]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-mq.c
blk-mq: stop hardware queue in blk_mq_delay_queue()
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
23#include <linux/delay.h>
aedcd72f 24#include <linux/crash_dump.h>
88c7b2b7 25#include <linux/prefetch.h>
320ae51f
JA
26
27#include <trace/events/block.h>
28
29#include <linux/blk-mq.h>
30#include "blk.h"
31#include "blk-mq.h"
32#include "blk-mq-tag.h"
cf43e6be 33#include "blk-stat.h"
87760e5e 34#include "blk-wbt.h"
bd166ef1 35#include "blk-mq-sched.h"
320ae51f
JA
36
37static DEFINE_MUTEX(all_q_mutex);
38static LIST_HEAD(all_q_list);
39
320ae51f
JA
40/*
41 * Check if any of the ctx's have pending work in this hardware queue
42 */
43static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44{
bd166ef1
JA
45 return sbitmap_any_bit_set(&hctx->ctx_map) ||
46 !list_empty_careful(&hctx->dispatch) ||
47 blk_mq_sched_has_work(hctx);
1429d7c9
JA
48}
49
320ae51f
JA
50/*
51 * Mark this ctx as having pending work in this hardware queue
52 */
53static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
54 struct blk_mq_ctx *ctx)
55{
88459642
OS
56 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
57 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
58}
59
60static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
61 struct blk_mq_ctx *ctx)
62{
88459642 63 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
64}
65
b4c6a028 66void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 67{
4ecd4fef 68 int freeze_depth;
cddd5d17 69
4ecd4fef
CH
70 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
71 if (freeze_depth == 1) {
3ef28e83 72 percpu_ref_kill(&q->q_usage_counter);
b94ec296 73 blk_mq_run_hw_queues(q, false);
cddd5d17 74 }
f3af020b 75}
b4c6a028 76EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
f3af020b
TH
77
78static void blk_mq_freeze_queue_wait(struct request_queue *q)
79{
3ef28e83 80 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2
ML
81}
82
f3af020b
TH
83/*
84 * Guarantee no request is in use, so we can change any data structure of
85 * the queue afterward.
86 */
3ef28e83 87void blk_freeze_queue(struct request_queue *q)
f3af020b 88{
3ef28e83
DW
89 /*
90 * In the !blk_mq case we are only calling this to kill the
91 * q_usage_counter, otherwise this increases the freeze depth
92 * and waits for it to return to zero. For this reason there is
93 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
94 * exported to drivers as the only user for unfreeze is blk_mq.
95 */
f3af020b
TH
96 blk_mq_freeze_queue_start(q);
97 blk_mq_freeze_queue_wait(q);
98}
3ef28e83
DW
99
100void blk_mq_freeze_queue(struct request_queue *q)
101{
102 /*
103 * ...just an alias to keep freeze and unfreeze actions balanced
104 * in the blk_mq_* namespace
105 */
106 blk_freeze_queue(q);
107}
c761d96b 108EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 109
b4c6a028 110void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 111{
4ecd4fef 112 int freeze_depth;
320ae51f 113
4ecd4fef
CH
114 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
115 WARN_ON_ONCE(freeze_depth < 0);
116 if (!freeze_depth) {
3ef28e83 117 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 118 wake_up_all(&q->mq_freeze_wq);
add703fd 119 }
320ae51f 120}
b4c6a028 121EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 122
6a83e74d
BVA
123/**
124 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
125 * @q: request queue.
126 *
127 * Note: this function does not prevent that the struct request end_io()
128 * callback function is invoked. Additionally, it is not prevented that
129 * new queue_rq() calls occur unless the queue has been stopped first.
130 */
131void blk_mq_quiesce_queue(struct request_queue *q)
132{
133 struct blk_mq_hw_ctx *hctx;
134 unsigned int i;
135 bool rcu = false;
136
137 blk_mq_stop_hw_queues(q);
138
139 queue_for_each_hw_ctx(q, hctx, i) {
140 if (hctx->flags & BLK_MQ_F_BLOCKING)
141 synchronize_srcu(&hctx->queue_rq_srcu);
142 else
143 rcu = true;
144 }
145 if (rcu)
146 synchronize_rcu();
147}
148EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
149
aed3ea94
JA
150void blk_mq_wake_waiters(struct request_queue *q)
151{
152 struct blk_mq_hw_ctx *hctx;
153 unsigned int i;
154
155 queue_for_each_hw_ctx(q, hctx, i)
156 if (blk_mq_hw_queue_mapped(hctx))
157 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
158
159 /*
160 * If we are called because the queue has now been marked as
161 * dying, we need to ensure that processes currently waiting on
162 * the queue are notified as well.
163 */
164 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
165}
166
320ae51f
JA
167bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
168{
169 return blk_mq_has_free_tags(hctx->tags);
170}
171EXPORT_SYMBOL(blk_mq_can_queue);
172
2c3ad667
JA
173void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
174 struct request *rq, unsigned int op)
320ae51f 175{
af76e555
CH
176 INIT_LIST_HEAD(&rq->queuelist);
177 /* csd/requeue_work/fifo_time is initialized before use */
178 rq->q = q;
320ae51f 179 rq->mq_ctx = ctx;
ef295ecf 180 rq->cmd_flags = op;
e8064021
CH
181 if (blk_queue_io_stat(q))
182 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
183 /* do not touch atomic flags, it needs atomic ops against the timer */
184 rq->cpu = -1;
af76e555
CH
185 INIT_HLIST_NODE(&rq->hash);
186 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
187 rq->rq_disk = NULL;
188 rq->part = NULL;
3ee32372 189 rq->start_time = jiffies;
af76e555
CH
190#ifdef CONFIG_BLK_CGROUP
191 rq->rl = NULL;
0fec08b4 192 set_start_time_ns(rq);
af76e555
CH
193 rq->io_start_time_ns = 0;
194#endif
195 rq->nr_phys_segments = 0;
196#if defined(CONFIG_BLK_DEV_INTEGRITY)
197 rq->nr_integrity_segments = 0;
198#endif
af76e555
CH
199 rq->special = NULL;
200 /* tag was already set */
201 rq->errors = 0;
af76e555 202
6f4a1626
TB
203 rq->cmd = rq->__cmd;
204
af76e555
CH
205 rq->extra_len = 0;
206 rq->sense_len = 0;
207 rq->resid_len = 0;
208 rq->sense = NULL;
209
af76e555 210 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
211 rq->timeout = 0;
212
af76e555
CH
213 rq->end_io = NULL;
214 rq->end_io_data = NULL;
215 rq->next_rq = NULL;
216
ef295ecf 217 ctx->rq_dispatched[op_is_sync(op)]++;
320ae51f 218}
2c3ad667 219EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
320ae51f 220
2c3ad667
JA
221struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
222 unsigned int op)
5dee8577
CH
223{
224 struct request *rq;
225 unsigned int tag;
226
cb96a42c 227 tag = blk_mq_get_tag(data);
5dee8577 228 if (tag != BLK_MQ_TAG_FAIL) {
bd166ef1
JA
229 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
230
231 rq = tags->static_rqs[tag];
5dee8577 232
cb96a42c 233 if (blk_mq_tag_busy(data->hctx)) {
e8064021 234 rq->rq_flags = RQF_MQ_INFLIGHT;
cb96a42c 235 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
236 }
237
bd166ef1
JA
238 if (data->flags & BLK_MQ_REQ_INTERNAL) {
239 rq->tag = -1;
240 rq->internal_tag = tag;
241 } else {
242 rq->tag = tag;
243 rq->internal_tag = -1;
244 }
245
ef295ecf 246 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
5dee8577
CH
247 return rq;
248 }
249
250 return NULL;
251}
2c3ad667 252EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
5dee8577 253
6f3b0e8b
CH
254struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
255 unsigned int flags)
320ae51f 256{
cb96a42c 257 struct blk_mq_alloc_data alloc_data;
bd166ef1 258 struct request *rq;
a492f075 259 int ret;
320ae51f 260
6f3b0e8b 261 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
262 if (ret)
263 return ERR_PTR(ret);
320ae51f 264
bd166ef1 265 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
841bac2c 266
bd166ef1
JA
267 blk_mq_put_ctx(alloc_data.ctx);
268 blk_queue_exit(q);
269
270 if (!rq)
a492f075 271 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
272
273 rq->__data_len = 0;
274 rq->__sector = (sector_t) -1;
275 rq->bio = rq->biotail = NULL;
320ae51f
JA
276 return rq;
277}
4bb659b1 278EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 279
1f5bd336
ML
280struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
281 unsigned int flags, unsigned int hctx_idx)
282{
283 struct blk_mq_hw_ctx *hctx;
284 struct blk_mq_ctx *ctx;
285 struct request *rq;
286 struct blk_mq_alloc_data alloc_data;
287 int ret;
288
289 /*
290 * If the tag allocator sleeps we could get an allocation for a
291 * different hardware context. No need to complicate the low level
292 * allocator for this for the rare use case of a command tied to
293 * a specific queue.
294 */
295 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
296 return ERR_PTR(-EINVAL);
297
298 if (hctx_idx >= q->nr_hw_queues)
299 return ERR_PTR(-EIO);
300
301 ret = blk_queue_enter(q, true);
302 if (ret)
303 return ERR_PTR(ret);
304
c8712c6a
CH
305 /*
306 * Check if the hardware context is actually mapped to anything.
307 * If not tell the caller that it should skip this queue.
