]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-mq.c
block: don't call ioc_exit_icq() with the queue lock held for blk-mq
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
23#include <linux/delay.h>
aedcd72f 24#include <linux/crash_dump.h>
88c7b2b7 25#include <linux/prefetch.h>
320ae51f
JA
26
27#include <trace/events/block.h>
28
29#include <linux/blk-mq.h>
30#include "blk.h"
31#include "blk-mq.h"
32#include "blk-mq-tag.h"
cf43e6be 33#include "blk-stat.h"
87760e5e 34#include "blk-wbt.h"
bd166ef1 35#include "blk-mq-sched.h"
320ae51f
JA
36
37static DEFINE_MUTEX(all_q_mutex);
38static LIST_HEAD(all_q_list);
39
320ae51f
JA
40/*
41 * Check if any of the ctx's have pending work in this hardware queue
42 */
50e1dab8 43bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 44{
bd166ef1
JA
45 return sbitmap_any_bit_set(&hctx->ctx_map) ||
46 !list_empty_careful(&hctx->dispatch) ||
47 blk_mq_sched_has_work(hctx);
1429d7c9
JA
48}
49
320ae51f
JA
50/*
51 * Mark this ctx as having pending work in this hardware queue
52 */
53static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
54 struct blk_mq_ctx *ctx)
55{
88459642
OS
56 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
57 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
58}
59
60static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
61 struct blk_mq_ctx *ctx)
62{
88459642 63 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
64}
65
b4c6a028 66void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 67{
4ecd4fef 68 int freeze_depth;
cddd5d17 69
4ecd4fef
CH
70 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
71 if (freeze_depth == 1) {
3ef28e83 72 percpu_ref_kill(&q->q_usage_counter);
b94ec296 73 blk_mq_run_hw_queues(q, false);
cddd5d17 74 }
f3af020b 75}
b4c6a028 76EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
f3af020b 77
6bae363e 78void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 79{
3ef28e83 80 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 81}
6bae363e 82EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 83
f91328c4
KB
84int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
85 unsigned long timeout)
86{
87 return wait_event_timeout(q->mq_freeze_wq,
88 percpu_ref_is_zero(&q->q_usage_counter),
89 timeout);
90}
91EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
92
f3af020b
TH
93/*
94 * Guarantee no request is in use, so we can change any data structure of
95 * the queue afterward.
96 */
3ef28e83 97void blk_freeze_queue(struct request_queue *q)
f3af020b 98{
3ef28e83
DW
99 /*
100 * In the !blk_mq case we are only calling this to kill the
101 * q_usage_counter, otherwise this increases the freeze depth
102 * and waits for it to return to zero. For this reason there is
103 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
104 * exported to drivers as the only user for unfreeze is blk_mq.
105 */
f3af020b
TH
106 blk_mq_freeze_queue_start(q);
107 blk_mq_freeze_queue_wait(q);
108}
3ef28e83
DW
109
110void blk_mq_freeze_queue(struct request_queue *q)
111{
112 /*
113 * ...just an alias to keep freeze and unfreeze actions balanced
114 * in the blk_mq_* namespace
115 */
116 blk_freeze_queue(q);
117}
c761d96b 118EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 119
b4c6a028 120void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 121{
4ecd4fef 122 int freeze_depth;
320ae51f 123
4ecd4fef
CH
124 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
125 WARN_ON_ONCE(freeze_depth < 0);
126 if (!freeze_depth) {
3ef28e83 127 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 128 wake_up_all(&q->mq_freeze_wq);
add703fd 129 }
320ae51f 130}
b4c6a028 131EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 132
6a83e74d
BVA
133/**
134 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
135 * @q: request queue.
136 *
137 * Note: this function does not prevent that the struct request end_io()
138 * callback function is invoked. Additionally, it is not prevented that
139 * new queue_rq() calls occur unless the queue has been stopped first.
140 */
141void blk_mq_quiesce_queue(struct request_queue *q)
142{
143 struct blk_mq_hw_ctx *hctx;
144 unsigned int i;
145 bool rcu = false;
146
147 blk_mq_stop_hw_queues(q);
148
149 queue_for_each_hw_ctx(q, hctx, i) {
150 if (hctx->flags & BLK_MQ_F_BLOCKING)
151 synchronize_srcu(&hctx->queue_rq_srcu);
152 else
153 rcu = true;
154 }
155 if (rcu)
156 synchronize_rcu();
157}
158EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
159
aed3ea94
JA
160void blk_mq_wake_waiters(struct request_queue *q)
161{
162 struct blk_mq_hw_ctx *hctx;
163 unsigned int i;
164
165 queue_for_each_hw_ctx(q, hctx, i)
166 if (blk_mq_hw_queue_mapped(hctx))
167 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
168
169 /*
170 * If we are called because the queue has now been marked as
171 * dying, we need to ensure that processes currently waiting on
172 * the queue are notified as well.
173 */
174 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
175}
176
320ae51f
JA
177bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
178{
179 return blk_mq_has_free_tags(hctx->tags);
180}
181EXPORT_SYMBOL(blk_mq_can_queue);
182
2c3ad667
JA
183void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
184 struct request *rq, unsigned int op)
320ae51f 185{
af76e555
CH
186 INIT_LIST_HEAD(&rq->queuelist);
187 /* csd/requeue_work/fifo_time is initialized before use */
188 rq->q = q;
320ae51f 189 rq->mq_ctx = ctx;
ef295ecf 190 rq->cmd_flags = op;
e8064021
CH
191 if (blk_queue_io_stat(q))
192 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
193 /* do not touch atomic flags, it needs atomic ops against the timer */
194 rq->cpu = -1;
af76e555
CH
195 INIT_HLIST_NODE(&rq->hash);
196 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
197 rq->rq_disk = NULL;
198 rq->part = NULL;
3ee32372 199 rq->start_time = jiffies;
af76e555
CH
200#ifdef CONFIG_BLK_CGROUP
201 rq->rl = NULL;
0fec08b4 202 set_start_time_ns(rq);
af76e555
CH
203 rq->io_start_time_ns = 0;
204#endif
205 rq->nr_phys_segments = 0;
206#if defined(CONFIG_BLK_DEV_INTEGRITY)
207 rq->nr_integrity_segments = 0;
208#endif
af76e555
CH
209 rq->special = NULL;
210 /* tag was already set */
211 rq->errors = 0;
af76e555 212 rq->extra_len = 0;
af76e555 213
af76e555 214 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
215 rq->timeout = 0;
216
af76e555
CH
217 rq->end_io = NULL;
218 rq->end_io_data = NULL;
219 rq->next_rq = NULL;
220
ef295ecf 221 ctx->rq_dispatched[op_is_sync(op)]++;
320ae51f 222}
2c3ad667 223EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
320ae51f 224
2c3ad667
JA
225struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
226 unsigned int op)
5dee8577
CH
227{
228 struct request *rq;
229 unsigned int tag;
230
cb96a42c 231 tag = blk_mq_get_tag(data);
5dee8577 232 if (tag != BLK_MQ_TAG_FAIL) {
bd166ef1
JA
233 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
234
235 rq = tags->static_rqs[tag];
5dee8577 236
bd166ef1
JA
237 if (data->flags & BLK_MQ_REQ_INTERNAL) {
238 rq->tag = -1;
239 rq->internal_tag = tag;
240 } else {
200e86b3
JA
241 if (blk_mq_tag_busy(data->hctx)) {
242 rq->rq_flags = RQF_MQ_INFLIGHT;
243 atomic_inc(&data->hctx->nr_active);
244 }
bd166ef1
JA
245 rq->tag = tag;
246 rq->internal_tag = -1;
562bef42 247 data->hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
248 }
249
ef295ecf 250 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
5dee8577
CH
251 return rq;
252 }
253
254 return NULL;
255}
2c3ad667 256EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
5dee8577 257
6f3b0e8b
CH
258struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
259 unsigned int flags)
320ae51f 260{
5a797e00 261 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 262 struct request *rq;
a492f075 263 int ret;
320ae51f 264
6f3b0e8b 265 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
266 if (ret)
267 return ERR_PTR(ret);
320ae51f 268
bd166ef1 269 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
841bac2c 270
bd166ef1
JA
271 blk_mq_put_ctx(alloc_data.ctx);
272 blk_queue_exit(q);
273
274 if (!rq)
a492f075 275 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
276
277 rq->__data_len = 0;
278 rq->__sector = (sector_t) -1;
279 rq->bio = rq->biotail = NULL;
320ae51f
JA
280 return rq;
281}
4bb659b1 282EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 283
1f5bd336
ML
284struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
285 unsigned int flags, unsigned int hctx_idx)
286{
6d2809d5 287 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 288 struct request *rq;
6d2809d5 289 unsigned int cpu;
1f5bd336
ML
290 int ret;
291
292 /*
293 * If the tag allocator sleeps we could get an allocation for a
294 * different hardware context. No need to complicate the low level
295 * allocator for this for the rare use case of a command tied to
296 * a specific queue.
297 */
298 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
299 return ERR_PTR(-EINVAL);
300
301 if (hctx_idx >= q->nr_hw_queues)
302 return ERR_PTR(-EIO);
303
304 ret = blk_queue_enter(q, true);
305 if (ret)
306 return ERR_PTR(ret);
307
c8712c6a
CH
308 /*
309 * Check if the hardware context is actually mapped to anything.
310 * If not tell the caller that it should skip this queue.
311 */
6d2809d5
OS
312 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
313 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
314 blk_queue_exit(q);
315 return ERR_PTR(-EXDEV);
1f5bd336 316 }
6d2809d5
OS
317 cpu = cpumask_first(alloc_data.hctx->cpumask);
318 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 319
6d2809d5 320 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
c8712c6a 321
6d2809d5 322 blk_mq_put_ctx(alloc_data.ctx);
c8712c6a 323 blk_queue_exit(q);
6d2809d5
OS
324
325 if (!rq)
326 return ERR_PTR(-EWOULDBLOCK);
327
328 return rq;
1f5bd336
ML
329}
330EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
331
bd166ef1
JA
332void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
333 struct request *rq)
320ae51f 334{
bd166ef1 335 const int sched_tag = rq->internal_tag;
320ae51f
JA
336 struct request_queue *q = rq->q;
337
e8064021 338 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 339 atomic_dec(&hctx->nr_active);
87760e5e
JA
340
341 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 342 rq->rq_flags = 0;
0d2602ca 343
af76e555 344 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 345 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
346 if (rq->tag != -1)
347 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
348 if (sched_tag != -1)
349 blk_mq_sched_completed_request(hctx, rq);
50e1dab8 350 blk_mq_sched_restart_queues(hctx);
3ef28e83 351 blk_queue_exit(q);
320ae51f
JA
352}
353
bd166ef1 354static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
16a3c2a7 355 struct request *rq)
320ae51f
JA
356{
357 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
358
359 ctx->rq_completed[rq_is_sync(rq)]++;
bd166ef1
JA
360 __blk_mq_finish_request(hctx, ctx, rq);
361}
362
363void blk_mq_finish_request(struct request *rq)
364{
365 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
7c7f2f2b 366}
7c7f2f2b
JA
367
368void blk_mq_free_request(struct request *rq)
369{
bd166ef1 370 blk_mq_sched_put_request(rq);
320ae51f 371}
1a3b595a 372EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 373
c8a446ad 374inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 375{
0d11e6ac
ML
376 blk_account_io_done(rq);
377
91b63639 378 if (rq->end_io) {
87760e5e 379 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 380 rq->end_io(rq, error);
91b63639
CH
381 } else {
382 if (unlikely(blk_bidi_rq(rq)))
383 blk_mq_free_request(rq->next_rq);
320ae51f 384 blk_mq_free_request(rq);
91b63639 385 }
320ae51f 386}
c8a446ad 387EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 388
c8a446ad 389void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
390{
391 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
392 BUG();
c8a446ad 393 __blk_mq_end_request(rq, error);
63151a44 394}
c8a446ad 395EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 396
30a91cb4 397static void __blk_mq_complete_request_remote(void *data)
320ae51f 398{
3d6efbf6 399 struct request *rq = data;
320ae51f 400
30a91cb4 401 rq->q->softirq_done_fn(rq);
320ae51f 402}
320ae51f 403
ed851860 404static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
405{
406 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 407 bool shared = false;
320ae51f
JA
408 int cpu;
409
38535201 410 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
411 rq->q->softirq_done_fn(rq);
412 return;
413 }
320ae51f
JA
414
415 cpu = get_cpu();
38535201
CH
416 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
417 shared = cpus_share_cache(cpu, ctx->cpu);
418
419 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 420 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
421 rq->csd.info = rq;
422 rq->csd.flags = 0;
c46fff2a 423 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 424 } else {
30a91cb4 425 rq->q->softirq_done_fn(rq);
3d6efbf6 426 }
320ae51f
JA
427 put_cpu();
428}
30a91cb4 429
cf43e6be
JA
430static void blk_mq_stat_add(struct request *rq)
431{
432 if (rq->rq_flags & RQF_STATS) {
433 /*
434 * We could rq->mq_ctx here, but there's less of a risk
435 * of races if we have the completion event add the stats
436 * to the local software queue.
