]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - block/blk-mq.c
block: Introduce blk_get_request_flags()
[mirror_ubuntu-eoan-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
cf43e6be 36#include "blk-stat.h"
87760e5e 37#include "blk-wbt.h"
bd166ef1 38#include "blk-mq-sched.h"
320ae51f 39
ea435e1b 40static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
34dbad5d
OS
41static void blk_mq_poll_stats_start(struct request_queue *q);
42static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
720b8ccc
SB
44static int blk_mq_poll_stats_bkt(const struct request *rq)
45{
46 int ddir, bytes, bucket;
47
99c749a4 48 ddir = rq_data_dir(rq);
720b8ccc
SB
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59}
60
320ae51f
JA
61/*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
50e1dab8 64bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 65{
bd166ef1
JA
66 return sbitmap_any_bit_set(&hctx->ctx_map) ||
67 !list_empty_careful(&hctx->dispatch) ||
68 blk_mq_sched_has_work(hctx);
1429d7c9
JA
69}
70
320ae51f
JA
71/*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76{
88459642
OS
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
79}
80
81static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83{
88459642 84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
85}
86
f299b7c7
JA
87struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90};
91
92static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95{
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
b8d62b3a
JA
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
f299b7c7 105 */
b8d62b3a 106 if (rq->part == mi->part)
f299b7c7 107 mi->inflight[0]++;
b8d62b3a
JA
108 if (mi->part->partno)
109 mi->inflight[1]++;
f299b7c7
JA
110 }
111}
112
113void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115{
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
b8d62b3a 118 inflight[0] = inflight[1] = 0;
f299b7c7
JA
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120}
121
1671d522 122void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 123{
4ecd4fef 124 int freeze_depth;
cddd5d17 125
4ecd4fef
CH
126 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
127 if (freeze_depth == 1) {
3ef28e83 128 percpu_ref_kill(&q->q_usage_counter);
055f6e18
ML
129 if (q->mq_ops)
130 blk_mq_run_hw_queues(q, false);
cddd5d17 131 }
f3af020b 132}
1671d522 133EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 134
6bae363e 135void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 136{
3ef28e83 137 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 138}
6bae363e 139EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 140
f91328c4
KB
141int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
142 unsigned long timeout)
143{
144 return wait_event_timeout(q->mq_freeze_wq,
145 percpu_ref_is_zero(&q->q_usage_counter),
146 timeout);
147}
148EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 149
f3af020b
TH
150/*
151 * Guarantee no request is in use, so we can change any data structure of
152 * the queue afterward.
153 */
3ef28e83 154void blk_freeze_queue(struct request_queue *q)
f3af020b 155{
3ef28e83
DW
156 /*
157 * In the !blk_mq case we are only calling this to kill the
158 * q_usage_counter, otherwise this increases the freeze depth
159 * and waits for it to return to zero. For this reason there is
160 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
161 * exported to drivers as the only user for unfreeze is blk_mq.
162 */
1671d522 163 blk_freeze_queue_start(q);
f3af020b
TH
164 blk_mq_freeze_queue_wait(q);
165}
3ef28e83
DW
166
167void blk_mq_freeze_queue(struct request_queue *q)
168{
169 /*
170 * ...just an alias to keep freeze and unfreeze actions balanced
171 * in the blk_mq_* namespace
172 */
173 blk_freeze_queue(q);
174}
c761d96b 175EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 176
b4c6a028 177void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 178{
4ecd4fef 179 int freeze_depth;
320ae51f 180
4ecd4fef
CH
181 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
182 WARN_ON_ONCE(freeze_depth < 0);
183 if (!freeze_depth) {
3ef28e83 184 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 185 wake_up_all(&q->mq_freeze_wq);
add703fd 186 }
320ae51f 187}
b4c6a028 188EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 189
852ec809
BVA
190/*
191 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
192 * mpt3sas driver such that this function can be removed.
193 */
194void blk_mq_quiesce_queue_nowait(struct request_queue *q)
195{
196 unsigned long flags;
197
198 spin_lock_irqsave(q->queue_lock, flags);
199 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
200 spin_unlock_irqrestore(q->queue_lock, flags);
201}
202EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
203
6a83e74d 204/**
69e07c4a 205 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
206 * @q: request queue.
207 *
208 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
209 * callback function is invoked. Once this function is returned, we make
210 * sure no dispatch can happen until the queue is unquiesced via
211 * blk_mq_unquiesce_queue().
6a83e74d
BVA
212 */
213void blk_mq_quiesce_queue(struct request_queue *q)
214{
215 struct blk_mq_hw_ctx *hctx;
216 unsigned int i;
217 bool rcu = false;
218
1d9e9bc6 219 blk_mq_quiesce_queue_nowait(q);
f4560ffe 220
6a83e74d
BVA
221 queue_for_each_hw_ctx(q, hctx, i) {
222 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 223 synchronize_srcu(hctx->queue_rq_srcu);
6a83e74d
BVA
224 else
225 rcu = true;
226 }
227 if (rcu)
228 synchronize_rcu();
229}
230EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
231
e4e73913
ML
232/*
233 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
234 * @q: request queue.
235 *
236 * This function recovers queue into the state before quiescing
237 * which is done by blk_mq_quiesce_queue.
238 */
239void blk_mq_unquiesce_queue(struct request_queue *q)
240{
852ec809
BVA
241 unsigned long flags;
242
243 spin_lock_irqsave(q->queue_lock, flags);
f4560ffe 244 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
852ec809 245 spin_unlock_irqrestore(q->queue_lock, flags);
f4560ffe 246
1d9e9bc6
ML
247 /* dispatch requests which are inserted during quiescing */
248 blk_mq_run_hw_queues(q, true);
e4e73913
ML
249}
250EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
251
aed3ea94
JA
252void blk_mq_wake_waiters(struct request_queue *q)
253{
254 struct blk_mq_hw_ctx *hctx;
255 unsigned int i;
256
257 queue_for_each_hw_ctx(q, hctx, i)
258 if (blk_mq_hw_queue_mapped(hctx))
259 blk_mq_tag_wakeup_all(hctx->tags, true);
260}
261
320ae51f
JA
262bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
263{
264 return blk_mq_has_free_tags(hctx->tags);
265}
266EXPORT_SYMBOL(blk_mq_can_queue);
267
e4cdf1a1
CH
268static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
269 unsigned int tag, unsigned int op)
320ae51f 270{
e4cdf1a1
CH
271 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
272 struct request *rq = tags->static_rqs[tag];
273
c3a148d2
BVA
274 rq->rq_flags = 0;
275
e4cdf1a1
CH
276 if (data->flags & BLK_MQ_REQ_INTERNAL) {
277 rq->tag = -1;
278 rq->internal_tag = tag;
279 } else {
280 if (blk_mq_tag_busy(data->hctx)) {
281 rq->rq_flags = RQF_MQ_INFLIGHT;
282 atomic_inc(&data->hctx->nr_active);
283 }
284 rq->tag = tag;
285 rq->internal_tag = -1;
286 data->hctx->tags->rqs[rq->tag] = rq;
287 }
288
af76e555
CH
289 INIT_LIST_HEAD(&rq->queuelist);
290 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
291 rq->q = data->q;
292 rq->mq_ctx = data->ctx;
ef295ecf 293 rq->cmd_flags = op;
e4cdf1a1 294 if (blk_queue_io_stat(data->q))
e8064021 295 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
296 /* do not touch atomic flags, it needs atomic ops against the timer */
297 rq->cpu = -1;
af76e555
CH
298 INIT_HLIST_NODE(&rq->hash);
299 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
300 rq->rq_disk = NULL;
301 rq->part = NULL;
3ee32372 302 rq->start_time = jiffies;
af76e555
CH
303#ifdef CONFIG_BLK_CGROUP
304 rq->rl = NULL;
0fec08b4 305 set_start_time_ns(rq);
af76e555
CH
306 rq->io_start_time_ns = 0;
307#endif
308 rq->nr_phys_segments = 0;
309#if defined(CONFIG_BLK_DEV_INTEGRITY)
310 rq->nr_integrity_segments = 0;
311#endif
af76e555
CH
312 rq->special = NULL;
313 /* tag was already set */
af76e555 314 rq->extra_len = 0;
af76e555 315
af76e555 316 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
317 rq->timeout = 0;
318
af76e555
CH
319 rq->end_io = NULL;
320 rq->end_io_data = NULL;
321 rq->next_rq = NULL;
322
e4cdf1a1
CH
323 data->ctx->rq_dispatched[op_is_sync(op)]++;
324 return rq;
5dee8577
CH
325}
326
d2c0d383
CH
327static struct request *blk_mq_get_request(struct request_queue *q,
328 struct bio *bio, unsigned int op,
329 struct blk_mq_alloc_data *data)
330{
331 struct elevator_queue *e = q->elevator;
332 struct request *rq;
e4cdf1a1 333 unsigned int tag;
21e768b4 334 bool put_ctx_on_error = false;
d2c0d383
CH
335
336 blk_queue_enter_live(q);
337 data->q = q;
21e768b4
BVA
338 if (likely(!data->ctx)) {
339 data->ctx = blk_mq_get_ctx(q);
340 put_ctx_on_error = true;
341 }
d2c0d383
CH
342 if (likely(!data->hctx))
343 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
03a07c92
GR
344 if (op & REQ_NOWAIT)
345 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
346
347 if (e) {
348 data->flags |= BLK_MQ_REQ_INTERNAL;
349
350 /*
351 * Flush requests are special and go directly to the
352 * dispatch list.
353 */
5bbf4e5a
CH
354 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
355 e->type->ops.mq.limit_depth(op, data);
d2c0d383
CH
356 }
357
e4cdf1a1
CH
358 tag = blk_mq_get_tag(data);
359 if (tag == BLK_MQ_TAG_FAIL) {
21e768b4
BVA
360 if (put_ctx_on_error) {
361 blk_mq_put_ctx(data->ctx);
1ad43c00
ML
362 data->ctx = NULL;
363 }
037cebb8
CH
364 blk_queue_exit(q);
365 return NULL;
d2c0d383
CH
366 }
367
e4cdf1a1 368 rq = blk_mq_rq_ctx_init(data, tag, op);
037cebb8
CH
369 if (!op_is_flush(op)) {
370 rq->elv.icq = NULL;
5bbf4e5a 371 if (e && e->type->ops.mq.prepare_request) {
44e8c2bf
CH
372 if (e->type->icq_cache && rq_ioc(bio))
373 blk_mq_sched_assign_ioc(rq, bio);
374
5bbf4e5a
CH
375 e->type->ops.mq.prepare_request(rq, bio);
376 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 377 }
037cebb8
CH
378 }
379 data->hctx->queued++;
380 return rq;
d2c0d383
CH
381}
382
cd6ce148 383struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
6f3b0e8b 384 unsigned int flags)
320ae51f 385{
5a797e00 386 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 387 struct request *rq;
a492f075 388 int ret;
320ae51f 389
6f3b0e8b 390 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
391 if (ret)
392 return ERR_PTR(ret);
320ae51f 393
cd6ce148 394 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 395 blk_queue_exit(q);
841bac2c 396
bd166ef1 397 if (!rq)
a492f075 398 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3 399
1ad43c00 400 blk_mq_put_ctx(alloc_data.ctx);
1ad43c00 401
0c4de0f3
CH
402 rq->__data_len = 0;
403 rq->__sector = (sector_t) -1;
404 rq->bio = rq->biotail = NULL;
320ae51f
JA
405 return rq;
406}
4bb659b1 407EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 408
cd6ce148
BVA
409struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
410 unsigned int op, unsigned int flags, unsigned int hctx_idx)
1f5bd336 411{
6d2809d5 412 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 413 struct request *rq;
6d2809d5 414 unsigned int cpu;
1f5bd336
ML
415 int ret;
416
417 /*
418 * If the tag allocator sleeps we could get an allocation for a
419 * different hardware context. No need to complicate the low level
420 * allocator for this for the rare use case of a command tied to
421 * a specific queue.