308 */
1f5bd336 309 hctx = q->queue_hw_ctx[hctx_idx];
c8712c6a
CH
310 if (!blk_mq_hw_queue_mapped(hctx)) {
311 ret = -EXDEV;
312 goto out_queue_exit;
313 }
1f5bd336
ML
314 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
315
316 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
ef295ecf 317 rq = __blk_mq_alloc_request(&alloc_data, rw);
1f5bd336 318 if (!rq) {
c8712c6a
CH
319 ret = -EWOULDBLOCK;
320 goto out_queue_exit;
1f5bd336
ML
321 }
322
323 return rq;
c8712c6a
CH
324
325out_queue_exit:
326 blk_queue_exit(q);
327 return ERR_PTR(ret);
1f5bd336
ML
328}
329EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
330
bd166ef1
JA
331void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
332 struct request *rq)
320ae51f 333{
bd166ef1 334 const int sched_tag = rq->internal_tag;
320ae51f
JA
335 struct request_queue *q = rq->q;
336
e8064021 337 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 338 atomic_dec(&hctx->nr_active);
87760e5e
JA
339
340 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 341 rq->rq_flags = 0;
0d2602ca 342
af76e555 343 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 344 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
345 if (rq->tag != -1)
346 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
347 if (sched_tag != -1)
348 blk_mq_sched_completed_request(hctx, rq);
3ef28e83 349 blk_queue_exit(q);
320ae51f
JA
350}
351
bd166ef1 352static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
16a3c2a7 353 struct request *rq)
320ae51f
JA
354{
355 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
356
357 ctx->rq_completed[rq_is_sync(rq)]++;
bd166ef1
JA
358 __blk_mq_finish_request(hctx, ctx, rq);
359}
360
361void blk_mq_finish_request(struct request *rq)
362{
363 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
7c7f2f2b 364}
7c7f2f2b
JA
365
366void blk_mq_free_request(struct request *rq)
367{
bd166ef1 368 blk_mq_sched_put_request(rq);
320ae51f 369}
1a3b595a 370EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 371
c8a446ad 372inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 373{
0d11e6ac
ML
374 blk_account_io_done(rq);
375
91b63639 376 if (rq->end_io) {
87760e5e 377 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 378 rq->end_io(rq, error);
91b63639
CH
379 } else {
380 if (unlikely(blk_bidi_rq(rq)))
381 blk_mq_free_request(rq->next_rq);
320ae51f 382 blk_mq_free_request(rq);
91b63639 383 }
320ae51f 384}
c8a446ad 385EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 386
c8a446ad 387void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
388{
389 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
390 BUG();
c8a446ad 391 __blk_mq_end_request(rq, error);
63151a44 392}
c8a446ad 393EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 394
30a91cb4 395static void __blk_mq_complete_request_remote(void *data)
320ae51f 396{
3d6efbf6 397 struct request *rq = data;
320ae51f 398
30a91cb4 399 rq->q->softirq_done_fn(rq);
320ae51f 400}
320ae51f 401
ed851860 402static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
403{
404 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 405 bool shared = false;
320ae51f
JA
406 int cpu;
407
38535201 408 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
409 rq->q->softirq_done_fn(rq);
410 return;
411 }
320ae51f
JA
412
413 cpu = get_cpu();
38535201
CH
414 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
415 shared = cpus_share_cache(cpu, ctx->cpu);
416
417 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 418 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
419 rq->csd.info = rq;
420 rq->csd.flags = 0;
c46fff2a 421 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 422 } else {
30a91cb4 423 rq->q->softirq_done_fn(rq);
3d6efbf6 424 }
320ae51f
JA
425 put_cpu();
426}
30a91cb4 427
cf43e6be
JA
428static void blk_mq_stat_add(struct request *rq)
429{
430 if (rq->rq_flags & RQF_STATS) {
431 /*
432 * We could rq->mq_ctx here, but there's less of a risk
433 * of races if we have the completion event add the stats
434 * to the local software queue.
435 */
436 struct blk_mq_ctx *ctx;
437
438 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
439 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
440 }
441}
442
1fa8cc52 443static void __blk_mq_complete_request(struct request *rq)
ed851860
JA
444{
445 struct request_queue *q = rq->q;
446
cf43e6be
JA
447 blk_mq_stat_add(rq);
448
ed851860 449 if (!q->softirq_done_fn)
c8a446ad 450 blk_mq_end_request(rq, rq->errors);
ed851860
JA
451 else
452 blk_mq_ipi_complete_request(rq);
453}
454
30a91cb4
CH
455/**
456 * blk_mq_complete_request - end I/O on a request
457 * @rq: the request being processed
458 *
459 * Description:
460 * Ends all I/O on a request. It does not handle partial completions.
461 * The actual completion happens out-of-order, through a IPI handler.
462 **/
f4829a9b 463void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 464{
95f09684
JA
465 struct request_queue *q = rq->q;
466
467 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 468 return;
f4829a9b
CH
469 if (!blk_mark_rq_complete(rq)) {
470 rq->errors = error;
ed851860 471 __blk_mq_complete_request(rq);
f4829a9b 472 }
30a91cb4
CH
473}
474EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 475
973c0191
KB
476int blk_mq_request_started(struct request *rq)
477{
478 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
479}
480EXPORT_SYMBOL_GPL(blk_mq_request_started);
481
e2490073 482void blk_mq_start_request(struct request *rq)
320ae51f
JA
483{
484 struct request_queue *q = rq->q;
485
bd166ef1
JA
486 blk_mq_sched_started_request(rq);
487
320ae51f
JA
488 trace_block_rq_issue(q, rq);
489
742ee69b 490 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
491 if (unlikely(blk_bidi_rq(rq)))
492 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 493
cf43e6be
JA
494 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
495 blk_stat_set_issue_time(&rq->issue_stat);
496 rq->rq_flags |= RQF_STATS;
87760e5e 497 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
498 }
499
2b8393b4 500 blk_add_timer(rq);
87ee7b11 501
538b7534
JA
502 /*
503 * Ensure that ->deadline is visible before set the started
504 * flag and clear the completed flag.
505 */
506 smp_mb__before_atomic();
507
87ee7b11
JA
508 /*
509 * Mark us as started and clear complete. Complete might have been
510 * set if requeue raced with timeout, which then marked it as
511 * complete. So be sure to clear complete again when we start
512 * the request, otherwise we'll ignore the completion event.
513 */
4b570521
JA
514 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
515 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
516 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
517 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
518
519 if (q->dma_drain_size && blk_rq_bytes(rq)) {
520 /*
521 * Make sure space for the drain appears. We know we can do
522 * this because max_hw_segments has been adjusted to be one
523 * fewer than the device can handle.
524 */
525 rq->nr_phys_segments++;
526 }
320ae51f 527}
e2490073 528EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 529
ed0791b2 530static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
531{
532 struct request_queue *q = rq->q;
533
534 trace_block_rq_requeue(q, rq);
87760e5e 535 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 536 blk_mq_sched_requeue_request(rq);
49f5baa5 537
e2490073
CH
538 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
539 if (q->dma_drain_size && blk_rq_bytes(rq))
540 rq->nr_phys_segments--;
541 }
320ae51f
JA
542}
543
2b053aca 544void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 545{
ed0791b2 546 __blk_mq_requeue_request(rq);
ed0791b2 547
ed0791b2 548 BUG_ON(blk_queued_rq(rq));
2b053aca 549 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
550}
551EXPORT_SYMBOL(blk_mq_requeue_request);
552
6fca6a61
CH
553static void blk_mq_requeue_work(struct work_struct *work)
554{
555 struct request_queue *q =
2849450a 556 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
557 LIST_HEAD(rq_list);
558 struct request *rq, *next;
559 unsigned long flags;
560
561 spin_lock_irqsave(&q->requeue_lock, flags);
562 list_splice_init(&q->requeue_list, &rq_list);
563 spin_unlock_irqrestore(&q->requeue_lock, flags);
564
565 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 566 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
567 continue;
568
e8064021 569 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 570 list_del_init(&rq->queuelist);
bd166ef1 571 blk_mq_sched_insert_request(rq, true, false, false);
6fca6a61
CH
572 }
573
574 while (!list_empty(&rq_list)) {
575 rq = list_entry(rq_list.next, struct request, queuelist);
576 list_del_init(&rq->queuelist);
bd166ef1 577 blk_mq_sched_insert_request(rq, false, false, false);
6fca6a61
CH
578 }
579
52d7f1b5 580 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
581}
582
2b053aca
BVA
583void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
584 bool kick_requeue_list)
6fca6a61
CH
585{
586 struct request_queue *q = rq->q;
587 unsigned long flags;
588
589 /*
590 * We abuse this flag that is otherwise used by the I/O scheduler to
591 * request head insertation from the workqueue.
592 */
e8064021 593 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
594
595 spin_lock_irqsave(&q->requeue_lock, flags);
596 if (at_head) {
e8064021 597 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
598 list_add(&rq->queuelist, &q->requeue_list);
599 } else {
600 list_add_tail(&rq->queuelist, &q->requeue_list);
601 }
602 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
603
604 if (kick_requeue_list)
605 blk_mq_kick_requeue_list(q);
6fca6a61
CH
606}
607EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
608
609void blk_mq_kick_requeue_list(struct request_queue *q)
610{
2849450a 611 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
612}
613EXPORT_SYMBOL(blk_mq_kick_requeue_list);
614
2849450a
MS
615void blk_mq_delay_kick_requeue_list(struct request_queue *q,
616 unsigned long msecs)
617{
618 kblockd_schedule_delayed_work(&q->requeue_work,
619 msecs_to_jiffies(msecs));
620}
621EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
622
1885b24d
JA
623void blk_mq_abort_requeue_list(struct request_queue *q)
624{
625 unsigned long flags;
626 LIST_HEAD(rq_list);
627
628 spin_lock_irqsave(&q->requeue_lock, flags);
629 list_splice_init(&q->requeue_list, &rq_list);
630 spin_unlock_irqrestore(&q->requeue_lock, flags);
631
632 while (!list_empty(&rq_list)) {
633 struct request *rq;
634
635 rq = list_first_entry(&rq_list, struct request, queuelist);
636 list_del_init(&rq->queuelist);
637 rq->errors = -EIO;
638 blk_mq_end_request(rq, rq->errors);
639 }
640}
641EXPORT_SYMBOL(blk_mq_abort_requeue_list);
642
0e62f51f
JA
643struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
644{
88c7b2b7
JA
645 if (tag < tags->nr_tags) {
646 prefetch(tags->rqs[tag]);
4ee86bab 647 return tags->rqs[tag];
88c7b2b7 648 }
4ee86bab
HR
649
650 return NULL;
24d2f903
CH
651}
652EXPORT_SYMBOL(blk_mq_tag_to_rq);
653
320ae51f 654struct blk_mq_timeout_data {
46f92d42
CH
655 unsigned long next;
656 unsigned int next_set;
320ae51f
JA
657};
658
90415837 659void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 660{
f8a5b122 661 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 662 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
663
664 /*
665 * We know that complete is set at this point. If STARTED isn't set
666 * anymore, then the request isn't active and the "timeout" should
667 * just be ignored. This can happen due to the bitflag ordering.