437 */
438 struct blk_mq_ctx *ctx;
439
440 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
441 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
442 }
443}
444
1fa8cc52 445static void __blk_mq_complete_request(struct request *rq)
ed851860
JA
446{
447 struct request_queue *q = rq->q;
448
cf43e6be
JA
449 blk_mq_stat_add(rq);
450
ed851860 451 if (!q->softirq_done_fn)
c8a446ad 452 blk_mq_end_request(rq, rq->errors);
ed851860
JA
453 else
454 blk_mq_ipi_complete_request(rq);
455}
456
30a91cb4
CH
457/**
458 * blk_mq_complete_request - end I/O on a request
459 * @rq: the request being processed
460 *
461 * Description:
462 * Ends all I/O on a request. It does not handle partial completions.
463 * The actual completion happens out-of-order, through a IPI handler.
464 **/
f4829a9b 465void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 466{
95f09684
JA
467 struct request_queue *q = rq->q;
468
469 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 470 return;
f4829a9b
CH
471 if (!blk_mark_rq_complete(rq)) {
472 rq->errors = error;
ed851860 473 __blk_mq_complete_request(rq);
f4829a9b 474 }
30a91cb4
CH
475}
476EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 477
973c0191
KB
478int blk_mq_request_started(struct request *rq)
479{
480 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
481}
482EXPORT_SYMBOL_GPL(blk_mq_request_started);
483
e2490073 484void blk_mq_start_request(struct request *rq)
320ae51f
JA
485{
486 struct request_queue *q = rq->q;
487
bd166ef1
JA
488 blk_mq_sched_started_request(rq);
489
320ae51f
JA
490 trace_block_rq_issue(q, rq);
491
cf43e6be
JA
492 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
493 blk_stat_set_issue_time(&rq->issue_stat);
494 rq->rq_flags |= RQF_STATS;
87760e5e 495 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
496 }
497
2b8393b4 498 blk_add_timer(rq);
87ee7b11 499
538b7534
JA
500 /*
501 * Ensure that ->deadline is visible before set the started
502 * flag and clear the completed flag.
503 */
504 smp_mb__before_atomic();
505
87ee7b11
JA
506 /*
507 * Mark us as started and clear complete. Complete might have been
508 * set if requeue raced with timeout, which then marked it as
509 * complete. So be sure to clear complete again when we start
510 * the request, otherwise we'll ignore the completion event.
511 */
4b570521
JA
512 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
513 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
514 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
515 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
516
517 if (q->dma_drain_size && blk_rq_bytes(rq)) {
518 /*
519 * Make sure space for the drain appears. We know we can do
520 * this because max_hw_segments has been adjusted to be one
521 * fewer than the device can handle.
522 */
523 rq->nr_phys_segments++;
524 }
320ae51f 525}
e2490073 526EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 527
ed0791b2 528static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
529{
530 struct request_queue *q = rq->q;
531
532 trace_block_rq_requeue(q, rq);
87760e5e 533 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 534 blk_mq_sched_requeue_request(rq);
49f5baa5 535
e2490073
CH
536 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
537 if (q->dma_drain_size && blk_rq_bytes(rq))
538 rq->nr_phys_segments--;
539 }
320ae51f
JA
540}
541
2b053aca 542void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 543{
ed0791b2 544 __blk_mq_requeue_request(rq);
ed0791b2 545
ed0791b2 546 BUG_ON(blk_queued_rq(rq));
2b053aca 547 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
548}
549EXPORT_SYMBOL(blk_mq_requeue_request);
550
6fca6a61
CH
551static void blk_mq_requeue_work(struct work_struct *work)
552{
553 struct request_queue *q =
2849450a 554 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
555 LIST_HEAD(rq_list);
556 struct request *rq, *next;
557 unsigned long flags;
558
559 spin_lock_irqsave(&q->requeue_lock, flags);
560 list_splice_init(&q->requeue_list, &rq_list);
561 spin_unlock_irqrestore(&q->requeue_lock, flags);
562
563 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 564 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
565 continue;
566
e8064021 567 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 568 list_del_init(&rq->queuelist);
bd6737f1 569 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
570 }
571
572 while (!list_empty(&rq_list)) {
573 rq = list_entry(rq_list.next, struct request, queuelist);
574 list_del_init(&rq->queuelist);
bd6737f1 575 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
576 }
577
52d7f1b5 578 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
579}
580
2b053aca
BVA
581void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
582 bool kick_requeue_list)
6fca6a61
CH
583{
584 struct request_queue *q = rq->q;
585 unsigned long flags;
586
587 /*
588 * We abuse this flag that is otherwise used by the I/O scheduler to
589 * request head insertation from the workqueue.
590 */
e8064021 591 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
592
593 spin_lock_irqsave(&q->requeue_lock, flags);
594 if (at_head) {
e8064021 595 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
596 list_add(&rq->queuelist, &q->requeue_list);
597 } else {
598 list_add_tail(&rq->queuelist, &q->requeue_list);
599 }
600 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
601
602 if (kick_requeue_list)
603 blk_mq_kick_requeue_list(q);
6fca6a61
CH
604}
605EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
606
607void blk_mq_kick_requeue_list(struct request_queue *q)
608{
2849450a 609 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
610}
611EXPORT_SYMBOL(blk_mq_kick_requeue_list);
612
2849450a
MS
613void blk_mq_delay_kick_requeue_list(struct request_queue *q,
614 unsigned long msecs)
615{
616 kblockd_schedule_delayed_work(&q->requeue_work,
617 msecs_to_jiffies(msecs));
618}
619EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
620
1885b24d
JA
621void blk_mq_abort_requeue_list(struct request_queue *q)
622{
623 unsigned long flags;
624 LIST_HEAD(rq_list);
625
626 spin_lock_irqsave(&q->requeue_lock, flags);
627 list_splice_init(&q->requeue_list, &rq_list);
628 spin_unlock_irqrestore(&q->requeue_lock, flags);
629
630 while (!list_empty(&rq_list)) {
631 struct request *rq;
632
633 rq = list_first_entry(&rq_list, struct request, queuelist);
634 list_del_init(&rq->queuelist);
635 rq->errors = -EIO;
636 blk_mq_end_request(rq, rq->errors);
637 }
638}
639EXPORT_SYMBOL(blk_mq_abort_requeue_list);
640
0e62f51f
JA
641struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
642{
88c7b2b7
JA
643 if (tag < tags->nr_tags) {
644 prefetch(tags->rqs[tag]);
4ee86bab 645 return tags->rqs[tag];
88c7b2b7 646 }
4ee86bab
HR
647
648 return NULL;
24d2f903
CH
649}
650EXPORT_SYMBOL(blk_mq_tag_to_rq);
651
320ae51f 652struct blk_mq_timeout_data {
46f92d42
CH
653 unsigned long next;
654 unsigned int next_set;
320ae51f
JA
655};
656
90415837 657void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 658{
f8a5b122 659 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 660 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
661
662 /*
663 * We know that complete is set at this point. If STARTED isn't set
664 * anymore, then the request isn't active and the "timeout" should
665 * just be ignored. This can happen due to the bitflag ordering.
666 * Timeout first checks if STARTED is set, and if it is, assumes
667 * the request is active. But if we race with completion, then
668 * we both flags will get cleared. So check here again, and ignore
669 * a timeout event with a request that isn't active.
670 */
46f92d42
CH
671 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
672 return;
87ee7b11 673
46f92d42 674 if (ops->timeout)
0152fb6b 675 ret = ops->timeout(req, reserved);
46f92d42
CH
676
677 switch (ret) {
678 case BLK_EH_HANDLED:
679 __blk_mq_complete_request(req);
680 break;
681 case BLK_EH_RESET_TIMER:
682 blk_add_timer(req);
683 blk_clear_rq_complete(req);
684 break;
685 case BLK_EH_NOT_HANDLED:
686 break;
687 default:
688 printk(KERN_ERR "block: bad eh return: %d\n", ret);
689 break;
690 }
87ee7b11 691}
5b3f25fc 692
81481eb4
CH
693static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
694 struct request *rq, void *priv, bool reserved)
695{
696 struct blk_mq_timeout_data *data = priv;
87ee7b11 697
eb130dbf
KB
698 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
699 /*
700 * If a request wasn't started before the queue was
701 * marked dying, kill it here or it'll go unnoticed.
702 */
a59e0f57
KB
703 if (unlikely(blk_queue_dying(rq->q))) {
704 rq->errors = -EIO;
705 blk_mq_end_request(rq, rq->errors);
706 }
46f92d42 707 return;
eb130dbf 708 }
87ee7b11 709
46f92d42
CH
710 if (time_after_eq(jiffies, rq->deadline)) {
711 if (!blk_mark_rq_complete(rq))
0152fb6b 712 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
713 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
714 data->next = rq->deadline;
715 data->next_set = 1;
716 }
87ee7b11
JA
717}
718
287922eb 719static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 720{
287922eb
CH
721 struct request_queue *q =
722 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
723 struct blk_mq_timeout_data data = {
724 .next = 0,
725 .next_set = 0,
726 };
81481eb4 727 int i;
320ae51f 728
71f79fb3
GKB
729 /* A deadlock might occur if a request is stuck requiring a
730 * timeout at the same time a queue freeze is waiting
731 * completion, since the timeout code would not be able to
732 * acquire the queue reference here.
733 *
734 * That's why we don't use blk_queue_enter here; instead, we use
735 * percpu_ref_tryget directly, because we need to be able to
736 * obtain a reference even in the short window between the queue
737 * starting to freeze, by dropping the first reference in
738 * blk_mq_freeze_queue_start, and the moment the last request is
739 * consumed, marked by the instant q_usage_counter reaches
740 * zero.
