]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-mq.c
block/blk-throttle.c: fix return of 0/1 with return type bool
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
CommitLineData
320ae51f
JA
1#include <linux/kernel.h>
2#include <linux/module.h>
3#include <linux/backing-dev.h>
4#include <linux/bio.h>
5#include <linux/blkdev.h>
6#include <linux/mm.h>
7#include <linux/init.h>
8#include <linux/slab.h>
9#include <linux/workqueue.h>
10#include <linux/smp.h>
11#include <linux/llist.h>
12#include <linux/list_sort.h>
13#include <linux/cpu.h>
14#include <linux/cache.h>
15#include <linux/sched/sysctl.h>
16#include <linux/delay.h>
17
18#include <trace/events/block.h>
19
20#include <linux/blk-mq.h>
21#include "blk.h"
22#include "blk-mq.h"
23#include "blk-mq-tag.h"
24
25static DEFINE_MUTEX(all_q_mutex);
26static LIST_HEAD(all_q_list);
27
28static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
320ae51f
JA
30static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
32{
33 return per_cpu_ptr(q->queue_ctx, cpu);
34}
35
36/*
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
41 */
42static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43{
44 return __blk_mq_get_ctx(q, get_cpu());
45}
46
47static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48{
49 put_cpu();
50}
51
52/*
53 * Check if any of the ctx's have pending work in this hardware queue
54 */
55static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56{
57 unsigned int i;
58
59 for (i = 0; i < hctx->nr_ctx_map; i++)
60 if (hctx->ctx_map[i])
61 return true;
62
63 return false;
64}
65
66/*
67 * Mark this ctx as having pending work in this hardware queue
68 */
69static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 struct blk_mq_ctx *ctx)
71{
72 if (!test_bit(ctx->index_hw, hctx->ctx_map))
73 set_bit(ctx->index_hw, hctx->ctx_map);
74}
75
081241e5
CH
76static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
77 gfp_t gfp, bool reserved)
320ae51f
JA
78{
79 struct request *rq;
80 unsigned int tag;
81
82 tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
83 if (tag != BLK_MQ_TAG_FAIL) {
24d2f903 84 rq = hctx->tags->rqs[tag];
70ab0b2d 85 blk_rq_init(hctx->queue, rq);
320ae51f
JA
86 rq->tag = tag;
87
88 return rq;
89 }
90
91 return NULL;
92}
93
94static int blk_mq_queue_enter(struct request_queue *q)
95{
96 int ret;
97
98 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
99 smp_wmb();
100 /* we have problems to freeze the queue if it's initializing */
101 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
102 return 0;
103
104 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
105
106 spin_lock_irq(q->queue_lock);
107 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
43a5e4e2
ML
108 !blk_queue_bypass(q) || blk_queue_dying(q),
109 *q->queue_lock);
320ae51f 110 /* inc usage with lock hold to avoid freeze_queue runs here */
43a5e4e2 111 if (!ret && !blk_queue_dying(q))
320ae51f 112 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
43a5e4e2
ML
113 else if (blk_queue_dying(q))
114 ret = -ENODEV;
320ae51f
JA
115 spin_unlock_irq(q->queue_lock);
116
117 return ret;
118}
119
120static void blk_mq_queue_exit(struct request_queue *q)
121{
122 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
123}
124
43a5e4e2
ML
125static void __blk_mq_drain_queue(struct request_queue *q)
126{
127 while (true) {
128 s64 count;
129
130 spin_lock_irq(q->queue_lock);
131 count = percpu_counter_sum(&q->mq_usage_counter);
132 spin_unlock_irq(q->queue_lock);
133
134 if (count == 0)
135 break;
136 blk_mq_run_queues(q, false);
137 msleep(10);
138 }
139}
140
320ae51f
JA
141/*
142 * Guarantee no request is in use, so we can change any data structure of
143 * the queue afterward.
144 */
145static void blk_mq_freeze_queue(struct request_queue *q)
146{
147 bool drain;
148
149 spin_lock_irq(q->queue_lock);
150 drain = !q->bypass_depth++;
151 queue_flag_set(QUEUE_FLAG_BYPASS, q);
152 spin_unlock_irq(q->queue_lock);
153
43a5e4e2
ML
154 if (drain)
155 __blk_mq_drain_queue(q);
156}
320ae51f 157
43a5e4e2
ML
158void blk_mq_drain_queue(struct request_queue *q)
159{
160 __blk_mq_drain_queue(q);
320ae51f
JA
161}
162
163static void blk_mq_unfreeze_queue(struct request_queue *q)
164{
165 bool wake = false;
166
167 spin_lock_irq(q->queue_lock);
168 if (!--q->bypass_depth) {
169 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
170 wake = true;
171 }
172 WARN_ON_ONCE(q->bypass_depth < 0);
173 spin_unlock_irq(q->queue_lock);
174 if (wake)
175 wake_up_all(&q->mq_freeze_wq);
176}
177
178bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
179{
180 return blk_mq_has_free_tags(hctx->tags);
181}
182EXPORT_SYMBOL(blk_mq_can_queue);
183
94eddfbe
JA
184static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
185 struct request *rq, unsigned int rw_flags)
320ae51f 186{
94eddfbe
JA
187 if (blk_queue_io_stat(q))
188 rw_flags |= REQ_IO_STAT;
189
320ae51f
JA
190 rq->mq_ctx = ctx;
191 rq->cmd_flags = rw_flags;
0fec08b4
ML
192 rq->start_time = jiffies;
193 set_start_time_ns(rq);
320ae51f
JA
194 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
195}
196
320ae51f
JA
197static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
198 int rw, gfp_t gfp,
199 bool reserved)
200{
201 struct request *rq;
202
203 do {
204 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
205 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
206
18741986 207 rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved);
320ae51f 208 if (rq) {
94eddfbe 209 blk_mq_rq_ctx_init(q, ctx, rq, rw);
320ae51f 210 break;
959a35f1 211 }
320ae51f 212
e4043dcf
JA
213 if (gfp & __GFP_WAIT) {
214 __blk_mq_run_hw_queue(hctx);
215 blk_mq_put_ctx(ctx);
216 } else {
217 blk_mq_put_ctx(ctx);
959a35f1 218 break;
e4043dcf 219 }
959a35f1 220
5810d903 221 blk_mq_wait_for_tags(hctx->tags, reserved);
320ae51f
JA
222 } while (1);
223
224 return rq;
225}
226
18741986 227struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
320ae51f
JA
228{
229 struct request *rq;
230
231 if (blk_mq_queue_enter(q))
232 return NULL;
233
18741986 234 rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
959a35f1
JM
235 if (rq)
236 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
237 return rq;
238}
239
240struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
241 gfp_t gfp)
242{
243 struct request *rq;
244
245 if (blk_mq_queue_enter(q))
246 return NULL;
247
248 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
959a35f1
JM
249 if (rq)
250 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
251 return rq;
252}
253EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
254
320ae51f
JA
255static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
256 struct blk_mq_ctx *ctx, struct request *rq)
257{
258 const int tag = rq->tag;
259 struct request_queue *q = rq->q;
260
320ae51f 261 blk_mq_put_tag(hctx->tags, tag);
320ae51f
JA
262 blk_mq_queue_exit(q);
263}
264
265void blk_mq_free_request(struct request *rq)
266{
267 struct blk_mq_ctx *ctx = rq->mq_ctx;
268 struct blk_mq_hw_ctx *hctx;
269 struct request_queue *q = rq->q;
270
271 ctx->rq_completed[rq_is_sync(rq)]++;
272
273 hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 __blk_mq_free_request(hctx, ctx, rq);
275}
276
8727af4b
CH
277/*
278 * Clone all relevant state from a request that has been put on hold in
279 * the flush state machine into the preallocated flush request that hangs
280 * off the request queue.