668 * Timeout first checks if STARTED is set, and if it is, assumes
669 * the request is active. But if we race with completion, then
670 * we both flags will get cleared. So check here again, and ignore
671 * a timeout event with a request that isn't active.
672 */
46f92d42
CH
673 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
674 return;
87ee7b11 675
46f92d42 676 if (ops->timeout)
0152fb6b 677 ret = ops->timeout(req, reserved);
46f92d42
CH
678
679 switch (ret) {
680 case BLK_EH_HANDLED:
681 __blk_mq_complete_request(req);
682 break;
683 case BLK_EH_RESET_TIMER:
684 blk_add_timer(req);
685 blk_clear_rq_complete(req);
686 break;
687 case BLK_EH_NOT_HANDLED:
688 break;
689 default:
690 printk(KERN_ERR "block: bad eh return: %d\n", ret);
691 break;
692 }
87ee7b11 693}
5b3f25fc 694
81481eb4
CH
695static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
696 struct request *rq, void *priv, bool reserved)
697{
698 struct blk_mq_timeout_data *data = priv;
87ee7b11 699
eb130dbf
KB
700 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
701 /*
702 * If a request wasn't started before the queue was
703 * marked dying, kill it here or it'll go unnoticed.
704 */
a59e0f57
KB
705 if (unlikely(blk_queue_dying(rq->q))) {
706 rq->errors = -EIO;
707 blk_mq_end_request(rq, rq->errors);
708 }
46f92d42 709 return;
eb130dbf 710 }
87ee7b11 711
46f92d42
CH
712 if (time_after_eq(jiffies, rq->deadline)) {
713 if (!blk_mark_rq_complete(rq))
0152fb6b 714 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
715 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
716 data->next = rq->deadline;
717 data->next_set = 1;
718 }
87ee7b11
JA
719}
720
287922eb 721static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 722{
287922eb
CH
723 struct request_queue *q =
724 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
725 struct blk_mq_timeout_data data = {
726 .next = 0,
727 .next_set = 0,
728 };
81481eb4 729 int i;
320ae51f 730
71f79fb3
GKB
731 /* A deadlock might occur if a request is stuck requiring a
732 * timeout at the same time a queue freeze is waiting
733 * completion, since the timeout code would not be able to
734 * acquire the queue reference here.
735 *
736 * That's why we don't use blk_queue_enter here; instead, we use
737 * percpu_ref_tryget directly, because we need to be able to
738 * obtain a reference even in the short window between the queue
739 * starting to freeze, by dropping the first reference in
740 * blk_mq_freeze_queue_start, and the moment the last request is
741 * consumed, marked by the instant q_usage_counter reaches
742 * zero.
743 */
744 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
745 return;
746
0bf6cd5b 747 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 748
81481eb4
CH
749 if (data.next_set) {
750 data.next = blk_rq_timeout(round_jiffies_up(data.next));
751 mod_timer(&q->timeout, data.next);
0d2602ca 752 } else {
0bf6cd5b
CH
753 struct blk_mq_hw_ctx *hctx;
754
f054b56c
ML
755 queue_for_each_hw_ctx(q, hctx, i) {
756 /* the hctx may be unmapped, so check it here */
757 if (blk_mq_hw_queue_mapped(hctx))
758 blk_mq_tag_idle(hctx);
759 }
0d2602ca 760 }
287922eb 761 blk_queue_exit(q);
320ae51f
JA
762}
763
764/*
765 * Reverse check our software queue for entries that we could potentially
766 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
767 * too much time checking for merges.
768 */
769static bool blk_mq_attempt_merge(struct request_queue *q,
770 struct blk_mq_ctx *ctx, struct bio *bio)
771{
772 struct request *rq;
773 int checked = 8;
774
775 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
776 int el_ret;
777
778 if (!checked--)
779 break;
780
781 if (!blk_rq_merge_ok(rq, bio))
782 continue;
783
784 el_ret = blk_try_merge(rq, bio);
bd166ef1
JA
785 if (el_ret == ELEVATOR_NO_MERGE)
786 continue;
787
788 if (!blk_mq_sched_allow_merge(q, rq, bio))
789 break;
790
320ae51f
JA
791 if (el_ret == ELEVATOR_BACK_MERGE) {
792 if (bio_attempt_back_merge(q, rq, bio)) {
793 ctx->rq_merged++;
794 return true;
795 }
796 break;
797 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
798 if (bio_attempt_front_merge(q, rq, bio)) {
799 ctx->rq_merged++;
800 return true;
801 }
802 break;
803 }
804 }
805
806 return false;
807}
808
88459642
OS
809struct flush_busy_ctx_data {
810 struct blk_mq_hw_ctx *hctx;
811 struct list_head *list;
812};
813
814static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
815{
816 struct flush_busy_ctx_data *flush_data = data;
817 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
818 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
819
820 sbitmap_clear_bit(sb, bitnr);
821 spin_lock(&ctx->lock);
822 list_splice_tail_init(&ctx->rq_list, flush_data->list);
823 spin_unlock(&ctx->lock);
824 return true;
825}
826
1429d7c9
JA
827/*
828 * Process software queues that have been marked busy, splicing them
829 * to the for-dispatch
830 */
2c3ad667 831void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 832{
88459642
OS
833 struct flush_busy_ctx_data data = {
834 .hctx = hctx,
835 .list = list,
836 };
1429d7c9 837
88459642 838 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 839}
2c3ad667 840EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 841
703fd1c0
JA
842static inline unsigned int queued_to_index(unsigned int queued)
843{
844 if (!queued)
845 return 0;
1429d7c9 846
703fd1c0 847 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
848}
849
bd166ef1
JA
850static bool blk_mq_get_driver_tag(struct request *rq,
851 struct blk_mq_hw_ctx **hctx, bool wait)
852{
853 struct blk_mq_alloc_data data = {
854 .q = rq->q,
855 .ctx = rq->mq_ctx,
856 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
857 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
858 };
859
860 if (blk_mq_hctx_stopped(data.hctx))
861 return false;
862
863 if (rq->tag != -1) {
864done:
865 if (hctx)
866 *hctx = data.hctx;
867 return true;
868 }
869
870 rq->tag = blk_mq_get_tag(&data);
871 if (rq->tag >= 0) {
872 data.hctx->tags->rqs[rq->tag] = rq;
873 goto done;
874 }
875
876 return false;
877}
878
879/*
880 * If we fail getting a driver tag because all the driver tags are already
881 * assigned and on the dispatch list, BUT the first entry does not have a
882 * tag, then we could deadlock. For that case, move entries with assigned
883 * driver tags to the front, leaving the set of tagged requests in the
884 * same order, and the untagged set in the same order.
885 */
886static bool reorder_tags_to_front(struct list_head *list)
887{
888 struct request *rq, *tmp, *first = NULL;
889
890 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
891 if (rq == first)
892 break;
893 if (rq->tag != -1) {
894 list_move(&rq->queuelist, list);
895 if (!first)
896 first = rq;
897 }
898 }
899
900 return first != NULL;
901}
902
f04c3df3 903bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
320ae51f
JA
904{
905 struct request_queue *q = hctx->queue;
320ae51f 906 struct request *rq;
74c45052
JA
907 LIST_HEAD(driver_list);
908 struct list_head *dptr;
f04c3df3 909 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
320ae51f 910
74c45052
JA
911 /*
912 * Start off with dptr being NULL, so we start the first request
913 * immediately, even if we have more pending.
914 */
915 dptr = NULL;
916
320ae51f
JA
917 /*
918 * Now process all the entries, sending them to the driver.
919 */
1429d7c9 920 queued = 0;
f04c3df3 921 while (!list_empty(list)) {
74c45052 922 struct blk_mq_queue_data bd;
320ae51f 923
f04c3df3 924 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
925 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
926 if (!queued && reorder_tags_to_front(list))
927 continue;
928 blk_mq_sched_mark_restart(hctx);
929 break;
930 }
320ae51f 931 list_del_init(&rq->queuelist);
320ae51f 932
74c45052
JA
933 bd.rq = rq;
934 bd.list = dptr;
f04c3df3 935 bd.last = list_empty(list);
74c45052
JA
936
937 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
938 switch (ret) {
939 case BLK_MQ_RQ_QUEUE_OK:
940 queued++;
52b9c330 941 break;
320ae51f 942 case BLK_MQ_RQ_QUEUE_BUSY:
f04c3df3 943 list_add(&rq->queuelist, list);
ed0791b2 944 __blk_mq_requeue_request(rq);
320ae51f
JA
945 break;
946 default:
947 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 948 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 949 rq->errors = -EIO;
c8a446ad 950 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
951 break;
952 }
953
954 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
955 break;
74c45052
JA
956
957 /*
958 * We've done the first request. If we have more than 1
959 * left in the list, set dptr to defer issue.
