_nomerges(hctx->queue);
1401}
1402
07068d5b
JA
1403static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1404 struct blk_mq_ctx *ctx,
1405 struct request *rq, struct bio *bio)
320ae51f 1406{
e18378a6 1407 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1408 blk_mq_bio_to_request(rq, bio);
1409 spin_lock(&ctx->lock);
1410insert_rq:
1411 __blk_mq_insert_request(hctx, rq, false);
1412 spin_unlock(&ctx->lock);
1413 return false;
1414 } else {
274a5843
JA
1415 struct request_queue *q = hctx->queue;
1416
07068d5b
JA
1417 spin_lock(&ctx->lock);
1418 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1419 blk_mq_bio_to_request(rq, bio);
1420 goto insert_rq;
1421 }
320ae51f 1422
07068d5b 1423 spin_unlock(&ctx->lock);
bd166ef1 1424 __blk_mq_finish_request(hctx, ctx, rq);
07068d5b 1425 return true;
14ec77f3 1426 }
07068d5b 1427}
14ec77f3 1428
fd2d3326
JA
1429static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1430{
bd166ef1
JA
1431 if (rq->tag != -1)
1432 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1433
1434 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1435}
1436
9c621104
JA
1437static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1438 bool may_sleep)
f984df1f 1439{
f984df1f 1440 struct request_queue *q = rq->q;
f984df1f
SL
1441 struct blk_mq_queue_data bd = {
1442 .rq = rq,
1443 .list = NULL,
1444 .last = 1
1445 };
bd166ef1
JA
1446 struct blk_mq_hw_ctx *hctx;
1447 blk_qc_t new_cookie;
1448 int ret;
f984df1f 1449
bd166ef1 1450 if (q->elevator)
2253efc8
BVA
1451 goto insert;
1452
bd166ef1
JA
1453 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1454 goto insert;
1455
1456 new_cookie = request_to_qc_t(hctx, rq);
1457
f984df1f
SL
1458 /*
1459 * For OK queue, we are done. For error, kill it. Any other
1460 * error (busy), just add it to our list as we previously
1461 * would have done
1462 */
1463 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1464 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1465 *cookie = new_cookie;
2253efc8 1466 return;
7b371636 1467 }
f984df1f 1468
7b371636
JA
1469 __blk_mq_requeue_request(rq);
1470
1471 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1472 *cookie = BLK_QC_T_NONE;
1473 rq->errors = -EIO;
1474 blk_mq_end_request(rq, rq->errors);
2253efc8 1475 return;
f984df1f 1476 }
7b371636 1477
2253efc8 1478insert:
9c621104 1479 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
f984df1f
SL
1480}
1481
07068d5b
JA
1482/*
1483 * Multiple hardware queue variant. This will not use per-process plugs,
1484 * but will attempt to bypass the hctx queueing if we can go straight to
1485 * hardware for SYNC IO.
1486 */
dece1635 1487static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1488{
ef295ecf 1489 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1490 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1491 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1492 struct request *rq;
6a83e74d 1493 unsigned int request_count = 0, srcu_idx;
f984df1f 1494 struct blk_plug *plug;
5b3f341f 1495 struct request *same_queue_rq = NULL;
7b371636 1496 blk_qc_t cookie;
87760e5e 1497 unsigned int wb_acct;
07068d5b
JA
1498
1499 blk_queue_bounce(q, &bio);
1500
1501 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1502 bio_io_error(bio);
dece1635 1503 return BLK_QC_T_NONE;
07068d5b
JA
1504 }
1505
54efd50b
KO
1506 blk_queue_split(q, &bio, q->bio_split);
1507
87c279e6
OS
1508 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1509 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1510 return BLK_QC_T_NONE;
f984df1f 1511
bd166ef1
JA
1512 if (blk_mq_sched_bio_merge(q, bio))
1513 return BLK_QC_T_NONE;
1514
87760e5e
JA
1515 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1516
bd166ef1
JA
1517 trace_block_getrq(q, bio, bio->bi_opf);
1518
1519 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1520 if (unlikely(!rq)) {
1521 __wbt_done(q->rq_wb, wb_acct);
dece1635 1522 return BLK_QC_T_NONE;
87760e5e
JA
1523 }
1524
1525 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1526
fd2d3326 1527 cookie = request_to_qc_t(data.hctx, rq);
07068d5b
JA
1528
1529 if (unlikely(is_flush_fua)) {
0c2a6fe4
JA
1530 if (q->elevator)
1531 goto elv_insert;
07068d5b
JA
1532 blk_mq_bio_to_request(rq, bio);
1533 blk_insert_flush(rq);
0c2a6fe4 1534 goto run_queue;
07068d5b
JA
1535 }
1536
f984df1f 1537 plug = current->plug;
e167dfb5
JA
1538 /*
1539 * If the driver supports defer issued based on 'last', then
1540 * queue it up like normal since we can potentially save some
1541 * CPU this way.
1542 */
f984df1f
SL
1543 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1544 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1545 struct request *old_rq = NULL;
07068d5b
JA
1546
1547 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1548
1549 /*
6a83e74d 1550 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1551 * Otherwise the existing request in the plug list will be
1552 * issued. So the plug list will have one request at most
07068d5b 1553 */
f984df1f 1554 if (plug) {
5b3f341f
SL
1555 /*
1556 * The plug list might get flushed before this. If that
b094f89c
JA
1557 * happens, same_queue_rq is invalid and plug list is
1558 * empty
1559 */
5b3f341f
SL
1560 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1561 old_rq = same_queue_rq;
f984df1f 1562 list_del_init(&old_rq->queuelist);
07068d5b 1563 }
f984df1f
SL
1564 list_add_tail(&rq->queuelist, &plug->mq_list);
1565 } else /* is_sync */
1566 old_rq = rq;
1567 blk_mq_put_ctx(data.ctx);
1568 if (!old_rq)
7b371636 1569 goto done;
6a83e74d
BVA
1570
1571 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1572 rcu_read_lock();
9c621104 1573 blk_mq_try_issue_directly(old_rq, &cookie, false);
6a83e74d
BVA
1574 rcu_read_unlock();
1575 } else {
1576 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
9c621104 1577 blk_mq_try_issue_directly(old_rq, &cookie, true);
6a83e74d
BVA
1578 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1579 }
7b371636 1580 goto done;
07068d5b
JA
1581 }
1582
bd166ef1 1583 if (q->elevator) {
0c2a6fe4 1584elv_insert:
bd166ef1
JA
1585 blk_mq_put_ctx(data.ctx);
1586 blk_mq_bio_to_request(rq, bio);
0abad774 1587 blk_mq_sched_insert_request(rq, false, true,
bd6737f1 1588 !is_sync || is_flush_fua, true);
bd166ef1
JA
1589 goto done;
1590 }
07068d5b
JA
1591 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1592 /*
1593 * For a SYNC request, send it to the hardware immediately. For
1594 * an ASYNC request, just ensure that we run it later on. The
1595 * latter allows for merging opportunities and more efficient
1596 * dispatching.