281 *
282 * For a driver the flush request should be invisible, that's why we are
283 * impersonating the original request here.
284 */
285void blk_mq_clone_flush_request(struct request *flush_rq,
286 struct request *orig_rq)
287{
288 struct blk_mq_hw_ctx *hctx =
289 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
290
291 flush_rq->mq_ctx = orig_rq->mq_ctx;
292 flush_rq->tag = orig_rq->tag;
293 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
294 hctx->cmd_size);
295}
296
63151a44 297inline void __blk_mq_end_io(struct request *rq, int error)
320ae51f 298{
0d11e6ac
ML
299 blk_account_io_done(rq);
300
91b63639 301 if (rq->end_io) {
320ae51f 302 rq->end_io(rq, error);
91b63639
CH
303 } else {
304 if (unlikely(blk_bidi_rq(rq)))
305 blk_mq_free_request(rq->next_rq);
320ae51f 306 blk_mq_free_request(rq);
91b63639 307 }
320ae51f 308}
63151a44
CH
309EXPORT_SYMBOL(__blk_mq_end_io);
310
311void blk_mq_end_io(struct request *rq, int error)
312{
313 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
314 BUG();
315 __blk_mq_end_io(rq, error);
316}
317EXPORT_SYMBOL(blk_mq_end_io);
320ae51f 318
30a91cb4 319static void __blk_mq_complete_request_remote(void *data)
320ae51f 320{
3d6efbf6 321 struct request *rq = data;
320ae51f 322
30a91cb4 323 rq->q->softirq_done_fn(rq);
320ae51f 324}
320ae51f 325
30a91cb4 326void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
327{
328 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 329 bool shared = false;
320ae51f
JA
330 int cpu;
331
38535201 332 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
333 rq->q->softirq_done_fn(rq);
334 return;
335 }
320ae51f
JA
336
337 cpu = get_cpu();
38535201
CH
338 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
339 shared = cpus_share_cache(cpu, ctx->cpu);
340
341 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 342 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
343 rq->csd.info = rq;
344 rq->csd.flags = 0;
c46fff2a 345 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 346 } else {
30a91cb4 347 rq->q->softirq_done_fn(rq);
3d6efbf6 348 }
320ae51f
JA
349 put_cpu();
350}
30a91cb4
CH
351
352/**
353 * blk_mq_complete_request - end I/O on a request
354 * @rq: the request being processed
355 *
356 * Description:
357 * Ends all I/O on a request. It does not handle partial completions.
358 * The actual completion happens out-of-order, through a IPI handler.
359 **/
360void blk_mq_complete_request(struct request *rq)
361{
362 if (unlikely(blk_should_fake_timeout(rq->q)))
363 return;
364 if (!blk_mark_rq_complete(rq))
365 __blk_mq_complete_request(rq);
366}
367EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 368
49f5baa5 369static void blk_mq_start_request(struct request *rq, bool last)
320ae51f
JA
370{
371 struct request_queue *q = rq->q;
372
373 trace_block_rq_issue(q, rq);
374
742ee69b 375 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
376 if (unlikely(blk_bidi_rq(rq)))
377 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 378
320ae51f
JA
379 /*
380 * Just mark start time and set the started bit. Due to memory
381 * ordering, we know we'll see the correct deadline as long as
382 * REQ_ATOMIC_STARTED is seen.
383 */
384 rq->deadline = jiffies + q->rq_timeout;
87ee7b11
JA
385
386 /*
387 * Mark us as started and clear complete. Complete might have been
388 * set if requeue raced with timeout, which then marked it as
389 * complete. So be sure to clear complete again when we start
390 * the request, otherwise we'll ignore the completion event.
391 */
320ae51f 392 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
87ee7b11 393 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
394
395 if (q->dma_drain_size && blk_rq_bytes(rq)) {
396 /*
397 * Make sure space for the drain appears. We know we can do
398 * this because max_hw_segments has been adjusted to be one
399 * fewer than the device can handle.
400 */
401 rq->nr_phys_segments++;
402 }
403
404 /*
405 * Flag the last request in the series so that drivers know when IO
406 * should be kicked off, if they don't do it on a per-request basis.
407 *
408 * Note: the flag isn't the only condition drivers should do kick off.
409 * If drive is busy, the last request might not have the bit set.