960 */
f04c3df3 961 if (!dptr && list->next != list->prev)
74c45052 962 dptr = &driver_list;
320ae51f
JA
963 }
964
703fd1c0 965 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
966
967 /*
968 * Any items that need requeuing? Stuff them into hctx->dispatch,
969 * that is where we will continue on next queue run.
970 */
f04c3df3 971 if (!list_empty(list)) {
320ae51f 972 spin_lock(&hctx->lock);
f04c3df3 973 list_splice(list, &hctx->dispatch);
320ae51f 974 spin_unlock(&hctx->lock);
f04c3df3 975
9ba52e58
SL
976 /*
977 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
978 * it's possible the queue is stopped and restarted again
979 * before this. Queue restart will dispatch requests. And since
980 * requests in rq_list aren't added into hctx->dispatch yet,
981 * the requests in rq_list might get lost.
982 *
983 * blk_mq_run_hw_queue() already checks the STOPPED bit
bd166ef1
JA
984 *
985 * If RESTART is set, then let completion restart the queue
986 * instead of potentially looping here.
987 */
988 if (!blk_mq_sched_needs_restart(hctx))
989 blk_mq_run_hw_queue(hctx, true);
320ae51f 990 }
f04c3df3
JA
991
992 return ret != BLK_MQ_RQ_QUEUE_BUSY;
993}
994
6a83e74d
BVA
995static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
996{
997 int srcu_idx;
998
999 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1000 cpu_online(hctx->next_cpu));
1001
1002 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1003 rcu_read_lock();
bd166ef1 1004 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1005 rcu_read_unlock();
1006 } else {
1007 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
bd166ef1 1008 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1009 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1010 }
1011}
1012
506e931f
JA
1013/*
1014 * It'd be great if the workqueue API had a way to pass
1015 * in a mask and had some smarts for more clever placement.
1016 * For now we just round-robin here, switching for every
1017 * BLK_MQ_CPU_WORK_BATCH queued items.
1018 */
1019static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1020{
b657d7e6
CH
1021 if (hctx->queue->nr_hw_queues == 1)
1022 return WORK_CPU_UNBOUND;
506e931f
JA
1023
1024 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1025 int next_cpu;
506e931f
JA
1026
1027 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1028 if (next_cpu >= nr_cpu_ids)
1029 next_cpu = cpumask_first(hctx->cpumask);
1030
1031 hctx->next_cpu = next_cpu;
1032 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1033 }
1034
b657d7e6 1035 return hctx->next_cpu;
506e931f
JA
1036}
1037
320ae51f
JA
1038void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1039{
5d1b25c1
BVA
1040 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1041 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
1042 return;
1043
1b792f2f 1044 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1045 int cpu = get_cpu();
1046 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1047 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1048 put_cpu();
398205b8
PB
1049 return;
1050 }
e4043dcf 1051
2a90d4aa 1052 put_cpu();
e4043dcf 1053 }
398205b8 1054
27489a3c 1055 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
320ae51f
JA
1056}
1057
b94ec296 1058void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1059{
1060 struct blk_mq_hw_ctx *hctx;
1061 int i;
1062
1063 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1064 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1065 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1066 continue;
1067
b94ec296 1068 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1069 }
1070}
b94ec296 1071EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1072
fd001443
BVA
1073/**
1074 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1075 * @q: request queue.
1076 *
1077 * The caller is responsible for serializing this function against
1078 * blk_mq_{start,stop}_hw_queue().
1079 */
1080bool blk_mq_queue_stopped(struct request_queue *q)
1081{
1082 struct blk_mq_hw_ctx *hctx;
1083 int i;
1084
1085 queue_for_each_hw_ctx(q, hctx, i)
1086 if (blk_mq_hctx_stopped(hctx))
1087 return true;
1088
1089 return false;
1090}
1091EXPORT_SYMBOL(blk_mq_queue_stopped);
1092
320ae51f
JA
1093void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1094{
27489a3c 1095 cancel_work(&hctx->run_work);
70f4db63 1096 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
1097 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1098}
1099EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1100
280d45f6
CH
1101void blk_mq_stop_hw_queues(struct request_queue *q)
1102{
1103 struct blk_mq_hw_ctx *hctx;
1104 int i;
1105
1106 queue_for_each_hw_ctx(q, hctx, i)
1107 blk_mq_stop_hw_queue(hctx);
1108}
1109EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1110
320ae51f
JA
1111void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1112{
1113 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1114
0ffbce80 1115 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1116}
1117EXPORT_SYMBOL(blk_mq_start_hw_queue);
1118
2f268556
CH
1119void blk_mq_start_hw_queues(struct request_queue *q)
1120{
1121 struct blk_mq_hw_ctx *hctx;
1122 int i;
1123
1124 queue_for_each_hw_ctx(q, hctx, i)
1125 blk_mq_start_hw_queue(hctx);
1126}
1127EXPORT_SYMBOL(blk_mq_start_hw_queues);
1128
ae911c5e
JA
1129void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1130{
1131 if (!blk_mq_hctx_stopped(hctx))
1132 return;
1133
1134 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1135 blk_mq_run_hw_queue(hctx, async);
1136}
1137EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1138
1b4a3258 1139void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1140{
1141 struct blk_mq_hw_ctx *hctx;
1142 int i;
1143
ae911c5e
JA
1144 queue_for_each_hw_ctx(q, hctx, i)
1145 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1146}
1147EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1148
70f4db63 1149static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1150{
1151 struct blk_mq_hw_ctx *hctx;
1152
27489a3c 1153 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
e4043dcf 1154
320ae51f
JA
1155 __blk_mq_run_hw_queue(hctx);
1156}
1157
70f4db63
CH
1158static void blk_mq_delay_work_fn(struct work_struct *work)
1159{
1160 struct blk_mq_hw_ctx *hctx;
1161
1162 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1163
1164 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1165 __blk_mq_run_hw_queue(hctx);
1166}
1167
1168void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1169{
19c66e59
ML
1170 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1171 return;
70f4db63 1172
7e79dadc 1173 blk_mq_stop_hw_queue(hctx);
b657d7e6
CH
1174 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1175 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
1176}
1177EXPORT_SYMBOL(blk_mq_delay_queue);
1178
cfd0c552 1179static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1180 struct request *rq,
1181 bool at_head)
320ae51f 1182{
e57690fe
JA
1183 struct blk_mq_ctx *ctx = rq->mq_ctx;
1184
01b983c9
JA
1185 trace_block_rq_insert(hctx->queue, rq);
1186
72a0a36e
CH
1187 if (at_head)
1188 list_add(&rq->queuelist, &ctx->rq_list);
1189 else
1190 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1191}
4bb659b1 1192
2c3ad667
JA
1193void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1194 bool at_head)
cfd0c552
ML
1195{
1196 struct blk_mq_ctx *ctx = rq->mq_ctx;
1197
e57690fe 1198 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1199 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1200}
1201
bd166ef1
JA
1202void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1203 struct list_head *list)
320ae51f
JA
1204
1205{
320ae51f
JA
1206 /*
1207 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1208 * offline now
1209 */
1210 spin_lock(&ctx->lock);
1211 while (!list_empty(list)) {
1212 struct request *rq;
1213
1214 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1215 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1216 list_del_init(&rq->queuelist);
e57690fe 1217 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1218 }
cfd0c552 1219 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1220 spin_unlock(&ctx->lock);
320ae51f
JA
1221}
1222
1223static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1224{
1225 struct request *rqa = container_of(a, struct request, queuelist);
1226 struct request *rqb = container_of(b, struct request, queuelist);
1227
1228 return !(rqa->mq_ctx < rqb->mq_ctx ||
1229 (rqa->mq_ctx == rqb->mq_ctx &&
1230 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1231}
1232
1233void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1234{
1235 struct blk_mq_ctx *this_ctx;
1236 struct request_queue *this_q;
1237 struct request *rq;
1238 LIST_HEAD(list);
1239 LIST_HEAD(ctx_list);
1240 unsigned int depth;
1241
1242 list_splice_init(&plug->mq_list, &list);
1243
1244 list_sort(NULL, &list, plug_ctx_cmp);
1245
1246 this_q = NULL;
1247 this_ctx = NULL;
1248 depth = 0;
1249
1250 while (!list_empty(&list)) {
1251 rq = list_entry_rq(list.next);
1252 list_del_init(&rq->queuelist);
1253 BUG_ON(!rq->q);
1254 if (rq->mq_ctx != this_ctx) {
1255 if (this_ctx) {
bd166ef1
JA
1256 trace_block_unplug(this_q, depth, from_schedule);
1257 blk_mq_sched_insert_requests(this_q, this_ctx,
1258 &ctx_list,
1259 from_schedule);
320ae51f
JA
1260 }
1261
1262 this_ctx = rq->mq_ctx;
1263 this_q = rq->q;
1264 depth = 0;
1265 }
1266
1267 depth++;
1268 list_add_tail(&rq->queuelist, &ctx_list);
1269 }
1270
1271 /*
1272 * If 'this_ctx' is set, we know we have entries to complete
1273 * on 'ctx_list'. Do those.