1597 */
0c2a6fe4 1598run_queue:
07068d5b
JA
1599 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1600 }
07068d5b 1601 blk_mq_put_ctx(data.ctx);
7b371636
JA
1602done:
1603 return cookie;
07068d5b
JA
1604}
1605
1606/*
1607 * Single hardware queue variant. This will attempt to use any per-process
1608 * plug for merging and IO deferral.
1609 */
dece1635 1610static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1611{
ef295ecf 1612 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1613 const int is_flush_fua = op_is_flush(bio->bi_opf);
e6c4438b
JM
1614 struct blk_plug *plug;
1615 unsigned int request_count = 0;
5a797e00 1616 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1617 struct request *rq;
7b371636 1618 blk_qc_t cookie;
87760e5e 1619 unsigned int wb_acct;
07068d5b 1620
07068d5b
JA
1621 blk_queue_bounce(q, &bio);
1622
1623 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1624 bio_io_error(bio);
dece1635 1625 return BLK_QC_T_NONE;
07068d5b
JA
1626 }
1627
54efd50b
KO
1628 blk_queue_split(q, &bio, q->bio_split);
1629
87c279e6
OS
1630 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1631 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1632 return BLK_QC_T_NONE;
1633 } else
1634 request_count = blk_plug_queued_count(q);
07068d5b 1635
bd166ef1
JA
1636 if (blk_mq_sched_bio_merge(q, bio))
1637 return BLK_QC_T_NONE;
1638
87760e5e
JA
1639 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1640
bd166ef1
JA
1641 trace_block_getrq(q, bio, bio->bi_opf);
1642
1643 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1644 if (unlikely(!rq)) {
1645 __wbt_done(q->rq_wb, wb_acct);
dece1635 1646 return BLK_QC_T_NONE;
87760e5e
JA
1647 }
1648
1649 wbt_track(&rq->issue_stat, wb_acct);
320ae51f 1650
fd2d3326 1651 cookie = request_to_qc_t(data.hctx, rq);
320ae51f
JA
1652
1653 if (unlikely(is_flush_fua)) {
0c2a6fe4
JA
1654 if (q->elevator)
1655 goto elv_insert;
320ae51f 1656 blk_mq_bio_to_request(rq, bio);
320ae51f 1657 blk_insert_flush(rq);
0c2a6fe4 1658 goto run_queue;
320ae51f
JA
1659 }
1660
1661 /*
1662 * A task plug currently exists. Since this is completely lockless,
1663 * utilize that to temporarily store requests until the task is
1664 * either done or scheduled away.
1665 */
e6c4438b
JM
1666 plug = current->plug;
1667 if (plug) {
600271d9
SL
1668 struct request *last = NULL;
1669
e6c4438b 1670 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1671
1672 /*
1673 * @request_count may become stale because of schedule
1674 * out, so check the list again.
1675 */
1676 if (list_empty(&plug->mq_list))
1677 request_count = 0;
676d0607 1678 if (!request_count)
e6c4438b 1679 trace_block_plug(q);
600271d9
SL
1680 else
1681 last = list_entry_rq(plug->mq_list.prev);
b094f89c
JA
1682
1683 blk_mq_put_ctx(data.ctx);
1684
600271d9
SL
1685 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1686 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1687 blk_flush_plug_list(plug, false);
1688 trace_block_plug(q);
320ae51f 1689 }
b094f89c 1690
e6c4438b 1691 list_add_tail(&rq->queuelist, &plug->mq_list);
7b371636 1692 return cookie;
320ae51f
JA
1693 }
1694
bd166ef1 1695 if (q->elevator) {
0c2a6fe4 1696elv_insert:
bd166ef1
JA
1697 blk_mq_put_ctx(data.ctx);
1698 blk_mq_bio_to_request(rq, bio);
0abad774 1699 blk_mq_sched_insert_request(rq, false, true,
bd6737f1 1700 !is_sync || is_flush_fua, true);
bd166ef1
JA
1701 goto done;
1702 }
07068d5b
JA
1703 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1704 /*
1705 * For a SYNC request, send it to the hardware immediately. For
1706 * an ASYNC request, just ensure that we run it later on. The
1707 * latter allows for merging opportunities and more efficient
1708 * dispatching.
1709 */
0c2a6fe4 1710run_queue:
07068d5b 1711 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1712 }
1713
07068d5b 1714 blk_mq_put_ctx(data.ctx);
bd166ef1 1715done:
7b371636 1716 return cookie;
320ae51f
JA
1717}
1718
cc71a6f4
JA
1719void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1720 unsigned int hctx_idx)
95363efd 1721{
e9b267d9 1722 struct page *page;
320ae51f 1723
24d2f903 1724 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1725 int i;
320ae51f 1726
24d2f903 1727 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1728 struct request *rq = tags->static_rqs[i];
1729
1730 if (!rq)
e9b267d9 1731 continue;
2af8cbe3 1732 set->ops->exit_request(set->driver_data, rq,
24d2f903 1733 hctx_idx, i);
2af8cbe3 1734 tags->static_rqs[i] = NULL;
e9b267d9 1735 }
320ae51f 1736 }
320ae51f 1737
24d2f903
CH
1738 while (!list_empty(&tags->page_list)) {
1739 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1740 list_del_init(&page->lru);
f75782e4
CM
1741 /*
1742 * Remove kmemleak object previously allocated in
1743 * blk_mq_init_rq_map().