741 */
742 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
743 return;
744
0bf6cd5b 745 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 746
81481eb4
CH
747 if (data.next_set) {
748 data.next = blk_rq_timeout(round_jiffies_up(data.next));
749 mod_timer(&q->timeout, data.next);
0d2602ca 750 } else {
0bf6cd5b
CH
751 struct blk_mq_hw_ctx *hctx;
752
f054b56c
ML
753 queue_for_each_hw_ctx(q, hctx, i) {
754 /* the hctx may be unmapped, so check it here */
755 if (blk_mq_hw_queue_mapped(hctx))
756 blk_mq_tag_idle(hctx);
757 }
0d2602ca 758 }
287922eb 759 blk_queue_exit(q);
320ae51f
JA
760}
761
762/*
763 * Reverse check our software queue for entries that we could potentially
764 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
765 * too much time checking for merges.
766 */
767static bool blk_mq_attempt_merge(struct request_queue *q,
768 struct blk_mq_ctx *ctx, struct bio *bio)
769{
770 struct request *rq;
771 int checked = 8;
772
773 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
34fe7c05 774 bool merged = false;
320ae51f
JA
775
776 if (!checked--)
777 break;
778
779 if (!blk_rq_merge_ok(rq, bio))
780 continue;
781
34fe7c05
CH
782 switch (blk_try_merge(rq, bio)) {
783 case ELEVATOR_BACK_MERGE:
784 if (blk_mq_sched_allow_merge(q, rq, bio))
785 merged = bio_attempt_back_merge(q, rq, bio);
bd166ef1 786 break;
34fe7c05
CH
787 case ELEVATOR_FRONT_MERGE:
788 if (blk_mq_sched_allow_merge(q, rq, bio))
789 merged = bio_attempt_front_merge(q, rq, bio);
320ae51f 790 break;
1e739730
CH
791 case ELEVATOR_DISCARD_MERGE:
792 merged = bio_attempt_discard_merge(q, rq, bio);
320ae51f 793 break;
34fe7c05
CH
794 default:
795 continue;
320ae51f 796 }
34fe7c05
CH
797
798 if (merged)
799 ctx->rq_merged++;
800 return merged;
320ae51f
JA
801 }
802
803 return false;
804}
805
88459642
OS
806struct flush_busy_ctx_data {
807 struct blk_mq_hw_ctx *hctx;
808 struct list_head *list;
809};
810
811static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
812{
813 struct flush_busy_ctx_data *flush_data = data;
814 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
815 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
816
817 sbitmap_clear_bit(sb, bitnr);
818 spin_lock(&ctx->lock);
819 list_splice_tail_init(&ctx->rq_list, flush_data->list);
820 spin_unlock(&ctx->lock);
821 return true;
822}
823
1429d7c9
JA
824/*
825 * Process software queues that have been marked busy, splicing them
826 * to the for-dispatch
827 */
2c3ad667 828void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 829{
88459642
OS
830 struct flush_busy_ctx_data data = {
831 .hctx = hctx,
832 .list = list,
833 };
1429d7c9 834
88459642 835 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 836}
2c3ad667 837EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 838
703fd1c0
JA
839static inline unsigned int queued_to_index(unsigned int queued)
840{
841 if (!queued)
842 return 0;
1429d7c9 843
703fd1c0 844 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
845}
846
bd6737f1
JA
847bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
848 bool wait)
bd166ef1
JA
849{
850 struct blk_mq_alloc_data data = {
851 .q = rq->q,
bd166ef1
JA
852 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
853 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
854 };
855
bd166ef1
JA
856 if (rq->tag != -1) {
857done:
858 if (hctx)
859 *hctx = data.hctx;
860 return true;
861 }
862
415b806d
SG
863 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
864 data.flags |= BLK_MQ_REQ_RESERVED;
865
bd166ef1
JA
866 rq->tag = blk_mq_get_tag(&data);
867 if (rq->tag >= 0) {
200e86b3
JA
868 if (blk_mq_tag_busy(data.hctx)) {
869 rq->rq_flags |= RQF_MQ_INFLIGHT;
870 atomic_inc(&data.hctx->nr_active);
871 }
bd166ef1
JA
872 data.hctx->tags->rqs[rq->tag] = rq;
873 goto done;
874 }
875
876 return false;
877}
878
99cf1dc5
JA
879static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
880 struct request *rq)
881{
882 if (rq->tag == -1 || rq->internal_tag == -1)
883 return;
884
885 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
886 rq->tag = -1;
887
888 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
889 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
890 atomic_dec(&hctx->nr_active);
891 }
892}
893
bd166ef1
JA
894/*
895 * If we fail getting a driver tag because all the driver tags are already
896 * assigned and on the dispatch list, BUT the first entry does not have a
897 * tag, then we could deadlock. For that case, move entries with assigned
898 * driver tags to the front, leaving the set of tagged requests in the
899 * same order, and the untagged set in the same order.
900 */
901static bool reorder_tags_to_front(struct list_head *list)
902{
903 struct request *rq, *tmp, *first = NULL;
904
905 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
906 if (rq == first)
907 break;
908 if (rq->tag != -1) {
909 list_move(&rq->queuelist, list);
910 if (!first)
911 first = rq;
912 }
913 }
914
915 return first != NULL;
916}
917
da55f2cc
OS
918static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
919 void *key)
920{
921 struct blk_mq_hw_ctx *hctx;
922
923 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
924
925 list_del(&wait->task_list);
926 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
927 blk_mq_run_hw_queue(hctx, true);
928 return 1;
929}
930
931static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
932{
933 struct sbq_wait_state *ws;
934
935 /*
936 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
937 * The thread which wins the race to grab this bit adds the hardware
938 * queue to the wait queue.
939 */
940 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
941 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
942 return false;
943
944 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
945 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
946
947 /*
948 * As soon as this returns, it's no longer safe to fiddle with
949 * hctx->dispatch_wait, since a completion can wake up the wait queue
950 * and unlock the bit.
951 */
952 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
953 return true;
954}
955
f04c3df3 956bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
320ae51f
JA
957{
958 struct request_queue *q = hctx->queue;
320ae51f 959 struct request *rq;
74c45052
JA
960 LIST_HEAD(driver_list);
961 struct list_head *dptr;
f04c3df3 962 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
320ae51f 963
74c45052
JA
964 /*
965 * Start off with dptr being NULL, so we start the first request
966 * immediately, even if we have more pending.
967 */
968 dptr = NULL;
969
320ae51f
JA
970 /*
971 * Now process all the entries, sending them to the driver.
972 */
1429d7c9 973 queued = 0;
f04c3df3 974 while (!list_empty(list)) {
74c45052 975 struct blk_mq_queue_data bd;
320ae51f 976
f04c3df3 977 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
978 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
979 if (!queued && reorder_tags_to_front(list))
980 continue;
3c782d67
JA
981
982 /*
da55f2cc
OS
983 * The initial allocation attempt failed, so we need to
984 * rerun the hardware queue when a tag is freed.
3c782d67 985 */
da55f2cc
OS
986 if (blk_mq_dispatch_wait_add(hctx)) {
987 /*
988 * It's possible that a tag was freed in the
989 * window between the allocation failure and
990 * adding the hardware queue to the wait queue.
991 */
992 if (!blk_mq_get_driver_tag(rq, &hctx, false))
993 break;
994 } else {
3c782d67 995 break;
da55f2cc 996 }
bd166ef1 997 }
da55f2cc 998
320ae51f 999 list_del_init(&rq->queuelist);
320ae51f 1000
74c45052
JA
1001 bd.rq = rq;
1002 bd.list = dptr;
f04c3df3 1003 bd.last = list_empty(list);
74c45052
JA
1004
1005 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
1006 switch (ret) {
1007 case BLK_MQ_RQ_QUEUE_OK:
1008 queued++;
52b9c330 1009 break;
320ae51f 1010 case BLK_MQ_RQ_QUEUE_BUSY:
99cf1dc5 1011 blk_mq_put_driver_tag(hctx, rq);
f04c3df3 1012 list_add(&rq->queuelist, list);
ed0791b2 1013 __blk_mq_requeue_request(rq);
320ae51f
JA
1014 break;
1015 default:
1016 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 1017 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 1018 rq->errors = -EIO;
c8a446ad 1019 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
1020 break;
1021 }
1022
1023 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1024 break;
74c45052
JA
1025
1026 /*
1027 * We've done the first request. If we have more than 1
1028 * left in the list, set dptr to defer issue.
1029 */
f04c3df3 1030 if (!dptr && list->next != list->prev)
74c45052 1031 dptr = &driver_list;
320ae51f
JA
1032 }
1033
703fd1c0 1034 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1035
1036 /*
1037 * Any items that need requeuing? Stuff them into hctx->dispatch,
1038 * that is where we will continue on next queue run.
1039 */
f04c3df3 1040 if (!list_empty(list)) {
320ae51f 1041 spin_lock(&hctx->lock);
c13660a0 1042 list_splice_init(list, &hctx->dispatch);
320ae51f 1043 spin_unlock(&hctx->lock);
f04c3df3 1044
9ba52e58
SL
1045 /*
1046 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1047 * it's possible the queue is stopped and restarted again
1048 * before this. Queue restart will dispatch requests. And since
1049 * requests in rq_list aren't added into hctx->dispatch yet,
1050 * the requests in rq_list might get lost.
1051 *
1052 * blk_mq_run_hw_queue() already checks the STOPPED bit
bd166ef1 1053 *
da55f2cc
OS
1054 * If RESTART or TAG_WAITING is set, then let completion restart
1055 * the queue instead of potentially looping here.
bd166ef1 1056 */
da55f2cc
OS
1057 if (!blk_mq_sched_needs_restart(hctx) &&
1058 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
bd166ef1 1059 blk_mq_run_hw_queue(hctx, true);
320ae51f 1060 }
f04c3df3 1061
2aa0f21d 1062 return queued != 0;
f04c3df3
JA
1063}
1064
6a83e74d
BVA
1065static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1066{
1067 int srcu_idx;
1068
1069 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1070 cpu_online(hctx->next_cpu));
1071
1072 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1073 rcu_read_lock();
bd166ef1 1074 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1075 rcu_read_unlock();
1076 } else {
1077 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
bd166ef1 1078 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1079 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1080 }
1081}
1082
506e931f
JA
1083/*
1084 * It'd be great if the workqueue API had a way to pass
1085 * in a mask and had some smarts for more clever placement.
1086 * For now we just round-robin here, switching for every
1087 * BLK_MQ_CPU_WORK_BATCH queued items.
1088 */
1089static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1090{
b657d7e6
CH
1091 if (hctx->queue->nr_hw_queues == 1)
1092 return WORK_CPU_UNBOUND;
506e931f
JA
1093
1094 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1095 int next_cpu;
506e931f
JA
1096
1097 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1098 if (next_cpu >= nr_cpu_ids)
1099 next_cpu = cpumask_first(hctx->cpumask);
1100
1101 hctx->next_cpu = next_cpu;
1102 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1103 }
1104
b657d7e6 1105 return hctx->next_cpu;
506e931f
JA
1106}
1107
320ae51f
JA
1108void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1109{
5d1b25c1
BVA
1110 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1111 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
1112 return;
1113
1b792f2f 1114 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1115 int cpu = get_cpu();
1116 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1117 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1118 put_cpu();
398205b8
PB
1119 return;
1120 }
e4043dcf 1121
2a90d4aa 1122 put_cpu();
e4043dcf 1123 }
398205b8 1124
27489a3c 1125 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
320ae51f
JA
1126}
1127
b94ec296 1128void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1129{
1130 struct blk_mq_hw_ctx *hctx;
1131 int i;
1132
1133 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1134 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1135 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1136 continue;
1137
b94ec296 1138 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1139 }
1140}
b94ec296 1141EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1142
fd001443
BVA
1143/**
1144 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1145 * @q: request queue.