422 */
423 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
424 return ERR_PTR(-EINVAL);
425
426 if (hctx_idx >= q->nr_hw_queues)
427 return ERR_PTR(-EIO);
428
429 ret = blk_queue_enter(q, true);
430 if (ret)
431 return ERR_PTR(ret);
432
c8712c6a
CH
433 /*
434 * Check if the hardware context is actually mapped to anything.
435 * If not tell the caller that it should skip this queue.
436 */
6d2809d5
OS
437 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
438 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
439 blk_queue_exit(q);
440 return ERR_PTR(-EXDEV);
c8712c6a 441 }
6d2809d5
OS
442 cpu = cpumask_first(alloc_data.hctx->cpumask);
443 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 444
cd6ce148 445 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 446 blk_queue_exit(q);
c8712c6a 447
6d2809d5
OS
448 if (!rq)
449 return ERR_PTR(-EWOULDBLOCK);
450
451 return rq;
1f5bd336
ML
452}
453EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
454
6af54051 455void blk_mq_free_request(struct request *rq)
320ae51f 456{
320ae51f 457 struct request_queue *q = rq->q;
6af54051
CH
458 struct elevator_queue *e = q->elevator;
459 struct blk_mq_ctx *ctx = rq->mq_ctx;
460 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
461 const int sched_tag = rq->internal_tag;
462
5bbf4e5a 463 if (rq->rq_flags & RQF_ELVPRIV) {
6af54051
CH
464 if (e && e->type->ops.mq.finish_request)
465 e->type->ops.mq.finish_request(rq);
466 if (rq->elv.icq) {
467 put_io_context(rq->elv.icq->ioc);
468 rq->elv.icq = NULL;
469 }
470 }
320ae51f 471
6af54051 472 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 473 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 474 atomic_dec(&hctx->nr_active);
87760e5e 475
7beb2f84
JA
476 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
477 laptop_io_completion(q->backing_dev_info);
478
87760e5e 479 wbt_done(q->rq_wb, &rq->issue_stat);
0d2602ca 480
85acb3ba
SL
481 if (blk_rq_rl(rq))
482 blk_put_rl(blk_rq_rl(rq));
483
af76e555 484 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 485 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
486 if (rq->tag != -1)
487 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
488 if (sched_tag != -1)
c05f8525 489 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
6d8c6c0f 490 blk_mq_sched_restart(hctx);
3ef28e83 491 blk_queue_exit(q);
320ae51f 492}
1a3b595a 493EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 494
2a842aca 495inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 496{
0d11e6ac
ML
497 blk_account_io_done(rq);
498
91b63639 499 if (rq->end_io) {
87760e5e 500 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 501 rq->end_io(rq, error);
91b63639
CH
502 } else {
503 if (unlikely(blk_bidi_rq(rq)))
504 blk_mq_free_request(rq->next_rq);
320ae51f 505 blk_mq_free_request(rq);
91b63639 506 }
320ae51f 507}
c8a446ad 508EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 509
2a842aca 510void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
511{
512 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
513 BUG();
c8a446ad 514 __blk_mq_end_request(rq, error);
63151a44 515}
c8a446ad 516EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 517
30a91cb4 518static void __blk_mq_complete_request_remote(void *data)
320ae51f 519{
3d6efbf6 520 struct request *rq = data;
320ae51f 521
30a91cb4 522 rq->q->softirq_done_fn(rq);
320ae51f 523}
320ae51f 524
453f8341 525static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
526{
527 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 528 bool shared = false;
320ae51f
JA
529 int cpu;
530
453f8341
CH
531 if (rq->internal_tag != -1)
532 blk_mq_sched_completed_request(rq);
533 if (rq->rq_flags & RQF_STATS) {
534 blk_mq_poll_stats_start(rq->q);
535 blk_stat_add(rq);
536 }
537
38535201 538 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
539 rq->q->softirq_done_fn(rq);
540 return;
541 }
320ae51f
JA
542
543 cpu = get_cpu();
38535201
CH
544 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
545 shared = cpus_share_cache(cpu, ctx->cpu);
546
547 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 548 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
549 rq->csd.info = rq;
550 rq->csd.flags = 0;
c46fff2a 551 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 552 } else {
30a91cb4 553 rq->q->softirq_done_fn(rq);
3d6efbf6 554 }
320ae51f
JA
555 put_cpu();
556}
30a91cb4
CH
557
558/**
559 * blk_mq_complete_request - end I/O on a request
560 * @rq: the request being processed
561 *
562 * Description:
563 * Ends all I/O on a request. It does not handle partial completions.
564 * The actual completion happens out-of-order, through a IPI handler.
565 **/
08e0029a 566void blk_mq_complete_request(struct request *rq)
30a91cb4 567{
95f09684
JA
568 struct request_queue *q = rq->q;
569
570 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 571 return;
08e0029a 572 if (!blk_mark_rq_complete(rq))
ed851860 573 __blk_mq_complete_request(rq);
30a91cb4
CH
574}
575EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 576
973c0191
KB
577int blk_mq_request_started(struct request *rq)
578{
579 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
580}
581EXPORT_SYMBOL_GPL(blk_mq_request_started);
582
e2490073 583void blk_mq_start_request(struct request *rq)
320ae51f
JA
584{
585 struct request_queue *q = rq->q;
586
bd166ef1
JA
587 blk_mq_sched_started_request(rq);
588
320ae51f
JA
589 trace_block_rq_issue(q, rq);
590
cf43e6be 591 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 592 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 593 rq->rq_flags |= RQF_STATS;
87760e5e 594 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
595 }
596
2b8393b4 597 blk_add_timer(rq);
87ee7b11 598
a7af0af3 599 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
538b7534 600
87ee7b11
JA
601 /*
602 * Mark us as started and clear complete. Complete might have been
603 * set if requeue raced with timeout, which then marked it as
604 * complete. So be sure to clear complete again when we start
605 * the request, otherwise we'll ignore the completion event.
a7af0af3
PZ
606 *
607 * Ensure that ->deadline is visible before we set STARTED, such that
608 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
609 * it observes STARTED.
87ee7b11 610 */
a7af0af3
PZ
611 smp_wmb();
612 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
613 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
614 /*
615 * Coherence order guarantees these consecutive stores to a
616 * single variable propagate in the specified order. Thus the
617 * clear_bit() is ordered _after_ the set bit. See
618 * blk_mq_check_expired().
619 *
620 * (the bits must be part of the same byte for this to be
621 * true).
622 */
4b570521 623 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
a7af0af3 624 }
49f5baa5
CH
625
626 if (q->dma_drain_size && blk_rq_bytes(rq)) {
627 /*
628 * Make sure space for the drain appears. We know we can do
629 * this because max_hw_segments has been adjusted to be one
630 * fewer than the device can handle.
631 */
632 rq->nr_phys_segments++;
633 }
320ae51f 634}
e2490073 635EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 636
d9d149a3
ML
637/*
638 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
48b99c9d 639 * flag isn't set yet, so there may be race with timeout handler,
d9d149a3
ML
640 * but given rq->deadline is just set in .queue_rq() under
641 * this situation, the race won't be possible in reality because
642 * rq->timeout should be set as big enough to cover the window
643 * between blk_mq_start_request() called from .queue_rq() and
644 * clearing REQ_ATOM_STARTED here.
645 */
ed0791b2 646static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
647{
648 struct request_queue *q = rq->q;
649
923218f6
ML
650 blk_mq_put_driver_tag(rq);
651
320ae51f 652 trace_block_rq_requeue(q, rq);
87760e5e 653 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 654 blk_mq_sched_requeue_request(rq);
49f5baa5 655
e2490073
CH
656 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
657 if (q->dma_drain_size && blk_rq_bytes(rq))
658 rq->nr_phys_segments--;
659 }
320ae51f
JA
660}
661
2b053aca 662void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 663{
ed0791b2 664 __blk_mq_requeue_request(rq);
ed0791b2 665
ed0791b2 666 BUG_ON(blk_queued_rq(rq));
2b053aca 667 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
668}
669EXPORT_SYMBOL(blk_mq_requeue_request);
670
6fca6a61
CH
671static void blk_mq_requeue_work(struct work_struct *work)
672{
673 struct request_queue *q =
2849450a 674 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
675 LIST_HEAD(rq_list);
676 struct request *rq, *next;
6fca6a61 677
18e9781d 678 spin_lock_irq(&q->requeue_lock);
6fca6a61 679 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 680 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
681
682 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 683 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
684 continue;
685
e8064021 686 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 687 list_del_init(&rq->queuelist);
bd6737f1 688 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
689 }
690
691 while (!list_empty(&rq_list)) {
692 rq = list_entry(rq_list.next, struct request, queuelist);
693 list_del_init(&rq->queuelist);
bd6737f1 694 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
695 }
696
52d7f1b5 697 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
698}
699
2b053aca
BVA
700void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
701 bool kick_requeue_list)
6fca6a61
CH
702{
703 struct request_queue *q = rq->q;
704 unsigned long flags;
705
706 /*
707 * We abuse this flag that is otherwise used by the I/O scheduler to
708 * request head insertation from the workqueue.
709 */
e8064021 710 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
711
712 spin_lock_irqsave(&q->requeue_lock, flags);
713 if (at_head) {
e8064021 714 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
715 list_add(&rq->queuelist, &q->requeue_list);
716 } else {
717 list_add_tail(&rq->queuelist, &q->requeue_list);
718 }
719 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
720
721 if (kick_requeue_list)
722 blk_mq_kick_requeue_list(q);
6fca6a61
CH
723}
724EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
725
726void blk_mq_kick_requeue_list(struct request_queue *q)
727{
2849450a 728 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
729}
730EXPORT_SYMBOL(blk_mq_kick_requeue_list);
731
2849450a
MS
732void blk_mq_delay_kick_requeue_list(struct request_queue *q,
733 unsigned long msecs)
734{
d4acf365
BVA
735 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
736 msecs_to_jiffies(msecs));
2849450a
MS
737}
738EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
739
0e62f51f
JA
740struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
741{
88c7b2b7
JA
742 if (tag < tags->nr_tags) {
743 prefetch(tags->rqs[tag]);
4ee86bab 744 return tags->rqs[tag];
88c7b2b7 745 }
4ee86bab
HR
746
747 return NULL;
24d2f903
CH
748}
749EXPORT_SYMBOL(blk_mq_tag_to_rq);
750
320ae51f 751struct blk_mq_timeout_data {
46f92d42
CH
752 unsigned long next;
753 unsigned int next_set;
320ae51f
JA
754};
755
90415837 756void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 757{
f8a5b122 758 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 759 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
760
761 /*
762 * We know that complete is set at this point. If STARTED isn't set
763 * anymore, then the request isn't active and the "timeout" should
764 * just be ignored. This can happen due to the bitflag ordering.
765 * Timeout first checks if STARTED is set, and if it is, assumes
766 * the request is active. But if we race with completion, then
48b99c9d 767 * both flags will get cleared. So check here again, and ignore
87ee7b11
JA
768 * a timeout event with a request that isn't active.