1744 */
1745 kmemleak_free(page_address(page));
320ae51f
JA
1746 __free_pages(page, page->private);
1747 }
cc71a6f4 1748}
320ae51f 1749
cc71a6f4
JA
1750void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1751{
24d2f903 1752 kfree(tags->rqs);
cc71a6f4 1753 tags->rqs = NULL;
2af8cbe3
JA
1754 kfree(tags->static_rqs);
1755 tags->static_rqs = NULL;
320ae51f 1756
24d2f903 1757 blk_mq_free_tags(tags);
320ae51f
JA
1758}
1759
cc71a6f4
JA
1760struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1761 unsigned int hctx_idx,
1762 unsigned int nr_tags,
1763 unsigned int reserved_tags)
320ae51f 1764{
24d2f903 1765 struct blk_mq_tags *tags;
59f082e4 1766 int node;
320ae51f 1767
59f082e4
SL
1768 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1769 if (node == NUMA_NO_NODE)
1770 node = set->numa_node;
1771
1772 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1773 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1774 if (!tags)
1775 return NULL;
320ae51f 1776
cc71a6f4 1777 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1778 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1779 node);
24d2f903
CH
1780 if (!tags->rqs) {
1781 blk_mq_free_tags(tags);
1782 return NULL;
1783 }
320ae51f 1784
2af8cbe3
JA
1785 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1786 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1787 node);
2af8cbe3
JA
1788 if (!tags->static_rqs) {
1789 kfree(tags->rqs);
1790 blk_mq_free_tags(tags);
1791 return NULL;
1792 }
1793
cc71a6f4
JA
1794 return tags;
1795}
1796
1797static size_t order_to_size(unsigned int order)
1798{
1799 return (size_t)PAGE_SIZE << order;
1800}
1801
1802int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1803 unsigned int hctx_idx, unsigned int depth)
1804{
1805 unsigned int i, j, entries_per_page, max_order = 4;
1806 size_t rq_size, left;
59f082e4
SL
1807 int node;
1808
1809 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1810 if (node == NUMA_NO_NODE)
1811 node = set->numa_node;
cc71a6f4
JA
1812
1813 INIT_LIST_HEAD(&tags->page_list);
1814
320ae51f
JA
1815 /*
1816 * rq_size is the size of the request plus driver payload, rounded
1817 * to the cacheline size
1818 */
24d2f903 1819 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1820 cache_line_size());
cc71a6f4 1821 left = rq_size * depth;
320ae51f 1822
cc71a6f4 1823 for (i = 0; i < depth; ) {
320ae51f
JA
1824 int this_order = max_order;
1825 struct page *page;
1826 int to_do;
1827 void *p;
1828
b3a834b1 1829 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1830 this_order--;
1831
1832 do {
59f082e4 1833 page = alloc_pages_node(node,
36e1f3d1 1834 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1835 this_order);
320ae51f
JA
1836 if (page)
1837 break;
1838 if (!this_order--)
1839 break;
1840 if (order_to_size(this_order) < rq_size)
1841 break;
1842 } while (1);
1843
1844 if (!page)
24d2f903 1845 goto fail;
320ae51f
JA
1846
1847 page->private = this_order;
24d2f903 1848 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1849
1850 p = page_address(page);
f75782e4
CM
1851 /*
1852 * Allow kmemleak to scan these pages as they contain pointers
1853 * to additional allocations like via ops->init_request().
1854 */
36e1f3d1 1855 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1856 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1857 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1858 left -= to_do * rq_size;
1859 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1860 struct request *rq = p;
1861
1862 tags->static_rqs[i] = rq;
24d2f903
CH
1863 if (set->ops->init_request) {
1864 if (set->ops->init_request(set->driver_data,
2af8cbe3 1865 rq, hctx_idx, i,
59f082e4 1866 node)) {
2af8cbe3 1867 tags->static_rqs[i] = NULL;
24d2f903 1868 goto fail;
a5164405 1869 }
e9b267d9
CH
1870 }
1871
320ae51f
JA
1872 p += rq_size;
1873 i++;
1874 }
1875 }
cc71a6f4 1876 return 0;
320ae51f 1877
24d2f903 1878fail:
cc71a6f4
JA
1879 blk_mq_free_rqs(set, tags, hctx_idx);
1880 return -ENOMEM;
320ae51f
JA
1881}
1882
e57690fe
JA
1883/*
1884 * 'cpu' is going away. splice any existing rq_list entries from this
1885 * software queue to the hw queue dispatch list, and ensure that it
1886 * gets run.
1887 */
9467f859 1888static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1889{
9467f859 1890 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1891 struct blk_mq_ctx *ctx;
1892 LIST_HEAD(tmp);
1893
9467f859 1894 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1895 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1896
1897 spin_lock(&ctx->lock);
1898 if (!list_empty(&ctx->rq_list)) {
1899 list_splice_init(&ctx->rq_list, &tmp);
1900 blk_mq_hctx_clear_pending(hctx, ctx);
1901 }
1902 spin_unlock(&ctx->lock);
1903
1904 if (list_empty(&tmp))
9467f859 1905 return 0;
484b4061 1906
e57690fe
JA
1907 spin_lock(&hctx->lock);
1908 list_splice_tail_init(&tmp, &hctx->dispatch);
1909 spin_unlock(&hctx->lock);
484b4061
JA
1910
1911 blk_mq_run_hw_queue(hctx, true);
9467f859 1912 return 0;
484b4061
JA
1913}
1914
9467f859 1915static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1916{
9467f859
TG
1917 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1918 &hctx->cpuhp_dead);
484b4061
JA
1919}
1920
c3b4afca 1921/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1922static void blk_mq_exit_hctx(struct request_queue *q,
1923 struct blk_mq_tag_set *set,
1924 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1925{
f70ced09
ML
1926 unsigned flush_start_tag = set->queue_depth;
1927
08e98fc6
ML
1928 blk_mq_tag_idle(hctx);
1929
f70ced09
ML
1930 if (set->ops->exit_request)
1931 set->ops->exit_request(set->driver_data,
1932 hctx->fq->flush_rq, hctx_idx,
1933 flush_start_tag + hctx_idx);
1934
08e98fc6
ML
1935 if (set->ops->exit_hctx)
1936 set->ops->exit_hctx(hctx, hctx_idx);
1937
6a83e74d
BVA
1938 if (hctx->flags & BLK_MQ_F_BLOCKING)
1939 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1940
9467f859 1941 blk_mq_remove_cpuhp(hctx);
f70ced09 1942 blk_free_flush_queue(hctx->fq);
88459642 1943 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1944}
1945
624dbe47
ML
1946static void blk_mq_exit_hw_queues(struct request_queue *q,
