]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-mq.c
include/linux/slab.h: add kmalloc_array_node() and kcalloc_node()
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
cf43e6be 36#include "blk-stat.h"
87760e5e 37#include "blk-wbt.h"
bd166ef1 38#include "blk-mq-sched.h"
320ae51f 39
ea435e1b 40static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
34dbad5d
OS
41static void blk_mq_poll_stats_start(struct request_queue *q);
42static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
720b8ccc
SB
44static int blk_mq_poll_stats_bkt(const struct request *rq)
45{
46 int ddir, bytes, bucket;
47
99c749a4 48 ddir = rq_data_dir(rq);
720b8ccc
SB
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59}
60
320ae51f
JA
61/*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
79f720a7 64static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 65{
79f720a7
JA
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 68 blk_mq_sched_has_work(hctx);
1429d7c9
JA
69}
70
320ae51f
JA
71/*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76{
88459642
OS
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
79}
80
81static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83{
88459642 84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
85}
86
f299b7c7
JA
87struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90};
91
92static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95{
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
b8d62b3a
JA
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
f299b7c7 105 */
b8d62b3a 106 if (rq->part == mi->part)
f299b7c7 107 mi->inflight[0]++;
b8d62b3a
JA
108 if (mi->part->partno)
109 mi->inflight[1]++;
f299b7c7
JA
110 }
111}
112
113void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115{
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
b8d62b3a 118 inflight[0] = inflight[1] = 0;
f299b7c7
JA
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120}
121
1671d522 122void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 123{
4ecd4fef 124 int freeze_depth;
cddd5d17 125
4ecd4fef
CH
126 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
127 if (freeze_depth == 1) {
3ef28e83 128 percpu_ref_kill(&q->q_usage_counter);
055f6e18
ML
129 if (q->mq_ops)
130 blk_mq_run_hw_queues(q, false);
cddd5d17 131 }
f3af020b 132}
1671d522 133EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 134
6bae363e 135void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 136{
3ef28e83 137 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 138}
6bae363e 139EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 140
f91328c4
KB
141int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
142 unsigned long timeout)
143{
144 return wait_event_timeout(q->mq_freeze_wq,
145 percpu_ref_is_zero(&q->q_usage_counter),
146 timeout);
147}
148EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 149
f3af020b
TH
150/*
151 * Guarantee no request is in use, so we can change any data structure of
152 * the queue afterward.
153 */
3ef28e83 154void blk_freeze_queue(struct request_queue *q)
f3af020b 155{
3ef28e83
DW
156 /*
157 * In the !blk_mq case we are only calling this to kill the
158 * q_usage_counter, otherwise this increases the freeze depth
159 * and waits for it to return to zero. For this reason there is
160 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
161 * exported to drivers as the only user for unfreeze is blk_mq.
162 */
1671d522 163 blk_freeze_queue_start(q);
f3af020b
TH
164 blk_mq_freeze_queue_wait(q);
165}
3ef28e83
DW
166
167void blk_mq_freeze_queue(struct request_queue *q)
168{
169 /*
170 * ...just an alias to keep freeze and unfreeze actions balanced
171 * in the blk_mq_* namespace
172 */
173 blk_freeze_queue(q);
174}
c761d96b 175EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 176
b4c6a028 177void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 178{
4ecd4fef 179 int freeze_depth;
320ae51f 180
4ecd4fef
CH
181 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
182 WARN_ON_ONCE(freeze_depth < 0);
183 if (!freeze_depth) {
3ef28e83 184 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 185 wake_up_all(&q->mq_freeze_wq);
add703fd 186 }
320ae51f 187}
b4c6a028 188EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 189
852ec809
BVA
190/*
191 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
192 * mpt3sas driver such that this function can be removed.
193 */
194void blk_mq_quiesce_queue_nowait(struct request_queue *q)
195{
196 unsigned long flags;
197
198 spin_lock_irqsave(q->queue_lock, flags);
199 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
200 spin_unlock_irqrestore(q->queue_lock, flags);
201}
202EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
203
6a83e74d 204/**
69e07c4a 205 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
206 * @q: request queue.
207 *
208 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
209 * callback function is invoked. Once this function is returned, we make
210 * sure no dispatch can happen until the queue is unquiesced via
211 * blk_mq_unquiesce_queue().
6a83e74d
BVA
212 */
213void blk_mq_quiesce_queue(struct request_queue *q)
214{
215 struct blk_mq_hw_ctx *hctx;
216 unsigned int i;
217 bool rcu = false;
218
1d9e9bc6 219 blk_mq_quiesce_queue_nowait(q);
f4560ffe 220
6a83e74d
BVA
221 queue_for_each_hw_ctx(q, hctx, i) {
222 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 223 synchronize_srcu(hctx->queue_rq_srcu);
6a83e74d
BVA
224 else
225 rcu = true;
226 }
227 if (rcu)
228 synchronize_rcu();
229}
230EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
231
e4e73913
ML
232/*
233 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
234 * @q: request queue.
235 *
236 * This function recovers queue into the state before quiescing
237 * which is done by blk_mq_quiesce_queue.
238 */
239void blk_mq_unquiesce_queue(struct request_queue *q)
240{
852ec809
BVA
241 unsigned long flags;
242
243 spin_lock_irqsave(q->queue_lock, flags);
f4560ffe 244 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
852ec809 245 spin_unlock_irqrestore(q->queue_lock, flags);
f4560ffe 246
1d9e9bc6
ML
247 /* dispatch requests which are inserted during quiescing */
248 blk_mq_run_hw_queues(q, true);
e4e73913
ML
249}
250EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
251
aed3ea94
JA
252void blk_mq_wake_waiters(struct request_queue *q)
253{
254 struct blk_mq_hw_ctx *hctx;
255 unsigned int i;
256
257 queue_for_each_hw_ctx(q, hctx, i)
258 if (blk_mq_hw_queue_mapped(hctx))
259 blk_mq_tag_wakeup_all(hctx->tags, true);
260}
261
320ae51f
JA
262bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
263{
264 return blk_mq_has_free_tags(hctx->tags);
265}
266EXPORT_SYMBOL(blk_mq_can_queue);
267
e4cdf1a1
CH
268static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
269 unsigned int tag, unsigned int op)
320ae51f 270{
e4cdf1a1
CH
271 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
272 struct request *rq = tags->static_rqs[tag];
273
c3a148d2
BVA
274 rq->rq_flags = 0;
275
e4cdf1a1
CH
276 if (data->flags & BLK_MQ_REQ_INTERNAL) {
277 rq->tag = -1;
278 rq->internal_tag = tag;
279 } else {
280 if (blk_mq_tag_busy(data->hctx)) {
281 rq->rq_flags = RQF_MQ_INFLIGHT;
282 atomic_inc(&data->hctx->nr_active);
283 }
284 rq->tag = tag;
285 rq->internal_tag = -1;
286 data->hctx->tags->rqs[rq->tag] = rq;
287 }
288
af76e555
CH
289 INIT_LIST_HEAD(&rq->queuelist);
290 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
291 rq->q = data->q;
292 rq->mq_ctx = data->ctx;
ef295ecf 293 rq->cmd_flags = op;
1b6d65a0
BVA
294 if (data->flags & BLK_MQ_REQ_PREEMPT)
295 rq->rq_flags |= RQF_PREEMPT;
e4cdf1a1 296 if (blk_queue_io_stat(data->q))
e8064021 297 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
298 /* do not touch atomic flags, it needs atomic ops against the timer */
299 rq->cpu = -1;
af76e555
CH
300 INIT_HLIST_NODE(&rq->hash);
301 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
302 rq->rq_disk = NULL;
303 rq->part = NULL;
3ee32372 304 rq->start_time = jiffies;
af76e555
CH
305#ifdef CONFIG_BLK_CGROUP
306 rq->rl = NULL;
0fec08b4 307 set_start_time_ns(rq);
af76e555
CH
308 rq->io_start_time_ns = 0;
309#endif
310 rq->nr_phys_segments = 0;
311#if defined(CONFIG_BLK_DEV_INTEGRITY)
312 rq->nr_integrity_segments = 0;
313#endif
af76e555
CH
314 rq->special = NULL;
315 /* tag was already set */
af76e555 316 rq->extra_len = 0;
af76e555 317
af76e555 318 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
319 rq->timeout = 0;
320
af76e555
CH
321 rq->end_io = NULL;
322 rq->end_io_data = NULL;
323 rq->next_rq = NULL;
324
e4cdf1a1
CH
325 data->ctx->rq_dispatched[op_is_sync(op)]++;
326 return rq;
5dee8577
CH
327}
328
d2c0d383
CH
329static struct request *blk_mq_get_request(struct request_queue *q,
330 struct bio *bio, unsigned int op,
331 struct blk_mq_alloc_data *data)
332{
333 struct elevator_queue *e = q->elevator;
334 struct request *rq;
e4cdf1a1 335 unsigned int tag;
21e768b4 336 bool put_ctx_on_error = false;
d2c0d383
CH
337
338 blk_queue_enter_live(q);
339 data->q = q;
21e768b4
BVA
340 if (likely(!data->ctx)) {
341 data->ctx = blk_mq_get_ctx(q);
342 put_ctx_on_error = true;
343 }
d2c0d383
CH
344 if (likely(!data->hctx))
345 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
03a07c92
GR
346 if (op & REQ_NOWAIT)
347 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
348
349 if (e) {
350 data->flags |= BLK_MQ_REQ_INTERNAL;
351
352 /*
353 * Flush requests are special and go directly to the
354 * dispatch list.
355 */
5bbf4e5a
CH
356 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
357 e->type->ops.mq.limit_depth(op, data);
d2c0d383
CH
358 }
359
e4cdf1a1
CH
360 tag = blk_mq_get_tag(data);
361 if (tag == BLK_MQ_TAG_FAIL) {
21e768b4
BVA
362 if (put_ctx_on_error) {
363 blk_mq_put_ctx(data->ctx);
1ad43c00
ML
364 data->ctx = NULL;
365 }
037cebb8
CH
366 blk_queue_exit(q);
367 return NULL;
d2c0d383
CH
368 }
369
e4cdf1a1 370 rq = blk_mq_rq_ctx_init(data, tag, op);
037cebb8
CH
371 if (!op_is_flush(op)) {
372 rq->elv.icq = NULL;
5bbf4e5a 373 if (e && e->type->ops.mq.prepare_request) {
44e8c2bf
CH
374 if (e->type->icq_cache && rq_ioc(bio))
375 blk_mq_sched_assign_ioc(rq, bio);
376
5bbf4e5a
CH
377 e->type->ops.mq.prepare_request(rq, bio);
378 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 379 }
037cebb8
CH
380 }
381 data->hctx->queued++;
382 return rq;
d2c0d383
CH
383}
384
cd6ce148 385struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 386 blk_mq_req_flags_t flags)
320ae51f 387{
5a797e00 388 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 389 struct request *rq;
a492f075 390 int ret;
320ae51f 391
3a0a5299 392 ret = blk_queue_enter(q, flags);
a492f075
JL
393 if (ret)
394 return ERR_PTR(ret);
320ae51f 395
cd6ce148 396 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 397 blk_queue_exit(q);
841bac2c 398
bd166ef1 399 if (!rq)
a492f075 400 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3 401
1ad43c00 402 blk_mq_put_ctx(alloc_data.ctx);
1ad43c00 403
0c4de0f3
CH
404 rq->__data_len = 0;
405 rq->__sector = (sector_t) -1;
406 rq->bio = rq->biotail = NULL;
320ae51f
JA
407 return rq;
408}
4bb659b1 409EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 410
cd6ce148 411struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 412 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 413{
6d2809d5 414 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 415 struct request *rq;
6d2809d5 416 unsigned int cpu;
1f5bd336
ML
417 int ret;
418
419 /*
420 * If the tag allocator sleeps we could get an allocation for a
421 * different hardware context. No need to complicate the low level
422 * allocator for this for the rare use case of a command tied to
423 * a specific queue.