769 */
46f92d42
CH
770 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
771 return;
87ee7b11 772
46f92d42 773 if (ops->timeout)
0152fb6b 774 ret = ops->timeout(req, reserved);
46f92d42
CH
775
776 switch (ret) {
777 case BLK_EH_HANDLED:
778 __blk_mq_complete_request(req);
779 break;
780 case BLK_EH_RESET_TIMER:
781 blk_add_timer(req);
782 blk_clear_rq_complete(req);
783 break;
784 case BLK_EH_NOT_HANDLED:
785 break;
786 default:
787 printk(KERN_ERR "block: bad eh return: %d\n", ret);
788 break;
789 }
87ee7b11 790}
5b3f25fc 791
81481eb4
CH
792static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
793 struct request *rq, void *priv, bool reserved)
794{
795 struct blk_mq_timeout_data *data = priv;
a7af0af3 796 unsigned long deadline;
87ee7b11 797
95a49603 798 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 799 return;
87ee7b11 800
a7af0af3
PZ
801 /*
802 * Ensures that if we see STARTED we must also see our
803 * up-to-date deadline, see blk_mq_start_request().
804 */
805 smp_rmb();
806
807 deadline = READ_ONCE(rq->deadline);
808
d9d149a3
ML
809 /*
810 * The rq being checked may have been freed and reallocated
811 * out already here, we avoid this race by checking rq->deadline
812 * and REQ_ATOM_COMPLETE flag together:
813 *
814 * - if rq->deadline is observed as new value because of
815 * reusing, the rq won't be timed out because of timing.
816 * - if rq->deadline is observed as previous value,
817 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
818 * because we put a barrier between setting rq->deadline
819 * and clearing the flag in blk_mq_start_request(), so
820 * this rq won't be timed out too.
821 */
a7af0af3
PZ
822 if (time_after_eq(jiffies, deadline)) {
823 if (!blk_mark_rq_complete(rq)) {
824 /*
825 * Again coherence order ensures that consecutive reads
826 * from the same variable must be in that order. This
827 * ensures that if we see COMPLETE clear, we must then
828 * see STARTED set and we'll ignore this timeout.
829 *
830 * (There's also the MB implied by the test_and_clear())
831 */
0152fb6b 832 blk_mq_rq_timed_out(rq, reserved);
a7af0af3
PZ
833 }
834 } else if (!data->next_set || time_after(data->next, deadline)) {
835 data->next = deadline;
46f92d42
CH
836 data->next_set = 1;
837 }
87ee7b11
JA
838}
839
287922eb 840static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 841{
287922eb
CH
842 struct request_queue *q =
843 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
844 struct blk_mq_timeout_data data = {
845 .next = 0,
846 .next_set = 0,
847 };
81481eb4 848 int i;
320ae51f 849
71f79fb3
GKB
850 /* A deadlock might occur if a request is stuck requiring a
851 * timeout at the same time a queue freeze is waiting
852 * completion, since the timeout code would not be able to
853 * acquire the queue reference here.
854 *
855 * That's why we don't use blk_queue_enter here; instead, we use
856 * percpu_ref_tryget directly, because we need to be able to
857 * obtain a reference even in the short window between the queue
858 * starting to freeze, by dropping the first reference in
1671d522 859 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
860 * consumed, marked by the instant q_usage_counter reaches
861 * zero.
862 */
863 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
864 return;
865
0bf6cd5b 866 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 867
81481eb4
CH
868 if (data.next_set) {
869 data.next = blk_rq_timeout(round_jiffies_up(data.next));
870 mod_timer(&q->timeout, data.next);
0d2602ca 871 } else {
0bf6cd5b
CH
872 struct blk_mq_hw_ctx *hctx;
873
f054b56c
ML
874 queue_for_each_hw_ctx(q, hctx, i) {
875 /* the hctx may be unmapped, so check it here */
876 if (blk_mq_hw_queue_mapped(hctx))
877 blk_mq_tag_idle(hctx);
878 }
0d2602ca 879 }
287922eb 880 blk_queue_exit(q);
320ae51f
JA
881}
882
88459642
OS
883struct flush_busy_ctx_data {
884 struct blk_mq_hw_ctx *hctx;
885 struct list_head *list;
886};
887
888static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
889{
890 struct flush_busy_ctx_data *flush_data = data;
891 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
892 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
893
894 sbitmap_clear_bit(sb, bitnr);
895 spin_lock(&ctx->lock);
896 list_splice_tail_init(&ctx->rq_list, flush_data->list);
897 spin_unlock(&ctx->lock);
898 return true;
899}
900
1429d7c9
JA
901/*
902 * Process software queues that have been marked busy, splicing them
903 * to the for-dispatch
904 */
2c3ad667 905void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 906{
88459642
OS
907 struct flush_busy_ctx_data data = {
908 .hctx = hctx,
909 .list = list,
910 };
1429d7c9 911
88459642 912 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 913}
2c3ad667 914EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 915
b347689f
ML
916struct dispatch_rq_data {
917 struct blk_mq_hw_ctx *hctx;
918 struct request *rq;
919};
920
921static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
922 void *data)
923{
924 struct dispatch_rq_data *dispatch_data = data;
925 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
926 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
927
928 spin_lock(&ctx->lock);
929 if (unlikely(!list_empty(&ctx->rq_list))) {
930 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
931 list_del_init(&dispatch_data->rq->queuelist);
932 if (list_empty(&ctx->rq_list))
933 sbitmap_clear_bit(sb, bitnr);
934 }
935 spin_unlock(&ctx->lock);
936
937 return !dispatch_data->rq;
938}
939
940struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
941 struct blk_mq_ctx *start)
942{
943 unsigned off = start ? start->index_hw : 0;
944 struct dispatch_rq_data data = {
945 .hctx = hctx,
946 .rq = NULL,
947 };
948
949 __sbitmap_for_each_set(&hctx->ctx_map, off,
950 dispatch_rq_from_ctx, &data);
951
952 return data.rq;
953}
954
703fd1c0
JA
955static inline unsigned int queued_to_index(unsigned int queued)
956{
957 if (!queued)
958 return 0;
1429d7c9 959
703fd1c0 960 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
961}
962
bd6737f1
JA
963bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
964 bool wait)
bd166ef1
JA
965{
966 struct blk_mq_alloc_data data = {
967 .q = rq->q,
bd166ef1
JA
968 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
969 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
970 };
971
5feeacdd
JA
972 might_sleep_if(wait);
973
81380ca1
OS
974 if (rq->tag != -1)
975 goto done;
bd166ef1 976
415b806d
SG
977 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
978 data.flags |= BLK_MQ_REQ_RESERVED;
979
bd166ef1
JA
980 rq->tag = blk_mq_get_tag(&data);
981 if (rq->tag >= 0) {
200e86b3
JA
982 if (blk_mq_tag_busy(data.hctx)) {
983 rq->rq_flags |= RQF_MQ_INFLIGHT;
984 atomic_inc(&data.hctx->nr_active);
985 }
bd166ef1 986 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
987 }
988
81380ca1
OS
989done:
990 if (hctx)
991 *hctx = data.hctx;
992 return rq->tag != -1;
bd166ef1
JA
993}
994
eb619fdb
JA
995static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
996 int flags, void *key)
da55f2cc
OS
997{
998 struct blk_mq_hw_ctx *hctx;
999
1000 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1001
eb619fdb 1002 list_del_init(&wait->entry);
da55f2cc
OS
1003 blk_mq_run_hw_queue(hctx, true);
1004 return 1;
1005}
1006
eb619fdb
JA
1007static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx **hctx,
1008 struct request *rq)
da55f2cc 1009{
eb619fdb
JA
1010 struct blk_mq_hw_ctx *this_hctx = *hctx;
1011 wait_queue_entry_t *wait = &this_hctx->dispatch_wait;
da55f2cc
OS
1012 struct sbq_wait_state *ws;
1013
eb619fdb
JA
1014 if (!list_empty_careful(&wait->entry))
1015 return false;
1016
1017 spin_lock(&this_hctx->lock);
1018 if (!list_empty(&wait->entry)) {
1019 spin_unlock(&this_hctx->lock);
1020 return false;
1021 }
1022
1023 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1024 add_wait_queue(&ws->wait, wait);
1025
da55f2cc 1026 /*
eb619fdb
JA
1027 * It's possible that a tag was freed in the window between the
1028 * allocation failure and adding the hardware queue to the wait
1029 * queue.
da55f2cc 1030 */
eb619fdb
JA
1031 if (!blk_mq_get_driver_tag(rq, hctx, false)) {
1032 spin_unlock(&this_hctx->lock);
da55f2cc 1033 return false;
eb619fdb 1034 }
da55f2cc
OS
1035
1036 /*
eb619fdb
JA
1037 * We got a tag, remove ourselves from the wait queue to ensure
1038 * someone else gets the wakeup.
da55f2cc 1039 */
eb619fdb
JA
1040 spin_lock_irq(&ws->wait.lock);
1041 list_del_init(&wait->entry);
1042 spin_unlock_irq(&ws->wait.lock);
1043 spin_unlock(&this_hctx->lock);
da55f2cc
OS
1044 return true;
1045}
1046
de148297 1047bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
eb619fdb 1048 bool got_budget)
320ae51f 1049{
81380ca1 1050 struct blk_mq_hw_ctx *hctx;
6d6f167c 1051 struct request *rq, *nxt;
eb619fdb 1052 bool no_tag = false;
fc17b653 1053 int errors, queued;
320ae51f 1054
81380ca1
OS
1055 if (list_empty(list))
1056 return false;
1057
de148297
ML
1058 WARN_ON(!list_is_singular(list) && got_budget);
1059
320ae51f
JA
1060 /*
1061 * Now process all the entries, sending them to the driver.
1062 */
93efe981 1063 errors = queued = 0;
81380ca1 1064 do {
74c45052 1065 struct blk_mq_queue_data bd;
fc17b653 1066 blk_status_t ret;
320ae51f 1067
f04c3df3 1068 rq = list_first_entry(list, struct request, queuelist);
bd166ef1 1069 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
3c782d67 1070 /*
da55f2cc 1071 * The initial allocation attempt failed, so we need to
eb619fdb
JA
1072 * rerun the hardware queue when a tag is freed. The
1073 * waitqueue takes care of that. If the queue is run
1074 * before we add this entry back on the dispatch list,
1075 * we'll re-run it below.
3c782d67 1076 */
eb619fdb 1077 if (!blk_mq_dispatch_wait_add(&hctx, rq)) {
de148297
ML
1078 if (got_budget)
1079 blk_mq_put_dispatch_budget(hctx);
eb619fdb 1080 no_tag = true;
de148297
ML
1081 break;
1082 }
1083 }
1084
0c6af1cc
ML
1085 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1086 blk_mq_put_driver_tag(rq);
88022d72 1087 break;
0c6af1cc 1088 }
da55f2cc 1089
320ae51f 1090 list_del_init(&rq->queuelist);
320ae51f 1091
74c45052 1092 bd.rq = rq;
113285b4
JA
1093
1094 /*
1095 * Flag last if we have no more requests, or if we have more
1096 * but can't assign a driver tag to it.
1097 */
1098 if (list_empty(list))
1099 bd.last = true;
1100 else {
113285b4
JA
1101 nxt = list_first_entry(list, struct request, queuelist);
1102 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1103 }
74c45052
JA
1104
1105 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653 1106 if (ret == BLK_STS_RESOURCE) {
6d6f167c
JW
1107 /*
1108 * If an I/O scheduler has been configured and we got a
1109 * driver tag for the next request already, free it again.
1110 */
1111 if (!list_empty(list)) {
1112 nxt = list_first_entry(list, struct request, queuelist);
1113 blk_mq_put_driver_tag(nxt);
1114 }
f04c3df3 1115 list_add(&rq->queuelist, list);
ed0791b2 1116 __blk_mq_requeue_request(rq);
320ae51f 1117 break;
fc17b653
CH
1118 }
1119
1120 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1121 errors++;
2a842aca 1122 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1123 continue;
320ae51f
JA
1124 }
1125
fc17b653 1126 queued++;
81380ca1 1127 } while (!list_empty(list));
320ae51f 1128
703fd1c0 1129 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1130
1131 /*
1132 * Any items that need requeuing? Stuff them into hctx->dispatch,
1133 * that is where we will continue on next queue run.