1947 struct blk_mq_tag_set *set, int nr_queue)
1948{
1949 struct blk_mq_hw_ctx *hctx;
1950 unsigned int i;
1951
1952 queue_for_each_hw_ctx(q, hctx, i) {
1953 if (i == nr_queue)
1954 break;
08e98fc6 1955 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1956 }
624dbe47
ML
1957}
1958
08e98fc6
ML
1959static int blk_mq_init_hctx(struct request_queue *q,
1960 struct blk_mq_tag_set *set,
1961 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1962{
08e98fc6 1963 int node;
f70ced09 1964 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1965
1966 node = hctx->numa_node;
1967 if (node == NUMA_NO_NODE)
1968 node = hctx->numa_node = set->numa_node;
1969
27489a3c 1970 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1971 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1972 spin_lock_init(&hctx->lock);
1973 INIT_LIST_HEAD(&hctx->dispatch);
1974 hctx->queue = q;
1975 hctx->queue_num = hctx_idx;
2404e607 1976 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1977
9467f859 1978 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1979
1980 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1981
1982 /*
08e98fc6
ML
1983 * Allocate space for all possible cpus to avoid allocation at
1984 * runtime
320ae51f 1985 */
08e98fc6
ML
1986 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1987 GFP_KERNEL, node);
1988 if (!hctx->ctxs)
1989 goto unregister_cpu_notifier;
320ae51f 1990
88459642
OS
1991 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1992 node))
08e98fc6 1993 goto free_ctxs;
320ae51f 1994
08e98fc6 1995 hctx->nr_ctx = 0;
320ae51f 1996
08e98fc6
ML
1997 if (set->ops->init_hctx &&
1998 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1999 goto free_bitmap;
320ae51f 2000
f70ced09
ML
2001 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2002 if (!hctx->fq)
2003 goto exit_hctx;
320ae51f 2004
f70ced09
ML
2005 if (set->ops->init_request &&
2006 set->ops->init_request(set->driver_data,
2007 hctx->fq->flush_rq, hctx_idx,
2008 flush_start_tag + hctx_idx, node))
2009 goto free_fq;
320ae51f 2010
6a83e74d
BVA
2011 if (hctx->flags & BLK_MQ_F_BLOCKING)
2012 init_srcu_struct(&hctx->queue_rq_srcu);
2013
08e98fc6 2014 return 0;
320ae51f 2015
f70ced09
ML
2016 free_fq:
2017 kfree(hctx->fq);
2018 exit_hctx:
2019 if (set->ops->exit_hctx)
2020 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 2021 free_bitmap:
88459642 2022 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2023 free_ctxs:
2024 kfree(hctx->ctxs);
2025 unregister_cpu_notifier:
9467f859 2026 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
2027 return -1;
2028}
320ae51f 2029
320ae51f
JA
2030static void blk_mq_init_cpu_queues(struct request_queue *q,
2031 unsigned int nr_hw_queues)
2032{
2033 unsigned int i;
2034
2035 for_each_possible_cpu(i) {
2036 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2037 struct blk_mq_hw_ctx *hctx;
2038
320ae51f
JA
2039 __ctx->cpu = i;
2040 spin_lock_init(&__ctx->lock);
2041 INIT_LIST_HEAD(&__ctx->rq_list);
2042 __ctx->queue = q;
fa2e39cb
OS
2043 blk_stat_init(&__ctx->stat[READ]);
2044 blk_stat_init(&__ctx->stat[WRITE]);
320ae51f
JA
2045
2046 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
2047 if (!cpu_online(i))
2048 continue;
2049
7d7e0f90 2050 hctx = blk_mq_map_queue(q, i);
e4043dcf 2051
320ae51f
JA
2052 /*
2053 * Set local node, IFF we have more than one hw queue. If
2054 * not, we remain on the home node of the device
2055 */
2056 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 2057 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
2058 }
2059}
2060
cc71a6f4
JA
2061static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2062{
2063 int ret = 0;
2064
2065 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2066 set->queue_depth, set->reserved_tags);
2067 if (!set->tags[hctx_idx])
2068 return false;
2069
2070 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2071 set->queue_depth);
2072 if (!ret)
2073 return true;
2074
2075 blk_mq_free_rq_map(set->tags[hctx_idx]);
2076 set->tags[hctx_idx] = NULL;
2077 return false;
2078}
2079
2080static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2081 unsigned int hctx_idx)
2082{
bd166ef1
JA
2083 if (set->tags[hctx_idx]) {
2084 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2085 blk_mq_free_rq_map(set->tags[hctx_idx]);
2086 set->tags[hctx_idx] = NULL;
2087 }
cc71a6f4
JA
2088}
2089
5778322e
AM
2090static void blk_mq_map_swqueue(struct request_queue *q,
2091 const struct cpumask *online_mask)
320ae51f 2092{
d1b1cea1 2093 unsigned int i, hctx_idx;
320ae51f
JA
2094 struct blk_mq_hw_ctx *hctx;
2095 struct blk_mq_ctx *ctx;
2a34c087 2096 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2097
60de074b
AM
2098 /*
2099 * Avoid others reading imcomplete hctx->cpumask through sysfs
2100 */
2101 mutex_lock(&q->sysfs_lock);
2102
320ae51f 2103 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2104 cpumask_clear(hctx->cpumask);
320ae51f
JA
2105 hctx->nr_ctx = 0;
2106 }
2107
2108 /*
2109 * Map software to hardware queues
2110 */
897bb0c7 2111 for_each_possible_cpu(i) {
320ae51f 2112 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 2113 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
2114 continue;
2115
d1b1cea1
GKB
2116 hctx_idx = q->mq_map[i];
2117 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2118 if (!set->tags[hctx_idx] &&
2119 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2120 /*
2121 * If tags initialization fail for some hctx,
2122 * that hctx won't be brought online. In this
2123 * case, remap the current ctx to hctx[0] which
2124 * is guaranteed to always have tags allocated
2125 */
cc71a6f4 2126 q->mq_map[i] = 0;
d1b1cea1
GKB
2127 }
2128
897bb0c7 2129 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2130 hctx = blk_mq_map_queue(q, i);
868f2f0b 2131
e4043dcf 2132 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2133 ctx->index_hw = hctx->nr_ctx;
2134 hctx->ctxs[hctx->nr_ctx++] = ctx;
2135 }
506e931f 2136
60de074b
AM
2137 mutex_unlock(&q->sysfs_lock);
2138
506e931f 2139 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2140 /*
a68aafa5
JA
2141 * If no software queues are mapped to this hardware queue,
2142 * disable it and free the request entries.