424 */
425 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
426 return ERR_PTR(-EINVAL);
427
428 if (hctx_idx >= q->nr_hw_queues)
429 return ERR_PTR(-EIO);
430
3a0a5299 431 ret = blk_queue_enter(q, flags);
1f5bd336
ML
432 if (ret)
433 return ERR_PTR(ret);
434
c8712c6a
CH
435 /*
436 * Check if the hardware context is actually mapped to anything.
437 * If not tell the caller that it should skip this queue.
438 */
6d2809d5
OS
439 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
440 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
441 blk_queue_exit(q);
442 return ERR_PTR(-EXDEV);
c8712c6a 443 }
6d2809d5
OS
444 cpu = cpumask_first(alloc_data.hctx->cpumask);
445 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 446
cd6ce148 447 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 448 blk_queue_exit(q);
c8712c6a 449
6d2809d5
OS
450 if (!rq)
451 return ERR_PTR(-EWOULDBLOCK);
452
453 return rq;
1f5bd336
ML
454}
455EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
456
6af54051 457void blk_mq_free_request(struct request *rq)
320ae51f 458{
320ae51f 459 struct request_queue *q = rq->q;
6af54051
CH
460 struct elevator_queue *e = q->elevator;
461 struct blk_mq_ctx *ctx = rq->mq_ctx;
462 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
463 const int sched_tag = rq->internal_tag;
464
5bbf4e5a 465 if (rq->rq_flags & RQF_ELVPRIV) {
6af54051
CH
466 if (e && e->type->ops.mq.finish_request)
467 e->type->ops.mq.finish_request(rq);
468 if (rq->elv.icq) {
469 put_io_context(rq->elv.icq->ioc);
470 rq->elv.icq = NULL;
471 }
472 }
320ae51f 473
6af54051 474 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 475 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 476 atomic_dec(&hctx->nr_active);
87760e5e 477
7beb2f84
JA
478 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
479 laptop_io_completion(q->backing_dev_info);
480
87760e5e 481 wbt_done(q->rq_wb, &rq->issue_stat);
0d2602ca 482
85acb3ba
SL
483 if (blk_rq_rl(rq))
484 blk_put_rl(blk_rq_rl(rq));
485
af76e555 486 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 487 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
488 if (rq->tag != -1)
489 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
490 if (sched_tag != -1)
c05f8525 491 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
6d8c6c0f 492 blk_mq_sched_restart(hctx);
3ef28e83 493 blk_queue_exit(q);
320ae51f 494}
1a3b595a 495EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 496
2a842aca 497inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 498{
0d11e6ac
ML
499 blk_account_io_done(rq);
500
91b63639 501 if (rq->end_io) {
87760e5e 502 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 503 rq->end_io(rq, error);
91b63639
CH
504 } else {
505 if (unlikely(blk_bidi_rq(rq)))
506 blk_mq_free_request(rq->next_rq);
320ae51f 507 blk_mq_free_request(rq);
91b63639 508 }
320ae51f 509}
c8a446ad 510EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 511
2a842aca 512void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
513{
514 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
515 BUG();
c8a446ad 516 __blk_mq_end_request(rq, error);
63151a44 517}
c8a446ad 518EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 519
30a91cb4 520static void __blk_mq_complete_request_remote(void *data)
320ae51f 521{
3d6efbf6 522 struct request *rq = data;
320ae51f 523
30a91cb4 524 rq->q->softirq_done_fn(rq);
320ae51f 525}
320ae51f 526
453f8341 527static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
528{
529 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 530 bool shared = false;
320ae51f
JA
531 int cpu;
532
453f8341
CH
533 if (rq->internal_tag != -1)
534 blk_mq_sched_completed_request(rq);
535 if (rq->rq_flags & RQF_STATS) {
536 blk_mq_poll_stats_start(rq->q);
537 blk_stat_add(rq);
538 }
539
38535201 540 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
541 rq->q->softirq_done_fn(rq);
542 return;
543 }
320ae51f
JA
544
545 cpu = get_cpu();
38535201
CH
546 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
547 shared = cpus_share_cache(cpu, ctx->cpu);
548
549 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 550 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
551 rq->csd.info = rq;
552 rq->csd.flags = 0;
c46fff2a 553 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 554 } else {
30a91cb4 555 rq->q->softirq_done_fn(rq);
3d6efbf6 556 }
320ae51f
JA
557 put_cpu();
558}
30a91cb4
CH
559
560/**
561 * blk_mq_complete_request - end I/O on a request
562 * @rq: the request being processed
563 *
564 * Description:
565 * Ends all I/O on a request. It does not handle partial completions.
566 * The actual completion happens out-of-order, through a IPI handler.
567 **/
08e0029a 568void blk_mq_complete_request(struct request *rq)
30a91cb4 569{
95f09684
JA
570 struct request_queue *q = rq->q;
571
572 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 573 return;
08e0029a 574 if (!blk_mark_rq_complete(rq))
ed851860 575 __blk_mq_complete_request(rq);
30a91cb4
CH
576}
577EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 578
973c0191
KB
579int blk_mq_request_started(struct request *rq)
580{
581 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
582}
583EXPORT_SYMBOL_GPL(blk_mq_request_started);
584
e2490073 585void blk_mq_start_request(struct request *rq)
320ae51f
JA
586{
587 struct request_queue *q = rq->q;
588
bd166ef1
JA
589 blk_mq_sched_started_request(rq);
590
320ae51f
JA
591 trace_block_rq_issue(q, rq);
592
cf43e6be 593 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 594 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 595 rq->rq_flags |= RQF_STATS;
87760e5e 596 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
597 }
598
2b8393b4 599 blk_add_timer(rq);
87ee7b11 600
a7af0af3 601 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
538b7534 602
87ee7b11
JA
603 /*
604 * Mark us as started and clear complete. Complete might have been
605 * set if requeue raced with timeout, which then marked it as
606 * complete. So be sure to clear complete again when we start
607 * the request, otherwise we'll ignore the completion event.
a7af0af3
PZ
608 *
609 * Ensure that ->deadline is visible before we set STARTED, such that
610 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
611 * it observes STARTED.
87ee7b11 612 */
a7af0af3
PZ
613 smp_wmb();
614 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
615 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
616 /*
617 * Coherence order guarantees these consecutive stores to a
618 * single variable propagate in the specified order. Thus the
619 * clear_bit() is ordered _after_ the set bit. See
620 * blk_mq_check_expired().
621 *
622 * (the bits must be part of the same byte for this to be
623 * true).
624 */
4b570521 625 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
a7af0af3 626 }
49f5baa5
CH
627
628 if (q->dma_drain_size && blk_rq_bytes(rq)) {
629 /*
630 * Make sure space for the drain appears. We know we can do
631 * this because max_hw_segments has been adjusted to be one
632 * fewer than the device can handle.
633 */
634 rq->nr_phys_segments++;
635 }
320ae51f 636}
e2490073 637EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 638
d9d149a3
ML
639/*
640 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
48b99c9d 641 * flag isn't set yet, so there may be race with timeout handler,
d9d149a3
ML
642 * but given rq->deadline is just set in .queue_rq() under
643 * this situation, the race won't be possible in reality because
644 * rq->timeout should be set as big enough to cover the window
645 * between blk_mq_start_request() called from .queue_rq() and
646 * clearing REQ_ATOM_STARTED here.
647 */
ed0791b2 648static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
649{
650 struct request_queue *q = rq->q;
651
923218f6
ML
652 blk_mq_put_driver_tag(rq);
653
320ae51f 654 trace_block_rq_requeue(q, rq);
87760e5e 655 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 656 blk_mq_sched_requeue_request(rq);
49f5baa5 657
e2490073
CH
658 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
659 if (q->dma_drain_size && blk_rq_bytes(rq))
660 rq->nr_phys_segments--;
661 }
320ae51f
JA
662}
663
2b053aca 664void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 665{
ed0791b2 666 __blk_mq_requeue_request(rq);
ed0791b2 667
ed0791b2 668 BUG_ON(blk_queued_rq(rq));
2b053aca 669 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
670}
671EXPORT_SYMBOL(blk_mq_requeue_request);
672
6fca6a61
CH
673static void blk_mq_requeue_work(struct work_struct *work)
674{
675 struct request_queue *q =
2849450a 676 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
677 LIST_HEAD(rq_list);
678 struct request *rq, *next;
6fca6a61 679
18e9781d 680 spin_lock_irq(&q->requeue_lock);
6fca6a61 681 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 682 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
683
684 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 685 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
686 continue;
687
e8064021 688 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 689 list_del_init(&rq->queuelist);
bd6737f1 690 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
691 }
692
693 while (!list_empty(&rq_list)) {
694 rq = list_entry(rq_list.next, struct request, queuelist);
695 list_del_init(&rq->queuelist);
bd6737f1 696 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
697 }
698
52d7f1b5 699 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
700}
701
2b053aca
BVA
702void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
703 bool kick_requeue_list)
6fca6a61
CH
704{
705 struct request_queue *q = rq->q;
706 unsigned long flags;
707
708 /*
709 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 710 * request head insertion from the workqueue.
6fca6a61 711 */
e8064021 712 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
713
714 spin_lock_irqsave(&q->requeue_lock, flags);
715 if (at_head) {
e8064021 716 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
717 list_add(&rq->queuelist, &q->requeue_list);
718 } else {
719 list_add_tail(&rq->queuelist, &q->requeue_list);
720 }
721 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
722
723 if (kick_requeue_list)
724 blk_mq_kick_requeue_list(q);
6fca6a61
CH
725}
726EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
727
728void blk_mq_kick_requeue_list(struct request_queue *q)
729{
2849450a 730 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
731}
732EXPORT_SYMBOL(blk_mq_kick_requeue_list);
733
2849450a
MS
734void blk_mq_delay_kick_requeue_list(struct request_queue *q,
735 unsigned long msecs)
736{
d4acf365
BVA
737 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
738 msecs_to_jiffies(msecs));
2849450a
MS
739}
740EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
741
0e62f51f
JA
742struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
743{
88c7b2b7
JA
744 if (tag < tags->nr_tags) {
745 prefetch(tags->rqs[tag]);
4ee86bab 746 return tags->rqs[tag];
88c7b2b7 747 }
4ee86bab
HR
748
749 return NULL;
24d2f903
CH
750}
751EXPORT_SYMBOL(blk_mq_tag_to_rq);
752
320ae51f 753struct blk_mq_timeout_data {
46f92d42
CH
754 unsigned long next;
755 unsigned int next_set;
320ae51f
JA
756};
757
90415837 758void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 759{
f8a5b122 760 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 761 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
762
763 /*
764 * We know that complete is set at this point. If STARTED isn't set
765 * anymore, then the request isn't active and the "timeout" should
766 * just be ignored. This can happen due to the bitflag ordering.
767 * Timeout first checks if STARTED is set, and if it is, assumes
768 * the request is active. But if we race with completion, then
48b99c9d 769 * both flags will get cleared. So check here again, and ignore
87ee7b11
JA
770 * a timeout event with a request that isn't active.
771 */
46f92d42
CH
772 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
773 return;
87ee7b11 774
46f92d42 775 if (ops->timeout)
0152fb6b 776 ret = ops->timeout(req, reserved);
46f92d42
CH
777
778 switch (ret) {
779 case BLK_EH_HANDLED:
780 __blk_mq_complete_request(req);
781 break;
782 case BLK_EH_RESET_TIMER:
783 blk_add_timer(req);
784 blk_clear_rq_complete(req);
785 break;
786 case BLK_EH_NOT_HANDLED:
787 break;
788 default:
789 printk(KERN_ERR "block: bad eh return: %d\n", ret);
790 break;
791 }
87ee7b11 792}
5b3f25fc 793
81481eb4
CH
794static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
795 struct request *rq, void *priv, bool reserved)
796{
797 struct blk_mq_timeout_data *data = priv;
a7af0af3 798 unsigned long deadline;
87ee7b11 799
95a49603 800 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 801 return;
87ee7b11 802
a7af0af3
PZ
803 /*
804 * Ensures that if we see STARTED we must also see our
805 * up-to-date deadline, see blk_mq_start_request().