1134 */
f04c3df3 1135 if (!list_empty(list)) {
320ae51f 1136 spin_lock(&hctx->lock);
c13660a0 1137 list_splice_init(list, &hctx->dispatch);
320ae51f 1138 spin_unlock(&hctx->lock);
f04c3df3 1139
9ba52e58 1140 /*
710c785f
BVA
1141 * If SCHED_RESTART was set by the caller of this function and
1142 * it is no longer set that means that it was cleared by another
1143 * thread and hence that a queue rerun is needed.
9ba52e58 1144 *
eb619fdb
JA
1145 * If 'no_tag' is set, that means that we failed getting
1146 * a driver tag with an I/O scheduler attached. If our dispatch
1147 * waitqueue is no longer active, ensure that we run the queue
1148 * AFTER adding our entries back to the list.
bd166ef1 1149 *
710c785f
BVA
1150 * If no I/O scheduler has been configured it is possible that
1151 * the hardware queue got stopped and restarted before requests
1152 * were pushed back onto the dispatch list. Rerun the queue to
1153 * avoid starvation. Notes:
1154 * - blk_mq_run_hw_queue() checks whether or not a queue has
1155 * been stopped before rerunning a queue.
1156 * - Some but not all block drivers stop a queue before
fc17b653 1157 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1158 * and dm-rq.
bd166ef1 1159 */
eb619fdb
JA
1160 if (!blk_mq_sched_needs_restart(hctx) ||
1161 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1162 blk_mq_run_hw_queue(hctx, true);
320ae51f 1163 }
f04c3df3 1164
93efe981 1165 return (queued + errors) != 0;
f04c3df3
JA
1166}
1167
6a83e74d
BVA
1168static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1169{
1170 int srcu_idx;
1171
b7a71e66
JA
1172 /*
1173 * We should be running this queue from one of the CPUs that
1174 * are mapped to it.
1175 */
6a83e74d
BVA
1176 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1177 cpu_online(hctx->next_cpu));
1178
b7a71e66
JA
1179 /*
1180 * We can't run the queue inline with ints disabled. Ensure that
1181 * we catch bad users of this early.
1182 */
1183 WARN_ON_ONCE(in_interrupt());
1184
6a83e74d
BVA
1185 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1186 rcu_read_lock();
1f460b63 1187 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1188 rcu_read_unlock();
1189 } else {
bf4907c0
JA
1190 might_sleep();
1191
07319678 1192 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1f460b63 1193 blk_mq_sched_dispatch_requests(hctx);
07319678 1194 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
6a83e74d
BVA
1195 }
1196}
1197
506e931f
JA
1198/*
1199 * It'd be great if the workqueue API had a way to pass
1200 * in a mask and had some smarts for more clever placement.
1201 * For now we just round-robin here, switching for every
1202 * BLK_MQ_CPU_WORK_BATCH queued items.
1203 */
1204static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1205{
b657d7e6
CH
1206 if (hctx->queue->nr_hw_queues == 1)
1207 return WORK_CPU_UNBOUND;
506e931f
JA
1208
1209 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1210 int next_cpu;
506e931f
JA
1211
1212 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1213 if (next_cpu >= nr_cpu_ids)
1214 next_cpu = cpumask_first(hctx->cpumask);
1215
1216 hctx->next_cpu = next_cpu;
1217 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1218 }
1219
b657d7e6 1220 return hctx->next_cpu;
506e931f
JA
1221}
1222
7587a5ae
BVA
1223static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1224 unsigned long msecs)
320ae51f 1225{
5435c023
BVA
1226 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1227 return;
1228
1229 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1230 return;
1231
1b792f2f 1232 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1233 int cpu = get_cpu();
1234 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1235 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1236 put_cpu();
398205b8
PB
1237 return;
1238 }
e4043dcf 1239
2a90d4aa 1240 put_cpu();
e4043dcf 1241 }
398205b8 1242
9f993737
JA
1243 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1244 &hctx->run_work,
1245 msecs_to_jiffies(msecs));
7587a5ae
BVA
1246}
1247
1248void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1249{
1250 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1251}
1252EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1253
1254void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1255{
1256 __blk_mq_delay_run_hw_queue(hctx, async, 0);
320ae51f 1257}
5b727272 1258EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1259
b94ec296 1260void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1261{
1262 struct blk_mq_hw_ctx *hctx;
1263 int i;
1264
1265 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1266 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1267 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1268 continue;
1269
b94ec296 1270 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1271 }
1272}
b94ec296 1273EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1274
fd001443
BVA
1275/**
1276 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1277 * @q: request queue.
1278 *
1279 * The caller is responsible for serializing this function against
1280 * blk_mq_{start,stop}_hw_queue().
1281 */
1282bool blk_mq_queue_stopped(struct request_queue *q)
1283{
1284 struct blk_mq_hw_ctx *hctx;
1285 int i;
1286
1287 queue_for_each_hw_ctx(q, hctx, i)
1288 if (blk_mq_hctx_stopped(hctx))
1289 return true;
1290
1291 return false;
1292}
1293EXPORT_SYMBOL(blk_mq_queue_stopped);
1294
39a70c76
ML
1295/*
1296 * This function is often used for pausing .queue_rq() by driver when
1297 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1298 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1299 *
1300 * We do not guarantee that dispatch can be drained or blocked
1301 * after blk_mq_stop_hw_queue() returns. Please use
1302 * blk_mq_quiesce_queue() for that requirement.
1303 */
2719aa21
JA
1304void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1305{
641a9ed6 1306 cancel_delayed_work(&hctx->run_work);
280d45f6 1307
641a9ed6 1308 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1309}
641a9ed6 1310EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1311
39a70c76
ML
1312/*
1313 * This function is often used for pausing .queue_rq() by driver when
1314 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1315 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1316 *
1317 * We do not guarantee that dispatch can be drained or blocked
1318 * after blk_mq_stop_hw_queues() returns. Please use
1319 * blk_mq_quiesce_queue() for that requirement.
1320 */
2719aa21
JA
1321void blk_mq_stop_hw_queues(struct request_queue *q)
1322{
641a9ed6
ML
1323 struct blk_mq_hw_ctx *hctx;
1324 int i;
1325
1326 queue_for_each_hw_ctx(q, hctx, i)
1327 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1328}
1329EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1330
320ae51f
JA
1331void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1332{
1333 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1334
0ffbce80 1335 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1336}
1337EXPORT_SYMBOL(blk_mq_start_hw_queue);
1338
2f268556
CH
1339void blk_mq_start_hw_queues(struct request_queue *q)
1340{
1341 struct blk_mq_hw_ctx *hctx;
1342 int i;
1343
1344 queue_for_each_hw_ctx(q, hctx, i)
1345 blk_mq_start_hw_queue(hctx);
1346}
1347EXPORT_SYMBOL(blk_mq_start_hw_queues);
1348
ae911c5e
JA
1349void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1350{
1351 if (!blk_mq_hctx_stopped(hctx))
1352 return;
1353
1354 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1355 blk_mq_run_hw_queue(hctx, async);
1356}
1357EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1358
1b4a3258 1359void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1360{
1361 struct blk_mq_hw_ctx *hctx;
1362 int i;
1363
ae911c5e
JA
1364 queue_for_each_hw_ctx(q, hctx, i)
1365 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1366}
1367EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1368
70f4db63 1369static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1370{
1371 struct blk_mq_hw_ctx *hctx;
1372
9f993737 1373 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1374
21c6e939
JA
1375 /*
1376 * If we are stopped, don't run the queue. The exception is if
1377 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1378 * the STOPPED bit and run it.
1379 */
1380 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1381 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1382 return;
7587a5ae 1383
21c6e939
JA
1384 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1385 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1386 }
7587a5ae
BVA
1387
1388 __blk_mq_run_hw_queue(hctx);
1389}
1390
70f4db63
CH
1391
1392void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1393{
5435c023 1394 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
19c66e59 1395 return;
70f4db63 1396
21c6e939
JA
1397 /*
1398 * Stop the hw queue, then modify currently delayed work.
1399 * This should prevent us from running the queue prematurely.
1400 * Mark the queue as auto-clearing STOPPED when it runs.
1401 */
7e79dadc 1402 blk_mq_stop_hw_queue(hctx);
21c6e939
JA
1403 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1404 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1405 &hctx->run_work,
1406 msecs_to_jiffies(msecs));
70f4db63
CH
1407}
1408EXPORT_SYMBOL(blk_mq_delay_queue);
1409
cfd0c552 1410static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1411 struct request *rq,
1412 bool at_head)
320ae51f 1413{
e57690fe
JA
1414 struct blk_mq_ctx *ctx = rq->mq_ctx;
1415
7b607814
BVA
1416 lockdep_assert_held(&ctx->lock);
1417
01b983c9
JA
1418 trace_block_rq_insert(hctx->queue, rq);
1419
72a0a36e
CH
1420 if (at_head)
1421 list_add(&rq->queuelist, &ctx->rq_list);
1422 else
1423 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1424}
4bb659b1 1425
2c3ad667
JA
1426void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1427 bool at_head)
cfd0c552
ML
1428{
1429 struct blk_mq_ctx *ctx = rq->mq_ctx;
1430
7b607814
BVA
1431 lockdep_assert_held(&ctx->lock);
1432
e57690fe 1433 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1434 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1435}
1436
157f377b
JA
1437/*
1438 * Should only be used carefully, when the caller knows we want to
1439 * bypass a potential IO scheduler on the target device.
1440 */
b0850297 1441void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
157f377b
JA
1442{
1443 struct blk_mq_ctx *ctx = rq->mq_ctx;
1444 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1445
1446 spin_lock(&hctx->lock);
1447 list_add_tail(&rq->queuelist, &hctx->dispatch);
1448 spin_unlock(&hctx->lock);
1449
b0850297
ML
1450 if (run_queue)
1451 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1452}
1453
bd166ef1
JA
1454void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1455 struct list_head *list)
320ae51f
JA
1456
1457{
320ae51f
JA
1458 /*
1459 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1460 * offline now
1461 */
1462 spin_lock(&ctx->lock);
1463 while (!list_empty(list)) {
1464 struct request *rq;
1465
1466 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1467 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1468 list_del_init(&rq->queuelist);
e57690fe 1469 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1470 }
cfd0c552 1471 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1472 spin_unlock(&ctx->lock);
320ae51f
JA
1473}
1474
1475static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1476{
1477 struct request *rqa = container_of(a, struct request, queuelist);
1478 struct request *rqb = container_of(b, struct request, queuelist);
1479
1480 return !(rqa->mq_ctx < rqb->mq_ctx ||
1481 (rqa->mq_ctx == rqb->mq_ctx &&
1482 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1483}
1484
1485void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1486{
1487 struct blk_mq_ctx *this_ctx;
1488 struct request_queue *this_q;
1489 struct request *rq;
1490 LIST_HEAD(list);
1491 LIST_HEAD(ctx_list);
1492 unsigned int depth;
1493
1494 list_splice_init(&plug->mq_list, &list);
1495
1496 list_sort(NULL, &list, plug_ctx_cmp);
1497
1498 this_q = NULL;
1499 this_ctx = NULL;
1500 depth = 0;
1501
1502 while (!list_empty(&list)) {
1503 rq = list_entry_rq(list.next);
1504 list_del_init(&rq->queuelist);
1505 BUG_ON(!rq->q);
1506 if (rq->mq_ctx != this_ctx) {
1507 if (this_ctx) {
bd166ef1
JA
1508 trace_block_unplug(this_q, depth, from_schedule);
1509 blk_mq_sched_insert_requests(this_q, this_ctx,
1510 &ctx_list,
1511 from_schedule);
320ae51f
JA
1512 }
1513
1514 this_ctx = rq->mq_ctx;
1515 this_q = rq->q;
1516 depth = 0;
1517 }
1518
1519 depth++;
1520 list_add_tail(&rq->queuelist, &ctx_list);
1521 }
1522
1523 /*
1524 * If 'this_ctx' is set, we know we have entries to complete
1525 * on 'ctx_list'. Do those.