1274 */
1275 if (this_ctx) {
bd166ef1
JA
1276 trace_block_unplug(this_q, depth, from_schedule);
1277 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1278 from_schedule);
320ae51f
JA
1279 }
1280}
1281
1282static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1283{
1284 init_request_from_bio(rq, bio);
4b570521 1285
6e85eaf3 1286 blk_account_io_start(rq, true);
320ae51f
JA
1287}
1288
274a5843
JA
1289static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1290{
1291 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1292 !blk_queue_nomerges(hctx->queue);
1293}
1294
07068d5b
JA
1295static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1296 struct blk_mq_ctx *ctx,
1297 struct request *rq, struct bio *bio)
320ae51f 1298{
e18378a6 1299 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1300 blk_mq_bio_to_request(rq, bio);
1301 spin_lock(&ctx->lock);
1302insert_rq:
1303 __blk_mq_insert_request(hctx, rq, false);
1304 spin_unlock(&ctx->lock);
1305 return false;
1306 } else {
274a5843
JA
1307 struct request_queue *q = hctx->queue;
1308
07068d5b
JA
1309 spin_lock(&ctx->lock);
1310 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1311 blk_mq_bio_to_request(rq, bio);
1312 goto insert_rq;
1313 }
320ae51f 1314
07068d5b 1315 spin_unlock(&ctx->lock);
bd166ef1 1316 __blk_mq_finish_request(hctx, ctx, rq);
07068d5b 1317 return true;
14ec77f3 1318 }
07068d5b 1319}
14ec77f3 1320
fd2d3326
JA
1321static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1322{
bd166ef1
JA
1323 if (rq->tag != -1)
1324 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1325
1326 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1327}
1328
066a4a73 1329static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
f984df1f 1330{
f984df1f 1331 struct request_queue *q = rq->q;
f984df1f
SL
1332 struct blk_mq_queue_data bd = {
1333 .rq = rq,
1334 .list = NULL,
1335 .last = 1
1336 };
bd166ef1
JA
1337 struct blk_mq_hw_ctx *hctx;
1338 blk_qc_t new_cookie;
1339 int ret;
f984df1f 1340
bd166ef1 1341 if (q->elevator)
2253efc8
BVA
1342 goto insert;
1343
bd166ef1
JA
1344 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1345 goto insert;
1346
1347 new_cookie = request_to_qc_t(hctx, rq);
1348
f984df1f
SL
1349 /*
1350 * For OK queue, we are done. For error, kill it. Any other
1351 * error (busy), just add it to our list as we previously
1352 * would have done
1353 */
1354 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1355 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1356 *cookie = new_cookie;
2253efc8 1357 return;
7b371636 1358 }
f984df1f 1359
7b371636
JA
1360 __blk_mq_requeue_request(rq);
1361
1362 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1363 *cookie = BLK_QC_T_NONE;
1364 rq->errors = -EIO;
1365 blk_mq_end_request(rq, rq->errors);
2253efc8 1366 return;
f984df1f 1367 }
7b371636 1368
2253efc8 1369insert:
bd166ef1 1370 blk_mq_sched_insert_request(rq, false, true, true);
f984df1f
SL
1371}
1372
07068d5b
JA
1373/*
1374 * Multiple hardware queue variant. This will not use per-process plugs,
1375 * but will attempt to bypass the hctx queueing if we can go straight to
1376 * hardware for SYNC IO.
1377 */
dece1635 1378static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1379{
ef295ecf 1380 const int is_sync = op_is_sync(bio->bi_opf);
1eff9d32 1381 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
2552e3f8 1382 struct blk_mq_alloc_data data;
07068d5b 1383 struct request *rq;
6a83e74d 1384 unsigned int request_count = 0, srcu_idx;
f984df1f 1385 struct blk_plug *plug;
5b3f341f 1386 struct request *same_queue_rq = NULL;
7b371636 1387 blk_qc_t cookie;
87760e5e 1388 unsigned int wb_acct;
07068d5b
JA
1389
1390 blk_queue_bounce(q, &bio);
1391
1392 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1393 bio_io_error(bio);
dece1635 1394 return BLK_QC_T_NONE;
07068d5b
JA
1395 }
1396
54efd50b
KO
1397 blk_queue_split(q, &bio, q->bio_split);
1398
87c279e6
OS
1399 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1400 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1401 return BLK_QC_T_NONE;
f984df1f 1402
bd166ef1
JA
1403 if (blk_mq_sched_bio_merge(q, bio))
1404 return BLK_QC_T_NONE;
1405
87760e5e
JA
1406 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1407
bd166ef1
JA
1408 trace_block_getrq(q, bio, bio->bi_opf);
1409
1410 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1411 if (unlikely(!rq)) {
1412 __wbt_done(q->rq_wb, wb_acct);
dece1635 1413 return BLK_QC_T_NONE;
87760e5e
JA
1414 }
1415
1416 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1417
fd2d3326 1418 cookie = request_to_qc_t(data.hctx, rq);
07068d5b
JA
1419
1420 if (unlikely(is_flush_fua)) {
1421 blk_mq_bio_to_request(rq, bio);
bd166ef1 1422 blk_mq_get_driver_tag(rq, NULL, true);
07068d5b
JA
1423 blk_insert_flush(rq);
1424 goto run_queue;
1425 }
1426
f984df1f 1427 plug = current->plug;
e167dfb5
JA
1428 /*
1429 * If the driver supports defer issued based on 'last', then
1430 * queue it up like normal since we can potentially save some
1431 * CPU this way.
1432 */
f984df1f
SL
1433 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1434 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1435 struct request *old_rq = NULL;
07068d5b
JA
1436
1437 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1438
1439 /*
6a83e74d 1440 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1441 * Otherwise the existing request in the plug list will be
1442 * issued. So the plug list will have one request at most
07068d5b 1443 */
f984df1f 1444 if (plug) {
5b3f341f
SL
1445 /*
1446 * The plug list might get flushed before this. If that
b094f89c
JA
1447 * happens, same_queue_rq is invalid and plug list is
1448 * empty
1449 */
5b3f341f
SL
1450 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1451 old_rq = same_queue_rq;
f984df1f 1452 list_del_init(&old_rq->queuelist);
07068d5b 1453 }
f984df1f
SL
1454 list_add_tail(&rq->queuelist, &plug->mq_list);
1455 } else /* is_sync */
1456 old_rq = rq;
1457 blk_mq_put_ctx(data.ctx);
1458 if (!old_rq)
7b371636 1459 goto done;
6a83e74d
BVA
1460
1461 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1462 rcu_read_lock();
066a4a73 1463 blk_mq_try_issue_directly(old_rq, &cookie);
6a83e74d
BVA
1464 rcu_read_unlock();
1465 } else {
1466 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
066a4a73 1467 blk_mq_try_issue_directly(old_rq, &cookie);
6a83e74d
BVA
1468 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1469 }
7b371636 1470 goto done;
07068d5b
JA
1471 }
1472
bd166ef1
JA
1473 if (q->elevator) {
1474 blk_mq_put_ctx(data.ctx);
1475 blk_mq_bio_to_request(rq, bio);
1476 blk_mq_sched_insert_request(rq, false, true, true);
1477 goto done;
1478 }
07068d5b
JA
1479 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1480 /*
1481 * For a SYNC request, send it to the hardware immediately. For
1482 * an ASYNC request, just ensure that we run it later on. The
1483 * latter allows for merging opportunities and more efficient
1484 * dispatching.
1485 */
1486run_queue:
1487 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1488 }
07068d5b 1489 blk_mq_put_ctx(data.ctx);
7b371636
JA
1490done:
1491 return cookie;
07068d5b
JA
1492}
1493
1494/*
1495 * Single hardware queue variant. This will attempt to use any per-process
1496 * plug for merging and IO deferral.
1497 */
dece1635 1498static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1499{
ef295ecf 1500 const int is_sync = op_is_sync(bio->bi_opf);
1eff9d32 1501 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
e6c4438b
JM
1502 struct blk_plug *plug;
1503 unsigned int request_count = 0;
2552e3f8 1504 struct blk_mq_alloc_data data;
07068d5b 1505 struct request *rq;
7b371636 1506 blk_qc_t cookie;
87760e5e 1507 unsigned int wb_acct;
07068d5b 1508
07068d5b
JA
1509 blk_queue_bounce(q, &bio);
1510
1511 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1512 bio_io_error(bio);
dece1635 1513 return BLK_QC_T_NONE;
07068d5b
JA
1514 }
1515
54efd50b
KO
1516 blk_queue_split(q, &bio, q->bio_split);
1517
87c279e6
OS
1518 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1519 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1520 return BLK_QC_T_NONE;
1521 } else
1522 request_count = blk_plug_queued_count(q);
07068d5b 1523
bd166ef1
JA
1524 if (blk_mq_sched_bio_merge(q, bio))
1525 return BLK_QC_T_NONE;
1526
87760e5e
JA
1527 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1528
bd166ef1
JA
1529 trace_block_getrq(q, bio, bio->bi_opf);
1530
1531 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1532 if (unlikely(!rq)) {
1533 __wbt_done(q->rq_wb, wb_acct);
dece1635 1534 return BLK_QC_T_NONE;
87760e5e
JA
1535 }
1536
1537 wbt_track(&rq->issue_stat, wb_acct);
320ae51f 1538
fd2d3326 1539 cookie = request_to_qc_t(data.hctx, rq);
320ae51f
JA
1540
1541 if (unlikely(is_flush_fua)) {
1542 blk_mq_bio_to_request(rq, bio);
bd166ef1 1543 blk_mq_get_driver_tag(rq, NULL, true);
320ae51f
JA
1544 blk_insert_flush(rq);
1545 goto run_queue;
1546 }
1547
1548 /*
1549 * A task plug currently exists. Since this is completely lockless,
1550 * utilize that to temporarily store requests until the task is
1551 * either done or scheduled away.
1552 */
e6c4438b
JM
1553 plug = current->plug;
1554 if (plug) {
600271d9
SL
1555 struct request *last = NULL;
1556
e6c4438b 1557 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1558
1559 /*
1560 * @request_count may become stale because of schedule
1561 * out, so check the list again.