410 */
411 if (last)
412 rq->cmd_flags |= REQ_END;
320ae51f
JA
413}
414
ed0791b2 415static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
416{
417 struct request_queue *q = rq->q;
418
419 trace_block_rq_requeue(q, rq);
420 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
49f5baa5
CH
421
422 rq->cmd_flags &= ~REQ_END;
423
424 if (q->dma_drain_size && blk_rq_bytes(rq))
425 rq->nr_phys_segments--;
320ae51f
JA
426}
427
ed0791b2
CH
428void blk_mq_requeue_request(struct request *rq)
429{
ed0791b2
CH
430 __blk_mq_requeue_request(rq);
431 blk_clear_rq_complete(rq);
432
ed0791b2
CH
433 BUG_ON(blk_queued_rq(rq));
434 blk_mq_insert_request(rq, true, true, false);
435}
436EXPORT_SYMBOL(blk_mq_requeue_request);
437
24d2f903
CH
438struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
439{
440 return tags->rqs[tag];
441}
442EXPORT_SYMBOL(blk_mq_tag_to_rq);
443
320ae51f
JA
444struct blk_mq_timeout_data {
445 struct blk_mq_hw_ctx *hctx;
446 unsigned long *next;
447 unsigned int *next_set;
448};
449
450static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
451{
452 struct blk_mq_timeout_data *data = __data;
453 struct blk_mq_hw_ctx *hctx = data->hctx;
454 unsigned int tag;
455
456 /* It may not be in flight yet (this is where
457 * the REQ_ATOMIC_STARTED flag comes in). The requests are
458 * statically allocated, so we know it's always safe to access the
459 * memory associated with a bit offset into ->rqs[].
460 */
461 tag = 0;
462 do {
463 struct request *rq;
464
24d2f903
CH
465 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
466 if (tag >= hctx->tags->nr_tags)
320ae51f
JA
467 break;
468
24d2f903
CH
469 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
470 if (rq->q != hctx->queue)
471 continue;
320ae51f
JA
472 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
473 continue;
474
475 blk_rq_check_expired(rq, data->next, data->next_set);
476 } while (1);
477}
478
479static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
480 unsigned long *next,
481 unsigned int *next_set)
482{
483 struct blk_mq_timeout_data data = {
484 .hctx = hctx,
485 .next = next,
486 .next_set = next_set,
487 };
488
489 /*
490 * Ask the tagging code to iterate busy requests, so we can
491 * check them for timeout.
492 */
493 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
494}
495
87ee7b11
JA
496static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
497{
498 struct request_queue *q = rq->q;
499
500 /*
501 * We know that complete is set at this point. If STARTED isn't set
502 * anymore, then the request isn't active and the "timeout" should
503 * just be ignored. This can happen due to the bitflag ordering.
504 * Timeout first checks if STARTED is set, and if it is, assumes
505 * the request is active. But if we race with completion, then
506 * we both flags will get cleared. So check here again, and ignore
507 * a timeout event with a request that isn't active.
508 */
509 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
510 return BLK_EH_NOT_HANDLED;
511
512 if (!q->mq_ops->timeout)
513 return BLK_EH_RESET_TIMER;
514
515 return q->mq_ops->timeout(rq);
516}
517
320ae51f
JA
518static void blk_mq_rq_timer(unsigned long data)
519{
520 struct request_queue *q = (struct request_queue *) data;
521 struct blk_mq_hw_ctx *hctx;
522 unsigned long next = 0;
523 int i, next_set = 0;
524
525 queue_for_each_hw_ctx(q, hctx, i)
526 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
527
528 if (next_set)
529 mod_timer(&q->timeout, round_jiffies_up(next));
530}
531
532/*
533 * Reverse check our software queue for entries that we could potentially
534 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
535 * too much time checking for merges.
536 */
537static bool blk_mq_attempt_merge(struct request_queue *q,
538 struct blk_mq_ctx *ctx, struct bio *bio)
539{
540 struct request *rq;
541 int checked = 8;
542
543 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
544 int el_ret;
545
546 if (!checked--)
547 break;
548
549 if (!blk_rq_merge_ok(rq, bio))
550 continue;
551
552 el_ret = blk_try_merge(rq, bio);
553 if (el_ret == ELEVATOR_BACK_MERGE) {
554 if (bio_attempt_back_merge(q, rq, bio)) {
555 ctx->rq_merged++;
556 return true;
557 }
558 break;
559 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
560 if (bio_attempt_front_merge(q, rq, bio)) {
561 ctx->rq_merged++;
562 return true;
563 }
564 break;
565 }
566 }
567
568 return false;
569}
570
320ae51f
JA
571/*
572 * Run this hardware queue, pulling any software queues mapped to it in.
573 * Note that this function currently has various problems around ordering
574 * of IO. In particular, we'd like FIFO behaviour on handling existing
575 * items on the hctx->dispatch list. Ignore that for now.
576 */
577static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
578{
579 struct request_queue *q = hctx->queue;
580 struct blk_mq_ctx *ctx;
581 struct request *rq;
582 LIST_HEAD(rq_list);
583 int bit, queued;
584
fd1270d5 585 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 586
5d12f905 587 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
588 return;
589
590 hctx->run++;
591
592 /*
593 * Touch any software queue that has pending entries.
594 */
595 for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
596 clear_bit(bit, hctx->ctx_map);
597 ctx = hctx->ctxs[bit];
320ae51f
JA
598
599 spin_lock(&ctx->lock);
600 list_splice_tail_init(&ctx->rq_list, &rq_list);
601 spin_unlock(&ctx->lock);
602 }
603
604 /*
605 * If we have previous entries on our dispatch list, grab them
606 * and stuff them at the front for more fair dispatch.
607 */
608 if (!list_empty_careful(&hctx->dispatch)) {
609 spin_lock(&hctx->lock);
610 if (!list_empty(&hctx->dispatch))
611 list_splice_init(&hctx->dispatch, &rq_list);
612 spin_unlock(&hctx->lock);
613 }
614
615 /*
616 * Delete and return all entries from our dispatch list
617 */
618 queued = 0;
619
620 /*
621 * Now process all the entries, sending them to the driver.
622 */
623 while (!list_empty(&rq_list)) {
624 int ret;
625
626 rq = list_first_entry(&rq_list, struct request, queuelist);
627 list_del_init(&rq->queuelist);
320ae51f 628
49f5baa5 629 blk_mq_start_request(rq, list_empty(&rq_list));
320ae51f
JA
630
631 ret = q->mq_ops->queue_rq(hctx, rq);
632 switch (ret) {
633 case BLK_MQ_RQ_QUEUE_OK:
634 queued++;
635 continue;
636 case BLK_MQ_RQ_QUEUE_BUSY:
637 /*
638 * FIXME: we should have a mechanism to stop the queue
639 * like blk_stop_queue, otherwise we will waste cpu
640 * time
641 */
642 list_add(&rq->queuelist, &rq_list);
ed0791b2 643 __blk_mq_requeue_request(rq);
320ae51f
JA
644 break;
645 default:
646 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 647 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 648 rq->errors = -EIO;
320ae51f
JA
649 blk_mq_end_io(rq, rq->errors);
650 break;
651 }
652
653 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
654 break;
655 }
656
657 if (!queued)
658 hctx->dispatched[0]++;
659 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
660 hctx->dispatched[ilog2(queued) + 1]++;
661
662 /*
663 * Any items that need requeuing? Stuff them into hctx->dispatch,
664 * that is where we will continue on next queue run.