806 */
807 smp_rmb();
808
809 deadline = READ_ONCE(rq->deadline);
810
d9d149a3
ML
811 /*
812 * The rq being checked may have been freed and reallocated
813 * out already here, we avoid this race by checking rq->deadline
814 * and REQ_ATOM_COMPLETE flag together:
815 *
816 * - if rq->deadline is observed as new value because of
817 * reusing, the rq won't be timed out because of timing.
818 * - if rq->deadline is observed as previous value,
819 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
820 * because we put a barrier between setting rq->deadline
821 * and clearing the flag in blk_mq_start_request(), so
822 * this rq won't be timed out too.
823 */
a7af0af3
PZ
824 if (time_after_eq(jiffies, deadline)) {
825 if (!blk_mark_rq_complete(rq)) {
826 /*
827 * Again coherence order ensures that consecutive reads
828 * from the same variable must be in that order. This
829 * ensures that if we see COMPLETE clear, we must then
830 * see STARTED set and we'll ignore this timeout.
831 *
832 * (There's also the MB implied by the test_and_clear())
833 */
0152fb6b 834 blk_mq_rq_timed_out(rq, reserved);
a7af0af3
PZ
835 }
836 } else if (!data->next_set || time_after(data->next, deadline)) {
837 data->next = deadline;
46f92d42
CH
838 data->next_set = 1;
839 }
87ee7b11
JA
840}
841
287922eb 842static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 843{
287922eb
CH
844 struct request_queue *q =
845 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
846 struct blk_mq_timeout_data data = {
847 .next = 0,
848 .next_set = 0,
849 };
81481eb4 850 int i;
320ae51f 851
71f79fb3
GKB
852 /* A deadlock might occur if a request is stuck requiring a
853 * timeout at the same time a queue freeze is waiting
854 * completion, since the timeout code would not be able to
855 * acquire the queue reference here.
856 *
857 * That's why we don't use blk_queue_enter here; instead, we use
858 * percpu_ref_tryget directly, because we need to be able to
859 * obtain a reference even in the short window between the queue
860 * starting to freeze, by dropping the first reference in
1671d522 861 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
862 * consumed, marked by the instant q_usage_counter reaches
863 * zero.
864 */
865 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
866 return;
867
0bf6cd5b 868 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 869
81481eb4
CH
870 if (data.next_set) {
871 data.next = blk_rq_timeout(round_jiffies_up(data.next));
872 mod_timer(&q->timeout, data.next);
0d2602ca 873 } else {
0bf6cd5b
CH
874 struct blk_mq_hw_ctx *hctx;
875
f054b56c
ML
876 queue_for_each_hw_ctx(q, hctx, i) {
877 /* the hctx may be unmapped, so check it here */
878 if (blk_mq_hw_queue_mapped(hctx))
879 blk_mq_tag_idle(hctx);
880 }
0d2602ca 881 }
287922eb 882 blk_queue_exit(q);
320ae51f
JA
883}
884
88459642
OS
885struct flush_busy_ctx_data {
886 struct blk_mq_hw_ctx *hctx;
887 struct list_head *list;
888};
889
890static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
891{
892 struct flush_busy_ctx_data *flush_data = data;
893 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
894 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
895
896 sbitmap_clear_bit(sb, bitnr);
897 spin_lock(&ctx->lock);
898 list_splice_tail_init(&ctx->rq_list, flush_data->list);
899 spin_unlock(&ctx->lock);
900 return true;
901}
902
1429d7c9
JA
903/*
904 * Process software queues that have been marked busy, splicing them
905 * to the for-dispatch
906 */
2c3ad667 907void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 908{
88459642
OS
909 struct flush_busy_ctx_data data = {
910 .hctx = hctx,
911 .list = list,
912 };
1429d7c9 913
88459642 914 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 915}
2c3ad667 916EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 917
b347689f
ML
918struct dispatch_rq_data {
919 struct blk_mq_hw_ctx *hctx;
920 struct request *rq;
921};
922
923static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
924 void *data)
925{
926 struct dispatch_rq_data *dispatch_data = data;
927 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
928 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
929
930 spin_lock(&ctx->lock);
931 if (unlikely(!list_empty(&ctx->rq_list))) {
932 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
933 list_del_init(&dispatch_data->rq->queuelist);
934 if (list_empty(&ctx->rq_list))
935 sbitmap_clear_bit(sb, bitnr);
936 }
937 spin_unlock(&ctx->lock);
938
939 return !dispatch_data->rq;
940}
941
942struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
943 struct blk_mq_ctx *start)
944{
945 unsigned off = start ? start->index_hw : 0;
946 struct dispatch_rq_data data = {
947 .hctx = hctx,
948 .rq = NULL,
949 };
950
951 __sbitmap_for_each_set(&hctx->ctx_map, off,
952 dispatch_rq_from_ctx, &data);
953
954 return data.rq;
955}
956
703fd1c0
JA
957static inline unsigned int queued_to_index(unsigned int queued)
958{
959 if (!queued)
960 return 0;
1429d7c9 961
703fd1c0 962 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
963}
964
bd6737f1
JA
965bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
966 bool wait)
bd166ef1
JA
967{
968 struct blk_mq_alloc_data data = {
969 .q = rq->q,
bd166ef1
JA
970 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
971 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
972 };
973
5feeacdd
JA
974 might_sleep_if(wait);
975
81380ca1
OS
976 if (rq->tag != -1)
977 goto done;
bd166ef1 978
415b806d
SG
979 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
980 data.flags |= BLK_MQ_REQ_RESERVED;
981
bd166ef1
JA
982 rq->tag = blk_mq_get_tag(&data);
983 if (rq->tag >= 0) {
200e86b3
JA
984 if (blk_mq_tag_busy(data.hctx)) {
985 rq->rq_flags |= RQF_MQ_INFLIGHT;
986 atomic_inc(&data.hctx->nr_active);
987 }
bd166ef1 988 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
989 }
990
81380ca1
OS
991done:
992 if (hctx)
993 *hctx = data.hctx;
994 return rq->tag != -1;
bd166ef1
JA
995}
996
eb619fdb
JA
997static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
998 int flags, void *key)
da55f2cc
OS
999{
1000 struct blk_mq_hw_ctx *hctx;
1001
1002 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1003
eb619fdb 1004 list_del_init(&wait->entry);
da55f2cc
OS
1005 blk_mq_run_hw_queue(hctx, true);
1006 return 1;
1007}
1008
f906a6a0
JA
1009/*
1010 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1011 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1012 * restart. For both caes, take care to check the condition again after
1013 * marking us as waiting.
1014 */
1015static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1016 struct request *rq)
da55f2cc 1017{
eb619fdb 1018 struct blk_mq_hw_ctx *this_hctx = *hctx;
f906a6a0 1019 bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
da55f2cc 1020 struct sbq_wait_state *ws;
f906a6a0
JA
1021 wait_queue_entry_t *wait;
1022 bool ret;
da55f2cc 1023
f906a6a0
JA
1024 if (!shared_tags) {
1025 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1026 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1027 } else {
1028 wait = &this_hctx->dispatch_wait;
1029 if (!list_empty_careful(&wait->entry))
1030 return false;
1031
1032 spin_lock(&this_hctx->lock);
1033 if (!list_empty(&wait->entry)) {
1034 spin_unlock(&this_hctx->lock);
1035 return false;
1036 }
eb619fdb 1037
f906a6a0
JA
1038 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1039 add_wait_queue(&ws->wait, wait);
eb619fdb
JA
1040 }
1041
da55f2cc 1042 /*
eb619fdb
JA
1043 * It's possible that a tag was freed in the window between the
1044 * allocation failure and adding the hardware queue to the wait
1045 * queue.
da55f2cc 1046 */
f906a6a0
JA
1047 ret = blk_mq_get_driver_tag(rq, hctx, false);
1048
1049 if (!shared_tags) {
1050 /*
1051 * Don't clear RESTART here, someone else could have set it.
1052 * At most this will cost an extra queue run.
1053 */
1054 return ret;
1055 } else {
1056 if (!ret) {
1057 spin_unlock(&this_hctx->lock);
1058 return false;
1059 }
1060
1061 /*
1062 * We got a tag, remove ourselves from the wait queue to ensure
1063 * someone else gets the wakeup.
1064 */
1065 spin_lock_irq(&ws->wait.lock);
1066 list_del_init(&wait->entry);
1067 spin_unlock_irq(&ws->wait.lock);
eb619fdb 1068 spin_unlock(&this_hctx->lock);
f906a6a0 1069 return true;
eb619fdb 1070 }
da55f2cc
OS
1071}
1072
de148297 1073bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
eb619fdb 1074 bool got_budget)
320ae51f 1075{
81380ca1 1076 struct blk_mq_hw_ctx *hctx;
6d6f167c 1077 struct request *rq, *nxt;
eb619fdb 1078 bool no_tag = false;
fc17b653 1079 int errors, queued;
320ae51f 1080
81380ca1
OS
1081 if (list_empty(list))
1082 return false;
1083
de148297
ML
1084 WARN_ON(!list_is_singular(list) && got_budget);
1085
320ae51f
JA
1086 /*
1087 * Now process all the entries, sending them to the driver.
1088 */
93efe981 1089 errors = queued = 0;
81380ca1 1090 do {
74c45052 1091 struct blk_mq_queue_data bd;
fc17b653 1092 blk_status_t ret;
320ae51f 1093
f04c3df3 1094 rq = list_first_entry(list, struct request, queuelist);
bd166ef1 1095 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
3c782d67 1096 /*
da55f2cc 1097 * The initial allocation attempt failed, so we need to
eb619fdb
JA
1098 * rerun the hardware queue when a tag is freed. The
1099 * waitqueue takes care of that. If the queue is run
1100 * before we add this entry back on the dispatch list,
1101 * we'll re-run it below.
3c782d67 1102 */
f906a6a0 1103 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
de148297
ML
1104 if (got_budget)
1105 blk_mq_put_dispatch_budget(hctx);
f906a6a0
JA
1106 /*
1107 * For non-shared tags, the RESTART check
1108 * will suffice.
1109 */
1110 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1111 no_tag = true;
de148297
ML
1112 break;
1113 }
1114 }
1115
0c6af1cc
ML
1116 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1117 blk_mq_put_driver_tag(rq);
88022d72 1118 break;
0c6af1cc 1119 }
da55f2cc 1120
320ae51f 1121 list_del_init(&rq->queuelist);
320ae51f 1122
74c45052 1123 bd.rq = rq;
113285b4
JA
1124
1125 /*
1126 * Flag last if we have no more requests, or if we have more
1127 * but can't assign a driver tag to it.
1128 */
1129 if (list_empty(list))
1130 bd.last = true;
1131 else {
113285b4
JA
1132 nxt = list_first_entry(list, struct request, queuelist);
1133 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1134 }
74c45052
JA
1135
1136 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653 1137 if (ret == BLK_STS_RESOURCE) {
6d6f167c
JW
1138 /*
1139 * If an I/O scheduler has been configured and we got a
ff821d27
JA
1140 * driver tag for the next request already, free it
1141 * again.