1146 *
1147 * The caller is responsible for serializing this function against
1148 * blk_mq_{start,stop}_hw_queue().
1149 */
1150bool blk_mq_queue_stopped(struct request_queue *q)
1151{
1152 struct blk_mq_hw_ctx *hctx;
1153 int i;
1154
1155 queue_for_each_hw_ctx(q, hctx, i)
1156 if (blk_mq_hctx_stopped(hctx))
1157 return true;
1158
1159 return false;
1160}
1161EXPORT_SYMBOL(blk_mq_queue_stopped);
1162
320ae51f
JA
1163void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1164{
27489a3c 1165 cancel_work(&hctx->run_work);
70f4db63 1166 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
1167 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1168}
1169EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1170
280d45f6
CH
1171void blk_mq_stop_hw_queues(struct request_queue *q)
1172{
1173 struct blk_mq_hw_ctx *hctx;
1174 int i;
1175
1176 queue_for_each_hw_ctx(q, hctx, i)
1177 blk_mq_stop_hw_queue(hctx);
1178}
1179EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1180
320ae51f
JA
1181void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1182{
1183 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1184
0ffbce80 1185 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1186}
1187EXPORT_SYMBOL(blk_mq_start_hw_queue);
1188
2f268556
CH
1189void blk_mq_start_hw_queues(struct request_queue *q)
1190{
1191 struct blk_mq_hw_ctx *hctx;
1192 int i;
1193
1194 queue_for_each_hw_ctx(q, hctx, i)
1195 blk_mq_start_hw_queue(hctx);
1196}
1197EXPORT_SYMBOL(blk_mq_start_hw_queues);
1198
ae911c5e
JA
1199void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1200{
1201 if (!blk_mq_hctx_stopped(hctx))
1202 return;
1203
1204 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1205 blk_mq_run_hw_queue(hctx, async);
1206}
1207EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1208
1b4a3258 1209void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1210{
1211 struct blk_mq_hw_ctx *hctx;
1212 int i;
1213
ae911c5e
JA
1214 queue_for_each_hw_ctx(q, hctx, i)
1215 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1216}
1217EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1218
70f4db63 1219static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1220{
1221 struct blk_mq_hw_ctx *hctx;
1222
27489a3c 1223 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
e4043dcf 1224
320ae51f
JA
1225 __blk_mq_run_hw_queue(hctx);
1226}
1227
70f4db63
CH
1228static void blk_mq_delay_work_fn(struct work_struct *work)
1229{
1230 struct blk_mq_hw_ctx *hctx;
1231
1232 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1233
1234 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1235 __blk_mq_run_hw_queue(hctx);
1236}
1237
1238void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1239{
19c66e59
ML
1240 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1241 return;
70f4db63 1242
7e79dadc 1243 blk_mq_stop_hw_queue(hctx);
b657d7e6
CH
1244 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1245 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
1246}
1247EXPORT_SYMBOL(blk_mq_delay_queue);
1248
cfd0c552 1249static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1250 struct request *rq,
1251 bool at_head)
320ae51f 1252{
e57690fe
JA
1253 struct blk_mq_ctx *ctx = rq->mq_ctx;
1254
01b983c9
JA
1255 trace_block_rq_insert(hctx->queue, rq);
1256
72a0a36e
CH
1257 if (at_head)
1258 list_add(&rq->queuelist, &ctx->rq_list);
1259 else
1260 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1261}
4bb659b1 1262
2c3ad667
JA
1263void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1264 bool at_head)
cfd0c552
ML
1265{
1266 struct blk_mq_ctx *ctx = rq->mq_ctx;
1267
e57690fe 1268 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1269 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1270}
1271
bd166ef1
JA
1272void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1273 struct list_head *list)
320ae51f
JA
1274
1275{
320ae51f
JA
1276 /*
1277 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1278 * offline now
1279 */
1280 spin_lock(&ctx->lock);
1281 while (!list_empty(list)) {
1282 struct request *rq;
1283
1284 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1285 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1286 list_del_init(&rq->queuelist);
e57690fe 1287 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1288 }
cfd0c552 1289 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1290 spin_unlock(&ctx->lock);
320ae51f
JA
1291}
1292
1293static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1294{
1295 struct request *rqa = container_of(a, struct request, queuelist);
1296 struct request *rqb = container_of(b, struct request, queuelist);
1297
1298 return !(rqa->mq_ctx < rqb->mq_ctx ||
1299 (rqa->mq_ctx == rqb->mq_ctx &&
1300 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1301}
1302
1303void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1304{
1305 struct blk_mq_ctx *this_ctx;
1306 struct request_queue *this_q;
1307 struct request *rq;
1308 LIST_HEAD(list);
1309 LIST_HEAD(ctx_list);
1310 unsigned int depth;
1311
1312 list_splice_init(&plug->mq_list, &list);
1313
1314 list_sort(NULL, &list, plug_ctx_cmp);
1315
1316 this_q = NULL;
1317 this_ctx = NULL;
1318 depth = 0;
1319
1320 while (!list_empty(&list)) {
1321 rq = list_entry_rq(list.next);
1322 list_del_init(&rq->queuelist);
1323 BUG_ON(!rq->q);
1324 if (rq->mq_ctx != this_ctx) {
1325 if (this_ctx) {
bd166ef1
JA
1326 trace_block_unplug(this_q, depth, from_schedule);
1327 blk_mq_sched_insert_requests(this_q, this_ctx,
1328 &ctx_list,
1329 from_schedule);
320ae51f
JA
1330 }
1331
1332 this_ctx = rq->mq_ctx;
1333 this_q = rq->q;
1334 depth = 0;
1335 }
1336
1337 depth++;
1338 list_add_tail(&rq->queuelist, &ctx_list);
1339 }
1340
1341 /*
1342 * If 'this_ctx' is set, we know we have entries to complete
1343 * on 'ctx_list'. Do those.
1344 */
1345 if (this_ctx) {
bd166ef1
JA
1346 trace_block_unplug(this_q, depth, from_schedule);
1347 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1348 from_schedule);
320ae51f
JA
1349 }
1350}
1351
1352static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1353{
1354 init_request_from_bio(rq, bio);
4b570521 1355
6e85eaf3 1356 blk_account_io_start(rq, true);
320ae51f
JA
1357}
1358
274a5843
JA
1359static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1360{
1361 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1362 !blk_queue_nomerges(hctx->queue);
1363}
1364
07068d5b
JA
1365static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1366 struct blk_mq_ctx *ctx,
1367 struct request *rq, struct bio *bio)
320ae51f 1368{
e18378a6 1369 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1370 blk_mq_bio_to_request(rq, bio);
1371 spin_lock(&ctx->lock);
1372insert_rq:
1373 __blk_mq_insert_request(hctx, rq, false);
1374 spin_unlock(&ctx->lock);
1375 return false;
1376 } else {
274a5843
JA
1377 struct request_queue *q = hctx->queue;
1378
07068d5b
JA
1379 spin_lock(&ctx->lock);
1380 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1381 blk_mq_bio_to_request(rq, bio);
1382 goto insert_rq;
1383 }
320ae51f 1384
07068d5b 1385 spin_unlock(&ctx->lock);
bd166ef1 1386 __blk_mq_finish_request(hctx, ctx, rq);
07068d5b 1387 return true;
14ec77f3 1388 }
07068d5b 1389}
14ec77f3 1390
fd2d3326
JA
1391static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1392{
bd166ef1
JA
1393 if (rq->tag != -1)
1394 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1395
1396 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1397}
1398
066a4a73 1399static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
f984df1f 1400{
f984df1f 1401 struct request_queue *q = rq->q;
f984df1f
SL
1402 struct blk_mq_queue_data bd = {
1403 .rq = rq,
1404 .list = NULL,
1405 .last = 1
1406 };
bd166ef1
JA
1407 struct blk_mq_hw_ctx *hctx;
1408 blk_qc_t new_cookie;
1409 int ret;
f984df1f 1410
bd166ef1 1411 if (q->elevator)
2253efc8
BVA
1412 goto insert;
1413
bd166ef1
JA
1414 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1415 goto insert;
1416
1417 new_cookie = request_to_qc_t(hctx, rq);
1418
f984df1f
SL
1419 /*
1420 * For OK queue, we are done. For error, kill it. Any other
1421 * error (busy), just add it to our list as we previously
1422 * would have done
1423 */
1424 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1425 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1426 *cookie = new_cookie;
2253efc8 1427 return;
7b371636 1428 }
f984df1f 1429
7b371636
JA
1430 __blk_mq_requeue_request(rq);
1431
1432 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1433 *cookie = BLK_QC_T_NONE;
1434 rq->errors = -EIO;
1435 blk_mq_end_request(rq, rq->errors);
2253efc8 1436 return;
f984df1f 1437 }
7b371636 1438
2253efc8 1439insert:
bd6737f1 1440 blk_mq_sched_insert_request(rq, false, true, true, false);
f984df1f
SL
1441}
1442
07068d5b
JA
1443/*
1444 * Multiple hardware queue variant. This will not use per-process plugs,
1445 * but will attempt to bypass the hctx queueing if we can go straight to
1446 * hardware for SYNC IO.
1447 */
dece1635 1448static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1449{
ef295ecf 1450 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1451 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1452 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1453 struct request *rq;
6a83e74d 1454 unsigned int request_count = 0, srcu_idx;
f984df1f 1455 struct blk_plug *plug;
5b3f341f 1456 struct request *same_queue_rq = NULL;
7b371636 1457 blk_qc_t cookie;
87760e5e 1458 unsigned int wb_acct;
07068d5b
JA
1459
1460 blk_queue_bounce(q, &bio);
1461
1462 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1463 bio_io_error(bio);
dece1635 1464 return BLK_QC_T_NONE;
07068d5b
JA
1465 }
1466
54efd50b
KO
1467 blk_queue_split(q, &bio, q->bio_split);
1468
87c279e6
OS
1469 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1470 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1471 return BLK_QC_T_NONE;
f984df1f 1472
bd166ef1
JA
1473 if (blk_mq_sched_bio_merge(q, bio))
1474 return BLK_QC_T_NONE;
1475
87760e5e
JA
1476 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1477
bd166ef1
JA
1478 trace_block_getrq(q, bio, bio->bi_opf);
1479
1480 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1481 if (unlikely(!rq)) {
1482 __wbt_done(q->rq_wb, wb_acct);
dece1635 1483 return BLK_QC_T_NONE;
87760e5e
JA
1484 }
1485
1486 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1487
fd2d3326 1488 cookie = request_to_qc_t(data.hctx, rq);
07068d5b
JA
1489
1490 if (unlikely(is_flush_fua)) {
0c2a6fe4
JA
1491 if (q->elevator)
1492 goto elv_insert;
07068d5b
JA
1493 blk_mq_bio_to_request(rq, bio);
1494 blk_insert_flush(rq);
0c2a6fe4 1495 goto run_queue;
07068d5b
JA
1496 }
1497
f984df1f 1498 plug = current->plug;
e167dfb5
JA
1499 /*
1500 * If the driver supports defer issued based on 'last', then
1501 * queue it up like normal since we can potentially save some
1502 * CPU this way.