484b4061
JA
2143 */
2144 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2145 /* Never unmap queue 0. We need it as a
2146 * fallback in case of a new remap fails
2147 * allocation
2148 */
cc71a6f4
JA
2149 if (i && set->tags[i])
2150 blk_mq_free_map_and_requests(set, i);
2151
2a34c087 2152 hctx->tags = NULL;
484b4061
JA
2153 continue;
2154 }
2155
2a34c087
ML
2156 hctx->tags = set->tags[i];
2157 WARN_ON(!hctx->tags);
2158
889fa31f
CY
2159 /*
2160 * Set the map size to the number of mapped software queues.
2161 * This is more accurate and more efficient than looping
2162 * over all possibly mapped software queues.
2163 */
88459642 2164 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2165
484b4061
JA
2166 /*
2167 * Initialize batch roundrobin counts
2168 */
506e931f
JA
2169 hctx->next_cpu = cpumask_first(hctx->cpumask);
2170 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2171 }
320ae51f
JA
2172}
2173
2404e607 2174static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2175{
2176 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2177 int i;
2178
2404e607
JM
2179 queue_for_each_hw_ctx(q, hctx, i) {
2180 if (shared)
2181 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2182 else
2183 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2184 }
2185}
2186
2187static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2188{
2189 struct request_queue *q;
0d2602ca
JA
2190
2191 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2192 blk_mq_freeze_queue(q);
2404e607 2193 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2194 blk_mq_unfreeze_queue(q);
2195 }
2196}
2197
2198static void blk_mq_del_queue_tag_set(struct request_queue *q)
2199{
2200 struct blk_mq_tag_set *set = q->tag_set;
2201
0d2602ca
JA
2202 mutex_lock(&set->tag_list_lock);
2203 list_del_init(&q->tag_set_list);
2404e607
JM
2204 if (list_is_singular(&set->tag_list)) {
2205 /* just transitioned to unshared */
2206 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2207 /* update existing queue */
2208 blk_mq_update_tag_set_depth(set, false);
2209 }
0d2602ca 2210 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
2211}
2212
2213static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2214 struct request_queue *q)
2215{
2216 q->tag_set = set;
2217
2218 mutex_lock(&set->tag_list_lock);
2404e607
JM
2219
2220 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2221 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2222 set->flags |= BLK_MQ_F_TAG_SHARED;
2223 /* update existing queue */
2224 blk_mq_update_tag_set_depth(set, true);
2225 }
2226 if (set->flags & BLK_MQ_F_TAG_SHARED)
2227 queue_set_hctx_shared(q, true);
0d2602ca 2228 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 2229
0d2602ca
JA
2230 mutex_unlock(&set->tag_list_lock);
2231}
2232
e09aae7e
ML
2233/*
2234 * It is the actual release handler for mq, but we do it from
2235 * request queue's release handler for avoiding use-after-free
2236 * and headache because q->mq_kobj shouldn't have been introduced,
2237 * but we can't group ctx/kctx kobj without it.
2238 */
2239void blk_mq_release(struct request_queue *q)
2240{
2241 struct blk_mq_hw_ctx *hctx;
2242 unsigned int i;
2243
bd166ef1
JA
2244 blk_mq_sched_teardown(q);
2245
e09aae7e 2246 /* hctx kobj stays in hctx */
c3b4afca
ML
2247 queue_for_each_hw_ctx(q, hctx, i) {
2248 if (!hctx)
2249 continue;
6c8b232e 2250 kobject_put(&hctx->kobj);
c3b4afca 2251 }
e09aae7e 2252
a723bab3
AM
2253 q->mq_map = NULL;
2254
e09aae7e
ML
2255 kfree(q->queue_hw_ctx);
2256
7ea5fe31
ML
2257 /*
2258 * release .mq_kobj and sw queue's kobject now because
2259 * both share lifetime with request queue.
2260 */
2261 blk_mq_sysfs_deinit(q);
2262
e09aae7e
ML
2263 free_percpu(q->queue_ctx);
2264}
2265
24d2f903 2266struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2267{
2268 struct request_queue *uninit_q, *q;
2269
2270 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2271 if (!uninit_q)
2272 return ERR_PTR(-ENOMEM);
2273
2274 q = blk_mq_init_allocated_queue(set, uninit_q);
2275 if (IS_ERR(q))
2276 blk_cleanup_queue(uninit_q);
2277
2278 return q;
2279}
2280EXPORT_SYMBOL(blk_mq_init_queue);
2281
868f2f0b
KB
2282static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2283 struct request_queue *q)
320ae51f 2284{
868f2f0b
KB
2285 int i, j;
2286 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2287
868f2f0b 2288 blk_mq_sysfs_unregister(q);
24d2f903 2289 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2290 int node;
f14bbe77 2291
868f2f0b
KB
2292 if (hctxs[i])
2293 continue;
2294
2295 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2296 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2297 GFP_KERNEL, node);
320ae51f 2298 if (!hctxs[i])
868f2f0b 2299 break;
320ae51f 2300
a86073e4 2301 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2302 node)) {
2303 kfree(hctxs[i]);
2304 hctxs[i] = NULL;
2305 break;
2306 }
e4043dcf 2307
0d2602ca 2308 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2309 hctxs[i]->numa_node = node;
320ae51f 2310 hctxs[i]->queue_num = i;
868f2f0b
KB
2311
2312 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2313 free_cpumask_var(hctxs[i]->cpumask);
2314 kfree(hctxs[i]);
2315 hctxs[i] = NULL;
2316 break;
2317 }
2318 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2319 }
868f2f0b
KB
2320 for (j = i; j < q->nr_hw_queues; j++) {
2321 struct blk_mq_hw_ctx *hctx = hctxs[j];
2322
2323 if (hctx) {
cc71a6f4
JA
2324 if (hctx->tags)
2325 blk_mq_free_map_and_requests(set, j);
868f2f0b 2326 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2327 kobject_put(&hctx->kobj);
868f2f0b
KB
2328 hctxs[j] = NULL;
2329
2330 }
2331 }
2332 q->nr_hw_queues = i;
2333 blk_mq_sysfs_register(q);
2334}
2335
2336struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2337 struct request_queue *q)
2338{
66841672
ML
2339 /* mark the queue as mq asap */
2340 q->mq_ops = set->ops;
2341
868f2f0b
KB
2342 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2343 if (!q->queue_ctx)
c7de5726 2344 goto err_exit;
868f2f0b 2345
737f98cf
ML
2346 /* init q->mq_kobj and sw queues' kobjects */
2347 blk_mq_sysfs_init(q);
2348
868f2f0b
KB
2349 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2350 GFP_KERNEL, set->numa_node);
2351 if (!q->queue_hw_ctx)
2352 goto err_percpu;
2353
bdd17e75 2354 q->mq_map = set->mq_map;
868f2f0b
KB
2355
2356 blk_mq_realloc_hw_ctxs(set, q);
2357 if (!q->nr_hw_queues)
2358 goto err_hctxs;
320ae51f 2359
287922eb 2360 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2361 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2362
2363 q->nr_queues = nr_cpu_ids;
320ae51f 2364
94eddfbe 2365 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2366
05f1dd53
JA
2367 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2368 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2369
1be036e9
CH
2370 q->sg_reserved_size = INT_MAX;
2371
2849450a 2372 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2373 INIT_LIST_HEAD(&q->requeue_list);
2374 spin_lock_init(&q->requeue_lock);
2375
07068d5b
JA
2376 if (q->nr_hw_queues > 1)
2377 blk_queue_make_request(q, blk_mq_make_request);
2378 else
2379 blk_queue_make_request(q, blk_sq_make_request);
2380
eba71768
JA
2381 /*
2382 * Do this after blk_queue_make_request() overrides it...