6d6f167c
JW
1142 */
1143 if (!list_empty(list)) {
1144 nxt = list_first_entry(list, struct request, queuelist);
1145 blk_mq_put_driver_tag(nxt);
1146 }
f04c3df3 1147 list_add(&rq->queuelist, list);
ed0791b2 1148 __blk_mq_requeue_request(rq);
320ae51f 1149 break;
fc17b653
CH
1150 }
1151
1152 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1153 errors++;
2a842aca 1154 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1155 continue;
320ae51f
JA
1156 }
1157
fc17b653 1158 queued++;
81380ca1 1159 } while (!list_empty(list));
320ae51f 1160
703fd1c0 1161 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1162
1163 /*
1164 * Any items that need requeuing? Stuff them into hctx->dispatch,
1165 * that is where we will continue on next queue run.
1166 */
f04c3df3 1167 if (!list_empty(list)) {
320ae51f 1168 spin_lock(&hctx->lock);
c13660a0 1169 list_splice_init(list, &hctx->dispatch);
320ae51f 1170 spin_unlock(&hctx->lock);
f04c3df3 1171
9ba52e58 1172 /*
710c785f
BVA
1173 * If SCHED_RESTART was set by the caller of this function and
1174 * it is no longer set that means that it was cleared by another
1175 * thread and hence that a queue rerun is needed.
9ba52e58 1176 *
eb619fdb
JA
1177 * If 'no_tag' is set, that means that we failed getting
1178 * a driver tag with an I/O scheduler attached. If our dispatch
1179 * waitqueue is no longer active, ensure that we run the queue
1180 * AFTER adding our entries back to the list.
bd166ef1 1181 *
710c785f
BVA
1182 * If no I/O scheduler has been configured it is possible that
1183 * the hardware queue got stopped and restarted before requests
1184 * were pushed back onto the dispatch list. Rerun the queue to
1185 * avoid starvation. Notes:
1186 * - blk_mq_run_hw_queue() checks whether or not a queue has
1187 * been stopped before rerunning a queue.
1188 * - Some but not all block drivers stop a queue before
fc17b653 1189 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1190 * and dm-rq.
bd166ef1 1191 */
eb619fdb
JA
1192 if (!blk_mq_sched_needs_restart(hctx) ||
1193 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1194 blk_mq_run_hw_queue(hctx, true);
320ae51f 1195 }
f04c3df3 1196
93efe981 1197 return (queued + errors) != 0;
f04c3df3
JA
1198}
1199
6a83e74d
BVA
1200static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1201{
1202 int srcu_idx;
1203
b7a71e66
JA
1204 /*
1205 * We should be running this queue from one of the CPUs that
1206 * are mapped to it.
1207 */
6a83e74d
BVA
1208 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1209 cpu_online(hctx->next_cpu));
1210
b7a71e66
JA
1211 /*
1212 * We can't run the queue inline with ints disabled. Ensure that
1213 * we catch bad users of this early.
1214 */
1215 WARN_ON_ONCE(in_interrupt());
1216
6a83e74d
BVA
1217 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1218 rcu_read_lock();
1f460b63 1219 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1220 rcu_read_unlock();
1221 } else {
bf4907c0
JA
1222 might_sleep();
1223
07319678 1224 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1f460b63 1225 blk_mq_sched_dispatch_requests(hctx);
07319678 1226 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
6a83e74d
BVA
1227 }
1228}
1229
506e931f
JA
1230/*
1231 * It'd be great if the workqueue API had a way to pass
1232 * in a mask and had some smarts for more clever placement.
1233 * For now we just round-robin here, switching for every
1234 * BLK_MQ_CPU_WORK_BATCH queued items.
1235 */
1236static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1237{
b657d7e6
CH
1238 if (hctx->queue->nr_hw_queues == 1)
1239 return WORK_CPU_UNBOUND;
506e931f
JA
1240
1241 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1242 int next_cpu;
506e931f
JA
1243
1244 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1245 if (next_cpu >= nr_cpu_ids)
1246 next_cpu = cpumask_first(hctx->cpumask);
1247
1248 hctx->next_cpu = next_cpu;
1249 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1250 }
1251
b657d7e6 1252 return hctx->next_cpu;
506e931f
JA
1253}
1254
7587a5ae
BVA
1255static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1256 unsigned long msecs)
320ae51f 1257{
5435c023
BVA
1258 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1259 return;
1260
1261 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1262 return;
1263
1b792f2f 1264 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1265 int cpu = get_cpu();
1266 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1267 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1268 put_cpu();
398205b8
PB
1269 return;
1270 }
e4043dcf 1271
2a90d4aa 1272 put_cpu();
e4043dcf 1273 }
398205b8 1274
9f993737
JA
1275 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1276 &hctx->run_work,
1277 msecs_to_jiffies(msecs));
7587a5ae
BVA
1278}
1279
1280void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1281{
1282 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1283}
1284EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1285
79f720a7 1286bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 1287{
79f720a7
JA
1288 if (blk_mq_hctx_has_pending(hctx)) {
1289 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1290 return true;
1291 }
1292
1293 return false;
320ae51f 1294}
5b727272 1295EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1296
b94ec296 1297void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1298{
1299 struct blk_mq_hw_ctx *hctx;
1300 int i;
1301
1302 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 1303 if (blk_mq_hctx_stopped(hctx))
320ae51f
JA
1304 continue;
1305
b94ec296 1306 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1307 }
1308}
b94ec296 1309EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1310
fd001443
BVA
1311/**
1312 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1313 * @q: request queue.
1314 *
1315 * The caller is responsible for serializing this function against
1316 * blk_mq_{start,stop}_hw_queue().
1317 */
1318bool blk_mq_queue_stopped(struct request_queue *q)
1319{
1320 struct blk_mq_hw_ctx *hctx;
1321 int i;
1322
1323 queue_for_each_hw_ctx(q, hctx, i)
1324 if (blk_mq_hctx_stopped(hctx))
1325 return true;
1326
1327 return false;
1328}
1329EXPORT_SYMBOL(blk_mq_queue_stopped);
1330
39a70c76
ML
1331/*
1332 * This function is often used for pausing .queue_rq() by driver when
1333 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1334 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1335 *
1336 * We do not guarantee that dispatch can be drained or blocked
1337 * after blk_mq_stop_hw_queue() returns. Please use
1338 * blk_mq_quiesce_queue() for that requirement.
1339 */
2719aa21
JA
1340void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1341{
641a9ed6 1342 cancel_delayed_work(&hctx->run_work);
280d45f6 1343
641a9ed6 1344 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1345}
641a9ed6 1346EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1347
39a70c76
ML
1348/*
1349 * This function is often used for pausing .queue_rq() by driver when
1350 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1351 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1352 *
1353 * We do not guarantee that dispatch can be drained or blocked
1354 * after blk_mq_stop_hw_queues() returns. Please use
1355 * blk_mq_quiesce_queue() for that requirement.
1356 */
2719aa21
JA
1357void blk_mq_stop_hw_queues(struct request_queue *q)
1358{
641a9ed6
ML
1359 struct blk_mq_hw_ctx *hctx;
1360 int i;
1361
1362 queue_for_each_hw_ctx(q, hctx, i)
1363 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1364}
1365EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1366
320ae51f
JA
1367void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1368{
1369 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1370
0ffbce80 1371 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1372}
1373EXPORT_SYMBOL(blk_mq_start_hw_queue);
1374
2f268556
CH
1375void blk_mq_start_hw_queues(struct request_queue *q)
1376{
1377 struct blk_mq_hw_ctx *hctx;
1378 int i;
1379
1380 queue_for_each_hw_ctx(q, hctx, i)
1381 blk_mq_start_hw_queue(hctx);
1382}
1383EXPORT_SYMBOL(blk_mq_start_hw_queues);
1384
ae911c5e
JA
1385void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1386{
1387 if (!blk_mq_hctx_stopped(hctx))
1388 return;
1389
1390 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1391 blk_mq_run_hw_queue(hctx, async);
1392}
1393EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1394
1b4a3258 1395void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1396{
1397 struct blk_mq_hw_ctx *hctx;
1398 int i;
1399
ae911c5e
JA
1400 queue_for_each_hw_ctx(q, hctx, i)
1401 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1402}
1403EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1404
70f4db63 1405static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1406{
1407 struct blk_mq_hw_ctx *hctx;
1408
9f993737 1409 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1410
21c6e939
JA
1411 /*
1412 * If we are stopped, don't run the queue. The exception is if
1413 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1414 * the STOPPED bit and run it.
1415 */
1416 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1417 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1418 return;
7587a5ae 1419
21c6e939
JA
1420 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1421 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1422 }
7587a5ae
BVA
1423
1424 __blk_mq_run_hw_queue(hctx);
1425}
1426
70f4db63
CH
1427
1428void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1429{
5435c023 1430 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
19c66e59 1431 return;
70f4db63 1432
21c6e939
JA
1433 /*
1434 * Stop the hw queue, then modify currently delayed work.
1435 * This should prevent us from running the queue prematurely.
1436 * Mark the queue as auto-clearing STOPPED when it runs.
1437 */
7e79dadc 1438 blk_mq_stop_hw_queue(hctx);
21c6e939
JA
1439 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1440 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1441 &hctx->run_work,
1442 msecs_to_jiffies(msecs));
70f4db63
CH
1443}
1444EXPORT_SYMBOL(blk_mq_delay_queue);
1445
cfd0c552 1446static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1447 struct request *rq,
1448 bool at_head)
320ae51f 1449{
e57690fe
JA
1450 struct blk_mq_ctx *ctx = rq->mq_ctx;
1451
7b607814
BVA
1452 lockdep_assert_held(&ctx->lock);
1453
01b983c9
JA
1454 trace_block_rq_insert(hctx->queue, rq);
1455
72a0a36e
CH
1456 if (at_head)
1457 list_add(&rq->queuelist, &ctx->rq_list);
1458 else
1459 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1460}
4bb659b1 1461
2c3ad667
JA
1462void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1463 bool at_head)
cfd0c552
ML
1464{
1465 struct blk_mq_ctx *ctx = rq->mq_ctx;
1466
7b607814
BVA
1467 lockdep_assert_held(&ctx->lock);
1468
e57690fe 1469 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1470 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1471}
1472
157f377b
JA
1473/*
1474 * Should only be used carefully, when the caller knows we want to
1475 * bypass a potential IO scheduler on the target device.
1476 */
b0850297 1477void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
157f377b
JA
1478{
1479 struct blk_mq_ctx *ctx = rq->mq_ctx;
1480 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1481
1482 spin_lock(&hctx->lock);
1483 list_add_tail(&rq->queuelist, &hctx->dispatch);
1484 spin_unlock(&hctx->lock);
1485
b0850297
ML
1486 if (run_queue)
1487 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1488}
1489
bd166ef1
JA
1490void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1491 struct list_head *list)
320ae51f
JA
1492
1493{
320ae51f
JA
1494 /*
1495 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1496 * offline now
1497 */
1498 spin_lock(&ctx->lock);
1499 while (!list_empty(list)) {
1500 struct request *rq;
1501
1502 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1503 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1504 list_del_init(&rq->queuelist);
e57690fe 1505 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1506 }
cfd0c552 1507 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1508 spin_unlock(&ctx->lock);
320ae51f
JA
1509}
1510
1511static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1512{
1513 struct request *rqa = container_of(a, struct request, queuelist);
1514 struct request *rqb = container_of(b, struct request, queuelist);
1515
1516 return !(rqa->mq_ctx < rqb->mq_ctx ||
1517 (rqa->mq_ctx == rqb->mq_ctx &&
1518 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1519}
1520
1521void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1522{
1523 struct blk_mq_ctx *this_ctx;
1524 struct request_queue *this_q;
1525 struct request *rq;
1526 LIST_HEAD(list);
1527 LIST_HEAD(ctx_list);
1528 unsigned int depth;
1529
1530 list_splice_init(&plug->mq_list, &list);
1531
1532 list_sort(NULL, &list, plug_ctx_cmp);
1533
1534 this_q = NULL;
1535 this_ctx = NULL;
1536 depth = 0;
1537
1538 while (!list_empty(&list)) {
1539 rq = list_entry_rq(list.next);
1540 list_del_init(&rq->queuelist);
1541 BUG_ON(!rq->q);
1542 if (rq->mq_ctx != this_ctx) {
1543 if (this_ctx) {
bd166ef1
JA
1544 trace_block_unplug(this_q, depth, from_schedule);
1545 blk_mq_sched_insert_requests(this_q, this_ctx,
1546 &ctx_list,
1547 from_schedule);
320ae51f
JA
1548 }
1549
1550 this_ctx = rq->mq_ctx;
1551 this_q = rq->q;
1552 depth = 0;
1553 }
1554
1555 depth++;
1556 list_add_tail(&rq->queuelist, &ctx_list);
1557 }
1558
1559 /*
1560 * If 'this_ctx' is set, we know we have entries to complete
1561 * on 'ctx_list'. Do those.