1562 */
1563 if (list_empty(&plug->mq_list))
1564 request_count = 0;
676d0607 1565 if (!request_count)
e6c4438b 1566 trace_block_plug(q);
600271d9
SL
1567 else
1568 last = list_entry_rq(plug->mq_list.prev);
b094f89c
JA
1569
1570 blk_mq_put_ctx(data.ctx);
1571
600271d9
SL
1572 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1573 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1574 blk_flush_plug_list(plug, false);
1575 trace_block_plug(q);
320ae51f 1576 }
b094f89c 1577
e6c4438b 1578 list_add_tail(&rq->queuelist, &plug->mq_list);
7b371636 1579 return cookie;
320ae51f
JA
1580 }
1581
bd166ef1
JA
1582 if (q->elevator) {
1583 blk_mq_put_ctx(data.ctx);
1584 blk_mq_bio_to_request(rq, bio);
1585 blk_mq_sched_insert_request(rq, false, true, true);
1586 goto done;
1587 }
07068d5b
JA
1588 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1589 /*
1590 * For a SYNC request, send it to the hardware immediately. For
1591 * an ASYNC request, just ensure that we run it later on. The
1592 * latter allows for merging opportunities and more efficient
1593 * dispatching.
1594 */
1595run_queue:
1596 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1597 }
1598
07068d5b 1599 blk_mq_put_ctx(data.ctx);
bd166ef1 1600done:
7b371636 1601 return cookie;
320ae51f
JA
1602}
1603
cc71a6f4
JA
1604void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1605 unsigned int hctx_idx)
95363efd 1606{
e9b267d9 1607 struct page *page;
320ae51f 1608
24d2f903 1609 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1610 int i;
320ae51f 1611
24d2f903 1612 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1613 struct request *rq = tags->static_rqs[i];
1614
1615 if (!rq)
e9b267d9 1616 continue;
2af8cbe3 1617 set->ops->exit_request(set->driver_data, rq,
24d2f903 1618 hctx_idx, i);
2af8cbe3 1619 tags->static_rqs[i] = NULL;
e9b267d9 1620 }
320ae51f 1621 }
320ae51f 1622
24d2f903
CH
1623 while (!list_empty(&tags->page_list)) {
1624 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1625 list_del_init(&page->lru);
f75782e4
CM
1626 /*
1627 * Remove kmemleak object previously allocated in
1628 * blk_mq_init_rq_map().
1629 */
1630 kmemleak_free(page_address(page));
320ae51f
JA
1631 __free_pages(page, page->private);
1632 }
cc71a6f4 1633}
320ae51f 1634
cc71a6f4
JA
1635void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1636{
24d2f903 1637 kfree(tags->rqs);
cc71a6f4 1638 tags->rqs = NULL;
2af8cbe3
JA
1639 kfree(tags->static_rqs);
1640 tags->static_rqs = NULL;
320ae51f 1641
24d2f903 1642 blk_mq_free_tags(tags);
320ae51f
JA
1643}
1644
cc71a6f4
JA
1645struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1646 unsigned int hctx_idx,
1647 unsigned int nr_tags,
1648 unsigned int reserved_tags)
320ae51f 1649{
24d2f903 1650 struct blk_mq_tags *tags;
320ae51f 1651
cc71a6f4 1652 tags = blk_mq_init_tags(nr_tags, reserved_tags,
24391c0d
SL
1653 set->numa_node,
1654 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1655 if (!tags)
1656 return NULL;
320ae51f 1657
cc71a6f4 1658 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1659 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
a5164405 1660 set->numa_node);
24d2f903
CH
1661 if (!tags->rqs) {
1662 blk_mq_free_tags(tags);
1663 return NULL;
1664 }
320ae51f 1665
2af8cbe3
JA
1666 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1667 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1668 set->numa_node);
1669 if (!tags->static_rqs) {
1670 kfree(tags->rqs);
1671 blk_mq_free_tags(tags);
1672 return NULL;
1673 }
1674
cc71a6f4
JA
1675 return tags;
1676}
1677
1678static size_t order_to_size(unsigned int order)
1679{
1680 return (size_t)PAGE_SIZE << order;
1681}
1682
1683int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1684 unsigned int hctx_idx, unsigned int depth)
1685{
1686 unsigned int i, j, entries_per_page, max_order = 4;
1687 size_t rq_size, left;
1688
1689 INIT_LIST_HEAD(&tags->page_list);
1690
320ae51f
JA
1691 /*
1692 * rq_size is the size of the request plus driver payload, rounded
1693 * to the cacheline size
1694 */
24d2f903 1695 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1696 cache_line_size());
cc71a6f4 1697 left = rq_size * depth;
320ae51f 1698
cc71a6f4 1699 for (i = 0; i < depth; ) {
320ae51f
JA
1700 int this_order = max_order;
1701 struct page *page;
1702 int to_do;
1703 void *p;
1704
b3a834b1 1705 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1706 this_order--;
1707
1708 do {
a5164405 1709 page = alloc_pages_node(set->numa_node,
36e1f3d1 1710 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1711 this_order);
320ae51f
JA
1712 if (page)
1713 break;
1714 if (!this_order--)
1715 break;
1716 if (order_to_size(this_order) < rq_size)
1717 break;
1718 } while (1);
1719
1720 if (!page)
24d2f903 1721 goto fail;
320ae51f
JA
1722
1723 page->private = this_order;
24d2f903 1724 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1725
1726 p = page_address(page);
f75782e4
CM
1727 /*
1728 * Allow kmemleak to scan these pages as they contain pointers
1729 * to additional allocations like via ops->init_request().
1730 */
36e1f3d1 1731 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1732 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1733 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1734 left -= to_do * rq_size;
1735 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1736 struct request *rq = p;
1737
1738 tags->static_rqs[i] = rq;
24d2f903
CH
1739 if (set->ops->init_request) {
1740 if (set->ops->init_request(set->driver_data,
2af8cbe3 1741 rq, hctx_idx, i,
a5164405 1742 set->numa_node)) {
2af8cbe3 1743 tags->static_rqs[i] = NULL;
24d2f903 1744 goto fail;
a5164405 1745 }
e9b267d9
CH
1746 }
1747
320ae51f
JA
1748 p += rq_size;
1749 i++;
1750 }
1751 }
cc71a6f4 1752 return 0;
320ae51f 1753
24d2f903 1754fail:
cc71a6f4
JA
1755 blk_mq_free_rqs(set, tags, hctx_idx);
1756 return -ENOMEM;
320ae51f
JA
1757}
1758
e57690fe
JA
1759/*
1760 * 'cpu' is going away. splice any existing rq_list entries from this
1761 * software queue to the hw queue dispatch list, and ensure that it
1762 * gets run.
1763 */
9467f859 1764static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1765{
9467f859 1766 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1767 struct blk_mq_ctx *ctx;
1768 LIST_HEAD(tmp);
1769
9467f859 1770 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1771 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1772
1773 spin_lock(&ctx->lock);
1774 if (!list_empty(&ctx->rq_list)) {
1775 list_splice_init(&ctx->rq_list, &tmp);
1776 blk_mq_hctx_clear_pending(hctx, ctx);
1777 }
1778 spin_unlock(&ctx->lock);
1779
1780 if (list_empty(&tmp))
9467f859 1781 return 0;
484b4061 1782
e57690fe
JA
1783 spin_lock(&hctx->lock);
1784 list_splice_tail_init(&tmp, &hctx->dispatch);
1785 spin_unlock(&hctx->lock);
484b4061
JA
1786
1787 blk_mq_run_hw_queue(hctx, true);
9467f859 1788 return 0;
484b4061
JA
1789}
1790
9467f859 1791static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1792{
9467f859
TG
1793 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1794 &hctx->cpuhp_dead);
484b4061
JA
1795}
1796
c3b4afca 1797/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1798static void blk_mq_exit_hctx(struct request_queue *q,
1799 struct blk_mq_tag_set *set,
1800 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1801{
f70ced09
ML
1802 unsigned flush_start_tag = set->queue_depth;
1803
08e98fc6
ML
1804 blk_mq_tag_idle(hctx);
1805
f70ced09
ML
1806 if (set->ops->exit_request)
1807 set->ops->exit_request(set->driver_data,
1808 hctx->fq->flush_rq, hctx_idx,
1809 flush_start_tag + hctx_idx);
1810
08e98fc6
ML
1811 if (set->ops->exit_hctx)
1812 set->ops->exit_hctx(hctx, hctx_idx);
1813
6a83e74d
BVA
1814 if (hctx->flags & BLK_MQ_F_BLOCKING)
1815 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1816
9467f859 1817 blk_mq_remove_cpuhp(hctx);
f70ced09 1818 blk_free_flush_queue(hctx->fq);
88459642 1819 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1820}
1821
624dbe47
ML
1822static void blk_mq_exit_hw_queues(struct request_queue *q,
1823 struct blk_mq_tag_set *set, int nr_queue)
1824{
1825 struct blk_mq_hw_ctx *hctx;
1826 unsigned int i;
1827
1828 queue_for_each_hw_ctx(q, hctx, i) {
1829 if (i == nr_queue)
1830 break;
08e98fc6 1831 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1832 }
624dbe47
ML
1833}
1834
1835static void blk_mq_free_hw_queues(struct request_queue *q,
1836 struct blk_mq_tag_set *set)
1837{
1838 struct blk_mq_hw_ctx *hctx;
1839 unsigned int i;
1840
e09aae7e 1841 queue_for_each_hw_ctx(q, hctx, i)
624dbe47 1842 free_cpumask_var(hctx->cpumask);
624dbe47
ML
1843}
1844
08e98fc6
ML
1845static int blk_mq_init_hctx(struct request_queue *q,
1846 struct blk_mq_tag_set *set,
1847 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1848{
08e98fc6 1849 int node;