2383 */
2384 q->nr_requests = set->queue_depth;
2385
64f1c21e
JA
2386 /*
2387 * Default to classic polling
2388 */
2389 q->poll_nsec = -1;
2390
24d2f903
CH
2391 if (set->ops->complete)
2392 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2393
24d2f903 2394 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2395
5778322e 2396 get_online_cpus();
320ae51f 2397 mutex_lock(&all_q_mutex);
320ae51f 2398
4593fdbe 2399 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2400 blk_mq_add_queue_tag_set(set, q);
5778322e 2401 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2402
4593fdbe 2403 mutex_unlock(&all_q_mutex);
5778322e 2404 put_online_cpus();
4593fdbe 2405
d3484991
JA
2406 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2407 int ret;
2408
2409 ret = blk_mq_sched_init(q);
2410 if (ret)
2411 return ERR_PTR(ret);
2412 }
2413
320ae51f 2414 return q;
18741986 2415
320ae51f 2416err_hctxs:
868f2f0b 2417 kfree(q->queue_hw_ctx);
320ae51f 2418err_percpu:
868f2f0b 2419 free_percpu(q->queue_ctx);
c7de5726
ML
2420err_exit:
2421 q->mq_ops = NULL;
320ae51f
JA
2422 return ERR_PTR(-ENOMEM);
2423}
b62c21b7 2424EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2425
2426void blk_mq_free_queue(struct request_queue *q)
2427{
624dbe47 2428 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2429
0e626368
AM
2430 mutex_lock(&all_q_mutex);
2431 list_del_init(&q->all_q_node);
2432 mutex_unlock(&all_q_mutex);
2433
0d2602ca
JA
2434 blk_mq_del_queue_tag_set(q);
2435
624dbe47 2436 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2437}
320ae51f
JA
2438
2439/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2440static void blk_mq_queue_reinit(struct request_queue *q,
2441 const struct cpumask *online_mask)
320ae51f 2442{
4ecd4fef 2443 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2444
67aec14c
JA
2445 blk_mq_sysfs_unregister(q);
2446
320ae51f
JA
2447 /*
2448 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2449 * we should change hctx numa_node according to new topology (this
2450 * involves free and re-allocate memory, worthy doing?)
2451 */
2452
5778322e 2453 blk_mq_map_swqueue(q, online_mask);
320ae51f 2454
67aec14c 2455 blk_mq_sysfs_register(q);
320ae51f
JA
2456}
2457
65d5291e
SAS
2458/*
2459 * New online cpumask which is going to be set in this hotplug event.
2460 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2461 * one-by-one and dynamically allocating this could result in a failure.
2462 */
2463static struct cpumask cpuhp_online_new;
2464
2465static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2466{
2467 struct request_queue *q;
320ae51f
JA
2468
2469 mutex_lock(&all_q_mutex);
f3af020b
TH
2470 /*
2471 * We need to freeze and reinit all existing queues. Freezing
2472 * involves synchronous wait for an RCU grace period and doing it
2473 * one by one may take a long time. Start freezing all queues in
2474 * one swoop and then wait for the completions so that freezing can
2475 * take place in parallel.
2476 */
2477 list_for_each_entry(q, &all_q_list, all_q_node)
2478 blk_mq_freeze_queue_start(q);
415d3dab 2479 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2480 blk_mq_freeze_queue_wait(q);
2481
320ae51f 2482 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2483 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2484
2485 list_for_each_entry(q, &all_q_list, all_q_node)
2486 blk_mq_unfreeze_queue(q);
2487
320ae51f 2488 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2489}
2490
2491static int blk_mq_queue_reinit_dead(unsigned int cpu)
2492{
97a32864 2493 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2494 blk_mq_queue_reinit_work();
2495 return 0;
2496}
2497
2498/*
2499 * Before hotadded cpu starts handling requests, new mappings must be
2500 * established. Otherwise, these requests in hw queue might never be
2501 * dispatched.
2502 *
2503 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2504 * for CPU0, and ctx1 for CPU1).
2505 *
2506 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2507 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2508 *
2c3ad667
JA
2509 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2510 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2511 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2512 * ignored.
65d5291e
SAS
2513 */
2514static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2515{
2516 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2517 cpumask_set_cpu(cpu, &cpuhp_online_new);
2518 blk_mq_queue_reinit_work();
2519 return 0;
320ae51f
JA
2520}
2521
a5164405
JA
2522static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2523{
2524 int i;
2525
cc71a6f4
JA
2526 for (i = 0; i < set->nr_hw_queues; i++)
2527 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2528 goto out_unwind;
a5164405
JA
2529
2530 return 0;
2531
2532out_unwind:
2533 while (--i >= 0)
cc71a6f4 2534 blk_mq_free_rq_map(set->tags[i]);
a5164405 2535
a5164405
JA
2536 return -ENOMEM;
2537}
2538
2539/*
2540 * Allocate the request maps associated with this tag_set. Note that this
2541 * may reduce the depth asked for, if memory is tight. set->queue_depth
2542 * will be updated to reflect the allocated depth.