1503 */
f984df1f
SL
1504 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1505 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1506 struct request *old_rq = NULL;
07068d5b
JA
1507
1508 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1509
1510 /*
6a83e74d 1511 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1512 * Otherwise the existing request in the plug list will be
1513 * issued. So the plug list will have one request at most
07068d5b 1514 */
f984df1f 1515 if (plug) {
5b3f341f
SL
1516 /*
1517 * The plug list might get flushed before this. If that
b094f89c
JA
1518 * happens, same_queue_rq is invalid and plug list is
1519 * empty
1520 */
5b3f341f
SL
1521 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1522 old_rq = same_queue_rq;
f984df1f 1523 list_del_init(&old_rq->queuelist);
07068d5b 1524 }
f984df1f
SL
1525 list_add_tail(&rq->queuelist, &plug->mq_list);
1526 } else /* is_sync */
1527 old_rq = rq;
1528 blk_mq_put_ctx(data.ctx);
1529 if (!old_rq)
7b371636 1530 goto done;
6a83e74d
BVA
1531
1532 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1533 rcu_read_lock();
066a4a73 1534 blk_mq_try_issue_directly(old_rq, &cookie);
6a83e74d
BVA
1535 rcu_read_unlock();
1536 } else {
1537 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
066a4a73 1538 blk_mq_try_issue_directly(old_rq, &cookie);
6a83e74d
BVA
1539 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1540 }
7b371636 1541 goto done;
07068d5b
JA
1542 }
1543
bd166ef1 1544 if (q->elevator) {
0c2a6fe4 1545elv_insert:
bd166ef1
JA
1546 blk_mq_put_ctx(data.ctx);
1547 blk_mq_bio_to_request(rq, bio);
0abad774 1548 blk_mq_sched_insert_request(rq, false, true,
bd6737f1 1549 !is_sync || is_flush_fua, true);
bd166ef1
JA
1550 goto done;
1551 }
07068d5b
JA
1552 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1553 /*
1554 * For a SYNC request, send it to the hardware immediately. For
1555 * an ASYNC request, just ensure that we run it later on. The
1556 * latter allows for merging opportunities and more efficient
1557 * dispatching.
1558 */
0c2a6fe4 1559run_queue:
07068d5b
JA
1560 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1561 }
07068d5b 1562 blk_mq_put_ctx(data.ctx);
7b371636
JA
1563done:
1564 return cookie;
07068d5b
JA
1565}
1566
1567/*
1568 * Single hardware queue variant. This will attempt to use any per-process
1569 * plug for merging and IO deferral.
1570 */
dece1635 1571static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1572{
ef295ecf 1573 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1574 const int is_flush_fua = op_is_flush(bio->bi_opf);
e6c4438b
JM
1575 struct blk_plug *plug;
1576 unsigned int request_count = 0;
5a797e00 1577 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1578 struct request *rq;
7b371636 1579 blk_qc_t cookie;
87760e5e 1580 unsigned int wb_acct;
07068d5b 1581
07068d5b
JA
1582 blk_queue_bounce(q, &bio);
1583
1584 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1585 bio_io_error(bio);
dece1635 1586 return BLK_QC_T_NONE;
07068d5b
JA
1587 }
1588
54efd50b
KO
1589 blk_queue_split(q, &bio, q->bio_split);
1590
87c279e6
OS
1591 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1592 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1593 return BLK_QC_T_NONE;
1594 } else
1595 request_count = blk_plug_queued_count(q);
07068d5b 1596
bd166ef1
JA
1597 if (blk_mq_sched_bio_merge(q, bio))
1598 return BLK_QC_T_NONE;
1599
87760e5e
JA
1600 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1601
bd166ef1
JA
1602 trace_block_getrq(q, bio, bio->bi_opf);
1603
1604 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1605 if (unlikely(!rq)) {
1606 __wbt_done(q->rq_wb, wb_acct);
dece1635 1607 return BLK_QC_T_NONE;
87760e5e
JA
1608 }
1609
1610 wbt_track(&rq->issue_stat, wb_acct);
320ae51f 1611
fd2d3326 1612 cookie = request_to_qc_t(data.hctx, rq);
320ae51f
JA
1613
1614 if (unlikely(is_flush_fua)) {
0c2a6fe4
JA
1615 if (q->elevator)
1616 goto elv_insert;
320ae51f 1617 blk_mq_bio_to_request(rq, bio);
320ae51f 1618 blk_insert_flush(rq);
0c2a6fe4 1619 goto run_queue;
320ae51f
JA
1620 }
1621
1622 /*
1623 * A task plug currently exists. Since this is completely lockless,
1624 * utilize that to temporarily store requests until the task is
1625 * either done or scheduled away.
1626 */
e6c4438b
JM
1627 plug = current->plug;
1628 if (plug) {
600271d9
SL
1629 struct request *last = NULL;
1630
e6c4438b 1631 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1632
1633 /*
1634 * @request_count may become stale because of schedule
1635 * out, so check the list again.
1636 */
1637 if (list_empty(&plug->mq_list))
1638 request_count = 0;
676d0607 1639 if (!request_count)
e6c4438b 1640 trace_block_plug(q);
600271d9
SL
1641 else
1642 last = list_entry_rq(plug->mq_list.prev);
b094f89c
JA
1643
1644 blk_mq_put_ctx(data.ctx);
1645
600271d9
SL
1646 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1647 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1648 blk_flush_plug_list(plug, false);
1649 trace_block_plug(q);
320ae51f 1650 }
b094f89c 1651
e6c4438b 1652 list_add_tail(&rq->queuelist, &plug->mq_list);
7b371636 1653 return cookie;
320ae51f
JA
1654 }
1655
bd166ef1 1656 if (q->elevator) {
0c2a6fe4 1657elv_insert:
bd166ef1
JA
1658 blk_mq_put_ctx(data.ctx);
1659 blk_mq_bio_to_request(rq, bio);
0abad774 1660 blk_mq_sched_insert_request(rq, false, true,
bd6737f1 1661 !is_sync || is_flush_fua, true);
bd166ef1
JA
1662 goto done;
1663 }
07068d5b
JA
1664 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1665 /*
1666 * For a SYNC request, send it to the hardware immediately. For
1667 * an ASYNC request, just ensure that we run it later on. The
1668 * latter allows for merging opportunities and more efficient
1669 * dispatching.
1670 */
0c2a6fe4 1671run_queue:
07068d5b 1672 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1673 }
1674
07068d5b 1675 blk_mq_put_ctx(data.ctx);
bd166ef1 1676done:
7b371636 1677 return cookie;
320ae51f
JA
1678}
1679
cc71a6f4
JA
1680void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1681 unsigned int hctx_idx)
95363efd 1682{
e9b267d9 1683 struct page *page;
320ae51f 1684
24d2f903 1685 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1686 int i;
320ae51f 1687
24d2f903 1688 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1689 struct request *rq = tags->static_rqs[i];
1690
1691 if (!rq)
e9b267d9 1692 continue;
2af8cbe3 1693 set->ops->exit_request(set->driver_data, rq,
24d2f903 1694 hctx_idx, i);
2af8cbe3 1695 tags->static_rqs[i] = NULL;
e9b267d9 1696 }
320ae51f 1697 }
320ae51f 1698
24d2f903
CH
1699 while (!list_empty(&tags->page_list)) {
1700 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1701 list_del_init(&page->lru);
f75782e4
CM
1702 /*
1703 * Remove kmemleak object previously allocated in
1704 * blk_mq_init_rq_map().
1705 */
1706 kmemleak_free(page_address(page));
320ae51f
JA
1707 __free_pages(page, page->private);
1708 }
cc71a6f4 1709}
320ae51f 1710
cc71a6f4
JA
1711void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1712{
24d2f903 1713 kfree(tags->rqs);
cc71a6f4 1714 tags->rqs = NULL;
2af8cbe3
JA
1715 kfree(tags->static_rqs);
1716 tags->static_rqs = NULL;
320ae51f 1717
24d2f903 1718 blk_mq_free_tags(tags);
320ae51f
JA
1719}
1720
cc71a6f4
JA
1721struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1722 unsigned int hctx_idx,
1723 unsigned int nr_tags,
1724 unsigned int reserved_tags)
320ae51f 1725{
24d2f903 1726 struct blk_mq_tags *tags;
59f082e4 1727 int node;
320ae51f 1728
59f082e4
SL
1729 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1730 if (node == NUMA_NO_NODE)
1731 node = set->numa_node;
1732
1733 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1734 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1735 if (!tags)
1736 return NULL;
320ae51f 1737
cc71a6f4 1738 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1739 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1740 node);
24d2f903
CH
1741 if (!tags->rqs) {
1742 blk_mq_free_tags(tags);
1743 return NULL;
1744 }
320ae51f 1745
2af8cbe3
JA
1746 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1747 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1748 node);
2af8cbe3
JA
1749 if (!tags->static_rqs) {
1750 kfree(tags->rqs);
1751 blk_mq_free_tags(tags);
1752 return NULL;
1753 }
1754
cc71a6f4
JA
1755 return tags;
1756}
1757
1758static size_t order_to_size(unsigned int order)
1759{
1760 return (size_t)PAGE_SIZE << order;
1761}
1762
1763int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1764 unsigned int hctx_idx, unsigned int depth)
1765{
1766 unsigned int i, j, entries_per_page, max_order = 4;
1767 size_t rq_size, left;
59f082e4
SL
1768 int node;
1769
1770 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1771 if (node == NUMA_NO_NODE)
1772 node = set->numa_node;
cc71a6f4
JA
1773
1774 INIT_LIST_HEAD(&tags->page_list);
1775
320ae51f
JA
1776 /*
1777 * rq_size is the size of the request plus driver payload, rounded
1778 * to the cacheline size
1779 */
24d2f903 1780 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1781 cache_line_size());
cc71a6f4 1782 left = rq_size * depth;
320ae51f 1783
cc71a6f4 1784 for (i = 0; i < depth; ) {
320ae51f
JA
1785 int this_order = max_order;
1786 struct page *page;
1787 int to_do;
1788 void *p;
1789
b3a834b1 1790 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1791 this_order--;
1792
1793 do {
59f082e4 1794 page = alloc_pages_node(node,
36e1f3d1 1795 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1796 this_order);
320ae51f
JA
1797 if (page)
1798 break;
1799 if (!this_order--)
1800 break;
1801 if (order_to_size(this_order) < rq_size)
1802 break;
1803 } while (1);
1804
1805 if (!page)
24d2f903 1806 goto fail;
320ae51f
JA
1807
1808 page->private = this_order;
24d2f903 1809 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1810
1811 p = page_address(page);
f75782e4
CM
1812 /*
1813 * Allow kmemleak to scan these pages as they contain pointers
1814 * to additional allocations like via ops->init_request().