665 */
666 if (!list_empty(&rq_list)) {
667 spin_lock(&hctx->lock);
668 list_splice(&rq_list, &hctx->dispatch);
669 spin_unlock(&hctx->lock);
670 }
671}
672
673void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
674{
5d12f905 675 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
676 return;
677
e4043dcf 678 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
320ae51f 679 __blk_mq_run_hw_queue(hctx);
e4043dcf 680 else if (hctx->queue->nr_hw_queues == 1)
70f4db63 681 kblockd_schedule_delayed_work(&hctx->run_work, 0);
e4043dcf
JA
682 else {
683 unsigned int cpu;
684
685 /*
686 * It'd be great if the workqueue API had a way to pass
687 * in a mask and had some smarts for more clever placement
688 * than the first CPU. Or we could round-robin here. For now,
689 * just queue on the first CPU.
690 */
691 cpu = cpumask_first(hctx->cpumask);
70f4db63 692 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
e4043dcf 693 }
320ae51f
JA
694}
695
696void blk_mq_run_queues(struct request_queue *q, bool async)
697{
698 struct blk_mq_hw_ctx *hctx;
699 int i;
700
701 queue_for_each_hw_ctx(q, hctx, i) {
702 if ((!blk_mq_hctx_has_pending(hctx) &&
703 list_empty_careful(&hctx->dispatch)) ||
5d12f905 704 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
705 continue;
706
e4043dcf 707 preempt_disable();
320ae51f 708 blk_mq_run_hw_queue(hctx, async);
e4043dcf 709 preempt_enable();
320ae51f
JA
710 }
711}
712EXPORT_SYMBOL(blk_mq_run_queues);
713
714void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
715{
70f4db63
CH
716 cancel_delayed_work(&hctx->run_work);
717 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
718 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
719}
720EXPORT_SYMBOL(blk_mq_stop_hw_queue);
721
280d45f6
CH
722void blk_mq_stop_hw_queues(struct request_queue *q)
723{
724 struct blk_mq_hw_ctx *hctx;
725 int i;
726
727 queue_for_each_hw_ctx(q, hctx, i)
728 blk_mq_stop_hw_queue(hctx);
729}
730EXPORT_SYMBOL(blk_mq_stop_hw_queues);
731
320ae51f
JA
732void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
733{
734 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf
JA
735
736 preempt_disable();
320ae51f 737 __blk_mq_run_hw_queue(hctx);
e4043dcf 738 preempt_enable();
320ae51f
JA
739}
740EXPORT_SYMBOL(blk_mq_start_hw_queue);
741
2f268556
CH
742void blk_mq_start_hw_queues(struct request_queue *q)
743{
744 struct blk_mq_hw_ctx *hctx;
745 int i;
746
747 queue_for_each_hw_ctx(q, hctx, i)
748 blk_mq_start_hw_queue(hctx);
749}
750EXPORT_SYMBOL(blk_mq_start_hw_queues);
751
752
1b4a3258 753void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
754{
755 struct blk_mq_hw_ctx *hctx;
756 int i;
757
758 queue_for_each_hw_ctx(q, hctx, i) {
759 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
760 continue;
761
762 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 763 preempt_disable();
1b4a3258 764 blk_mq_run_hw_queue(hctx, async);
e4043dcf 765 preempt_enable();
320ae51f
JA
766 }
767}
768EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
769
70f4db63 770static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
771{
772 struct blk_mq_hw_ctx *hctx;
773
70f4db63 774 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 775
320ae51f
JA
776 __blk_mq_run_hw_queue(hctx);
777}
778
70f4db63
CH
779static void blk_mq_delay_work_fn(struct work_struct *work)
780{
781 struct blk_mq_hw_ctx *hctx;
782
783 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
784
785 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
786 __blk_mq_run_hw_queue(hctx);
787}
788
789void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
790{
791 unsigned long tmo = msecs_to_jiffies(msecs);
792
793 if (hctx->queue->nr_hw_queues == 1)
794 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
795 else {
796 unsigned int cpu;
797
798 /*
799 * It'd be great if the workqueue API had a way to pass
800 * in a mask and had some smarts for more clever placement
801 * than the first CPU. Or we could round-robin here. For now,
802 * just queue on the first CPU.
803 */
804 cpu = cpumask_first(hctx->cpumask);
805 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
806 }
807}
808EXPORT_SYMBOL(blk_mq_delay_queue);
809
320ae51f 810static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 811 struct request *rq, bool at_head)
320ae51f
JA
812{
813 struct blk_mq_ctx *ctx = rq->mq_ctx;
814
01b983c9
JA
815 trace_block_rq_insert(hctx->queue, rq);
816
72a0a36e
CH
817 if (at_head)
818 list_add(&rq->queuelist, &ctx->rq_list);
819 else
820 list_add_tail(&rq->queuelist, &ctx->rq_list);
320ae51f
JA
821 blk_mq_hctx_mark_pending(hctx, ctx);
822
823 /*
824 * We do this early, to ensure we are on the right CPU.