1526 */
1527 if (this_ctx) {
bd166ef1
JA
1528 trace_block_unplug(this_q, depth, from_schedule);
1529 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1530 from_schedule);
320ae51f
JA
1531 }
1532}
1533
1534static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1535{
da8d7f07 1536 blk_init_request_from_bio(rq, bio);
4b570521 1537
85acb3ba
SL
1538 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1539
6e85eaf3 1540 blk_account_io_start(rq, true);
320ae51f
JA
1541}
1542
ab42f35d
ML
1543static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1544 struct blk_mq_ctx *ctx,
1545 struct request *rq)
1546{
1547 spin_lock(&ctx->lock);
1548 __blk_mq_insert_request(hctx, rq, false);
1549 spin_unlock(&ctx->lock);
07068d5b 1550}
14ec77f3 1551
fd2d3326
JA
1552static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1553{
bd166ef1
JA
1554 if (rq->tag != -1)
1555 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1556
1557 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1558}
1559
d964f04a
ML
1560static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1561 struct request *rq,
1562 blk_qc_t *cookie, bool may_sleep)
f984df1f 1563{
f984df1f 1564 struct request_queue *q = rq->q;
f984df1f
SL
1565 struct blk_mq_queue_data bd = {
1566 .rq = rq,
d945a365 1567 .last = true,
f984df1f 1568 };
bd166ef1 1569 blk_qc_t new_cookie;
f06345ad 1570 blk_status_t ret;
d964f04a
ML
1571 bool run_queue = true;
1572
f4560ffe
ML
1573 /* RCU or SRCU read lock is needed before checking quiesced flag */
1574 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a
ML
1575 run_queue = false;
1576 goto insert;
1577 }
f984df1f 1578
bd166ef1 1579 if (q->elevator)
2253efc8
BVA
1580 goto insert;
1581
d964f04a 1582 if (!blk_mq_get_driver_tag(rq, NULL, false))
bd166ef1
JA
1583 goto insert;
1584
88022d72 1585 if (!blk_mq_get_dispatch_budget(hctx)) {
de148297
ML
1586 blk_mq_put_driver_tag(rq);
1587 goto insert;
88022d72 1588 }
de148297 1589
bd166ef1
JA
1590 new_cookie = request_to_qc_t(hctx, rq);
1591
f984df1f
SL
1592 /*
1593 * For OK queue, we are done. For error, kill it. Any other
1594 * error (busy), just add it to our list as we previously
1595 * would have done
1596 */
1597 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653
CH
1598 switch (ret) {
1599 case BLK_STS_OK:
7b371636 1600 *cookie = new_cookie;
2253efc8 1601 return;
fc17b653
CH
1602 case BLK_STS_RESOURCE:
1603 __blk_mq_requeue_request(rq);
1604 goto insert;
1605 default:
7b371636 1606 *cookie = BLK_QC_T_NONE;
fc17b653 1607 blk_mq_end_request(rq, ret);
2253efc8 1608 return;
f984df1f 1609 }
7b371636 1610
2253efc8 1611insert:
d964f04a 1612 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
f984df1f
SL
1613}
1614
5eb6126e
CH
1615static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1616 struct request *rq, blk_qc_t *cookie)
1617{
1618 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1619 rcu_read_lock();
d964f04a 1620 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
5eb6126e
CH
1621 rcu_read_unlock();
1622 } else {
bf4907c0
JA
1623 unsigned int srcu_idx;
1624
1625 might_sleep();
1626
07319678 1627 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
d964f04a 1628 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
07319678 1629 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
5eb6126e
CH
1630 }
1631}
1632
dece1635 1633static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1634{
ef295ecf 1635 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1636 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1637 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1638 struct request *rq;
5eb6126e 1639 unsigned int request_count = 0;
f984df1f 1640 struct blk_plug *plug;
5b3f341f 1641 struct request *same_queue_rq = NULL;
7b371636 1642 blk_qc_t cookie;
87760e5e 1643 unsigned int wb_acct;
07068d5b
JA
1644
1645 blk_queue_bounce(q, &bio);
1646
af67c31f 1647 blk_queue_split(q, &bio);
f36ea50c 1648
e23947bd 1649 if (!bio_integrity_prep(bio))
dece1635 1650 return BLK_QC_T_NONE;
07068d5b 1651
87c279e6
OS
1652 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1653 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1654 return BLK_QC_T_NONE;
f984df1f 1655
bd166ef1
JA
1656 if (blk_mq_sched_bio_merge(q, bio))
1657 return BLK_QC_T_NONE;
1658
87760e5e
JA
1659 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1660
bd166ef1
JA
1661 trace_block_getrq(q, bio, bio->bi_opf);
1662
d2c0d383 1663 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1664 if (unlikely(!rq)) {
1665 __wbt_done(q->rq_wb, wb_acct);
03a07c92
GR
1666 if (bio->bi_opf & REQ_NOWAIT)
1667 bio_wouldblock_error(bio);
dece1635 1668 return BLK_QC_T_NONE;
87760e5e
JA
1669 }
1670
1671 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1672
fd2d3326 1673 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1674
f984df1f 1675 plug = current->plug;
07068d5b 1676 if (unlikely(is_flush_fua)) {
f984df1f 1677 blk_mq_put_ctx(data.ctx);
07068d5b 1678 blk_mq_bio_to_request(rq, bio);
923218f6
ML
1679
1680 /* bypass scheduler for flush rq */
1681 blk_insert_flush(rq);
1682 blk_mq_run_hw_queue(data.hctx, true);
a4d907b6 1683 } else if (plug && q->nr_hw_queues == 1) {
600271d9
SL
1684 struct request *last = NULL;
1685
b00c53e8 1686 blk_mq_put_ctx(data.ctx);
e6c4438b 1687 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1688
1689 /*
1690 * @request_count may become stale because of schedule
1691 * out, so check the list again.
1692 */
1693 if (list_empty(&plug->mq_list))
1694 request_count = 0;
254d259d
CH
1695 else if (blk_queue_nomerges(q))
1696 request_count = blk_plug_queued_count(q);
1697
676d0607 1698 if (!request_count)
e6c4438b 1699 trace_block_plug(q);
600271d9
SL
1700 else
1701 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1702
600271d9
SL
1703 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1704 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1705 blk_flush_plug_list(plug, false);
1706 trace_block_plug(q);
320ae51f 1707 }
b094f89c 1708
e6c4438b 1709 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1710 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1711 blk_mq_bio_to_request(rq, bio);
07068d5b 1712
07068d5b 1713 /*
6a83e74d 1714 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1715 * Otherwise the existing request in the plug list will be
1716 * issued. So the plug list will have one request at most
2299722c
CH
1717 * The plug list might get flushed before this. If that happens,
1718 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1719 */
2299722c
CH
1720 if (list_empty(&plug->mq_list))
1721 same_queue_rq = NULL;
1722 if (same_queue_rq)
1723 list_del_init(&same_queue_rq->queuelist);
1724 list_add_tail(&rq->queuelist, &plug->mq_list);
1725
bf4907c0
JA
1726 blk_mq_put_ctx(data.ctx);
1727
dad7a3be
ML
1728 if (same_queue_rq) {
1729 data.hctx = blk_mq_map_queue(q,
1730 same_queue_rq->mq_ctx->cpu);
2299722c
CH
1731 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1732 &cookie);
dad7a3be 1733 }
a4d907b6 1734 } else if (q->nr_hw_queues > 1 && is_sync) {
bf4907c0 1735 blk_mq_put_ctx(data.ctx);
2299722c 1736 blk_mq_bio_to_request(rq, bio);
2299722c 1737 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
a4d907b6 1738 } else if (q->elevator) {
b00c53e8 1739 blk_mq_put_ctx(data.ctx);
bd166ef1 1740 blk_mq_bio_to_request(rq, bio);
a4d907b6 1741 blk_mq_sched_insert_request(rq, false, true, true, true);
ab42f35d 1742 } else {
b00c53e8 1743 blk_mq_put_ctx(data.ctx);
ab42f35d
ML
1744 blk_mq_bio_to_request(rq, bio);
1745 blk_mq_queue_io(data.hctx, data.ctx, rq);
a4d907b6 1746 blk_mq_run_hw_queue(data.hctx, true);
ab42f35d 1747 }
320ae51f 1748
7b371636 1749 return cookie;
320ae51f
JA
1750}
1751
cc71a6f4
JA
1752void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1753 unsigned int hctx_idx)
95363efd 1754{
e9b267d9 1755 struct page *page;
320ae51f 1756
24d2f903 1757 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1758 int i;
320ae51f 1759
24d2f903 1760 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1761 struct request *rq = tags->static_rqs[i];
1762
1763 if (!rq)
e9b267d9 1764 continue;
d6296d39 1765 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 1766 tags->static_rqs[i] = NULL;
e9b267d9 1767 }
320ae51f 1768 }
320ae51f 1769
24d2f903
CH
1770 while (!list_empty(&tags->page_list)) {
1771 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1772 list_del_init(&page->lru);
f75782e4
CM
1773 /*
1774 * Remove kmemleak object previously allocated in
1775 * blk_mq_init_rq_map().
1776 */
1777 kmemleak_free(page_address(page));
320ae51f
JA
1778 __free_pages(page, page->private);
1779 }
cc71a6f4 1780}
320ae51f 1781
cc71a6f4
JA
1782void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1783{
24d2f903 1784 kfree(tags->rqs);
cc71a6f4 1785 tags->rqs = NULL;
2af8cbe3
JA
1786 kfree(tags->static_rqs);
1787 tags->static_rqs = NULL;
320ae51f 1788
24d2f903 1789 blk_mq_free_tags(tags);
320ae51f
JA
1790}
1791
cc71a6f4
JA
1792struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1793 unsigned int hctx_idx,
1794 unsigned int nr_tags,
1795 unsigned int reserved_tags)
320ae51f 1796{
24d2f903 1797 struct blk_mq_tags *tags;
59f082e4 1798 int node;
320ae51f 1799
59f082e4
SL
1800 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1801 if (node == NUMA_NO_NODE)
1802 node = set->numa_node;
1803
1804 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1805 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1806 if (!tags)
1807 return NULL;
320ae51f 1808
cc71a6f4 1809 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1810 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1811 node);
24d2f903
CH
1812 if (!tags->rqs) {
1813 blk_mq_free_tags(tags);
1814 return NULL;
1815 }
320ae51f 1816
2af8cbe3
JA
1817 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1818 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1819 node);
2af8cbe3
JA
1820 if (!tags->static_rqs) {
1821 kfree(tags->rqs);
1822 blk_mq_free_tags(tags);
1823 return NULL;
1824 }
1825
cc71a6f4
JA
1826 return tags;
1827}
1828
1829static size_t order_to_size(unsigned int order)
1830{
1831 return (size_t)PAGE_SIZE << order;
1832}
1833
1834int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1835 unsigned int hctx_idx, unsigned int depth)
1836{
1837 unsigned int i, j, entries_per_page, max_order = 4;
1838 size_t rq_size, left;
59f082e4
SL
1839 int node;
1840
1841 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1842 if (node == NUMA_NO_NODE)
1843 node = set->numa_node;
cc71a6f4
JA
1844
1845 INIT_LIST_HEAD(&tags->page_list);
1846
320ae51f
JA
1847 /*
1848 * rq_size is the size of the request plus driver payload, rounded
1849 * to the cacheline size
1850 */
24d2f903 1851 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1852 cache_line_size());
cc71a6f4 1853 left = rq_size * depth;
320ae51f 1854
cc71a6f4 1855 for (i = 0; i < depth; ) {
320ae51f
JA
1856 int this_order = max_order;
1857 struct page *page;
1858 int to_do;
1859 void *p;
1860
b3a834b1 1861 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1862 this_order--;
1863
1864 do {
59f082e4 1865 page = alloc_pages_node(node,
36e1f3d1 1866 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1867 this_order);
320ae51f
JA
1868 if (page)
1869 break;
1870 if (!this_order--)
1871 break;
1872 if (order_to_size(this_order) < rq_size)
1873 break;
1874 } while (1);
1875
1876 if (!page)
24d2f903 1877 goto fail;
320ae51f
JA
1878
1879 page->private = this_order;
24d2f903 1880 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1881
1882 p = page_address(page);
f75782e4
CM
1883 /*
1884 * Allow kmemleak to scan these pages as they contain pointers
1885 * to additional allocations like via ops->init_request().