1562 */
1563 if (this_ctx) {
bd166ef1
JA
1564 trace_block_unplug(this_q, depth, from_schedule);
1565 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1566 from_schedule);
320ae51f
JA
1567 }
1568}
1569
1570static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1571{
da8d7f07 1572 blk_init_request_from_bio(rq, bio);
4b570521 1573
85acb3ba
SL
1574 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1575
6e85eaf3 1576 blk_account_io_start(rq, true);
320ae51f
JA
1577}
1578
ab42f35d
ML
1579static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1580 struct blk_mq_ctx *ctx,
1581 struct request *rq)
1582{
1583 spin_lock(&ctx->lock);
1584 __blk_mq_insert_request(hctx, rq, false);
1585 spin_unlock(&ctx->lock);
07068d5b 1586}
14ec77f3 1587
fd2d3326
JA
1588static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1589{
bd166ef1
JA
1590 if (rq->tag != -1)
1591 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1592
1593 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1594}
1595
d964f04a
ML
1596static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1597 struct request *rq,
1598 blk_qc_t *cookie, bool may_sleep)
f984df1f 1599{
f984df1f 1600 struct request_queue *q = rq->q;
f984df1f
SL
1601 struct blk_mq_queue_data bd = {
1602 .rq = rq,
d945a365 1603 .last = true,
f984df1f 1604 };
bd166ef1 1605 blk_qc_t new_cookie;
f06345ad 1606 blk_status_t ret;
d964f04a
ML
1607 bool run_queue = true;
1608
f4560ffe
ML
1609 /* RCU or SRCU read lock is needed before checking quiesced flag */
1610 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a
ML
1611 run_queue = false;
1612 goto insert;
1613 }
f984df1f 1614
bd166ef1 1615 if (q->elevator)
2253efc8
BVA
1616 goto insert;
1617
d964f04a 1618 if (!blk_mq_get_driver_tag(rq, NULL, false))
bd166ef1
JA
1619 goto insert;
1620
88022d72 1621 if (!blk_mq_get_dispatch_budget(hctx)) {
de148297
ML
1622 blk_mq_put_driver_tag(rq);
1623 goto insert;
88022d72 1624 }
de148297 1625
bd166ef1
JA
1626 new_cookie = request_to_qc_t(hctx, rq);
1627
f984df1f
SL
1628 /*
1629 * For OK queue, we are done. For error, kill it. Any other
1630 * error (busy), just add it to our list as we previously
1631 * would have done
1632 */
1633 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653
CH
1634 switch (ret) {
1635 case BLK_STS_OK:
7b371636 1636 *cookie = new_cookie;
2253efc8 1637 return;
fc17b653
CH
1638 case BLK_STS_RESOURCE:
1639 __blk_mq_requeue_request(rq);
1640 goto insert;
1641 default:
7b371636 1642 *cookie = BLK_QC_T_NONE;
fc17b653 1643 blk_mq_end_request(rq, ret);
2253efc8 1644 return;
f984df1f 1645 }
7b371636 1646
2253efc8 1647insert:
d964f04a 1648 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
f984df1f
SL
1649}
1650
5eb6126e
CH
1651static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1652 struct request *rq, blk_qc_t *cookie)
1653{
1654 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1655 rcu_read_lock();
d964f04a 1656 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
5eb6126e
CH
1657 rcu_read_unlock();
1658 } else {
bf4907c0
JA
1659 unsigned int srcu_idx;
1660
1661 might_sleep();
1662
07319678 1663 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
d964f04a 1664 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
07319678 1665 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
5eb6126e
CH
1666 }
1667}
1668
dece1635 1669static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1670{
ef295ecf 1671 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1672 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1673 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1674 struct request *rq;
5eb6126e 1675 unsigned int request_count = 0;
f984df1f 1676 struct blk_plug *plug;
5b3f341f 1677 struct request *same_queue_rq = NULL;
7b371636 1678 blk_qc_t cookie;
87760e5e 1679 unsigned int wb_acct;
07068d5b
JA
1680
1681 blk_queue_bounce(q, &bio);
1682
af67c31f 1683 blk_queue_split(q, &bio);
f36ea50c 1684
e23947bd 1685 if (!bio_integrity_prep(bio))
dece1635 1686 return BLK_QC_T_NONE;
07068d5b 1687
87c279e6
OS
1688 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1689 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1690 return BLK_QC_T_NONE;
f984df1f 1691
bd166ef1
JA
1692 if (blk_mq_sched_bio_merge(q, bio))
1693 return BLK_QC_T_NONE;
1694
87760e5e
JA
1695 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1696
bd166ef1
JA
1697 trace_block_getrq(q, bio, bio->bi_opf);
1698
d2c0d383 1699 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1700 if (unlikely(!rq)) {
1701 __wbt_done(q->rq_wb, wb_acct);
03a07c92
GR
1702 if (bio->bi_opf & REQ_NOWAIT)
1703 bio_wouldblock_error(bio);
dece1635 1704 return BLK_QC_T_NONE;
87760e5e
JA
1705 }
1706
1707 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1708
fd2d3326 1709 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1710
f984df1f 1711 plug = current->plug;
07068d5b 1712 if (unlikely(is_flush_fua)) {
f984df1f 1713 blk_mq_put_ctx(data.ctx);
07068d5b 1714 blk_mq_bio_to_request(rq, bio);
923218f6
ML
1715
1716 /* bypass scheduler for flush rq */
1717 blk_insert_flush(rq);
1718 blk_mq_run_hw_queue(data.hctx, true);
a4d907b6 1719 } else if (plug && q->nr_hw_queues == 1) {
600271d9
SL
1720 struct request *last = NULL;
1721
b00c53e8 1722 blk_mq_put_ctx(data.ctx);
e6c4438b 1723 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1724
1725 /*
1726 * @request_count may become stale because of schedule
1727 * out, so check the list again.
1728 */
1729 if (list_empty(&plug->mq_list))
1730 request_count = 0;
254d259d
CH
1731 else if (blk_queue_nomerges(q))
1732 request_count = blk_plug_queued_count(q);
1733
676d0607 1734 if (!request_count)
e6c4438b 1735 trace_block_plug(q);
600271d9
SL
1736 else
1737 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1738
600271d9
SL
1739 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1740 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1741 blk_flush_plug_list(plug, false);
1742 trace_block_plug(q);
320ae51f 1743 }
b094f89c 1744
e6c4438b 1745 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1746 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1747 blk_mq_bio_to_request(rq, bio);
07068d5b 1748
07068d5b 1749 /*
6a83e74d 1750 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1751 * Otherwise the existing request in the plug list will be
1752 * issued. So the plug list will have one request at most
2299722c
CH
1753 * The plug list might get flushed before this. If that happens,
1754 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1755 */
2299722c
CH
1756 if (list_empty(&plug->mq_list))
1757 same_queue_rq = NULL;
1758 if (same_queue_rq)
1759 list_del_init(&same_queue_rq->queuelist);
1760 list_add_tail(&rq->queuelist, &plug->mq_list);
1761
bf4907c0
JA
1762 blk_mq_put_ctx(data.ctx);
1763
dad7a3be
ML
1764 if (same_queue_rq) {
1765 data.hctx = blk_mq_map_queue(q,
1766 same_queue_rq->mq_ctx->cpu);
2299722c
CH
1767 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1768 &cookie);
dad7a3be 1769 }
a4d907b6 1770 } else if (q->nr_hw_queues > 1 && is_sync) {
bf4907c0 1771 blk_mq_put_ctx(data.ctx);
2299722c 1772 blk_mq_bio_to_request(rq, bio);
2299722c 1773 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
a4d907b6 1774 } else if (q->elevator) {
b00c53e8 1775 blk_mq_put_ctx(data.ctx);
bd166ef1 1776 blk_mq_bio_to_request(rq, bio);
a4d907b6 1777 blk_mq_sched_insert_request(rq, false, true, true, true);
ab42f35d 1778 } else {
b00c53e8 1779 blk_mq_put_ctx(data.ctx);
ab42f35d
ML
1780 blk_mq_bio_to_request(rq, bio);
1781 blk_mq_queue_io(data.hctx, data.ctx, rq);
a4d907b6 1782 blk_mq_run_hw_queue(data.hctx, true);
ab42f35d 1783 }
320ae51f 1784
7b371636 1785 return cookie;
320ae51f
JA
1786}
1787
cc71a6f4
JA
1788void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1789 unsigned int hctx_idx)
95363efd 1790{
e9b267d9 1791 struct page *page;
320ae51f 1792
24d2f903 1793 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1794 int i;
320ae51f 1795
24d2f903 1796 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1797 struct request *rq = tags->static_rqs[i];
1798
1799 if (!rq)
e9b267d9 1800 continue;
d6296d39 1801 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 1802 tags->static_rqs[i] = NULL;
e9b267d9 1803 }
320ae51f 1804 }
320ae51f 1805
24d2f903
CH
1806 while (!list_empty(&tags->page_list)) {
1807 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1808 list_del_init(&page->lru);
f75782e4
CM
1809 /*
1810 * Remove kmemleak object previously allocated in
1811 * blk_mq_init_rq_map().
1812 */
1813 kmemleak_free(page_address(page));
320ae51f
JA
1814 __free_pages(page, page->private);
1815 }
cc71a6f4 1816}
320ae51f 1817
cc71a6f4
JA
1818void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1819{
24d2f903 1820 kfree(tags->rqs);
cc71a6f4 1821 tags->rqs = NULL;
2af8cbe3
JA
1822 kfree(tags->static_rqs);
1823 tags->static_rqs = NULL;
320ae51f 1824
24d2f903 1825 blk_mq_free_tags(tags);
320ae51f
JA
1826}
1827
cc71a6f4
JA
1828struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1829 unsigned int hctx_idx,
1830 unsigned int nr_tags,
1831 unsigned int reserved_tags)
320ae51f 1832{
24d2f903 1833 struct blk_mq_tags *tags;
59f082e4 1834 int node;
320ae51f 1835
59f082e4
SL
1836 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1837 if (node == NUMA_NO_NODE)
1838 node = set->numa_node;
1839
1840 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1841 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1842 if (!tags)
1843 return NULL;
320ae51f 1844
cc71a6f4 1845 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1846 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1847 node);
24d2f903
CH
1848 if (!tags->rqs) {
1849 blk_mq_free_tags(tags);
1850 return NULL;
1851 }
320ae51f 1852
2af8cbe3
JA
1853 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1854 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1855 node);
2af8cbe3
JA
1856 if (!tags->static_rqs) {
1857 kfree(tags->rqs);
1858 blk_mq_free_tags(tags);
1859 return NULL;
1860 }
1861
cc71a6f4
JA
1862 return tags;
1863}
1864
1865static size_t order_to_size(unsigned int order)
1866{
1867 return (size_t)PAGE_SIZE << order;
1868}
1869
1870int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1871 unsigned int hctx_idx, unsigned int depth)
1872{
1873 unsigned int i, j, entries_per_page, max_order = 4;
1874 size_t rq_size, left;
59f082e4
SL
1875 int node;
1876
1877 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1878 if (node == NUMA_NO_NODE)
1879 node = set->numa_node;
cc71a6f4
JA
1880
1881 INIT_LIST_HEAD(&tags->page_list);
1882
320ae51f
JA
1883 /*
1884 * rq_size is the size of the request plus driver payload, rounded
1885 * to the cacheline size
1886 */
24d2f903 1887 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1888 cache_line_size());
cc71a6f4 1889 left = rq_size * depth;
320ae51f 1890
cc71a6f4 1891 for (i = 0; i < depth; ) {
320ae51f
JA
1892 int this_order = max_order;
1893 struct page *page;
1894 int to_do;
1895 void *p;
1896
b3a834b1 1897 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1898 this_order--;
1899
1900 do {
59f082e4 1901 page = alloc_pages_node(node,
36e1f3d1 1902 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1903 this_order);
320ae51f
JA
1904 if (page)
1905 break;
1906 if (!this_order--)
1907 break;
1908 if (order_to_size(this_order) < rq_size)
1909 break;
1910 } while (1);
1911
1912 if (!page)
24d2f903 1913 goto fail;
320ae51f
JA
1914
1915 page->private = this_order;
24d2f903 1916 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1917
1918 p = page_address(page);
f75782e4
CM
1919 /*
1920 * Allow kmemleak to scan these pages as they contain pointers
1921 * to additional allocations like via ops->init_request().