825 */
87ee7b11 826 blk_add_timer(rq);
320ae51f
JA
827}
828
eeabc850
CH
829void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
830 bool async)
320ae51f 831{
eeabc850 832 struct request_queue *q = rq->q;
320ae51f 833 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
834 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
835
836 current_ctx = blk_mq_get_ctx(q);
837 if (!cpu_online(ctx->cpu))
838 rq->mq_ctx = ctx = current_ctx;
320ae51f 839
320ae51f
JA
840 hctx = q->mq_ops->map_queue(q, ctx->cpu);
841
eeabc850
CH
842 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
843 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
320ae51f
JA
844 blk_insert_flush(rq);
845 } else {
320ae51f 846 spin_lock(&ctx->lock);
72a0a36e 847 __blk_mq_insert_request(hctx, rq, at_head);
320ae51f 848 spin_unlock(&ctx->lock);
320ae51f
JA
849 }
850
320ae51f
JA
851 if (run_queue)
852 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
853
854 blk_mq_put_ctx(current_ctx);
320ae51f
JA
855}
856
857static void blk_mq_insert_requests(struct request_queue *q,
858 struct blk_mq_ctx *ctx,
859 struct list_head *list,
860 int depth,
861 bool from_schedule)
862
863{
864 struct blk_mq_hw_ctx *hctx;
865 struct blk_mq_ctx *current_ctx;
866
867 trace_block_unplug(q, depth, !from_schedule);
868
869 current_ctx = blk_mq_get_ctx(q);
870
871 if (!cpu_online(ctx->cpu))
872 ctx = current_ctx;
873 hctx = q->mq_ops->map_queue(q, ctx->cpu);
874
875 /*
876 * preemption doesn't flush plug list, so it's possible ctx->cpu is
877 * offline now
878 */
879 spin_lock(&ctx->lock);
880 while (!list_empty(list)) {
881 struct request *rq;
882
883 rq = list_first_entry(list, struct request, queuelist);
884 list_del_init(&rq->queuelist);
885 rq->mq_ctx = ctx;
72a0a36e 886 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
887 }
888 spin_unlock(&ctx->lock);
889
320ae51f 890 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 891 blk_mq_put_ctx(current_ctx);
320ae51f
JA
892}
893
894static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
895{
896 struct request *rqa = container_of(a, struct request, queuelist);
897 struct request *rqb = container_of(b, struct request, queuelist);
898
899 return !(rqa->mq_ctx < rqb->mq_ctx ||
900 (rqa->mq_ctx == rqb->mq_ctx &&
901 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
902}
903
904void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
905{
906 struct blk_mq_ctx *this_ctx;
907 struct request_queue *this_q;
908 struct request *rq;
909 LIST_HEAD(list);
910 LIST_HEAD(ctx_list);
911 unsigned int depth;
912
913 list_splice_init(&plug->mq_list, &list);
914
915 list_sort(NULL, &list, plug_ctx_cmp);
916
917 this_q = NULL;
918 this_ctx = NULL;
919 depth = 0;
920
921 while (!list_empty(&list)) {
922 rq = list_entry_rq(list.next);
923 list_del_init(&rq->queuelist);
924 BUG_ON(!rq->q);
925 if (rq->mq_ctx != this_ctx) {
926 if (this_ctx) {
927 blk_mq_insert_requests(this_q, this_ctx,
928 &ctx_list, depth,
929 from_schedule);
930 }
931
932 this_ctx = rq->mq_ctx;
933 this_q = rq->q;
934 depth = 0;
935 }
936
937 depth++;
938 list_add_tail(&rq->queuelist, &ctx_list);
939 }
940
941 /*
942 * If 'this_ctx' is set, we know we have entries to complete
943 * on 'ctx_list'. Do those.
944 */
945 if (this_ctx) {
946 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
947 from_schedule);
948 }
949}
950
951static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
952{
953 init_request_from_bio(rq, bio);
954 blk_account_io_start(rq, 1);
955}
956
957static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
958{
959 struct blk_mq_hw_ctx *hctx;
960 struct blk_mq_ctx *ctx;
961 const int is_sync = rw_is_sync(bio->bi_rw);
962 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
963 int rw = bio_data_dir(bio);
964 struct request *rq;
965 unsigned int use_plug, request_count = 0;
966
967 /*
968 * If we have multiple hardware queues, just go directly to
969 * one of those for sync IO.
970 */
971 use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
972
973 blk_queue_bounce(q, &bio);
974
14ec77f3
NB
975 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
976 bio_endio(bio, -EIO);
977 return;
978 }
979
320ae51f
JA
980 if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
981 return;
982
983 if (blk_mq_queue_enter(q)) {
984 bio_endio(bio, -EIO);
985 return;
986 }
987
988 ctx = blk_mq_get_ctx(q);
989 hctx = q->mq_ops->map_queue(q, ctx->cpu);
990
27fbf4e8
SL
991 if (is_sync)
992 rw |= REQ_SYNC;
320ae51f 993 trace_block_getrq(q, bio, rw);
18741986 994 rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false);
320ae51f 995 if (likely(rq))
18741986 996 blk_mq_rq_ctx_init(q, ctx, rq, rw);
320ae51f
JA
997 else {
998 blk_mq_put_ctx(ctx);
999 trace_block_sleeprq(q, bio, rw);
18741986
CH
1000 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
1001 false);
320ae51f
JA
1002 ctx = rq->mq_ctx;
1003 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1004 }
1005
1006 hctx->queued++;
1007
1008 if (unlikely(is_flush_fua)) {
1009 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1010 blk_insert_flush(rq);
1011 goto run_queue;
1012 }
1013
1014 /*
1015 * A task plug currently exists. Since this is completely lockless,
1016 * utilize that to temporarily store requests until the task is
1017 * either done or scheduled away.
1018 */
1019 if (use_plug) {
1020 struct blk_plug *plug = current->plug;
1021
1022 if (plug) {
1023 blk_mq_bio_to_request(rq, bio);
92f399c7 1024 if (list_empty(&plug->mq_list))
320ae51f
JA
1025 trace_block_plug(q);
1026 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1027 blk_flush_plug_list(plug, false);
1028 trace_block_plug(q);
1029 }
1030 list_add_tail(&rq->queuelist, &plug->mq_list);
1031 blk_mq_put_ctx(ctx);
1032 return;
1033 }
1034 }
1035
c6d600c6
JA
1036 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1037 init_request_from_bio(rq, bio);
320ae51f 1038
c6d600c6
JA
1039 spin_lock(&ctx->lock);
1040insert_rq:
72a0a36e 1041 __blk_mq_insert_request(hctx, rq, false);
c6d600c6
JA
1042 spin_unlock(&ctx->lock);
1043 blk_account_io_start(rq, 1);
1044 } else {
1045 spin_lock(&ctx->lock);
1046 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1047 init_request_from_bio(rq, bio);
1048 goto insert_rq;
1049 }
1050
1051 spin_unlock(&ctx->lock);
1052 __blk_mq_free_request(hctx, ctx, rq);
320ae51f
JA
1053 }
1054
320ae51f
JA
1055
1056 /*
1057 * For a SYNC request, send it to the hardware immediately. For an
1058 * ASYNC request, just ensure that we run it later on. The latter
1059 * allows for merging opportunities and more efficient dispatching.