1815 */
36e1f3d1 1816 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1817 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1818 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1819 left -= to_do * rq_size;
1820 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1821 struct request *rq = p;
1822
1823 tags->static_rqs[i] = rq;
24d2f903
CH
1824 if (set->ops->init_request) {
1825 if (set->ops->init_request(set->driver_data,
2af8cbe3 1826 rq, hctx_idx, i,
59f082e4 1827 node)) {
2af8cbe3 1828 tags->static_rqs[i] = NULL;
24d2f903 1829 goto fail;
a5164405 1830 }
e9b267d9
CH
1831 }
1832
320ae51f
JA
1833 p += rq_size;
1834 i++;
1835 }
1836 }
cc71a6f4 1837 return 0;
320ae51f 1838
24d2f903 1839fail:
cc71a6f4
JA
1840 blk_mq_free_rqs(set, tags, hctx_idx);
1841 return -ENOMEM;
320ae51f
JA
1842}
1843
e57690fe
JA
1844/*
1845 * 'cpu' is going away. splice any existing rq_list entries from this
1846 * software queue to the hw queue dispatch list, and ensure that it
1847 * gets run.
1848 */
9467f859 1849static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1850{
9467f859 1851 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1852 struct blk_mq_ctx *ctx;
1853 LIST_HEAD(tmp);
1854
9467f859 1855 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1856 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1857
1858 spin_lock(&ctx->lock);
1859 if (!list_empty(&ctx->rq_list)) {
1860 list_splice_init(&ctx->rq_list, &tmp);
1861 blk_mq_hctx_clear_pending(hctx, ctx);
1862 }
1863 spin_unlock(&ctx->lock);
1864
1865 if (list_empty(&tmp))
9467f859 1866 return 0;
484b4061 1867
e57690fe
JA
1868 spin_lock(&hctx->lock);
1869 list_splice_tail_init(&tmp, &hctx->dispatch);
1870 spin_unlock(&hctx->lock);
484b4061
JA
1871
1872 blk_mq_run_hw_queue(hctx, true);
9467f859 1873 return 0;
484b4061
JA
1874}
1875
9467f859 1876static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1877{
9467f859
TG
1878 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1879 &hctx->cpuhp_dead);
484b4061
JA
1880}
1881
c3b4afca 1882/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1883static void blk_mq_exit_hctx(struct request_queue *q,
1884 struct blk_mq_tag_set *set,
1885 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1886{
f70ced09
ML
1887 unsigned flush_start_tag = set->queue_depth;
1888
08e98fc6
ML
1889 blk_mq_tag_idle(hctx);
1890
f70ced09
ML
1891 if (set->ops->exit_request)
1892 set->ops->exit_request(set->driver_data,
1893 hctx->fq->flush_rq, hctx_idx,
1894 flush_start_tag + hctx_idx);
1895
08e98fc6
ML
1896 if (set->ops->exit_hctx)
1897 set->ops->exit_hctx(hctx, hctx_idx);
1898
6a83e74d
BVA
1899 if (hctx->flags & BLK_MQ_F_BLOCKING)
1900 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1901
9467f859 1902 blk_mq_remove_cpuhp(hctx);
f70ced09 1903 blk_free_flush_queue(hctx->fq);
88459642 1904 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1905}
1906
624dbe47
ML
1907static void blk_mq_exit_hw_queues(struct request_queue *q,
1908 struct blk_mq_tag_set *set, int nr_queue)
1909{
1910 struct blk_mq_hw_ctx *hctx;
1911 unsigned int i;
1912
1913 queue_for_each_hw_ctx(q, hctx, i) {
1914 if (i == nr_queue)
1915 break;
08e98fc6 1916 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1917 }
624dbe47
ML
1918}
1919
1920static void blk_mq_free_hw_queues(struct request_queue *q,
1921 struct blk_mq_tag_set *set)
1922{
1923 struct blk_mq_hw_ctx *hctx;
1924 unsigned int i;
1925
e09aae7e 1926 queue_for_each_hw_ctx(q, hctx, i)
624dbe47 1927 free_cpumask_var(hctx->cpumask);
624dbe47
ML
1928}
1929
08e98fc6
ML
1930static int blk_mq_init_hctx(struct request_queue *q,
1931 struct blk_mq_tag_set *set,
1932 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1933{
08e98fc6 1934 int node;
f70ced09 1935 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1936
1937 node = hctx->numa_node;
1938 if (node == NUMA_NO_NODE)
1939 node = hctx->numa_node = set->numa_node;
1940
27489a3c 1941 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1942 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1943 spin_lock_init(&hctx->lock);
1944 INIT_LIST_HEAD(&hctx->dispatch);
1945 hctx->queue = q;
1946 hctx->queue_num = hctx_idx;
2404e607 1947 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1948
9467f859 1949 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1950
1951 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1952
1953 /*
08e98fc6
ML
1954 * Allocate space for all possible cpus to avoid allocation at
1955 * runtime
320ae51f 1956 */
08e98fc6
ML
1957 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1958 GFP_KERNEL, node);
1959 if (!hctx->ctxs)
1960 goto unregister_cpu_notifier;
320ae51f 1961
88459642
OS
1962 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1963 node))
08e98fc6 1964 goto free_ctxs;
320ae51f 1965
08e98fc6 1966 hctx->nr_ctx = 0;
320ae51f 1967
08e98fc6
ML
1968 if (set->ops->init_hctx &&
1969 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1970 goto free_bitmap;
320ae51f 1971
f70ced09
ML
1972 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1973 if (!hctx->fq)
1974 goto exit_hctx;
320ae51f 1975
f70ced09
ML
1976 if (set->ops->init_request &&
1977 set->ops->init_request(set->driver_data,
1978 hctx->fq->flush_rq, hctx_idx,
1979 flush_start_tag + hctx_idx, node))
1980 goto free_fq;
320ae51f 1981
6a83e74d
BVA
1982 if (hctx->flags & BLK_MQ_F_BLOCKING)
1983 init_srcu_struct(&hctx->queue_rq_srcu);
1984
08e98fc6 1985 return 0;
320ae51f 1986
f70ced09
ML
1987 free_fq:
1988 kfree(hctx->fq);
1989 exit_hctx:
1990 if (set->ops->exit_hctx)
1991 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1992 free_bitmap:
88459642 1993 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1994 free_ctxs:
1995 kfree(hctx->ctxs);
1996 unregister_cpu_notifier:
9467f859 1997 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
1998 return -1;
1999}
320ae51f 2000
320ae51f
JA
2001static void blk_mq_init_cpu_queues(struct request_queue *q,
2002 unsigned int nr_hw_queues)
2003{
2004 unsigned int i;
2005
2006 for_each_possible_cpu(i) {
2007 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2008 struct blk_mq_hw_ctx *hctx;
2009
2010 memset(__ctx, 0, sizeof(*__ctx));
2011 __ctx->cpu = i;
2012 spin_lock_init(&__ctx->lock);
2013 INIT_LIST_HEAD(&__ctx->rq_list);
2014 __ctx->queue = q;
cf43e6be
JA
2015 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
2016 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
320ae51f
JA
2017
2018 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
2019 if (!cpu_online(i))
2020 continue;
2021
7d7e0f90 2022 hctx = blk_mq_map_queue(q, i);
e4043dcf 2023
320ae51f
JA
2024 /*
2025 * Set local node, IFF we have more than one hw queue. If
2026 * not, we remain on the home node of the device
2027 */
2028 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 2029 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
2030 }
2031}
2032
cc71a6f4
JA
2033static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2034{
2035 int ret = 0;
2036
2037 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2038 set->queue_depth, set->reserved_tags);
2039 if (!set->tags[hctx_idx])
2040 return false;
2041
2042 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2043 set->queue_depth);
2044 if (!ret)
2045 return true;
2046
2047 blk_mq_free_rq_map(set->tags[hctx_idx]);
2048 set->tags[hctx_idx] = NULL;
2049 return false;
2050}
2051
2052static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2053 unsigned int hctx_idx)
2054{
bd166ef1
JA
2055 if (set->tags[hctx_idx]) {
2056 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2057 blk_mq_free_rq_map(set->tags[hctx_idx]);
2058 set->tags[hctx_idx] = NULL;
2059 }
cc71a6f4
JA
2060}
2061
5778322e
AM
2062static void blk_mq_map_swqueue(struct request_queue *q,
2063 const struct cpumask *online_mask)
320ae51f 2064{
d1b1cea1 2065 unsigned int i, hctx_idx;
320ae51f
JA
2066 struct blk_mq_hw_ctx *hctx;
2067 struct blk_mq_ctx *ctx;
2a34c087 2068 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2069
60de074b
AM
2070 /*
2071 * Avoid others reading imcomplete hctx->cpumask through sysfs
2072 */
2073 mutex_lock(&q->sysfs_lock);
2074
320ae51f 2075 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2076 cpumask_clear(hctx->cpumask);
320ae51f
JA
2077 hctx->nr_ctx = 0;
2078 }
2079
2080 /*
2081 * Map software to hardware queues
2082 */
897bb0c7 2083 for_each_possible_cpu(i) {
320ae51f 2084 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 2085 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
2086 continue;
2087
d1b1cea1
GKB
2088 hctx_idx = q->mq_map[i];
2089 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2090 if (!set->tags[hctx_idx] &&
2091 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2092 /*
2093 * If tags initialization fail for some hctx,
2094 * that hctx won't be brought online. In this
2095 * case, remap the current ctx to hctx[0] which
2096 * is guaranteed to always have tags allocated
2097 */
cc71a6f4 2098 q->mq_map[i] = 0;
d1b1cea1
GKB
2099 }
2100
897bb0c7 2101 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2102 hctx = blk_mq_map_queue(q, i);
868f2f0b 2103
e4043dcf 2104 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2105 ctx->index_hw = hctx->nr_ctx;
2106 hctx->ctxs[hctx->nr_ctx++] = ctx;
2107 }
506e931f 2108
60de074b
AM
2109 mutex_unlock(&q->sysfs_lock);
2110
506e931f 2111 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2112 /*
a68aafa5
JA
2113 * If no software queues are mapped to this hardware queue,
2114 * disable it and free the request entries.
484b4061
JA
2115 */
2116 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2117 /* Never unmap queue 0. We need it as a
2118 * fallback in case of a new remap fails
2119 * allocation
2120 */
cc71a6f4
JA
2121 if (i && set->tags[i])
2122 blk_mq_free_map_and_requests(set, i);
2123
2a34c087 2124 hctx->tags = NULL;
484b4061
JA
2125 continue;
2126 }
2127
2a34c087
ML
2128 hctx->tags = set->tags[i];
2129 WARN_ON(!hctx->tags);
2130
889fa31f
CY
2131 /*
2132 * Set the map size to the number of mapped software queues.
2133 * This is more accurate and more efficient than looping
2134 * over all possibly mapped software queues.