1922 */
36e1f3d1 1923 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1924 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1925 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1926 left -= to_do * rq_size;
1927 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1928 struct request *rq = p;
1929
1930 tags->static_rqs[i] = rq;
24d2f903 1931 if (set->ops->init_request) {
d6296d39 1932 if (set->ops->init_request(set, rq, hctx_idx,
59f082e4 1933 node)) {
2af8cbe3 1934 tags->static_rqs[i] = NULL;
24d2f903 1935 goto fail;
a5164405 1936 }
e9b267d9
CH
1937 }
1938
320ae51f
JA
1939 p += rq_size;
1940 i++;
1941 }
1942 }
cc71a6f4 1943 return 0;
320ae51f 1944
24d2f903 1945fail:
cc71a6f4
JA
1946 blk_mq_free_rqs(set, tags, hctx_idx);
1947 return -ENOMEM;
320ae51f
JA
1948}
1949
e57690fe
JA
1950/*
1951 * 'cpu' is going away. splice any existing rq_list entries from this
1952 * software queue to the hw queue dispatch list, and ensure that it
1953 * gets run.
1954 */
9467f859 1955static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1956{
9467f859 1957 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1958 struct blk_mq_ctx *ctx;
1959 LIST_HEAD(tmp);
1960
9467f859 1961 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1962 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1963
1964 spin_lock(&ctx->lock);
1965 if (!list_empty(&ctx->rq_list)) {
1966 list_splice_init(&ctx->rq_list, &tmp);
1967 blk_mq_hctx_clear_pending(hctx, ctx);
1968 }
1969 spin_unlock(&ctx->lock);
1970
1971 if (list_empty(&tmp))
9467f859 1972 return 0;
484b4061 1973
e57690fe
JA
1974 spin_lock(&hctx->lock);
1975 list_splice_tail_init(&tmp, &hctx->dispatch);
1976 spin_unlock(&hctx->lock);
484b4061
JA
1977
1978 blk_mq_run_hw_queue(hctx, true);
9467f859 1979 return 0;
484b4061
JA
1980}
1981
9467f859 1982static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1983{
9467f859
TG
1984 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1985 &hctx->cpuhp_dead);
484b4061
JA
1986}
1987
c3b4afca 1988/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1989static void blk_mq_exit_hctx(struct request_queue *q,
1990 struct blk_mq_tag_set *set,
1991 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1992{
9c1051aa
OS
1993 blk_mq_debugfs_unregister_hctx(hctx);
1994
08e98fc6
ML
1995 blk_mq_tag_idle(hctx);
1996
f70ced09 1997 if (set->ops->exit_request)
d6296d39 1998 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 1999
93252632
OS
2000 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2001
08e98fc6
ML
2002 if (set->ops->exit_hctx)
2003 set->ops->exit_hctx(hctx, hctx_idx);
2004
6a83e74d 2005 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 2006 cleanup_srcu_struct(hctx->queue_rq_srcu);
6a83e74d 2007
9467f859 2008 blk_mq_remove_cpuhp(hctx);
f70ced09 2009 blk_free_flush_queue(hctx->fq);
88459642 2010 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2011}
2012
624dbe47
ML
2013static void blk_mq_exit_hw_queues(struct request_queue *q,
2014 struct blk_mq_tag_set *set, int nr_queue)
2015{
2016 struct blk_mq_hw_ctx *hctx;
2017 unsigned int i;
2018
2019 queue_for_each_hw_ctx(q, hctx, i) {
2020 if (i == nr_queue)
2021 break;
08e98fc6 2022 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 2023 }
624dbe47
ML
2024}
2025
08e98fc6
ML
2026static int blk_mq_init_hctx(struct request_queue *q,
2027 struct blk_mq_tag_set *set,
2028 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 2029{
08e98fc6
ML
2030 int node;
2031
2032 node = hctx->numa_node;
2033 if (node == NUMA_NO_NODE)
2034 node = hctx->numa_node = set->numa_node;
2035
9f993737 2036 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2037 spin_lock_init(&hctx->lock);
2038 INIT_LIST_HEAD(&hctx->dispatch);
2039 hctx->queue = q;
2404e607 2040 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2041
9467f859 2042 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
2043
2044 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
2045
2046 /*
08e98fc6
ML
2047 * Allocate space for all possible cpus to avoid allocation at
2048 * runtime
320ae51f 2049 */
08e98fc6
ML
2050 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
2051 GFP_KERNEL, node);
2052 if (!hctx->ctxs)
2053 goto unregister_cpu_notifier;
320ae51f 2054
88459642
OS
2055 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2056 node))
08e98fc6 2057 goto free_ctxs;
320ae51f 2058
08e98fc6 2059 hctx->nr_ctx = 0;
320ae51f 2060
eb619fdb
JA
2061 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2062 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2063
08e98fc6
ML
2064 if (set->ops->init_hctx &&
2065 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2066 goto free_bitmap;
320ae51f 2067
93252632
OS
2068 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2069 goto exit_hctx;
2070
f70ced09
ML
2071 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2072 if (!hctx->fq)
93252632 2073 goto sched_exit_hctx;
320ae51f 2074
f70ced09 2075 if (set->ops->init_request &&
d6296d39
CH
2076 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2077 node))
f70ced09 2078 goto free_fq;
320ae51f 2079
6a83e74d 2080 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 2081 init_srcu_struct(hctx->queue_rq_srcu);
6a83e74d 2082
9c1051aa
OS
2083 blk_mq_debugfs_register_hctx(q, hctx);
2084
08e98fc6 2085 return 0;
320ae51f 2086
f70ced09
ML
2087 free_fq:
2088 kfree(hctx->fq);
93252632
OS
2089 sched_exit_hctx:
2090 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
2091 exit_hctx:
2092 if (set->ops->exit_hctx)
2093 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 2094 free_bitmap:
88459642 2095 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2096 free_ctxs:
2097 kfree(hctx->ctxs);
2098 unregister_cpu_notifier:
9467f859 2099 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
2100 return -1;
2101}
320ae51f 2102
320ae51f
JA
2103static void blk_mq_init_cpu_queues(struct request_queue *q,
2104 unsigned int nr_hw_queues)
2105{
2106 unsigned int i;
2107
2108 for_each_possible_cpu(i) {
2109 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2110 struct blk_mq_hw_ctx *hctx;
2111
320ae51f
JA
2112 __ctx->cpu = i;
2113 spin_lock_init(&__ctx->lock);
2114 INIT_LIST_HEAD(&__ctx->rq_list);
2115 __ctx->queue = q;
2116
4b855ad3
CH
2117 /* If the cpu isn't present, the cpu is mapped to first hctx */
2118 if (!cpu_present(i))
320ae51f
JA
2119 continue;
2120
7d7e0f90 2121 hctx = blk_mq_map_queue(q, i);
e4043dcf 2122
320ae51f
JA
2123 /*
2124 * Set local node, IFF we have more than one hw queue. If
2125 * not, we remain on the home node of the device
2126 */
2127 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 2128 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
2129 }
2130}
2131
cc71a6f4
JA
2132static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2133{
2134 int ret = 0;
2135
2136 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2137 set->queue_depth, set->reserved_tags);
2138 if (!set->tags[hctx_idx])
2139 return false;
2140
2141 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2142 set->queue_depth);
2143 if (!ret)
2144 return true;
2145
2146 blk_mq_free_rq_map(set->tags[hctx_idx]);
2147 set->tags[hctx_idx] = NULL;
2148 return false;
2149}
2150
2151static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2152 unsigned int hctx_idx)
2153{
bd166ef1
JA
2154 if (set->tags[hctx_idx]) {
2155 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2156 blk_mq_free_rq_map(set->tags[hctx_idx]);
2157 set->tags[hctx_idx] = NULL;
2158 }
cc71a6f4
JA
2159}
2160
4b855ad3 2161static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2162{
d1b1cea1 2163 unsigned int i, hctx_idx;
320ae51f
JA
2164 struct blk_mq_hw_ctx *hctx;
2165 struct blk_mq_ctx *ctx;
2a34c087 2166 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2167
60de074b
AM
2168 /*
2169 * Avoid others reading imcomplete hctx->cpumask through sysfs
2170 */
2171 mutex_lock(&q->sysfs_lock);
2172
320ae51f 2173 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2174 cpumask_clear(hctx->cpumask);
320ae51f
JA
2175 hctx->nr_ctx = 0;
2176 }
2177
2178 /*
4b855ad3
CH
2179 * Map software to hardware queues.
2180 *
2181 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2182 */
4b855ad3 2183 for_each_present_cpu(i) {
d1b1cea1
GKB
2184 hctx_idx = q->mq_map[i];
2185 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2186 if (!set->tags[hctx_idx] &&
2187 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2188 /*
2189 * If tags initialization fail for some hctx,
2190 * that hctx won't be brought online. In this
2191 * case, remap the current ctx to hctx[0] which
2192 * is guaranteed to always have tags allocated
2193 */
cc71a6f4 2194 q->mq_map[i] = 0;
d1b1cea1
GKB
2195 }
2196
897bb0c7 2197 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2198 hctx = blk_mq_map_queue(q, i);
868f2f0b 2199
e4043dcf 2200 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2201 ctx->index_hw = hctx->nr_ctx;
2202 hctx->ctxs[hctx->nr_ctx++] = ctx;
2203 }
506e931f 2204
60de074b
AM
2205 mutex_unlock(&q->sysfs_lock);
2206
506e931f 2207 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2208 /*
a68aafa5
JA
2209 * If no software queues are mapped to this hardware queue,
2210 * disable it and free the request entries.
484b4061
JA
2211 */
2212 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2213 /* Never unmap queue 0. We need it as a
2214 * fallback in case of a new remap fails
2215 * allocation
2216 */
cc71a6f4
JA
2217 if (i && set->tags[i])
2218 blk_mq_free_map_and_requests(set, i);
2219
2a34c087 2220 hctx->tags = NULL;
484b4061
JA
2221 continue;
2222 }
2223
2a34c087
ML
2224 hctx->tags = set->tags[i];
2225 WARN_ON(!hctx->tags);
2226
889fa31f
CY
2227 /*
2228 * Set the map size to the number of mapped software queues.
2229 * This is more accurate and more efficient than looping
2230 * over all possibly mapped software queues.
2231 */
88459642 2232 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2233
484b4061
JA
2234 /*
2235 * Initialize batch roundrobin counts
2236 */
506e931f
JA
2237 hctx->next_cpu = cpumask_first(hctx->cpumask);
2238 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2239 }
320ae51f
JA
2240}
2241
8e8320c9
JA
2242/*
2243 * Caller needs to ensure that we're either frozen/quiesced, or that
2244 * the queue isn't live yet.