1060 */
1061run_queue:
1062 blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
e4043dcf 1063 blk_mq_put_ctx(ctx);
320ae51f
JA
1064}
1065
1066/*
1067 * Default mapping to a software queue, since we use one per CPU.
1068 */
1069struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1070{
1071 return q->queue_hw_ctx[q->mq_map[cpu]];
1072}
1073EXPORT_SYMBOL(blk_mq_map_queue);
1074
24d2f903 1075struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set,
320ae51f
JA
1076 unsigned int hctx_index)
1077{
1078 return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
24d2f903 1079 GFP_KERNEL | __GFP_ZERO, set->numa_node);
320ae51f
JA
1080}
1081EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1082
1083void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1084 unsigned int hctx_index)
1085{
1086 kfree(hctx);
1087}
1088EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1089
1090static void blk_mq_hctx_notify(void *data, unsigned long action,
1091 unsigned int cpu)
1092{
1093 struct blk_mq_hw_ctx *hctx = data;
bccb5f7c 1094 struct request_queue *q = hctx->queue;
320ae51f
JA
1095 struct blk_mq_ctx *ctx;
1096 LIST_HEAD(tmp);
1097
1098 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1099 return;
1100
1101 /*
1102 * Move ctx entries to new CPU, if this one is going away.
1103 */
bccb5f7c 1104 ctx = __blk_mq_get_ctx(q, cpu);
320ae51f
JA
1105
1106 spin_lock(&ctx->lock);
1107 if (!list_empty(&ctx->rq_list)) {
1108 list_splice_init(&ctx->rq_list, &tmp);
1109 clear_bit(ctx->index_hw, hctx->ctx_map);
1110 }
1111 spin_unlock(&ctx->lock);
1112
1113 if (list_empty(&tmp))
1114 return;
1115
bccb5f7c 1116 ctx = blk_mq_get_ctx(q);
320ae51f
JA
1117 spin_lock(&ctx->lock);
1118
1119 while (!list_empty(&tmp)) {
1120 struct request *rq;
1121
1122 rq = list_first_entry(&tmp, struct request, queuelist);
1123 rq->mq_ctx = ctx;
1124 list_move_tail(&rq->queuelist, &ctx->rq_list);
1125 }
1126
bccb5f7c 1127 hctx = q->mq_ops->map_queue(q, ctx->cpu);
320ae51f
JA
1128 blk_mq_hctx_mark_pending(hctx, ctx);
1129
1130 spin_unlock(&ctx->lock);
bccb5f7c
JA
1131
1132 blk_mq_run_hw_queue(hctx, true);
e4043dcf 1133 blk_mq_put_ctx(ctx);
320ae51f
JA
1134}
1135
24d2f903
CH
1136static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1137 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1138{
e9b267d9 1139 struct page *page;
320ae51f 1140
24d2f903 1141 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1142 int i;
320ae51f 1143
24d2f903
CH
1144 for (i = 0; i < tags->nr_tags; i++) {
1145 if (!tags->rqs[i])
e9b267d9 1146 continue;
24d2f903
CH
1147 set->ops->exit_request(set->driver_data, tags->rqs[i],
1148 hctx_idx, i);
e9b267d9 1149 }
320ae51f 1150 }
320ae51f 1151
24d2f903
CH
1152 while (!list_empty(&tags->page_list)) {
1153 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1154 list_del_init(&page->lru);
320ae51f
JA
1155 __free_pages(page, page->private);
1156 }
1157
24d2f903 1158 kfree(tags->rqs);
320ae51f 1159
24d2f903 1160 blk_mq_free_tags(tags);
320ae51f
JA
1161}
1162
1163static size_t order_to_size(unsigned int order)
1164{
4ca08500 1165 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1166}
1167
24d2f903
CH
1168static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1169 unsigned int hctx_idx)
320ae51f 1170{
24d2f903 1171 struct blk_mq_tags *tags;
320ae51f
JA
1172 unsigned int i, j, entries_per_page, max_order = 4;
1173 size_t rq_size, left;
1174
24d2f903
CH
1175 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1176 set->numa_node);
1177 if (!tags)
1178 return NULL;
320ae51f 1179
24d2f903
CH
1180 INIT_LIST_HEAD(&tags->page_list);
1181
1182 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1183 GFP_KERNEL, set->numa_node);
1184 if (!tags->rqs) {
1185 blk_mq_free_tags(tags);
1186 return NULL;
1187 }
320ae51f
JA
1188
1189 /*
1190 * rq_size is the size of the request plus driver payload, rounded
1191 * to the cacheline size
1192 */
24d2f903 1193 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1194 cache_line_size());
24d2f903 1195 left = rq_size * set->queue_depth;
320ae51f 1196
24d2f903 1197 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1198 int this_order = max_order;
1199 struct page *page;
1200 int to_do;
1201 void *p;
1202
1203 while (left < order_to_size(this_order - 1) && this_order)
1204 this_order--;
1205
1206 do {
24d2f903
CH
1207 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1208 this_order);
320ae51f
JA
1209 if (page)
1210 break;
1211 if (!this_order--)
1212 break;
1213 if (order_to_size(this_order) < rq_size)
1214 break;
1215 } while (1);
1216
1217 if (!page)
24d2f903 1218 goto fail;
320ae51f
JA
1219
1220 page->private = this_order;
24d2f903 1221 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1222
1223 p = page_address(page);
1224 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1225 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1226 left -= to_do * rq_size;
1227 for (j = 0; j < to_do; j++) {
24d2f903
CH
1228 tags->rqs[i] = p;
1229 if (set->ops->init_request) {
1230 if (set->ops->init_request(set->driver_data,
1231 tags->rqs[i], hctx_idx, i,
1232 set->numa_node))
1233 goto fail;
e9b267d9
CH
1234 }
1235
320ae51f
JA
1236 p += rq_size;
1237 i++;
1238 }
1239 }
1240
24d2f903 1241 return tags;
320ae51f 1242