1886 */
36e1f3d1 1887 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1888 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1889 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1890 left -= to_do * rq_size;
1891 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1892 struct request *rq = p;
1893
1894 tags->static_rqs[i] = rq;
24d2f903 1895 if (set->ops->init_request) {
d6296d39 1896 if (set->ops->init_request(set, rq, hctx_idx,
59f082e4 1897 node)) {
2af8cbe3 1898 tags->static_rqs[i] = NULL;
24d2f903 1899 goto fail;
a5164405 1900 }
e9b267d9
CH
1901 }
1902
320ae51f
JA
1903 p += rq_size;
1904 i++;
1905 }
1906 }
cc71a6f4 1907 return 0;
320ae51f 1908
24d2f903 1909fail:
cc71a6f4
JA
1910 blk_mq_free_rqs(set, tags, hctx_idx);
1911 return -ENOMEM;
320ae51f
JA
1912}
1913
e57690fe
JA
1914/*
1915 * 'cpu' is going away. splice any existing rq_list entries from this
1916 * software queue to the hw queue dispatch list, and ensure that it
1917 * gets run.
1918 */
9467f859 1919static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1920{
9467f859 1921 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1922 struct blk_mq_ctx *ctx;
1923 LIST_HEAD(tmp);
1924
9467f859 1925 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1926 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1927
1928 spin_lock(&ctx->lock);
1929 if (!list_empty(&ctx->rq_list)) {
1930 list_splice_init(&ctx->rq_list, &tmp);
1931 blk_mq_hctx_clear_pending(hctx, ctx);
1932 }
1933 spin_unlock(&ctx->lock);
1934
1935 if (list_empty(&tmp))
9467f859 1936 return 0;
484b4061 1937
e57690fe
JA
1938 spin_lock(&hctx->lock);
1939 list_splice_tail_init(&tmp, &hctx->dispatch);
1940 spin_unlock(&hctx->lock);
484b4061
JA
1941
1942 blk_mq_run_hw_queue(hctx, true);
9467f859 1943 return 0;
484b4061
JA
1944}
1945
9467f859 1946static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1947{
9467f859
TG
1948 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1949 &hctx->cpuhp_dead);
484b4061
JA
1950}
1951
c3b4afca 1952/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1953static void blk_mq_exit_hctx(struct request_queue *q,
1954 struct blk_mq_tag_set *set,
1955 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1956{
9c1051aa
OS
1957 blk_mq_debugfs_unregister_hctx(hctx);
1958
08e98fc6
ML
1959 blk_mq_tag_idle(hctx);
1960
f70ced09 1961 if (set->ops->exit_request)
d6296d39 1962 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 1963
93252632
OS
1964 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1965
08e98fc6
ML
1966 if (set->ops->exit_hctx)
1967 set->ops->exit_hctx(hctx, hctx_idx);
1968
6a83e74d 1969 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 1970 cleanup_srcu_struct(hctx->queue_rq_srcu);
6a83e74d 1971
9467f859 1972 blk_mq_remove_cpuhp(hctx);
f70ced09 1973 blk_free_flush_queue(hctx->fq);
88459642 1974 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1975}
1976
624dbe47
ML
1977static void blk_mq_exit_hw_queues(struct request_queue *q,
1978 struct blk_mq_tag_set *set, int nr_queue)
1979{
1980 struct blk_mq_hw_ctx *hctx;
1981 unsigned int i;
1982
1983 queue_for_each_hw_ctx(q, hctx, i) {
1984 if (i == nr_queue)
1985 break;
08e98fc6 1986 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1987 }
624dbe47
ML
1988}
1989
08e98fc6
ML
1990static int blk_mq_init_hctx(struct request_queue *q,
1991 struct blk_mq_tag_set *set,
1992 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1993{
08e98fc6
ML
1994 int node;
1995
1996 node = hctx->numa_node;
1997 if (node == NUMA_NO_NODE)
1998 node = hctx->numa_node = set->numa_node;
1999
9f993737 2000 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2001 spin_lock_init(&hctx->lock);
2002 INIT_LIST_HEAD(&hctx->dispatch);
2003 hctx->queue = q;
2404e607 2004 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2005
9467f859 2006 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
2007
2008 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
2009
2010 /*
08e98fc6
ML
2011 * Allocate space for all possible cpus to avoid allocation at
2012 * runtime
320ae51f 2013 */
08e98fc6
ML
2014 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
2015 GFP_KERNEL, node);
2016 if (!hctx->ctxs)
2017 goto unregister_cpu_notifier;
320ae51f 2018
88459642
OS
2019 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2020 node))
08e98fc6 2021 goto free_ctxs;
320ae51f 2022
08e98fc6 2023 hctx->nr_ctx = 0;
320ae51f 2024
eb619fdb
JA
2025 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2026 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2027
08e98fc6
ML
2028 if (set->ops->init_hctx &&
2029 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2030 goto free_bitmap;
320ae51f 2031
93252632
OS
2032 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2033 goto exit_hctx;
2034
f70ced09
ML
2035 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2036 if (!hctx->fq)
93252632 2037 goto sched_exit_hctx;
320ae51f 2038
f70ced09 2039 if (set->ops->init_request &&
d6296d39
CH
2040 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2041 node))
f70ced09 2042 goto free_fq;
320ae51f 2043
6a83e74d 2044 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 2045 init_srcu_struct(hctx->queue_rq_srcu);
6a83e74d 2046
9c1051aa
OS
2047 blk_mq_debugfs_register_hctx(q, hctx);
2048
08e98fc6 2049 return 0;
320ae51f 2050
f70ced09
ML
2051 free_fq:
2052 kfree(hctx->fq);
93252632
OS
2053 sched_exit_hctx:
2054 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
2055 exit_hctx:
2056 if (set->ops->exit_hctx)
2057 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 2058 free_bitmap:
88459642 2059 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2060 free_ctxs:
2061 kfree(hctx->ctxs);
2062 unregister_cpu_notifier:
9467f859 2063 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
2064 return -1;
2065}
320ae51f 2066
320ae51f
JA
2067static void blk_mq_init_cpu_queues(struct request_queue *q,
2068 unsigned int nr_hw_queues)
2069{
2070 unsigned int i;
2071
2072 for_each_possible_cpu(i) {
2073 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2074 struct blk_mq_hw_ctx *hctx;
2075
320ae51f
JA
2076 __ctx->cpu = i;
2077 spin_lock_init(&__ctx->lock);
2078 INIT_LIST_HEAD(&__ctx->rq_list);
2079 __ctx->queue = q;
2080
4b855ad3
CH
2081 /* If the cpu isn't present, the cpu is mapped to first hctx */
2082 if (!cpu_present(i))
320ae51f
JA
2083 continue;
2084
7d7e0f90 2085 hctx = blk_mq_map_queue(q, i);
e4043dcf 2086
320ae51f
JA
2087 /*
2088 * Set local node, IFF we have more than one hw queue. If
2089 * not, we remain on the home node of the device
2090 */
2091 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 2092 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
2093 }
2094}
2095
cc71a6f4
JA
2096static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2097{
2098 int ret = 0;
2099
2100 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2101 set->queue_depth, set->reserved_tags);
2102 if (!set->tags[hctx_idx])
2103 return false;
2104
2105 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2106 set->queue_depth);
2107 if (!ret)
2108 return true;
2109
2110 blk_mq_free_rq_map(set->tags[hctx_idx]);
2111 set->tags[hctx_idx] = NULL;
2112 return false;
2113}
2114
2115static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2116 unsigned int hctx_idx)
2117{
bd166ef1
JA
2118 if (set->tags[hctx_idx]) {
2119 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2120 blk_mq_free_rq_map(set->tags[hctx_idx]);
2121 set->tags[hctx_idx] = NULL;
2122 }
cc71a6f4
JA
2123}
2124
4b855ad3 2125static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2126{
d1b1cea1 2127 unsigned int i, hctx_idx;
320ae51f
JA
2128 struct blk_mq_hw_ctx *hctx;
2129 struct blk_mq_ctx *ctx;
2a34c087 2130 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2131
60de074b
AM
2132 /*
2133 * Avoid others reading imcomplete hctx->cpumask through sysfs
2134 */
2135 mutex_lock(&q->sysfs_lock);
2136
320ae51f 2137 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2138 cpumask_clear(hctx->cpumask);
320ae51f
JA
2139 hctx->nr_ctx = 0;
2140 }
2141
2142 /*
4b855ad3
CH
2143 * Map software to hardware queues.
2144 *
2145 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2146 */
4b855ad3 2147 for_each_present_cpu(i) {
d1b1cea1
GKB
2148 hctx_idx = q->mq_map[i];
2149 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2150 if (!set->tags[hctx_idx] &&
2151 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2152 /*
2153 * If tags initialization fail for some hctx,
2154 * that hctx won't be brought online. In this
2155 * case, remap the current ctx to hctx[0] which
2156 * is guaranteed to always have tags allocated
2157 */
cc71a6f4 2158 q->mq_map[i] = 0;
d1b1cea1
GKB
2159 }
2160
897bb0c7 2161 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2162 hctx = blk_mq_map_queue(q, i);
868f2f0b 2163
e4043dcf 2164 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2165 ctx->index_hw = hctx->nr_ctx;
2166 hctx->ctxs[hctx->nr_ctx++] = ctx;
2167 }
506e931f 2168
60de074b
AM
2169 mutex_unlock(&q->sysfs_lock);
2170
506e931f 2171 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2172 /*
a68aafa5
JA
2173 * If no software queues are mapped to this hardware queue,
2174 * disable it and free the request entries.
484b4061
JA
2175 */
2176 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2177 /* Never unmap queue 0. We need it as a
2178 * fallback in case of a new remap fails
2179 * allocation
2180 */
cc71a6f4
JA
2181 if (i && set->tags[i])
2182 blk_mq_free_map_and_requests(set, i);
2183
2a34c087 2184 hctx->tags = NULL;
484b4061
JA
2185 continue;
2186 }
2187
2a34c087
ML
2188 hctx->tags = set->tags[i];
2189 WARN_ON(!hctx->tags);
2190
889fa31f
CY
2191 /*
2192 * Set the map size to the number of mapped software queues.
2193 * This is more accurate and more efficient than looping
2194 * over all possibly mapped software queues.
2195 */
88459642 2196 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2197
484b4061
JA
2198 /*
2199 * Initialize batch roundrobin counts
2200 */
506e931f
JA
2201 hctx->next_cpu = cpumask_first(hctx->cpumask);
2202 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2203 }
320ae51f
JA
2204}
2205
8e8320c9
JA
2206/*
2207 * Caller needs to ensure that we're either frozen/quiesced, or that
2208 * the queue isn't live yet.