f70ced09 1850 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1851
1852 node = hctx->numa_node;
1853 if (node == NUMA_NO_NODE)
1854 node = hctx->numa_node = set->numa_node;
1855
27489a3c 1856 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1857 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1858 spin_lock_init(&hctx->lock);
1859 INIT_LIST_HEAD(&hctx->dispatch);
1860 hctx->queue = q;
1861 hctx->queue_num = hctx_idx;
2404e607 1862 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1863
9467f859 1864 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1865
1866 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1867
1868 /*
08e98fc6
ML
1869 * Allocate space for all possible cpus to avoid allocation at
1870 * runtime
320ae51f 1871 */
08e98fc6
ML
1872 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1873 GFP_KERNEL, node);
1874 if (!hctx->ctxs)
1875 goto unregister_cpu_notifier;
320ae51f 1876
88459642
OS
1877 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1878 node))
08e98fc6 1879 goto free_ctxs;
320ae51f 1880
08e98fc6 1881 hctx->nr_ctx = 0;
320ae51f 1882
08e98fc6
ML
1883 if (set->ops->init_hctx &&
1884 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1885 goto free_bitmap;
320ae51f 1886
f70ced09
ML
1887 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1888 if (!hctx->fq)
1889 goto exit_hctx;
320ae51f 1890
f70ced09
ML
1891 if (set->ops->init_request &&
1892 set->ops->init_request(set->driver_data,
1893 hctx->fq->flush_rq, hctx_idx,
1894 flush_start_tag + hctx_idx, node))
1895 goto free_fq;
320ae51f 1896
6a83e74d
BVA
1897 if (hctx->flags & BLK_MQ_F_BLOCKING)
1898 init_srcu_struct(&hctx->queue_rq_srcu);
1899
08e98fc6 1900 return 0;
320ae51f 1901
f70ced09
ML
1902 free_fq:
1903 kfree(hctx->fq);
1904 exit_hctx:
1905 if (set->ops->exit_hctx)
1906 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1907 free_bitmap:
88459642 1908 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1909 free_ctxs:
1910 kfree(hctx->ctxs);
1911 unregister_cpu_notifier:
9467f859 1912 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
1913 return -1;
1914}
320ae51f 1915
320ae51f
JA
1916static void blk_mq_init_cpu_queues(struct request_queue *q,
1917 unsigned int nr_hw_queues)
1918{
1919 unsigned int i;
1920
1921 for_each_possible_cpu(i) {
1922 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1923 struct blk_mq_hw_ctx *hctx;
1924
1925 memset(__ctx, 0, sizeof(*__ctx));
1926 __ctx->cpu = i;
1927 spin_lock_init(&__ctx->lock);
1928 INIT_LIST_HEAD(&__ctx->rq_list);
1929 __ctx->queue = q;
cf43e6be
JA
1930 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1931 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
320ae51f
JA
1932
1933 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1934 if (!cpu_online(i))
1935 continue;
1936
7d7e0f90 1937 hctx = blk_mq_map_queue(q, i);
e4043dcf 1938
320ae51f
JA
1939 /*
1940 * Set local node, IFF we have more than one hw queue. If
1941 * not, we remain on the home node of the device
1942 */
1943 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1944 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
1945 }
1946}
1947
cc71a6f4
JA
1948static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1949{
1950 int ret = 0;
1951
1952 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1953 set->queue_depth, set->reserved_tags);
1954 if (!set->tags[hctx_idx])
1955 return false;
1956
1957 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1958 set->queue_depth);
1959 if (!ret)
1960 return true;
1961
1962 blk_mq_free_rq_map(set->tags[hctx_idx]);
1963 set->tags[hctx_idx] = NULL;
1964 return false;
1965}
1966
1967static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1968 unsigned int hctx_idx)
1969{
bd166ef1
JA
1970 if (set->tags[hctx_idx]) {
1971 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1972 blk_mq_free_rq_map(set->tags[hctx_idx]);
1973 set->tags[hctx_idx] = NULL;
1974 }
cc71a6f4
JA
1975}
1976
5778322e
AM
1977static void blk_mq_map_swqueue(struct request_queue *q,
1978 const struct cpumask *online_mask)
320ae51f 1979{
d1b1cea1 1980 unsigned int i, hctx_idx;
320ae51f
JA
1981 struct blk_mq_hw_ctx *hctx;
1982 struct blk_mq_ctx *ctx;
2a34c087 1983 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1984
60de074b
AM
1985 /*
1986 * Avoid others reading imcomplete hctx->cpumask through sysfs
1987 */
1988 mutex_lock(&q->sysfs_lock);
1989
320ae51f 1990 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1991 cpumask_clear(hctx->cpumask);
320ae51f
JA
1992 hctx->nr_ctx = 0;
1993 }
1994
1995 /*
1996 * Map software to hardware queues
1997 */
897bb0c7 1998 for_each_possible_cpu(i) {
320ae51f 1999 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 2000 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
2001 continue;
2002
d1b1cea1
GKB
2003 hctx_idx = q->mq_map[i];
2004 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2005 if (!set->tags[hctx_idx] &&
2006 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2007 /*
2008 * If tags initialization fail for some hctx,
2009 * that hctx won't be brought online. In this
2010 * case, remap the current ctx to hctx[0] which
2011 * is guaranteed to always have tags allocated
2012 */
cc71a6f4 2013 q->mq_map[i] = 0;
d1b1cea1
GKB
2014 }
2015
897bb0c7 2016 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2017 hctx = blk_mq_map_queue(q, i);
868f2f0b 2018
e4043dcf 2019 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2020 ctx->index_hw = hctx->nr_ctx;
2021 hctx->ctxs[hctx->nr_ctx++] = ctx;
2022 }
506e931f 2023
60de074b
AM
2024 mutex_unlock(&q->sysfs_lock);
2025
506e931f 2026 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2027 /*
a68aafa5
JA
2028 * If no software queues are mapped to this hardware queue,
2029 * disable it and free the request entries.
484b4061
JA
2030 */
2031 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2032 /* Never unmap queue 0. We need it as a
2033 * fallback in case of a new remap fails
2034 * allocation
2035 */
cc71a6f4
JA
2036 if (i && set->tags[i])
2037 blk_mq_free_map_and_requests(set, i);
2038
2a34c087 2039 hctx->tags = NULL;
484b4061
JA
2040 continue;
2041 }
2042
2a34c087
ML
2043 hctx->tags = set->tags[i];
2044 WARN_ON(!hctx->tags);
2045
889fa31f
CY
2046 /*
2047 * Set the map size to the number of mapped software queues.
2048 * This is more accurate and more efficient than looping
2049 * over all possibly mapped software queues.
2050 */
88459642 2051 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2052
484b4061
JA
2053 /*
2054 * Initialize batch roundrobin counts
2055 */
506e931f
JA
2056 hctx->next_cpu = cpumask_first(hctx->cpumask);
2057 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2058 }
320ae51f
JA
2059}
2060
2404e607 2061static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2062{
2063 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2064 int i;
2065
2404e607
JM
2066 queue_for_each_hw_ctx(q, hctx, i) {
2067 if (shared)
2068 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2069 else
2070 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2071 }
2072}
2073
2074static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2075{
2076 struct request_queue *q;
0d2602ca
JA
2077
2078 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2079 blk_mq_freeze_queue(q);
2404e607 2080 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2081 blk_mq_unfreeze_queue(q);
2082 }
2083}
2084
2085static void blk_mq_del_queue_tag_set(struct request_queue *q)
2086{
2087 struct blk_mq_tag_set *set = q->tag_set;
2088
0d2602ca
JA
2089 mutex_lock(&set->tag_list_lock);
2090 list_del_init(&q->tag_set_list);
2404e607
JM
2091 if (list_is_singular(&set->tag_list)) {
2092 /* just transitioned to unshared */
2093 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2094 /* update existing queue */
2095 blk_mq_update_tag_set_depth(set, false);
2096 }
0d2602ca 2097 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
2098}
2099
2100static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2101 struct request_queue *q)
2102{
2103 q->tag_set = set;
2104
2105 mutex_lock(&set->tag_list_lock);
2404e607
JM
2106
2107 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2108 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2109 set->flags |= BLK_MQ_F_TAG_SHARED;
2110 /* update existing queue */
2111 blk_mq_update_tag_set_depth(set, true);
2112 }
2113 if (set->flags & BLK_MQ_F_TAG_SHARED)
2114 queue_set_hctx_shared(q, true);
0d2602ca 2115 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 2116
0d2602ca
JA
2117 mutex_unlock(&set->tag_list_lock);
2118}
2119
e09aae7e
ML
2120/*
2121 * It is the actual release handler for mq, but we do it from
2122 * request queue's release handler for avoiding use-after-free
2123 * and headache because q->mq_kobj shouldn't have been introduced,
2124 * but we can't group ctx/kctx kobj without it.