24d2f903
CH
1243fail:
1244 pr_warn("%s: failed to allocate requests\n", __func__);
1245 blk_mq_free_rq_map(set, tags, hctx_idx);
1246 return NULL;
320ae51f
JA
1247}
1248
1249static int blk_mq_init_hw_queues(struct request_queue *q,
24d2f903 1250 struct blk_mq_tag_set *set)
320ae51f
JA
1251{
1252 struct blk_mq_hw_ctx *hctx;
1253 unsigned int i, j;
1254
1255 /*
1256 * Initialize hardware queues
1257 */
1258 queue_for_each_hw_ctx(q, hctx, i) {
1259 unsigned int num_maps;
1260 int node;
1261
1262 node = hctx->numa_node;
1263 if (node == NUMA_NO_NODE)
24d2f903 1264 node = hctx->numa_node = set->numa_node;
320ae51f 1265
70f4db63
CH
1266 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1267 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
320ae51f
JA
1268 spin_lock_init(&hctx->lock);
1269 INIT_LIST_HEAD(&hctx->dispatch);
1270 hctx->queue = q;
1271 hctx->queue_num = i;
24d2f903
CH
1272 hctx->flags = set->flags;
1273 hctx->cmd_size = set->cmd_size;
320ae51f
JA
1274
1275 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1276 blk_mq_hctx_notify, hctx);
1277 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1278
24d2f903 1279 hctx->tags = set->tags[i];
320ae51f
JA
1280
1281 /*
1282 * Allocate space for all possible cpus to avoid allocation in
1283 * runtime
1284 */
1285 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1286 GFP_KERNEL, node);
1287 if (!hctx->ctxs)
1288 break;
1289
1290 num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1291 hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1292 GFP_KERNEL, node);
1293 if (!hctx->ctx_map)
1294 break;
1295
1296 hctx->nr_ctx_map = num_maps;
1297 hctx->nr_ctx = 0;
1298
24d2f903
CH
1299 if (set->ops->init_hctx &&
1300 set->ops->init_hctx(hctx, set->driver_data, i))
320ae51f
JA
1301 break;
1302 }
1303
1304 if (i == q->nr_hw_queues)
1305 return 0;
1306
1307 /*
1308 * Init failed
1309 */
1310 queue_for_each_hw_ctx(q, hctx, j) {
1311 if (i == j)
1312 break;
1313
24d2f903
CH
1314 if (set->ops->exit_hctx)
1315 set->ops->exit_hctx(hctx, j);
320ae51f
JA
1316
1317 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
320ae51f 1318 kfree(hctx->ctxs);
11471e0d 1319 kfree(hctx->ctx_map);
320ae51f
JA
1320 }
1321
1322 return 1;
1323}
1324
1325static void blk_mq_init_cpu_queues(struct request_queue *q,
1326 unsigned int nr_hw_queues)
1327{
1328 unsigned int i;
1329
1330 for_each_possible_cpu(i) {
1331 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1332 struct blk_mq_hw_ctx *hctx;
1333
1334 memset(__ctx, 0, sizeof(*__ctx));
1335 __ctx->cpu = i;
1336 spin_lock_init(&__ctx->lock);
1337 INIT_LIST_HEAD(&__ctx->rq_list);
1338 __ctx->queue = q;
1339
1340 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1341 if (!cpu_online(i))
1342 continue;
1343
e4043dcf
JA
1344 hctx = q->mq_ops->map_queue(q, i);
1345 cpumask_set_cpu(i, hctx->cpumask);
1346 hctx->nr_ctx++;
1347
320ae51f
JA
1348 /*
1349 * Set local node, IFF we have more than one hw queue. If
1350 * not, we remain on the home node of the device
1351 */
1352 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1353 hctx->numa_node = cpu_to_node(i);
1354 }
1355}
1356
1357static void blk_mq_map_swqueue(struct request_queue *q)
1358{
1359 unsigned int i;
1360 struct blk_mq_hw_ctx *hctx;
1361 struct blk_mq_ctx *ctx;
1362
1363 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1364 cpumask_clear(hctx->cpumask);
320ae51f
JA
1365 hctx->nr_ctx = 0;
1366 }
1367
1368 /*
1369 * Map software to hardware queues
1370 */
1371 queue_for_each_ctx(q, ctx, i) {
1372 /* If the cpu isn't online, the cpu is mapped to first hctx */
e4043dcf
JA
1373 if (!cpu_online(i))
1374 continue;
1375
320ae51f 1376 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1377 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1378 ctx->index_hw = hctx->nr_ctx;
1379 hctx->ctxs[hctx->nr_ctx++] = ctx;
1380 }
1381}
1382
24d2f903 1383struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
320ae51f
JA
1384{
1385 struct blk_mq_hw_ctx **hctxs;
1386 struct blk_mq_ctx *ctx;
1387 struct request_queue *q;
1388 int i;
1389
320ae51f
JA
1390 ctx = alloc_percpu(struct blk_mq_ctx);
1391 if (!ctx)
1392 return ERR_PTR(-ENOMEM);
1393
24d2f903
CH
1394 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1395 set->numa_node);
320ae51f
JA
1396
1397 if (!hctxs)
1398 goto err_percpu;
1399
24d2f903
CH
1400 for (i = 0; i < set->nr_hw_queues; i++) {
1401 hctxs[i] = set->ops->alloc_hctx(set, i);
320ae51f
JA
1402 if (!hctxs[i])
1403 goto err_hctxs;
1404
e4043dcf
JA
1405 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1406 goto err_hctxs;
1407
320ae51f
JA
1408 hctxs[i]->numa_node = NUMA_NO_NODE;
1409 hctxs[i]->queue_num = i;
1410 }
1411
24d2f903 1412 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
320ae51f
JA
1413 if (!q)
1414 goto err_hctxs;
1415
24d2f903 1416 q->mq_map = blk_mq_make_queue_map(set);
320ae51f
JA
1417 if (!q->mq_map)
1418 goto err_map;
1419
1420 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1421 blk_queue_rq_timeout(q, 30000);
1422
1423 q->nr_queues = nr_cpu_ids;
24d2f903 1424 q->nr_hw_queues = set->nr_hw_queues;
320ae51f
JA
1425
1426 q->queue_ctx = ctx;
1427 q->queue_hw_ctx = hctxs;
1428
24d2f903 1429 q->mq_ops = set->ops;
94eddfbe 1430 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1431