2209 */
2404e607 2210static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2211{
2212 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2213 int i;
2214
2404e607 2215 queue_for_each_hw_ctx(q, hctx, i) {
8e8320c9
JA
2216 if (shared) {
2217 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2218 atomic_inc(&q->shared_hctx_restart);
2404e607 2219 hctx->flags |= BLK_MQ_F_TAG_SHARED;
8e8320c9
JA
2220 } else {
2221 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2222 atomic_dec(&q->shared_hctx_restart);
2404e607 2223 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
8e8320c9 2224 }
2404e607
JM
2225 }
2226}
2227
8e8320c9
JA
2228static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2229 bool shared)
2404e607
JM
2230{
2231 struct request_queue *q;
0d2602ca 2232
705cda97
BVA
2233 lockdep_assert_held(&set->tag_list_lock);
2234
0d2602ca
JA
2235 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2236 blk_mq_freeze_queue(q);
2404e607 2237 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2238 blk_mq_unfreeze_queue(q);
2239 }
2240}
2241
2242static void blk_mq_del_queue_tag_set(struct request_queue *q)
2243{
2244 struct blk_mq_tag_set *set = q->tag_set;
2245
0d2602ca 2246 mutex_lock(&set->tag_list_lock);
705cda97
BVA
2247 list_del_rcu(&q->tag_set_list);
2248 INIT_LIST_HEAD(&q->tag_set_list);
2404e607
JM
2249 if (list_is_singular(&set->tag_list)) {
2250 /* just transitioned to unshared */
2251 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2252 /* update existing queue */
2253 blk_mq_update_tag_set_depth(set, false);
2254 }
0d2602ca 2255 mutex_unlock(&set->tag_list_lock);
705cda97
BVA
2256
2257 synchronize_rcu();
0d2602ca
JA
2258}
2259
2260static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2261 struct request_queue *q)
2262{
2263 q->tag_set = set;
2264
2265 mutex_lock(&set->tag_list_lock);
2404e607
JM
2266
2267 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2268 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2269 set->flags |= BLK_MQ_F_TAG_SHARED;
2270 /* update existing queue */
2271 blk_mq_update_tag_set_depth(set, true);
2272 }
2273 if (set->flags & BLK_MQ_F_TAG_SHARED)
2274 queue_set_hctx_shared(q, true);
705cda97 2275 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2276
0d2602ca
JA
2277 mutex_unlock(&set->tag_list_lock);
2278}
2279
e09aae7e
ML
2280/*
2281 * It is the actual release handler for mq, but we do it from
2282 * request queue's release handler for avoiding use-after-free
2283 * and headache because q->mq_kobj shouldn't have been introduced,
2284 * but we can't group ctx/kctx kobj without it.
2285 */
2286void blk_mq_release(struct request_queue *q)
2287{
2288 struct blk_mq_hw_ctx *hctx;
2289 unsigned int i;
2290
2291 /* hctx kobj stays in hctx */
c3b4afca
ML
2292 queue_for_each_hw_ctx(q, hctx, i) {
2293 if (!hctx)
2294 continue;
6c8b232e 2295 kobject_put(&hctx->kobj);
c3b4afca 2296 }
e09aae7e 2297
a723bab3
AM
2298 q->mq_map = NULL;
2299
e09aae7e
ML
2300 kfree(q->queue_hw_ctx);
2301
7ea5fe31
ML
2302 /*
2303 * release .mq_kobj and sw queue's kobject now because
2304 * both share lifetime with request queue.
2305 */
2306 blk_mq_sysfs_deinit(q);
2307
e09aae7e
ML
2308 free_percpu(q->queue_ctx);
2309}
2310
24d2f903 2311struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2312{
2313 struct request_queue *uninit_q, *q;
2314
2315 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2316 if (!uninit_q)
2317 return ERR_PTR(-ENOMEM);
2318
2319 q = blk_mq_init_allocated_queue(set, uninit_q);
2320 if (IS_ERR(q))
2321 blk_cleanup_queue(uninit_q);
2322
2323 return q;
2324}
2325EXPORT_SYMBOL(blk_mq_init_queue);
2326
07319678
BVA
2327static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2328{
2329 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2330
2331 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2332 __alignof__(struct blk_mq_hw_ctx)) !=
2333 sizeof(struct blk_mq_hw_ctx));
2334
2335 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2336 hw_ctx_size += sizeof(struct srcu_struct);
2337
2338 return hw_ctx_size;
2339}
2340
868f2f0b
KB
2341static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2342 struct request_queue *q)
320ae51f 2343{
868f2f0b
KB
2344 int i, j;
2345 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2346
868f2f0b 2347 blk_mq_sysfs_unregister(q);
24d2f903 2348 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2349 int node;
f14bbe77 2350
868f2f0b
KB
2351 if (hctxs[i])
2352 continue;
2353
2354 node = blk_mq_hw_queue_to_node(q->mq_map, i);
07319678 2355 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
cdef54dd 2356 GFP_KERNEL, node);
320ae51f 2357 if (!hctxs[i])
868f2f0b 2358 break;
320ae51f 2359
a86073e4 2360 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2361 node)) {
2362 kfree(hctxs[i]);
2363 hctxs[i] = NULL;
2364 break;
2365 }
e4043dcf 2366
0d2602ca 2367 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2368 hctxs[i]->numa_node = node;
320ae51f 2369 hctxs[i]->queue_num = i;
868f2f0b
KB
2370
2371 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2372 free_cpumask_var(hctxs[i]->cpumask);
2373 kfree(hctxs[i]);
2374 hctxs[i] = NULL;
2375 break;
2376 }
2377 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2378 }
868f2f0b
KB
2379 for (j = i; j < q->nr_hw_queues; j++) {
2380 struct blk_mq_hw_ctx *hctx = hctxs[j];
2381
2382 if (hctx) {
cc71a6f4
JA
2383 if (hctx->tags)
2384 blk_mq_free_map_and_requests(set, j);
868f2f0b 2385 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2386 kobject_put(&hctx->kobj);
868f2f0b
KB
2387 hctxs[j] = NULL;
2388
2389 }
2390 }
2391 q->nr_hw_queues = i;
2392 blk_mq_sysfs_register(q);
2393}
2394
2395struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2396 struct request_queue *q)
2397{
66841672
ML
2398 /* mark the queue as mq asap */
2399 q->mq_ops = set->ops;
2400
34dbad5d 2401 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2402 blk_mq_poll_stats_bkt,
2403 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2404 if (!q->poll_cb)
2405 goto err_exit;
2406
868f2f0b
KB
2407 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2408 if (!q->queue_ctx)
c7de5726 2409 goto err_exit;
868f2f0b 2410
737f98cf
ML
2411 /* init q->mq_kobj and sw queues' kobjects */
2412 blk_mq_sysfs_init(q);
2413
868f2f0b
KB
2414 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2415 GFP_KERNEL, set->numa_node);
2416 if (!q->queue_hw_ctx)
2417 goto err_percpu;
2418
bdd17e75 2419 q->mq_map = set->mq_map;
868f2f0b
KB
2420
2421 blk_mq_realloc_hw_ctxs(set, q);
2422 if (!q->nr_hw_queues)
2423 goto err_hctxs;
320ae51f 2424
287922eb 2425 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2426 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2427
2428 q->nr_queues = nr_cpu_ids;
320ae51f 2429
94eddfbe 2430 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2431
05f1dd53
JA
2432 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2433 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2434
1be036e9
CH
2435 q->sg_reserved_size = INT_MAX;
2436
2849450a 2437 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2438 INIT_LIST_HEAD(&q->requeue_list);
2439 spin_lock_init(&q->requeue_lock);
2440
254d259d 2441 blk_queue_make_request(q, blk_mq_make_request);
ea435e1b
CH
2442 if (q->mq_ops->poll)
2443 q->poll_fn = blk_mq_poll;
07068d5b 2444
eba71768
JA
2445 /*
2446 * Do this after blk_queue_make_request() overrides it...
2447 */
2448 q->nr_requests = set->queue_depth;
2449
64f1c21e
JA
2450 /*
2451 * Default to classic polling
2452 */
2453 q->poll_nsec = -1;
2454
24d2f903
CH
2455 if (set->ops->complete)
2456 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2457
24d2f903 2458 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2459 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2460 blk_mq_map_swqueue(q);
4593fdbe 2461
d3484991
JA
2462 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2463 int ret;
2464
2465 ret = blk_mq_sched_init(q);
2466 if (ret)
2467 return ERR_PTR(ret);
2468 }
2469
320ae51f 2470 return q;
18741986 2471
320ae51f 2472err_hctxs:
868f2f0b 2473 kfree(q->queue_hw_ctx);
320ae51f 2474err_percpu:
868f2f0b 2475 free_percpu(q->queue_ctx);
c7de5726
ML
2476err_exit:
2477 q->mq_ops = NULL;
320ae51f
JA
2478 return ERR_PTR(-ENOMEM);
2479}
b62c21b7 2480EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2481
2482void blk_mq_free_queue(struct request_queue *q)
2483{
624dbe47 2484 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2485
0d2602ca 2486 blk_mq_del_queue_tag_set(q);
624dbe47 2487 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2488}
320ae51f
JA
2489
2490/* Basically redo blk_mq_init_queue with queue frozen */
4b855ad3 2491static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f 2492{
4ecd4fef 2493 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2494
9c1051aa 2495 blk_mq_debugfs_unregister_hctxs(q);
67aec14c
JA
2496 blk_mq_sysfs_unregister(q);
2497
320ae51f
JA
2498 /*
2499 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2500 * we should change hctx numa_node according to new topology (this
2501 * involves free and re-allocate memory, worthy doing?)
2502 */
2503
4b855ad3 2504 blk_mq_map_swqueue(q);
320ae51f 2505
67aec14c 2506 blk_mq_sysfs_register(q);
9c1051aa 2507 blk_mq_debugfs_register_hctxs(q);
320ae51f
JA
2508}
2509
a5164405
JA
2510static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2511{
2512 int i;
2513
cc71a6f4
JA
2514 for (i = 0; i < set->nr_hw_queues; i++)
2515 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2516 goto out_unwind;
a5164405
JA
2517
2518 return 0;
2519
2520out_unwind:
2521 while (--i >= 0)
cc71a6f4 2522 blk_mq_free_rq_map(set->tags[i]);
a5164405 2523
a5164405
JA
2524 return -ENOMEM;
2525}
2526
2527/*
2528 * Allocate the request maps associated with this tag_set. Note that this
2529 * may reduce the depth asked for, if memory is tight. set->queue_depth
2530 * will be updated to reflect the allocated depth.
2531 */
2532static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2533{
2534 unsigned int depth;
2535 int err;
2536
2537 depth = set->queue_depth;
2538 do {
2539 err = __blk_mq_alloc_rq_maps(set);
2540 if (!err)
2541 break;
2542
2543 set->queue_depth >>= 1;
2544 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2545 err = -ENOMEM;
2546 break;
2547 }
2548 } while (set->queue_depth);
2549
2550 if (!set->queue_depth || err) {
2551 pr_err("blk-mq: failed to allocate request map\n");
2552 return -ENOMEM;
2553 }
2554
2555 if (depth != set->queue_depth)
2556 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2557 depth, set->queue_depth);
2558
2559 return 0;
2560}
2561
ebe8bddb
OS
2562static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2563{
2564 if (set->ops->map_queues)
2565 return set->ops->map_queues(set);
2566 else
2567 return blk_mq_map_queues(set);
2568}
2569
a4391c64
JA
2570/*
2571 * Alloc a tag set to be associated with one or more request queues.
2572 * May fail with EINVAL for various error conditions. May adjust the
2573 * requested depth down, if if it too large. In that case, the set
2574 * value will be stored in set->queue_depth.