2245 */
2404e607 2246static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2247{
2248 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2249 int i;
2250
2404e607 2251 queue_for_each_hw_ctx(q, hctx, i) {
8e8320c9
JA
2252 if (shared) {
2253 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2254 atomic_inc(&q->shared_hctx_restart);
2404e607 2255 hctx->flags |= BLK_MQ_F_TAG_SHARED;
8e8320c9
JA
2256 } else {
2257 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2258 atomic_dec(&q->shared_hctx_restart);
2404e607 2259 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
8e8320c9 2260 }
2404e607
JM
2261 }
2262}
2263
8e8320c9
JA
2264static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2265 bool shared)
2404e607
JM
2266{
2267 struct request_queue *q;
0d2602ca 2268
705cda97
BVA
2269 lockdep_assert_held(&set->tag_list_lock);
2270
0d2602ca
JA
2271 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2272 blk_mq_freeze_queue(q);
2404e607 2273 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2274 blk_mq_unfreeze_queue(q);
2275 }
2276}
2277
2278static void blk_mq_del_queue_tag_set(struct request_queue *q)
2279{
2280 struct blk_mq_tag_set *set = q->tag_set;
2281
0d2602ca 2282 mutex_lock(&set->tag_list_lock);
705cda97
BVA
2283 list_del_rcu(&q->tag_set_list);
2284 INIT_LIST_HEAD(&q->tag_set_list);
2404e607
JM
2285 if (list_is_singular(&set->tag_list)) {
2286 /* just transitioned to unshared */
2287 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2288 /* update existing queue */
2289 blk_mq_update_tag_set_depth(set, false);
2290 }
0d2602ca 2291 mutex_unlock(&set->tag_list_lock);
705cda97
BVA
2292
2293 synchronize_rcu();
0d2602ca
JA
2294}
2295
2296static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2297 struct request_queue *q)
2298{
2299 q->tag_set = set;
2300
2301 mutex_lock(&set->tag_list_lock);
2404e607 2302
ff821d27
JA
2303 /*
2304 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2305 */
2306 if (!list_empty(&set->tag_list) &&
2307 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2404e607
JM
2308 set->flags |= BLK_MQ_F_TAG_SHARED;
2309 /* update existing queue */
2310 blk_mq_update_tag_set_depth(set, true);
2311 }
2312 if (set->flags & BLK_MQ_F_TAG_SHARED)
2313 queue_set_hctx_shared(q, true);
705cda97 2314 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2315
0d2602ca
JA
2316 mutex_unlock(&set->tag_list_lock);
2317}
2318
e09aae7e
ML
2319/*
2320 * It is the actual release handler for mq, but we do it from
2321 * request queue's release handler for avoiding use-after-free
2322 * and headache because q->mq_kobj shouldn't have been introduced,
2323 * but we can't group ctx/kctx kobj without it.
2324 */
2325void blk_mq_release(struct request_queue *q)
2326{
2327 struct blk_mq_hw_ctx *hctx;
2328 unsigned int i;
2329
2330 /* hctx kobj stays in hctx */
c3b4afca
ML
2331 queue_for_each_hw_ctx(q, hctx, i) {
2332 if (!hctx)
2333 continue;
6c8b232e 2334 kobject_put(&hctx->kobj);
c3b4afca 2335 }
e09aae7e 2336
a723bab3
AM
2337 q->mq_map = NULL;
2338
e09aae7e
ML
2339 kfree(q->queue_hw_ctx);
2340
7ea5fe31
ML
2341 /*
2342 * release .mq_kobj and sw queue's kobject now because
2343 * both share lifetime with request queue.
2344 */
2345 blk_mq_sysfs_deinit(q);
2346
e09aae7e
ML
2347 free_percpu(q->queue_ctx);
2348}
2349
24d2f903 2350struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2351{
2352 struct request_queue *uninit_q, *q;
2353
2354 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2355 if (!uninit_q)
2356 return ERR_PTR(-ENOMEM);
2357
2358 q = blk_mq_init_allocated_queue(set, uninit_q);
2359 if (IS_ERR(q))
2360 blk_cleanup_queue(uninit_q);
2361
2362 return q;
2363}
2364EXPORT_SYMBOL(blk_mq_init_queue);
2365
07319678
BVA
2366static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2367{
2368 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2369
2370 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2371 __alignof__(struct blk_mq_hw_ctx)) !=
2372 sizeof(struct blk_mq_hw_ctx));
2373
2374 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2375 hw_ctx_size += sizeof(struct srcu_struct);
2376
2377 return hw_ctx_size;
2378}
2379
868f2f0b
KB
2380static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2381 struct request_queue *q)
320ae51f 2382{
868f2f0b
KB
2383 int i, j;
2384 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2385
868f2f0b 2386 blk_mq_sysfs_unregister(q);
24d2f903 2387 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2388 int node;
f14bbe77 2389
868f2f0b
KB
2390 if (hctxs[i])
2391 continue;
2392
2393 node = blk_mq_hw_queue_to_node(q->mq_map, i);
07319678 2394 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
cdef54dd 2395 GFP_KERNEL, node);
320ae51f 2396 if (!hctxs[i])
868f2f0b 2397 break;
320ae51f 2398
a86073e4 2399 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2400 node)) {
2401 kfree(hctxs[i]);
2402 hctxs[i] = NULL;
2403 break;
2404 }
e4043dcf 2405
0d2602ca 2406 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2407 hctxs[i]->numa_node = node;
320ae51f 2408 hctxs[i]->queue_num = i;
868f2f0b
KB
2409
2410 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2411 free_cpumask_var(hctxs[i]->cpumask);
2412 kfree(hctxs[i]);
2413 hctxs[i] = NULL;
2414 break;
2415 }
2416 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2417 }
868f2f0b
KB
2418 for (j = i; j < q->nr_hw_queues; j++) {
2419 struct blk_mq_hw_ctx *hctx = hctxs[j];
2420
2421 if (hctx) {
cc71a6f4
JA
2422 if (hctx->tags)
2423 blk_mq_free_map_and_requests(set, j);
868f2f0b 2424 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2425 kobject_put(&hctx->kobj);
868f2f0b
KB
2426 hctxs[j] = NULL;
2427
2428 }
2429 }
2430 q->nr_hw_queues = i;
2431 blk_mq_sysfs_register(q);
2432}
2433
2434struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2435 struct request_queue *q)
2436{
66841672
ML
2437 /* mark the queue as mq asap */
2438 q->mq_ops = set->ops;
2439
34dbad5d 2440 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2441 blk_mq_poll_stats_bkt,
2442 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2443 if (!q->poll_cb)
2444 goto err_exit;
2445
868f2f0b
KB
2446 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2447 if (!q->queue_ctx)
c7de5726 2448 goto err_exit;
868f2f0b 2449
737f98cf
ML
2450 /* init q->mq_kobj and sw queues' kobjects */
2451 blk_mq_sysfs_init(q);
2452
868f2f0b
KB
2453 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2454 GFP_KERNEL, set->numa_node);
2455 if (!q->queue_hw_ctx)
2456 goto err_percpu;
2457
bdd17e75 2458 q->mq_map = set->mq_map;
868f2f0b
KB
2459
2460 blk_mq_realloc_hw_ctxs(set, q);
2461 if (!q->nr_hw_queues)
2462 goto err_hctxs;
320ae51f 2463
287922eb 2464 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2465 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2466
2467 q->nr_queues = nr_cpu_ids;
320ae51f 2468
94eddfbe 2469 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2470
05f1dd53
JA
2471 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2472 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2473
1be036e9
CH
2474 q->sg_reserved_size = INT_MAX;
2475
2849450a 2476 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2477 INIT_LIST_HEAD(&q->requeue_list);
2478 spin_lock_init(&q->requeue_lock);
2479
254d259d 2480 blk_queue_make_request(q, blk_mq_make_request);
ea435e1b
CH
2481 if (q->mq_ops->poll)
2482 q->poll_fn = blk_mq_poll;
07068d5b 2483
eba71768
JA
2484 /*
2485 * Do this after blk_queue_make_request() overrides it...
2486 */
2487 q->nr_requests = set->queue_depth;
2488
64f1c21e
JA
2489 /*
2490 * Default to classic polling
2491 */
2492 q->poll_nsec = -1;
2493
24d2f903
CH
2494 if (set->ops->complete)
2495 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2496
24d2f903 2497 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2498 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2499 blk_mq_map_swqueue(q);
4593fdbe 2500
d3484991
JA
2501 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2502 int ret;
2503
2504 ret = blk_mq_sched_init(q);
2505 if (ret)
2506 return ERR_PTR(ret);
2507 }
2508
320ae51f 2509 return q;
18741986 2510
320ae51f 2511err_hctxs:
868f2f0b 2512 kfree(q->queue_hw_ctx);
320ae51f 2513err_percpu:
868f2f0b 2514 free_percpu(q->queue_ctx);
c7de5726
ML
2515err_exit:
2516 q->mq_ops = NULL;
320ae51f
JA
2517 return ERR_PTR(-ENOMEM);
2518}
b62c21b7 2519EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2520
2521void blk_mq_free_queue(struct request_queue *q)
2522{
624dbe47 2523 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2524
0d2602ca 2525 blk_mq_del_queue_tag_set(q);
624dbe47 2526 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2527}
320ae51f
JA
2528
2529/* Basically redo blk_mq_init_queue with queue frozen */
4b855ad3 2530static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f 2531{
4ecd4fef 2532 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2533
9c1051aa 2534 blk_mq_debugfs_unregister_hctxs(q);
67aec14c
JA
2535 blk_mq_sysfs_unregister(q);
2536
320ae51f
JA
2537 /*
2538 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
ff821d27
JA
2539 * we should change hctx numa_node according to the new topology (this
2540 * involves freeing and re-allocating memory, worth doing?)
320ae51f 2541 */
4b855ad3 2542 blk_mq_map_swqueue(q);
320ae51f 2543
67aec14c 2544 blk_mq_sysfs_register(q);
9c1051aa 2545 blk_mq_debugfs_register_hctxs(q);
320ae51f
JA
2546}
2547
a5164405
JA
2548static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2549{
2550 int i;
2551
cc71a6f4
JA
2552 for (i = 0; i < set->nr_hw_queues; i++)
2553 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2554 goto out_unwind;
a5164405
JA
2555
2556 return 0;
2557
2558out_unwind:
2559 while (--i >= 0)
cc71a6f4 2560 blk_mq_free_rq_map(set->tags[i]);
a5164405 2561
a5164405
JA
2562 return -ENOMEM;
2563}
2564
2565/*
2566 * Allocate the request maps associated with this tag_set. Note that this
2567 * may reduce the depth asked for, if memory is tight. set->queue_depth
2568 * will be updated to reflect the allocated depth.
2569 */
2570static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2571{
2572 unsigned int depth;
2573 int err;
2574
2575 depth = set->queue_depth;
2576 do {
2577 err = __blk_mq_alloc_rq_maps(set);
2578 if (!err)
2579 break;
2580
2581 set->queue_depth >>= 1;
2582 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2583 err = -ENOMEM;
2584 break;
2585 }
2586 } while (set->queue_depth);
2587
2588 if (!set->queue_depth || err) {
2589 pr_err("blk-mq: failed to allocate request map\n");
2590 return -ENOMEM;
2591 }
2592
2593 if (depth != set->queue_depth)
2594 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2595 depth, set->queue_depth);
2596
2597 return 0;
2598}
2599
ebe8bddb
OS
2600static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2601{
2602 if (set->ops->map_queues)
2603 return set->ops->map_queues(set);
2604 else
2605 return blk_mq_map_queues(set);
2606}
2607
a4391c64
JA
2608/*
2609 * Alloc a tag set to be associated with one or more request queues.