1be036e9
CH
1432 q->sg_reserved_size = INT_MAX;
1433
320ae51f 1434 blk_queue_make_request(q, blk_mq_make_request);
87ee7b11 1435 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
24d2f903
CH
1436 if (set->timeout)
1437 blk_queue_rq_timeout(q, set->timeout);
320ae51f 1438
24d2f903
CH
1439 if (set->ops->complete)
1440 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 1441
320ae51f 1442 blk_mq_init_flush(q);
24d2f903 1443 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 1444
24d2f903
CH
1445 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1446 set->cmd_size, cache_line_size()),
1447 GFP_KERNEL);
18741986 1448 if (!q->flush_rq)
320ae51f
JA
1449 goto err_hw;
1450
24d2f903 1451 if (blk_mq_init_hw_queues(q, set))
18741986
CH
1452 goto err_flush_rq;
1453
320ae51f
JA
1454 blk_mq_map_swqueue(q);
1455
1456 mutex_lock(&all_q_mutex);
1457 list_add_tail(&q->all_q_node, &all_q_list);
1458 mutex_unlock(&all_q_mutex);
1459
1460 return q;
18741986
CH
1461
1462err_flush_rq:
1463 kfree(q->flush_rq);
320ae51f
JA
1464err_hw:
1465 kfree(q->mq_map);
1466err_map:
1467 blk_cleanup_queue(q);
1468err_hctxs:
24d2f903 1469 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
1470 if (!hctxs[i])
1471 break;
e4043dcf 1472 free_cpumask_var(hctxs[i]->cpumask);
24d2f903 1473 set->ops->free_hctx(hctxs[i], i);
320ae51f
JA
1474 }
1475 kfree(hctxs);
1476err_percpu:
1477 free_percpu(ctx);
1478 return ERR_PTR(-ENOMEM);
1479}
1480EXPORT_SYMBOL(blk_mq_init_queue);
1481
1482void blk_mq_free_queue(struct request_queue *q)
1483{
1484 struct blk_mq_hw_ctx *hctx;
1485 int i;
1486
1487 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f
JA
1488 kfree(hctx->ctx_map);
1489 kfree(hctx->ctxs);
320ae51f
JA
1490 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1491 if (q->mq_ops->exit_hctx)
1492 q->mq_ops->exit_hctx(hctx, i);
e4043dcf 1493 free_cpumask_var(hctx->cpumask);
320ae51f
JA
1494 q->mq_ops->free_hctx(hctx, i);
1495 }
1496
1497 free_percpu(q->queue_ctx);
1498 kfree(q->queue_hw_ctx);
1499 kfree(q->mq_map);
1500
1501 q->queue_ctx = NULL;
1502 q->queue_hw_ctx = NULL;
1503 q->mq_map = NULL;
1504
1505 mutex_lock(&all_q_mutex);
1506 list_del_init(&q->all_q_node);
1507 mutex_unlock(&all_q_mutex);
1508}
320ae51f
JA
1509
1510/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1511static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1512{
1513 blk_mq_freeze_queue(q);
1514
1515 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1516
1517 /*
1518 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1519 * we should change hctx numa_node according to new topology (this
1520 * involves free and re-allocate memory, worthy doing?)
1521 */
1522
1523 blk_mq_map_swqueue(q);
1524
1525 blk_mq_unfreeze_queue(q);
1526}
1527
f618ef7c
PG
1528static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1529 unsigned long action, void *hcpu)
320ae51f
JA
1530{
1531 struct request_queue *q;
1532
1533 /*
1534 * Before new mapping is established, hotadded cpu might already start
1535 * handling requests. This doesn't break anything as we map offline
1536 * CPUs to first hardware queue. We will re-init queue below to get
1537 * optimal settings.
1538 */
1539 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1540 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1541 return NOTIFY_OK;
1542
1543 mutex_lock(&all_q_mutex);
1544 list_for_each_entry(q, &all_q_list, all_q_node)
1545 blk_mq_queue_reinit(q);
1546 mutex_unlock(&all_q_mutex);
1547 return NOTIFY_OK;
1548}
1549
24d2f903
CH
1550int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1551{
1552 int i;
1553
1554 if (!set->nr_hw_queues)
1555 return -EINVAL;
1556 if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
1557 return -EINVAL;
1558 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1559 return -EINVAL;
1560
1561 if (!set->nr_hw_queues ||
1562 !set->ops->queue_rq || !set->ops->map_queue ||
1563 !set->ops->alloc_hctx || !set->ops->free_hctx)
1564 return -EINVAL;
1565
1566
48479005
ML
1567 set->tags = kmalloc_node(set->nr_hw_queues *
1568 sizeof(struct blk_mq_tags *),
24d2f903
CH
1569 GFP_KERNEL, set->numa_node);
1570 if (!set->tags)
1571 goto out;
1572
1573 for (i = 0; i < set->nr_hw_queues; i++) {
1574 set->tags[i] = blk_mq_init_rq_map(set, i);
1575 if (!set->tags[i])
1576 goto out_unwind;
1577 }
1578
1579 return 0;
1580
1581out_unwind:
1582 while (--i >= 0)
1583 blk_mq_free_rq_map(set, set->tags[i], i);
1584out:
1585 return -ENOMEM;
1586}
1587EXPORT_SYMBOL(blk_mq_alloc_tag_set);
1588
1589void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
1590{
1591 int i;
1592
1593 for (i = 0; i < set->nr_hw_queues; i++)
1594 blk_mq_free_rq_map(set, set->tags[i], i);
981bd189 1595 kfree(set->tags);
24d2f903
CH
1596}
1597EXPORT_SYMBOL(blk_mq_free_tag_set);
1598
676141e4
JA
1599void blk_mq_disable_hotplug(void)
1600{
1601 mutex_lock(&all_q_mutex);
1602}
1603
1604void blk_mq_enable_hotplug(void)
1605{
1606 mutex_unlock(&all_q_mutex);
1607}
1608
320ae51f
JA
1609static int __init blk_mq_init(void)
1610{
320ae51f
JA
1611 blk_mq_cpu_init();
1612
1613 /* Must be called after percpu_counter_hotcpu_callback() */
1614 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1615
1616 return 0;
1617}
1618subsys_initcall(blk_mq_init);