2543 */
2544static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2545{
2546 unsigned int depth;
2547 int err;
2548
2549 depth = set->queue_depth;
2550 do {
2551 err = __blk_mq_alloc_rq_maps(set);
2552 if (!err)
2553 break;
2554
2555 set->queue_depth >>= 1;
2556 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2557 err = -ENOMEM;
2558 break;
2559 }
2560 } while (set->queue_depth);
2561
2562 if (!set->queue_depth || err) {
2563 pr_err("blk-mq: failed to allocate request map\n");
2564 return -ENOMEM;
2565 }
2566
2567 if (depth != set->queue_depth)
2568 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2569 depth, set->queue_depth);
2570
2571 return 0;
2572}
2573
a4391c64
JA
2574/*
2575 * Alloc a tag set to be associated with one or more request queues.
2576 * May fail with EINVAL for various error conditions. May adjust the
2577 * requested depth down, if if it too large. In that case, the set
2578 * value will be stored in set->queue_depth.
2579 */
24d2f903
CH
2580int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2581{
da695ba2
CH
2582 int ret;
2583
205fb5f5
BVA
2584 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2585
24d2f903
CH
2586 if (!set->nr_hw_queues)
2587 return -EINVAL;
a4391c64 2588 if (!set->queue_depth)
24d2f903
CH
2589 return -EINVAL;
2590 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2591 return -EINVAL;
2592
7d7e0f90 2593 if (!set->ops->queue_rq)
24d2f903
CH
2594 return -EINVAL;
2595
a4391c64
JA
2596 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2597 pr_info("blk-mq: reduced tag depth to %u\n",
2598 BLK_MQ_MAX_DEPTH);
2599 set->queue_depth = BLK_MQ_MAX_DEPTH;
2600 }
24d2f903 2601
6637fadf
SL
2602 /*
2603 * If a crashdump is active, then we are potentially in a very
2604 * memory constrained environment. Limit us to 1 queue and
2605 * 64 tags to prevent using too much memory.
2606 */
2607 if (is_kdump_kernel()) {
2608 set->nr_hw_queues = 1;
2609 set->queue_depth = min(64U, set->queue_depth);
2610 }
868f2f0b
KB
2611 /*
2612 * There is no use for more h/w queues than cpus.
2613 */
2614 if (set->nr_hw_queues > nr_cpu_ids)
2615 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2616
868f2f0b 2617 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2618 GFP_KERNEL, set->numa_node);
2619 if (!set->tags)
a5164405 2620 return -ENOMEM;
24d2f903 2621
da695ba2
CH
2622 ret = -ENOMEM;
2623 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2624 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2625 if (!set->mq_map)
2626 goto out_free_tags;
2627
da695ba2
CH
2628 if (set->ops->map_queues)
2629 ret = set->ops->map_queues(set);
2630 else
2631 ret = blk_mq_map_queues(set);
2632 if (ret)
2633 goto out_free_mq_map;
2634
2635 ret = blk_mq_alloc_rq_maps(set);
2636 if (ret)
bdd17e75 2637 goto out_free_mq_map;
24d2f903 2638
0d2602ca
JA
2639 mutex_init(&set->tag_list_lock);
2640 INIT_LIST_HEAD(&set->tag_list);
2641
24d2f903 2642 return 0;
bdd17e75
CH
2643
2644out_free_mq_map:
2645 kfree(set->mq_map);
2646 set->mq_map = NULL;
2647out_free_tags:
5676e7b6
RE
2648 kfree(set->tags);
2649 set->tags = NULL;
da695ba2 2650 return ret;
24d2f903
CH
2651}
2652EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2653
2654void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2655{
2656 int i;
2657
cc71a6f4
JA
2658 for (i = 0; i < nr_cpu_ids; i++)
2659 blk_mq_free_map_and_requests(set, i);
484b4061 2660
bdd17e75
CH
2661 kfree(set->mq_map);
2662 set->mq_map = NULL;
2663
981bd189 2664 kfree(set->tags);
5676e7b6 2665 set->tags = NULL;
24d2f903
CH
2666}
2667EXPORT_SYMBOL(blk_mq_free_tag_set);
2668
e3a2b3f9
JA
2669int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2670{
2671 struct blk_mq_tag_set *set = q->tag_set;
2672 struct blk_mq_hw_ctx *hctx;
2673 int i, ret;
2674
bd166ef1 2675 if (!set)
e3a2b3f9
JA
2676 return -EINVAL;
2677
70f36b60
JA
2678 blk_mq_freeze_queue(q);
2679 blk_mq_quiesce_queue(q);
2680
e3a2b3f9
JA
2681 ret = 0;
2682 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2683 if (!hctx->tags)
2684 continue;
bd166ef1
JA
2685 /*
2686 * If we're using an MQ scheduler, just update the scheduler
2687 * queue depth. This is similar to what the old code would do.
2688 */
70f36b60
JA
2689 if (!hctx->sched_tags) {
2690 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2691 min(nr, set->queue_depth),
2692 false);
2693 } else {
2694 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2695 nr, true);
2696 }
e3a2b3f9
JA
2697 if (ret)
2698 break;
2699 }
2700
2701 if (!ret)
2702 q->nr_requests = nr;
2703
70f36b60
JA
2704 blk_mq_unfreeze_queue(q);
2705 blk_mq_start_stopped_hw_queues(q, true);
2706
e3a2b3f9
JA
2707 return ret;
2708}
2709
868f2f0b
KB
2710void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2711{
2712 struct request_queue *q;
2713
2714 if (nr_hw_queues > nr_cpu_ids)
2715 nr_hw_queues = nr_cpu_ids;
2716 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2717 return;
2718
2719 list_for_each_entry(q, &set->tag_list, tag_set_list)
2720 blk_mq_freeze_queue(q);
2721
2722 set->nr_hw_queues = nr_hw_queues;
2723 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2724 blk_mq_realloc_hw_ctxs(set, q);
2725
f6f94300
JB
2726 /*
2727 * Manually set the make_request_fn as blk_queue_make_request
2728 * resets a lot of the queue settings.