2135 */
88459642 2136 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2137
484b4061
JA
2138 /*
2139 * Initialize batch roundrobin counts
2140 */
506e931f
JA
2141 hctx->next_cpu = cpumask_first(hctx->cpumask);
2142 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2143 }
320ae51f
JA
2144}
2145
2404e607 2146static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2147{
2148 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2149 int i;
2150
2404e607
JM
2151 queue_for_each_hw_ctx(q, hctx, i) {
2152 if (shared)
2153 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2154 else
2155 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2156 }
2157}
2158
2159static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2160{
2161 struct request_queue *q;
0d2602ca
JA
2162
2163 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2164 blk_mq_freeze_queue(q);
2404e607 2165 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2166 blk_mq_unfreeze_queue(q);
2167 }
2168}
2169
2170static void blk_mq_del_queue_tag_set(struct request_queue *q)
2171{
2172 struct blk_mq_tag_set *set = q->tag_set;
2173
0d2602ca
JA
2174 mutex_lock(&set->tag_list_lock);
2175 list_del_init(&q->tag_set_list);
2404e607
JM
2176 if (list_is_singular(&set->tag_list)) {
2177 /* just transitioned to unshared */
2178 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2179 /* update existing queue */
2180 blk_mq_update_tag_set_depth(set, false);
2181 }
0d2602ca 2182 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
2183}
2184
2185static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2186 struct request_queue *q)
2187{
2188 q->tag_set = set;
2189
2190 mutex_lock(&set->tag_list_lock);
2404e607
JM
2191
2192 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2193 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2194 set->flags |= BLK_MQ_F_TAG_SHARED;
2195 /* update existing queue */
2196 blk_mq_update_tag_set_depth(set, true);
2197 }
2198 if (set->flags & BLK_MQ_F_TAG_SHARED)
2199 queue_set_hctx_shared(q, true);
0d2602ca 2200 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 2201
0d2602ca
JA
2202 mutex_unlock(&set->tag_list_lock);
2203}
2204
e09aae7e
ML
2205/*
2206 * It is the actual release handler for mq, but we do it from
2207 * request queue's release handler for avoiding use-after-free
2208 * and headache because q->mq_kobj shouldn't have been introduced,
2209 * but we can't group ctx/kctx kobj without it.
2210 */
2211void blk_mq_release(struct request_queue *q)
2212{
2213 struct blk_mq_hw_ctx *hctx;
2214 unsigned int i;
2215
bd166ef1
JA
2216 blk_mq_sched_teardown(q);
2217
e09aae7e 2218 /* hctx kobj stays in hctx */
c3b4afca
ML
2219 queue_for_each_hw_ctx(q, hctx, i) {
2220 if (!hctx)
2221 continue;
2222 kfree(hctx->ctxs);
e09aae7e 2223 kfree(hctx);
c3b4afca 2224 }
e09aae7e 2225
a723bab3
AM
2226 q->mq_map = NULL;
2227
e09aae7e
ML
2228 kfree(q->queue_hw_ctx);
2229
2230 /* ctx kobj stays in queue_ctx */
2231 free_percpu(q->queue_ctx);
2232}
2233
24d2f903 2234struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2235{
2236 struct request_queue *uninit_q, *q;
2237
2238 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2239 if (!uninit_q)
2240 return ERR_PTR(-ENOMEM);
2241
2242 q = blk_mq_init_allocated_queue(set, uninit_q);
2243 if (IS_ERR(q))
2244 blk_cleanup_queue(uninit_q);
2245
2246 return q;
2247}
2248EXPORT_SYMBOL(blk_mq_init_queue);
2249
868f2f0b
KB
2250static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2251 struct request_queue *q)
320ae51f 2252{
868f2f0b
KB
2253 int i, j;
2254 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2255
868f2f0b 2256 blk_mq_sysfs_unregister(q);
24d2f903 2257 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2258 int node;
f14bbe77 2259
868f2f0b
KB
2260 if (hctxs[i])
2261 continue;
2262
2263 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2264 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2265 GFP_KERNEL, node);
320ae51f 2266 if (!hctxs[i])
868f2f0b 2267 break;
320ae51f 2268
a86073e4 2269 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2270 node)) {
2271 kfree(hctxs[i]);
2272 hctxs[i] = NULL;
2273 break;
2274 }
e4043dcf 2275
0d2602ca 2276 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2277 hctxs[i]->numa_node = node;
320ae51f 2278 hctxs[i]->queue_num = i;
868f2f0b
KB
2279
2280 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2281 free_cpumask_var(hctxs[i]->cpumask);
2282 kfree(hctxs[i]);
2283 hctxs[i] = NULL;
2284 break;
2285 }
2286 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2287 }
868f2f0b
KB
2288 for (j = i; j < q->nr_hw_queues; j++) {
2289 struct blk_mq_hw_ctx *hctx = hctxs[j];
2290
2291 if (hctx) {
cc71a6f4
JA
2292 if (hctx->tags)
2293 blk_mq_free_map_and_requests(set, j);
868f2f0b
KB
2294 blk_mq_exit_hctx(q, set, hctx, j);
2295 free_cpumask_var(hctx->cpumask);
2296 kobject_put(&hctx->kobj);
2297 kfree(hctx->ctxs);
2298 kfree(hctx);
2299 hctxs[j] = NULL;
2300
2301 }
2302 }
2303 q->nr_hw_queues = i;
2304 blk_mq_sysfs_register(q);
2305}
2306
2307struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2308 struct request_queue *q)
2309{
66841672
ML
2310 /* mark the queue as mq asap */
2311 q->mq_ops = set->ops;
2312
868f2f0b
KB
2313 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2314 if (!q->queue_ctx)
c7de5726 2315 goto err_exit;
868f2f0b
KB
2316
2317 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2318 GFP_KERNEL, set->numa_node);
2319 if (!q->queue_hw_ctx)
2320 goto err_percpu;
2321
bdd17e75 2322 q->mq_map = set->mq_map;
868f2f0b
KB
2323
2324 blk_mq_realloc_hw_ctxs(set, q);
2325 if (!q->nr_hw_queues)
2326 goto err_hctxs;
320ae51f 2327
287922eb 2328 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2329 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2330
2331 q->nr_queues = nr_cpu_ids;
320ae51f 2332
94eddfbe 2333 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2334
05f1dd53
JA
2335 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2336 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2337
1be036e9
CH
2338 q->sg_reserved_size = INT_MAX;
2339
2849450a 2340 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2341 INIT_LIST_HEAD(&q->requeue_list);
2342 spin_lock_init(&q->requeue_lock);
2343
07068d5b
JA
2344 if (q->nr_hw_queues > 1)
2345 blk_queue_make_request(q, blk_mq_make_request);
2346 else
2347 blk_queue_make_request(q, blk_sq_make_request);
2348
eba71768
JA
2349 /*
2350 * Do this after blk_queue_make_request() overrides it...
2351 */
2352 q->nr_requests = set->queue_depth;
2353
64f1c21e
JA
2354 /*
2355 * Default to classic polling
2356 */
2357 q->poll_nsec = -1;
2358
24d2f903
CH
2359 if (set->ops->complete)
2360 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2361
24d2f903 2362 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2363
5778322e 2364 get_online_cpus();
320ae51f 2365 mutex_lock(&all_q_mutex);
320ae51f 2366
4593fdbe 2367 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2368 blk_mq_add_queue_tag_set(set, q);
5778322e 2369 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2370
4593fdbe 2371 mutex_unlock(&all_q_mutex);
5778322e 2372 put_online_cpus();
4593fdbe 2373
d3484991
JA
2374 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2375 int ret;
2376
2377 ret = blk_mq_sched_init(q);
2378 if (ret)
2379 return ERR_PTR(ret);
2380 }
2381
320ae51f 2382 return q;
18741986 2383
320ae51f 2384err_hctxs:
868f2f0b 2385 kfree(q->queue_hw_ctx);
320ae51f 2386err_percpu:
868f2f0b 2387 free_percpu(q->queue_ctx);
c7de5726
ML
2388err_exit:
2389 q->mq_ops = NULL;
320ae51f
JA
2390 return ERR_PTR(-ENOMEM);
2391}
b62c21b7 2392EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2393
2394void blk_mq_free_queue(struct request_queue *q)
2395{
624dbe47 2396 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2397
0e626368
AM
2398 mutex_lock(&all_q_mutex);
2399 list_del_init(&q->all_q_node);
2400 mutex_unlock(&all_q_mutex);
2401
87760e5e
JA
2402 wbt_exit(q);
2403
0d2602ca
JA
2404 blk_mq_del_queue_tag_set(q);
2405
624dbe47
ML
2406 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2407 blk_mq_free_hw_queues(q, set);
320ae51f 2408}
320ae51f
JA
2409
2410/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2411static void blk_mq_queue_reinit(struct request_queue *q,
2412 const struct cpumask *online_mask)
320ae51f 2413{
4ecd4fef 2414 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2415
67aec14c
JA
2416 blk_mq_sysfs_unregister(q);
2417
320ae51f
JA
2418 /*
2419 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2420 * we should change hctx numa_node according to new topology (this
2421 * involves free and re-allocate memory, worthy doing?)
2422 */
2423
5778322e 2424 blk_mq_map_swqueue(q, online_mask);
320ae51f 2425
67aec14c 2426 blk_mq_sysfs_register(q);
320ae51f
JA
2427}
2428
65d5291e
SAS
2429/*
2430 * New online cpumask which is going to be set in this hotplug event.
2431 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2432 * one-by-one and dynamically allocating this could result in a failure.
2433 */
2434static struct cpumask cpuhp_online_new;
2435
2436static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2437{
2438 struct request_queue *q;
320ae51f
JA
2439
2440 mutex_lock(&all_q_mutex);
f3af020b
TH
2441 /*
2442 * We need to freeze and reinit all existing queues. Freezing
2443 * involves synchronous wait for an RCU grace period and doing it
2444 * one by one may take a long time. Start freezing all queues in
2445 * one swoop and then wait for the completions so that freezing can
2446 * take place in parallel.
2447 */
2448 list_for_each_entry(q, &all_q_list, all_q_node)
2449 blk_mq_freeze_queue_start(q);
415d3dab 2450 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2451 blk_mq_freeze_queue_wait(q);
2452
320ae51f 2453 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2454 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2455
2456 list_for_each_entry(q, &all_q_list, all_q_node)
2457 blk_mq_unfreeze_queue(q);
2458
320ae51f 2459 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2460}
2461
2462static int blk_mq_queue_reinit_dead(unsigned int cpu)
2463{
97a32864 2464 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2465 blk_mq_queue_reinit_work();
2466 return 0;
2467}
2468
2469/*
2470 * Before hotadded cpu starts handling requests, new mappings must be
2471 * established. Otherwise, these requests in hw queue might never be
2472 * dispatched.
2473 *
2474 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2475 * for CPU0, and ctx1 for CPU1).
2476 *
2477 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2478 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2479 *
2c3ad667
JA
2480 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2481 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2482 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2483 * ignored.
65d5291e
SAS
2484 */
2485static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2486{
2487 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2488 cpumask_set_cpu(cpu, &cpuhp_online_new);
2489 blk_mq_queue_reinit_work();
2490 return 0;
320ae51f
JA
2491}
2492
a5164405
JA
2493static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2494{
2495 int i;
2496
cc71a6f4
JA
2497 for (i = 0; i < set->nr_hw_queues; i++)
2498 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2499 goto out_unwind;
a5164405
JA
2500
2501 return 0;
2502
2503out_unwind:
2504 while (--i >= 0)
cc71a6f4 2505 blk_mq_free_rq_map(set->tags[i]);
a5164405 2506
a5164405
JA
2507 return -ENOMEM;
2508}
2509
2510/*
2511 * Allocate the request maps associated with this tag_set. Note that this
2512 * may reduce the depth asked for, if memory is tight. set->queue_depth
2513 * will be updated to reflect the allocated depth.