2575 */
24d2f903
CH
2576int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2577{
da695ba2
CH
2578 int ret;
2579
205fb5f5
BVA
2580 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2581
24d2f903
CH
2582 if (!set->nr_hw_queues)
2583 return -EINVAL;
a4391c64 2584 if (!set->queue_depth)
24d2f903
CH
2585 return -EINVAL;
2586 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2587 return -EINVAL;
2588
7d7e0f90 2589 if (!set->ops->queue_rq)
24d2f903
CH
2590 return -EINVAL;
2591
de148297
ML
2592 if (!set->ops->get_budget ^ !set->ops->put_budget)
2593 return -EINVAL;
2594
a4391c64
JA
2595 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2596 pr_info("blk-mq: reduced tag depth to %u\n",
2597 BLK_MQ_MAX_DEPTH);
2598 set->queue_depth = BLK_MQ_MAX_DEPTH;
2599 }
24d2f903 2600
6637fadf
SL
2601 /*
2602 * If a crashdump is active, then we are potentially in a very
2603 * memory constrained environment. Limit us to 1 queue and
2604 * 64 tags to prevent using too much memory.
2605 */
2606 if (is_kdump_kernel()) {
2607 set->nr_hw_queues = 1;
2608 set->queue_depth = min(64U, set->queue_depth);
2609 }
868f2f0b
KB
2610 /*
2611 * There is no use for more h/w queues than cpus.
2612 */
2613 if (set->nr_hw_queues > nr_cpu_ids)
2614 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2615
868f2f0b 2616 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2617 GFP_KERNEL, set->numa_node);
2618 if (!set->tags)
a5164405 2619 return -ENOMEM;
24d2f903 2620
da695ba2
CH
2621 ret = -ENOMEM;
2622 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2623 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2624 if (!set->mq_map)
2625 goto out_free_tags;
2626
ebe8bddb 2627 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2628 if (ret)
2629 goto out_free_mq_map;
2630
2631 ret = blk_mq_alloc_rq_maps(set);
2632 if (ret)
bdd17e75 2633 goto out_free_mq_map;
24d2f903 2634
0d2602ca
JA
2635 mutex_init(&set->tag_list_lock);
2636 INIT_LIST_HEAD(&set->tag_list);
2637
24d2f903 2638 return 0;
bdd17e75
CH
2639
2640out_free_mq_map:
2641 kfree(set->mq_map);
2642 set->mq_map = NULL;
2643out_free_tags:
5676e7b6
RE
2644 kfree(set->tags);
2645 set->tags = NULL;
da695ba2 2646 return ret;
24d2f903
CH
2647}
2648EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2649
2650void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2651{
2652 int i;
2653
cc71a6f4
JA
2654 for (i = 0; i < nr_cpu_ids; i++)
2655 blk_mq_free_map_and_requests(set, i);
484b4061 2656
bdd17e75
CH
2657 kfree(set->mq_map);
2658 set->mq_map = NULL;
2659
981bd189 2660 kfree(set->tags);
5676e7b6 2661 set->tags = NULL;
24d2f903
CH
2662}
2663EXPORT_SYMBOL(blk_mq_free_tag_set);
2664
e3a2b3f9
JA
2665int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2666{
2667 struct blk_mq_tag_set *set = q->tag_set;
2668 struct blk_mq_hw_ctx *hctx;
2669 int i, ret;
2670
bd166ef1 2671 if (!set)
e3a2b3f9
JA
2672 return -EINVAL;
2673
70f36b60 2674 blk_mq_freeze_queue(q);
70f36b60 2675
e3a2b3f9
JA
2676 ret = 0;
2677 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2678 if (!hctx->tags)
2679 continue;
bd166ef1
JA
2680 /*
2681 * If we're using an MQ scheduler, just update the scheduler
2682 * queue depth. This is similar to what the old code would do.
2683 */
70f36b60 2684 if (!hctx->sched_tags) {
c2e82a23 2685 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
2686 false);
2687 } else {
2688 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2689 nr, true);
2690 }
e3a2b3f9
JA
2691 if (ret)
2692 break;
2693 }
2694
2695 if (!ret)
2696 q->nr_requests = nr;
2697
70f36b60 2698 blk_mq_unfreeze_queue(q);
70f36b60 2699
e3a2b3f9
JA
2700 return ret;
2701}
2702
e4dc2b32
KB
2703static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2704 int nr_hw_queues)
868f2f0b
KB
2705{
2706 struct request_queue *q;
2707
705cda97
BVA
2708 lockdep_assert_held(&set->tag_list_lock);
2709
868f2f0b
KB
2710 if (nr_hw_queues > nr_cpu_ids)
2711 nr_hw_queues = nr_cpu_ids;
2712 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2713 return;
2714
2715 list_for_each_entry(q, &set->tag_list, tag_set_list)
2716 blk_mq_freeze_queue(q);
2717
2718 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2719 blk_mq_update_queue_map(set);
868f2f0b
KB
2720 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2721 blk_mq_realloc_hw_ctxs(set, q);
4b855ad3 2722 blk_mq_queue_reinit(q);
868f2f0b
KB
2723 }
2724
2725 list_for_each_entry(q, &set->tag_list, tag_set_list)
2726 blk_mq_unfreeze_queue(q);
2727}
e4dc2b32
KB
2728
2729void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2730{
2731 mutex_lock(&set->tag_list_lock);
2732 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2733 mutex_unlock(&set->tag_list_lock);
2734}
868f2f0b
KB
2735EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2736
34dbad5d
OS
2737/* Enable polling stats and return whether they were already enabled. */
2738static bool blk_poll_stats_enable(struct request_queue *q)
2739{
2740 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2741 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2742 return true;
2743 blk_stat_add_callback(q, q->poll_cb);
2744 return false;
2745}
2746
2747static void blk_mq_poll_stats_start(struct request_queue *q)
2748{
2749 /*
2750 * We don't arm the callback if polling stats are not enabled or the
2751 * callback is already active.
2752 */
2753 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2754 blk_stat_is_active(q->poll_cb))
2755 return;
2756
2757 blk_stat_activate_msecs(q->poll_cb, 100);
2758}
2759
2760static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2761{
2762 struct request_queue *q = cb->data;
720b8ccc 2763 int bucket;
34dbad5d 2764
720b8ccc
SB
2765 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2766 if (cb->stat[bucket].nr_samples)
2767 q->poll_stat[bucket] = cb->stat[bucket];
2768 }
34dbad5d
OS
2769}
2770
64f1c21e
JA
2771static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2772 struct blk_mq_hw_ctx *hctx,
2773 struct request *rq)
2774{
64f1c21e 2775 unsigned long ret = 0;
720b8ccc 2776 int bucket;
64f1c21e
JA
2777
2778 /*
2779 * If stats collection isn't on, don't sleep but turn it on for
2780 * future users
2781 */
34dbad5d 2782 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2783 return 0;
2784
64f1c21e
JA
2785 /*
2786 * As an optimistic guess, use half of the mean service time
2787 * for this type of request. We can (and should) make this smarter.
2788 * For instance, if the completion latencies are tight, we can
2789 * get closer than just half the mean. This is especially
2790 * important on devices where the completion latencies are longer
720b8ccc
SB
2791 * than ~10 usec. We do use the stats for the relevant IO size
2792 * if available which does lead to better estimates.
64f1c21e 2793 */
720b8ccc
SB
2794 bucket = blk_mq_poll_stats_bkt(rq);
2795 if (bucket < 0)
2796 return ret;
2797
2798 if (q->poll_stat[bucket].nr_samples)
2799 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
2800
2801 return ret;
2802}
2803
06426adf 2804static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2805 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2806 struct request *rq)
2807{
2808 struct hrtimer_sleeper hs;
2809 enum hrtimer_mode mode;
64f1c21e 2810 unsigned int nsecs;
06426adf
JA
2811 ktime_t kt;
2812
64f1c21e
JA
2813 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2814 return false;
2815
2816 /*
2817 * poll_nsec can be:
2818 *
2819 * -1: don't ever hybrid sleep
2820 * 0: use half of prev avg
2821 * >0: use this specific value
2822 */
2823 if (q->poll_nsec == -1)
2824 return false;
2825 else if (q->poll_nsec > 0)
2826 nsecs = q->poll_nsec;
2827 else
2828 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2829
2830 if (!nsecs)
06426adf
JA
2831 return false;
2832
2833 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2834
2835 /*
2836 * This will be replaced with the stats tracking code, using
2837 * 'avg_completion_time / 2' as the pre-sleep target.
2838 */
8b0e1953 2839 kt = nsecs;
06426adf
JA
2840
2841 mode = HRTIMER_MODE_REL;
2842 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2843 hrtimer_set_expires(&hs.timer, kt);
2844
2845 hrtimer_init_sleeper(&hs, current);
2846 do {
2847 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2848 break;
2849 set_current_state(TASK_UNINTERRUPTIBLE);
2850 hrtimer_start_expires(&hs.timer, mode);
2851 if (hs.task)
2852 io_schedule();
2853 hrtimer_cancel(&hs.timer);
2854 mode = HRTIMER_MODE_ABS;
2855 } while (hs.task && !signal_pending(current));
2856
2857 __set_current_state(TASK_RUNNING);
2858 destroy_hrtimer_on_stack(&hs.timer);
2859 return true;
2860}
2861
bbd7bb70
JA
2862static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2863{
2864 struct request_queue *q = hctx->queue;
2865 long state;
2866
06426adf
JA
2867 /*
2868 * If we sleep, have the caller restart the poll loop to reset
2869 * the state. Like for the other success return cases, the
2870 * caller is responsible for checking if the IO completed. If
2871 * the IO isn't complete, we'll get called again and will go
2872 * straight to the busy poll loop.
2873 */
64f1c21e 2874 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2875 return true;
2876
bbd7bb70
JA
2877 hctx->poll_considered++;
2878
2879 state = current->state;
2880 while (!need_resched()) {
2881 int ret;
2882
2883 hctx->poll_invoked++;
2884
2885 ret = q->mq_ops->poll(hctx, rq->tag);
2886 if (ret > 0) {
2887 hctx->poll_success++;
2888 set_current_state(TASK_RUNNING);
2889 return true;
2890 }
2891
2892 if (signal_pending_state(state, current))
2893 set_current_state(TASK_RUNNING);
2894
2895 if (current->state == TASK_RUNNING)
2896 return true;
2897 if (ret < 0)
2898 break;
2899 cpu_relax();
2900 }
2901
2902 return false;
2903}
2904
ea435e1b 2905static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
bbd7bb70
JA
2906{
2907 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
2908 struct request *rq;
2909
ea435e1b 2910 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
bbd7bb70
JA
2911 return false;
2912
bbd7bb70 2913 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2914 if (!blk_qc_t_is_internal(cookie))
2915 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3a07bb1d 2916 else {
bd166ef1 2917 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3a07bb1d
JA
2918 /*
2919 * With scheduling, if the request has completed, we'll
2920 * get a NULL return here, as we clear the sched tag when
2921 * that happens. The request still remains valid, like always,
2922 * so we should be safe with just the NULL check.
2923 */
2924 if (!rq)
2925 return false;
2926 }
bbd7bb70
JA
2927
2928 return __blk_mq_poll(hctx, rq);
2929}
bbd7bb70 2930
320ae51f
JA
2931static int __init blk_mq_init(void)
2932{
fc13457f
JA
2933 /*
2934 * See comment in block/blk.h rq_atomic_flags enum
2935 */
2936 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
2937 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
2938
9467f859
TG
2939 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2940 blk_mq_hctx_notify_dead);
320ae51f
JA
2941 return 0;
2942}
2943subsys_initcall(blk_mq_init);