2729 */
868f2f0b 2730 if (q->nr_hw_queues > 1)
f6f94300 2731 q->make_request_fn = blk_mq_make_request;
868f2f0b 2732 else
f6f94300 2733 q->make_request_fn = blk_sq_make_request;
868f2f0b
KB
2734
2735 blk_mq_queue_reinit(q, cpu_online_mask);
2736 }
2737
2738 list_for_each_entry(q, &set->tag_list, tag_set_list)
2739 blk_mq_unfreeze_queue(q);
2740}
2741EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2742
64f1c21e
JA
2743static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2744 struct blk_mq_hw_ctx *hctx,
2745 struct request *rq)
2746{
2747 struct blk_rq_stat stat[2];
2748 unsigned long ret = 0;
2749
2750 /*
2751 * If stats collection isn't on, don't sleep but turn it on for
2752 * future users
2753 */
2754 if (!blk_stat_enable(q))
2755 return 0;
2756
2757 /*
2758 * We don't have to do this once per IO, should optimize this
2759 * to just use the current window of stats until it changes
2760 */
2761 memset(&stat, 0, sizeof(stat));
2762 blk_hctx_stat_get(hctx, stat);
2763
2764 /*
2765 * As an optimistic guess, use half of the mean service time
2766 * for this type of request. We can (and should) make this smarter.
2767 * For instance, if the completion latencies are tight, we can
2768 * get closer than just half the mean. This is especially
2769 * important on devices where the completion latencies are longer
2770 * than ~10 usec.
2771 */
fa2e39cb
OS
2772 if (req_op(rq) == REQ_OP_READ && stat[READ].nr_samples)
2773 ret = (stat[READ].mean + 1) / 2;
2774 else if (req_op(rq) == REQ_OP_WRITE && stat[WRITE].nr_samples)
2775 ret = (stat[WRITE].mean + 1) / 2;
64f1c21e
JA
2776
2777 return ret;
2778}
2779
06426adf 2780static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2781 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2782 struct request *rq)
2783{
2784 struct hrtimer_sleeper hs;
2785 enum hrtimer_mode mode;
64f1c21e 2786 unsigned int nsecs;
06426adf
JA
2787 ktime_t kt;
2788
64f1c21e
JA
2789 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2790 return false;
2791
2792 /*
2793 * poll_nsec can be:
2794 *
2795 * -1: don't ever hybrid sleep
2796 * 0: use half of prev avg
2797 * >0: use this specific value
2798 */
2799 if (q->poll_nsec == -1)
2800 return false;
2801 else if (q->poll_nsec > 0)
2802 nsecs = q->poll_nsec;
2803 else
2804 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2805
2806 if (!nsecs)
06426adf
JA
2807 return false;
2808
2809 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2810
2811 /*
2812 * This will be replaced with the stats tracking code, using
2813 * 'avg_completion_time / 2' as the pre-sleep target.
2814 */
8b0e1953 2815 kt = nsecs;
06426adf
JA
2816
2817 mode = HRTIMER_MODE_REL;
2818 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2819 hrtimer_set_expires(&hs.timer, kt);
2820
2821 hrtimer_init_sleeper(&hs, current);
2822 do {
2823 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2824 break;
2825 set_current_state(TASK_UNINTERRUPTIBLE);
2826 hrtimer_start_expires(&hs.timer, mode);
2827 if (hs.task)
2828 io_schedule();
2829 hrtimer_cancel(&hs.timer);
2830 mode = HRTIMER_MODE_ABS;
2831 } while (hs.task && !signal_pending(current));
2832
2833 __set_current_state(TASK_RUNNING);
2834 destroy_hrtimer_on_stack(&hs.timer);
2835 return true;
2836}
2837
bbd7bb70
JA
2838static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2839{
2840 struct request_queue *q = hctx->queue;
2841 long state;
2842
06426adf
JA
2843 /*
2844 * If we sleep, have the caller restart the poll loop to reset
2845 * the state. Like for the other success return cases, the
2846 * caller is responsible for checking if the IO completed. If
2847 * the IO isn't complete, we'll get called again and will go
2848 * straight to the busy poll loop.
2849 */
64f1c21e 2850 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2851 return true;
2852
bbd7bb70
JA
2853 hctx->poll_considered++;
2854
2855 state = current->state;
2856 while (!need_resched()) {
2857 int ret;
2858
2859 hctx->poll_invoked++;
2860
2861 ret = q->mq_ops->poll(hctx, rq->tag);
2862 if (ret > 0) {
2863 hctx->poll_success++;
2864 set_current_state(TASK_RUNNING);
2865 return true;
2866 }
2867
2868 if (signal_pending_state(state, current))
2869 set_current_state(TASK_RUNNING);
2870
2871 if (current->state == TASK_RUNNING)
2872 return true;
2873 if (ret < 0)
2874 break;
2875 cpu_relax();
2876 }
2877
2878 return false;
2879}
2880
2881bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2882{
2883 struct blk_mq_hw_ctx *hctx;
2884 struct blk_plug *plug;
2885 struct request *rq;
2886
2887 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2888 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2889 return false;
2890
2891 plug = current->plug;
2892 if (plug)
2893 blk_flush_plug_list(plug, false);
2894
2895 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2896 if (!blk_qc_t_is_internal(cookie))
2897 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2898 else
2899 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
bbd7bb70
JA
2900
2901 return __blk_mq_poll(hctx, rq);
2902}
2903EXPORT_SYMBOL_GPL(blk_mq_poll);
2904
676141e4
JA
2905void blk_mq_disable_hotplug(void)
2906{
2907 mutex_lock(&all_q_mutex);
2908}
2909
2910void blk_mq_enable_hotplug(void)
2911{
2912 mutex_unlock(&all_q_mutex);
2913}
2914
320ae51f
JA
2915static int __init blk_mq_init(void)
2916{
9467f859
TG
2917 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2918 blk_mq_hctx_notify_dead);
320ae51f 2919
65d5291e
SAS
2920 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2921 blk_mq_queue_reinit_prepare,
2922 blk_mq_queue_reinit_dead);
320ae51f
JA
2923 return 0;
2924}
2925subsys_initcall(blk_mq_init);