2514 */
2515static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2516{
2517 unsigned int depth;
2518 int err;
2519
2520 depth = set->queue_depth;
2521 do {
2522 err = __blk_mq_alloc_rq_maps(set);
2523 if (!err)
2524 break;
2525
2526 set->queue_depth >>= 1;
2527 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2528 err = -ENOMEM;
2529 break;
2530 }
2531 } while (set->queue_depth);
2532
2533 if (!set->queue_depth || err) {
2534 pr_err("blk-mq: failed to allocate request map\n");
2535 return -ENOMEM;
2536 }
2537
2538 if (depth != set->queue_depth)
2539 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2540 depth, set->queue_depth);
2541
2542 return 0;
2543}
2544
a4391c64
JA
2545/*
2546 * Alloc a tag set to be associated with one or more request queues.
2547 * May fail with EINVAL for various error conditions. May adjust the
2548 * requested depth down, if if it too large. In that case, the set
2549 * value will be stored in set->queue_depth.
2550 */
24d2f903
CH
2551int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2552{
da695ba2
CH
2553 int ret;
2554
205fb5f5
BVA
2555 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2556
24d2f903
CH
2557 if (!set->nr_hw_queues)
2558 return -EINVAL;
a4391c64 2559 if (!set->queue_depth)
24d2f903
CH
2560 return -EINVAL;
2561 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2562 return -EINVAL;
2563
7d7e0f90 2564 if (!set->ops->queue_rq)
24d2f903
CH
2565 return -EINVAL;
2566
a4391c64
JA
2567 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2568 pr_info("blk-mq: reduced tag depth to %u\n",
2569 BLK_MQ_MAX_DEPTH);
2570 set->queue_depth = BLK_MQ_MAX_DEPTH;
2571 }
24d2f903 2572
6637fadf
SL
2573 /*
2574 * If a crashdump is active, then we are potentially in a very
2575 * memory constrained environment. Limit us to 1 queue and
2576 * 64 tags to prevent using too much memory.
2577 */
2578 if (is_kdump_kernel()) {
2579 set->nr_hw_queues = 1;
2580 set->queue_depth = min(64U, set->queue_depth);
2581 }
868f2f0b
KB
2582 /*
2583 * There is no use for more h/w queues than cpus.
2584 */
2585 if (set->nr_hw_queues > nr_cpu_ids)
2586 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2587
868f2f0b 2588 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2589 GFP_KERNEL, set->numa_node);
2590 if (!set->tags)
a5164405 2591 return -ENOMEM;
24d2f903 2592
da695ba2
CH
2593 ret = -ENOMEM;
2594 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2595 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2596 if (!set->mq_map)
2597 goto out_free_tags;
2598
da695ba2
CH
2599 if (set->ops->map_queues)
2600 ret = set->ops->map_queues(set);
2601 else
2602 ret = blk_mq_map_queues(set);
2603 if (ret)
2604 goto out_free_mq_map;
2605
2606 ret = blk_mq_alloc_rq_maps(set);
2607 if (ret)
bdd17e75 2608 goto out_free_mq_map;
24d2f903 2609
0d2602ca
JA
2610 mutex_init(&set->tag_list_lock);
2611 INIT_LIST_HEAD(&set->tag_list);
2612
24d2f903 2613 return 0;
bdd17e75
CH
2614
2615out_free_mq_map:
2616 kfree(set->mq_map);
2617 set->mq_map = NULL;
2618out_free_tags:
5676e7b6
RE
2619 kfree(set->tags);
2620 set->tags = NULL;
da695ba2 2621 return ret;
24d2f903
CH
2622}
2623EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2624
2625void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2626{
2627 int i;
2628
cc71a6f4
JA
2629 for (i = 0; i < nr_cpu_ids; i++)
2630 blk_mq_free_map_and_requests(set, i);
484b4061 2631
bdd17e75
CH
2632 kfree(set->mq_map);
2633 set->mq_map = NULL;
2634
981bd189 2635 kfree(set->tags);
5676e7b6 2636 set->tags = NULL;
24d2f903
CH
2637}
2638EXPORT_SYMBOL(blk_mq_free_tag_set);
2639
e3a2b3f9
JA
2640int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2641{
2642 struct blk_mq_tag_set *set = q->tag_set;
2643 struct blk_mq_hw_ctx *hctx;
2644 int i, ret;
2645
bd166ef1 2646 if (!set)
e3a2b3f9
JA
2647 return -EINVAL;
2648
70f36b60
JA
2649 blk_mq_freeze_queue(q);
2650 blk_mq_quiesce_queue(q);
2651
e3a2b3f9
JA
2652 ret = 0;
2653 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2654 if (!hctx->tags)
2655 continue;
bd166ef1
JA
2656 /*
2657 * If we're using an MQ scheduler, just update the scheduler
2658 * queue depth. This is similar to what the old code would do.
2659 */
70f36b60
JA
2660 if (!hctx->sched_tags) {
2661 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2662 min(nr, set->queue_depth),
2663 false);
2664 } else {
2665 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2666 nr, true);
2667 }
e3a2b3f9
JA
2668 if (ret)
2669 break;
2670 }
2671
2672 if (!ret)
2673 q->nr_requests = nr;
2674
70f36b60
JA
2675 blk_mq_unfreeze_queue(q);
2676 blk_mq_start_stopped_hw_queues(q, true);
2677
e3a2b3f9
JA
2678 return ret;
2679}
2680
868f2f0b
KB
2681void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2682{
2683 struct request_queue *q;
2684
2685 if (nr_hw_queues > nr_cpu_ids)
2686 nr_hw_queues = nr_cpu_ids;
2687 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2688 return;
2689
2690 list_for_each_entry(q, &set->tag_list, tag_set_list)
2691 blk_mq_freeze_queue(q);
2692
2693 set->nr_hw_queues = nr_hw_queues;
2694 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2695 blk_mq_realloc_hw_ctxs(set, q);
2696
f6f94300
JB
2697 /*
2698 * Manually set the make_request_fn as blk_queue_make_request
2699 * resets a lot of the queue settings.
2700 */
868f2f0b 2701 if (q->nr_hw_queues > 1)
f6f94300 2702 q->make_request_fn = blk_mq_make_request;
868f2f0b 2703 else
f6f94300 2704 q->make_request_fn = blk_sq_make_request;
868f2f0b
KB
2705
2706 blk_mq_queue_reinit(q, cpu_online_mask);
2707 }
2708
2709 list_for_each_entry(q, &set->tag_list, tag_set_list)
2710 blk_mq_unfreeze_queue(q);
2711}
2712EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2713
64f1c21e
JA
2714static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2715 struct blk_mq_hw_ctx *hctx,
2716 struct request *rq)
2717{
2718 struct blk_rq_stat stat[2];
2719 unsigned long ret = 0;
2720
2721 /*
2722 * If stats collection isn't on, don't sleep but turn it on for
2723 * future users
2724 */
2725 if (!blk_stat_enable(q))
2726 return 0;
2727
2728 /*
2729 * We don't have to do this once per IO, should optimize this
2730 * to just use the current window of stats until it changes
2731 */
2732 memset(&stat, 0, sizeof(stat));
2733 blk_hctx_stat_get(hctx, stat);
2734
2735 /*
2736 * As an optimistic guess, use half of the mean service time
2737 * for this type of request. We can (and should) make this smarter.
2738 * For instance, if the completion latencies are tight, we can
2739 * get closer than just half the mean. This is especially
2740 * important on devices where the completion latencies are longer
2741 * than ~10 usec.
2742 */
2743 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2744 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2745 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2746 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2747
2748 return ret;
2749}
2750
06426adf 2751static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2752 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2753 struct request *rq)
2754{
2755 struct hrtimer_sleeper hs;
2756 enum hrtimer_mode mode;
64f1c21e 2757 unsigned int nsecs;
06426adf
JA
2758 ktime_t kt;
2759
64f1c21e
JA
2760 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2761 return false;
2762
2763 /*
2764 * poll_nsec can be:
2765 *
2766 * -1: don't ever hybrid sleep
2767 * 0: use half of prev avg
2768 * >0: use this specific value
2769 */
2770 if (q->poll_nsec == -1)
2771 return false;
2772 else if (q->poll_nsec > 0)
2773 nsecs = q->poll_nsec;
2774 else
2775 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2776
2777 if (!nsecs)
06426adf
JA
2778 return false;
2779
2780 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2781
2782 /*
2783 * This will be replaced with the stats tracking code, using
2784 * 'avg_completion_time / 2' as the pre-sleep target.
2785 */
8b0e1953 2786 kt = nsecs;
06426adf
JA
2787
2788 mode = HRTIMER_MODE_REL;
2789 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2790 hrtimer_set_expires(&hs.timer, kt);
2791
2792 hrtimer_init_sleeper(&hs, current);
2793 do {
2794 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2795 break;
2796 set_current_state(TASK_UNINTERRUPTIBLE);
2797 hrtimer_start_expires(&hs.timer, mode);
2798 if (hs.task)
2799 io_schedule();
2800 hrtimer_cancel(&hs.timer);
2801 mode = HRTIMER_MODE_ABS;
2802 } while (hs.task && !signal_pending(current));
2803
2804 __set_current_state(TASK_RUNNING);
2805 destroy_hrtimer_on_stack(&hs.timer);
2806 return true;
2807}
2808
bbd7bb70
JA
2809static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2810{
2811 struct request_queue *q = hctx->queue;
2812 long state;
2813
06426adf
JA
2814 /*
2815 * If we sleep, have the caller restart the poll loop to reset
2816 * the state. Like for the other success return cases, the
2817 * caller is responsible for checking if the IO completed. If
2818 * the IO isn't complete, we'll get called again and will go
2819 * straight to the busy poll loop.
2820 */
64f1c21e 2821 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2822 return true;
2823
bbd7bb70
JA
2824 hctx->poll_considered++;
2825
2826 state = current->state;
2827 while (!need_resched()) {
2828 int ret;
2829
2830 hctx->poll_invoked++;
2831
2832 ret = q->mq_ops->poll(hctx, rq->tag);
2833 if (ret > 0) {
2834 hctx->poll_success++;
2835 set_current_state(TASK_RUNNING);
2836 return true;
2837 }
2838
2839 if (signal_pending_state(state, current))
2840 set_current_state(TASK_RUNNING);
2841
2842 if (current->state == TASK_RUNNING)
2843 return true;
2844 if (ret < 0)
2845 break;
2846 cpu_relax();
2847 }
2848
2849 return false;
2850}
2851
2852bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2853{
2854 struct blk_mq_hw_ctx *hctx;
2855 struct blk_plug *plug;
2856 struct request *rq;
2857
2858 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2859 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2860 return false;
2861
2862 plug = current->plug;
2863 if (plug)
2864 blk_flush_plug_list(plug, false);
2865
2866 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2867 if (!blk_qc_t_is_internal(cookie))
2868 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2869 else
2870 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
bbd7bb70
JA
2871
2872 return __blk_mq_poll(hctx, rq);
2873}
2874EXPORT_SYMBOL_GPL(blk_mq_poll);
2875
676141e4
JA
2876void blk_mq_disable_hotplug(void)
2877{
2878 mutex_lock(&all_q_mutex);
2879}
2880
2881void blk_mq_enable_hotplug(void)
2882{
2883 mutex_unlock(&all_q_mutex);
2884}
2885
320ae51f
JA
2886static int __init blk_mq_init(void)
2887{
9467f859
TG
2888 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2889 blk_mq_hctx_notify_dead);
320ae51f 2890
65d5291e
SAS
2891 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2892 blk_mq_queue_reinit_prepare,
2893 blk_mq_queue_reinit_dead);
320ae51f
JA
2894 return 0;
2895}
2896subsys_initcall(blk_mq_init);