2610 * May fail with EINVAL for various error conditions. May adjust the
2611 * requested depth down, if if it too large. In that case, the set
2612 * value will be stored in set->queue_depth.
2613 */
24d2f903
CH
2614int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2615{
da695ba2
CH
2616 int ret;
2617
205fb5f5
BVA
2618 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2619
24d2f903
CH
2620 if (!set->nr_hw_queues)
2621 return -EINVAL;
a4391c64 2622 if (!set->queue_depth)
24d2f903
CH
2623 return -EINVAL;
2624 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2625 return -EINVAL;
2626
7d7e0f90 2627 if (!set->ops->queue_rq)
24d2f903
CH
2628 return -EINVAL;
2629
de148297
ML
2630 if (!set->ops->get_budget ^ !set->ops->put_budget)
2631 return -EINVAL;
2632
a4391c64
JA
2633 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2634 pr_info("blk-mq: reduced tag depth to %u\n",
2635 BLK_MQ_MAX_DEPTH);
2636 set->queue_depth = BLK_MQ_MAX_DEPTH;
2637 }
24d2f903 2638
6637fadf
SL
2639 /*
2640 * If a crashdump is active, then we are potentially in a very
2641 * memory constrained environment. Limit us to 1 queue and
2642 * 64 tags to prevent using too much memory.
2643 */
2644 if (is_kdump_kernel()) {
2645 set->nr_hw_queues = 1;
2646 set->queue_depth = min(64U, set->queue_depth);
2647 }
868f2f0b
KB
2648 /*
2649 * There is no use for more h/w queues than cpus.
2650 */
2651 if (set->nr_hw_queues > nr_cpu_ids)
2652 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2653
868f2f0b 2654 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2655 GFP_KERNEL, set->numa_node);
2656 if (!set->tags)
a5164405 2657 return -ENOMEM;
24d2f903 2658
da695ba2
CH
2659 ret = -ENOMEM;
2660 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2661 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2662 if (!set->mq_map)
2663 goto out_free_tags;
2664
ebe8bddb 2665 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2666 if (ret)
2667 goto out_free_mq_map;
2668
2669 ret = blk_mq_alloc_rq_maps(set);
2670 if (ret)
bdd17e75 2671 goto out_free_mq_map;
24d2f903 2672
0d2602ca
JA
2673 mutex_init(&set->tag_list_lock);
2674 INIT_LIST_HEAD(&set->tag_list);
2675
24d2f903 2676 return 0;
bdd17e75
CH
2677
2678out_free_mq_map:
2679 kfree(set->mq_map);
2680 set->mq_map = NULL;
2681out_free_tags:
5676e7b6
RE
2682 kfree(set->tags);
2683 set->tags = NULL;
da695ba2 2684 return ret;
24d2f903
CH
2685}
2686EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2687
2688void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2689{
2690 int i;
2691
cc71a6f4
JA
2692 for (i = 0; i < nr_cpu_ids; i++)
2693 blk_mq_free_map_and_requests(set, i);
484b4061 2694
bdd17e75
CH
2695 kfree(set->mq_map);
2696 set->mq_map = NULL;
2697
981bd189 2698 kfree(set->tags);
5676e7b6 2699 set->tags = NULL;
24d2f903
CH
2700}
2701EXPORT_SYMBOL(blk_mq_free_tag_set);
2702
e3a2b3f9
JA
2703int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2704{
2705 struct blk_mq_tag_set *set = q->tag_set;
2706 struct blk_mq_hw_ctx *hctx;
2707 int i, ret;
2708
bd166ef1 2709 if (!set)
e3a2b3f9
JA
2710 return -EINVAL;
2711
70f36b60 2712 blk_mq_freeze_queue(q);
70f36b60 2713
e3a2b3f9
JA
2714 ret = 0;
2715 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2716 if (!hctx->tags)
2717 continue;
bd166ef1
JA
2718 /*
2719 * If we're using an MQ scheduler, just update the scheduler
2720 * queue depth. This is similar to what the old code would do.
2721 */
70f36b60 2722 if (!hctx->sched_tags) {
c2e82a23 2723 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
2724 false);
2725 } else {
2726 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2727 nr, true);
2728 }
e3a2b3f9
JA
2729 if (ret)
2730 break;
2731 }
2732
2733 if (!ret)
2734 q->nr_requests = nr;
2735
70f36b60 2736 blk_mq_unfreeze_queue(q);
70f36b60 2737
e3a2b3f9
JA
2738 return ret;
2739}
2740
e4dc2b32
KB
2741static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2742 int nr_hw_queues)
868f2f0b
KB
2743{
2744 struct request_queue *q;
2745
705cda97
BVA
2746 lockdep_assert_held(&set->tag_list_lock);
2747
868f2f0b
KB
2748 if (nr_hw_queues > nr_cpu_ids)
2749 nr_hw_queues = nr_cpu_ids;
2750 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2751 return;
2752
2753 list_for_each_entry(q, &set->tag_list, tag_set_list)
2754 blk_mq_freeze_queue(q);
2755
2756 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2757 blk_mq_update_queue_map(set);
868f2f0b
KB
2758 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2759 blk_mq_realloc_hw_ctxs(set, q);
4b855ad3 2760 blk_mq_queue_reinit(q);
868f2f0b
KB
2761 }
2762
2763 list_for_each_entry(q, &set->tag_list, tag_set_list)
2764 blk_mq_unfreeze_queue(q);
2765}
e4dc2b32
KB
2766
2767void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2768{
2769 mutex_lock(&set->tag_list_lock);
2770 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2771 mutex_unlock(&set->tag_list_lock);
2772}
868f2f0b
KB
2773EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2774
34dbad5d
OS
2775/* Enable polling stats and return whether they were already enabled. */
2776static bool blk_poll_stats_enable(struct request_queue *q)
2777{
2778 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2779 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2780 return true;
2781 blk_stat_add_callback(q, q->poll_cb);
2782 return false;
2783}
2784
2785static void blk_mq_poll_stats_start(struct request_queue *q)
2786{
2787 /*
2788 * We don't arm the callback if polling stats are not enabled or the
2789 * callback is already active.
2790 */
2791 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2792 blk_stat_is_active(q->poll_cb))
2793 return;
2794
2795 blk_stat_activate_msecs(q->poll_cb, 100);
2796}
2797
2798static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2799{
2800 struct request_queue *q = cb->data;
720b8ccc 2801 int bucket;
34dbad5d 2802
720b8ccc
SB
2803 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2804 if (cb->stat[bucket].nr_samples)
2805 q->poll_stat[bucket] = cb->stat[bucket];
2806 }
34dbad5d
OS
2807}
2808
64f1c21e
JA
2809static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2810 struct blk_mq_hw_ctx *hctx,
2811 struct request *rq)
2812{
64f1c21e 2813 unsigned long ret = 0;
720b8ccc 2814 int bucket;
64f1c21e
JA
2815
2816 /*
2817 * If stats collection isn't on, don't sleep but turn it on for
2818 * future users
2819 */
34dbad5d 2820 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2821 return 0;
2822
64f1c21e
JA
2823 /*
2824 * As an optimistic guess, use half of the mean service time
2825 * for this type of request. We can (and should) make this smarter.
2826 * For instance, if the completion latencies are tight, we can
2827 * get closer than just half the mean. This is especially
2828 * important on devices where the completion latencies are longer
720b8ccc
SB
2829 * than ~10 usec. We do use the stats for the relevant IO size
2830 * if available which does lead to better estimates.
64f1c21e 2831 */
720b8ccc
SB
2832 bucket = blk_mq_poll_stats_bkt(rq);
2833 if (bucket < 0)
2834 return ret;
2835
2836 if (q->poll_stat[bucket].nr_samples)
2837 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
2838
2839 return ret;
2840}
2841
06426adf 2842static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2843 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2844 struct request *rq)
2845{
2846 struct hrtimer_sleeper hs;
2847 enum hrtimer_mode mode;
64f1c21e 2848 unsigned int nsecs;
06426adf
JA
2849 ktime_t kt;
2850
64f1c21e
JA
2851 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2852 return false;
2853
2854 /*
2855 * poll_nsec can be:
2856 *
2857 * -1: don't ever hybrid sleep
2858 * 0: use half of prev avg
2859 * >0: use this specific value
2860 */
2861 if (q->poll_nsec == -1)
2862 return false;
2863 else if (q->poll_nsec > 0)
2864 nsecs = q->poll_nsec;
2865 else
2866 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2867
2868 if (!nsecs)
06426adf
JA
2869 return false;
2870
2871 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2872
2873 /*
2874 * This will be replaced with the stats tracking code, using
2875 * 'avg_completion_time / 2' as the pre-sleep target.
2876 */
8b0e1953 2877 kt = nsecs;
06426adf
JA
2878
2879 mode = HRTIMER_MODE_REL;
2880 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2881 hrtimer_set_expires(&hs.timer, kt);
2882
2883 hrtimer_init_sleeper(&hs, current);
2884 do {
2885 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2886 break;
2887 set_current_state(TASK_UNINTERRUPTIBLE);
2888 hrtimer_start_expires(&hs.timer, mode);
2889 if (hs.task)
2890 io_schedule();
2891 hrtimer_cancel(&hs.timer);
2892 mode = HRTIMER_MODE_ABS;
2893 } while (hs.task && !signal_pending(current));
2894
2895 __set_current_state(TASK_RUNNING);
2896 destroy_hrtimer_on_stack(&hs.timer);
2897 return true;
2898}
2899
bbd7bb70
JA
2900static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2901{
2902 struct request_queue *q = hctx->queue;
2903 long state;
2904
06426adf
JA
2905 /*
2906 * If we sleep, have the caller restart the poll loop to reset
2907 * the state. Like for the other success return cases, the
2908 * caller is responsible for checking if the IO completed. If
2909 * the IO isn't complete, we'll get called again and will go
2910 * straight to the busy poll loop.
2911 */
64f1c21e 2912 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2913 return true;
2914
bbd7bb70
JA
2915 hctx->poll_considered++;
2916
2917 state = current->state;
2918 while (!need_resched()) {
2919 int ret;
2920
2921 hctx->poll_invoked++;
2922
2923 ret = q->mq_ops->poll(hctx, rq->tag);
2924 if (ret > 0) {
2925 hctx->poll_success++;
2926 set_current_state(TASK_RUNNING);
2927 return true;
2928 }
2929
2930 if (signal_pending_state(state, current))
2931 set_current_state(TASK_RUNNING);
2932
2933 if (current->state == TASK_RUNNING)
2934 return true;
2935 if (ret < 0)
2936 break;
2937 cpu_relax();
2938 }
2939
2940 return false;
2941}
2942
ea435e1b 2943static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
bbd7bb70
JA
2944{
2945 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
2946 struct request *rq;
2947
ea435e1b 2948 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
bbd7bb70
JA
2949 return false;
2950
bbd7bb70 2951 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2952 if (!blk_qc_t_is_internal(cookie))
2953 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3a07bb1d 2954 else {
bd166ef1 2955 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3a07bb1d
JA
2956 /*
2957 * With scheduling, if the request has completed, we'll
2958 * get a NULL return here, as we clear the sched tag when
2959 * that happens. The request still remains valid, like always,
2960 * so we should be safe with just the NULL check.
2961 */
2962 if (!rq)
2963 return false;
2964 }
bbd7bb70
JA
2965
2966 return __blk_mq_poll(hctx, rq);
2967}
bbd7bb70 2968
320ae51f
JA
2969static int __init blk_mq_init(void)
2970{
fc13457f
JA
2971 /*
2972 * See comment in block/blk.h rq_atomic_flags enum
2973 */
2974 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
2975 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
2976
9467f859
TG
2977 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2978 blk_mq_hctx_notify_dead);
320ae51f
JA
2979 return 0;
2980}
2981subsys_initcall(blk_mq_init);