2125 */
2126void blk_mq_release(struct request_queue *q)
2127{
2128 struct blk_mq_hw_ctx *hctx;
2129 unsigned int i;
2130
bd166ef1
JA
2131 blk_mq_sched_teardown(q);
2132
e09aae7e 2133 /* hctx kobj stays in hctx */
c3b4afca
ML
2134 queue_for_each_hw_ctx(q, hctx, i) {
2135 if (!hctx)
2136 continue;
2137 kfree(hctx->ctxs);
e09aae7e 2138 kfree(hctx);
c3b4afca 2139 }
e09aae7e 2140
a723bab3
AM
2141 q->mq_map = NULL;
2142
e09aae7e
ML
2143 kfree(q->queue_hw_ctx);
2144
2145 /* ctx kobj stays in queue_ctx */
2146 free_percpu(q->queue_ctx);
2147}
2148
24d2f903 2149struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2150{
2151 struct request_queue *uninit_q, *q;
2152
2153 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2154 if (!uninit_q)
2155 return ERR_PTR(-ENOMEM);
2156
2157 q = blk_mq_init_allocated_queue(set, uninit_q);
2158 if (IS_ERR(q))
2159 blk_cleanup_queue(uninit_q);
2160
2161 return q;
2162}
2163EXPORT_SYMBOL(blk_mq_init_queue);
2164
868f2f0b
KB
2165static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2166 struct request_queue *q)
320ae51f 2167{
868f2f0b
KB
2168 int i, j;
2169 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2170
868f2f0b 2171 blk_mq_sysfs_unregister(q);
24d2f903 2172 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2173 int node;
f14bbe77 2174
868f2f0b
KB
2175 if (hctxs[i])
2176 continue;
2177
2178 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2179 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2180 GFP_KERNEL, node);
320ae51f 2181 if (!hctxs[i])
868f2f0b 2182 break;
320ae51f 2183
a86073e4 2184 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2185 node)) {
2186 kfree(hctxs[i]);
2187 hctxs[i] = NULL;
2188 break;
2189 }
e4043dcf 2190
0d2602ca 2191 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2192 hctxs[i]->numa_node = node;
320ae51f 2193 hctxs[i]->queue_num = i;
868f2f0b
KB
2194
2195 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2196 free_cpumask_var(hctxs[i]->cpumask);
2197 kfree(hctxs[i]);
2198 hctxs[i] = NULL;
2199 break;
2200 }
2201 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2202 }
868f2f0b
KB
2203 for (j = i; j < q->nr_hw_queues; j++) {
2204 struct blk_mq_hw_ctx *hctx = hctxs[j];
2205
2206 if (hctx) {
cc71a6f4
JA
2207 if (hctx->tags)
2208 blk_mq_free_map_and_requests(set, j);
868f2f0b
KB
2209 blk_mq_exit_hctx(q, set, hctx, j);
2210 free_cpumask_var(hctx->cpumask);
2211 kobject_put(&hctx->kobj);
2212 kfree(hctx->ctxs);
2213 kfree(hctx);
2214 hctxs[j] = NULL;
2215
2216 }
2217 }
2218 q->nr_hw_queues = i;
2219 blk_mq_sysfs_register(q);
2220}
2221
2222struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2223 struct request_queue *q)
2224{
66841672
ML
2225 /* mark the queue as mq asap */
2226 q->mq_ops = set->ops;
2227
868f2f0b
KB
2228 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2229 if (!q->queue_ctx)
c7de5726 2230 goto err_exit;
868f2f0b
KB
2231
2232 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2233 GFP_KERNEL, set->numa_node);
2234 if (!q->queue_hw_ctx)
2235 goto err_percpu;
2236
bdd17e75 2237 q->mq_map = set->mq_map;
868f2f0b
KB
2238
2239 blk_mq_realloc_hw_ctxs(set, q);
2240 if (!q->nr_hw_queues)
2241 goto err_hctxs;
320ae51f 2242
287922eb 2243 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2244 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2245
2246 q->nr_queues = nr_cpu_ids;
320ae51f 2247
94eddfbe 2248 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2249
05f1dd53
JA
2250 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2251 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2252
1be036e9
CH
2253 q->sg_reserved_size = INT_MAX;
2254
2849450a 2255 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2256 INIT_LIST_HEAD(&q->requeue_list);
2257 spin_lock_init(&q->requeue_lock);
2258
07068d5b
JA
2259 if (q->nr_hw_queues > 1)
2260 blk_queue_make_request(q, blk_mq_make_request);
2261 else
2262 blk_queue_make_request(q, blk_sq_make_request);
2263
eba71768
JA
2264 /*
2265 * Do this after blk_queue_make_request() overrides it...
2266 */
2267 q->nr_requests = set->queue_depth;
2268
64f1c21e
JA
2269 /*
2270 * Default to classic polling
2271 */
2272 q->poll_nsec = -1;
2273
24d2f903
CH
2274 if (set->ops->complete)
2275 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2276
24d2f903 2277 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2278
5778322e 2279 get_online_cpus();
320ae51f 2280 mutex_lock(&all_q_mutex);
320ae51f 2281
4593fdbe 2282 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2283 blk_mq_add_queue_tag_set(set, q);
5778322e 2284 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2285
4593fdbe 2286 mutex_unlock(&all_q_mutex);
5778322e 2287 put_online_cpus();
4593fdbe 2288
d3484991
JA
2289 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2290 int ret;
2291
2292 ret = blk_mq_sched_init(q);
2293 if (ret)
2294 return ERR_PTR(ret);
2295 }
2296
320ae51f 2297 return q;
18741986 2298
320ae51f 2299err_hctxs:
868f2f0b 2300 kfree(q->queue_hw_ctx);
320ae51f 2301err_percpu:
868f2f0b 2302 free_percpu(q->queue_ctx);
c7de5726
ML
2303err_exit:
2304 q->mq_ops = NULL;
320ae51f
JA
2305 return ERR_PTR(-ENOMEM);
2306}
b62c21b7 2307EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2308
2309void blk_mq_free_queue(struct request_queue *q)
2310{
624dbe47 2311 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2312
0e626368
AM
2313 mutex_lock(&all_q_mutex);
2314 list_del_init(&q->all_q_node);
2315 mutex_unlock(&all_q_mutex);
2316
87760e5e
JA
2317 wbt_exit(q);
2318
0d2602ca
JA
2319 blk_mq_del_queue_tag_set(q);
2320
624dbe47
ML
2321 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2322 blk_mq_free_hw_queues(q, set);
320ae51f 2323}
320ae51f
JA
2324
2325/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2326static void blk_mq_queue_reinit(struct request_queue *q,
2327 const struct cpumask *online_mask)
320ae51f 2328{
4ecd4fef 2329 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2330
67aec14c
JA
2331 blk_mq_sysfs_unregister(q);
2332
320ae51f
JA
2333 /*
2334 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2335 * we should change hctx numa_node according to new topology (this
2336 * involves free and re-allocate memory, worthy doing?)
2337 */
2338
5778322e 2339 blk_mq_map_swqueue(q, online_mask);
320ae51f 2340
67aec14c 2341 blk_mq_sysfs_register(q);
320ae51f
JA
2342}
2343
65d5291e
SAS
2344/*
2345 * New online cpumask which is going to be set in this hotplug event.
2346 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2347 * one-by-one and dynamically allocating this could result in a failure.
2348 */
2349static struct cpumask cpuhp_online_new;
2350
2351static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2352{
2353 struct request_queue *q;
320ae51f
JA
2354
2355 mutex_lock(&all_q_mutex);
f3af020b
TH
2356 /*
2357 * We need to freeze and reinit all existing queues. Freezing
2358 * involves synchronous wait for an RCU grace period and doing it
2359 * one by one may take a long time. Start freezing all queues in
2360 * one swoop and then wait for the completions so that freezing can
2361 * take place in parallel.
2362 */
2363 list_for_each_entry(q, &all_q_list, all_q_node)
2364 blk_mq_freeze_queue_start(q);
415d3dab 2365 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2366 blk_mq_freeze_queue_wait(q);
2367
320ae51f 2368 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2369 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2370
2371 list_for_each_entry(q, &all_q_list, all_q_node)
2372 blk_mq_unfreeze_queue(q);
2373
320ae51f 2374 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2375}
2376
2377static int blk_mq_queue_reinit_dead(unsigned int cpu)
2378{
97a32864 2379 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2380 blk_mq_queue_reinit_work();
2381 return 0;
2382}
2383
2384/*
2385 * Before hotadded cpu starts handling requests, new mappings must be
2386 * established. Otherwise, these requests in hw queue might never be
2387 * dispatched.
2388 *
2389 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2390 * for CPU0, and ctx1 for CPU1).
2391 *
2392 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2393 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2394 *
2c3ad667
JA
2395 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2396 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2397 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2398 * ignored.
65d5291e
SAS
2399 */
2400static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2401{
2402 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2403 cpumask_set_cpu(cpu, &cpuhp_online_new);
2404 blk_mq_queue_reinit_work();
2405 return 0;
320ae51f
JA
2406}
2407
a5164405
JA
2408static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2409{
2410 int i;
2411
cc71a6f4
JA
2412 for (i = 0; i < set->nr_hw_queues; i++)
2413 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2414 goto out_unwind;
a5164405
JA
2415
2416 return 0;
2417
2418out_unwind:
2419 while (--i >= 0)
cc71a6f4 2420 blk_mq_free_rq_map(set->tags[i]);
a5164405 2421
a5164405
JA
2422 return -ENOMEM;
2423}
2424
2425/*
2426 * Allocate the request maps associated with this tag_set. Note that this
2427 * may reduce the depth asked for, if memory is tight. set->queue_depth
2428 * will be updated to reflect the allocated depth.
2429 */
2430static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2431{
2432 unsigned int depth;
2433 int err;
2434
2435 depth = set->queue_depth;
2436 do {
2437 err = __blk_mq_alloc_rq_maps(set);
2438 if (!err)
2439 break;
2440
2441 set->queue_depth >>= 1;
2442 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2443 err = -ENOMEM;
2444 break;
2445 }
2446 } while (set->queue_depth);
2447
2448 if (!set->queue_depth || err) {
2449 pr_err("blk-mq: failed to allocate request map\n");
2450 return -ENOMEM;
2451 }
2452
2453 if (depth != set->queue_depth)
2454 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2455 depth, set->queue_depth);
2456
2457 return 0;
2458}
2459
a4391c64
JA
2460/*
2461 * Alloc a tag set to be associated with one or more request queues.
2462 * May fail with EINVAL for various error conditions. May adjust the
2463 * requested depth down, if if it too large. In that case, the set
2464 * value will be stored in set->queue_depth.
2465 */
24d2f903
CH
2466int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2467{
da695ba2
CH
2468 int ret;
2469
205fb5f5
BVA
2470 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2471
24d2f903
CH
2472 if (!set->nr_hw_queues)
2473 return -EINVAL;
a4391c64 2474 if (!set->queue_depth)
24d2f903
CH
2475 return -EINVAL;
2476 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2477 return -EINVAL;
2478
7d7e0f90 2479 if (!set->ops->queue_rq)
24d2f903
CH
2480 return -EINVAL;
2481
a4391c64
JA
2482 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2483 pr_info("blk-mq: reduced tag depth to %u\n",
2484 BLK_MQ_MAX_DEPTH);
2485 set->queue_depth = BLK_MQ_MAX_DEPTH;
2486 }
24d2f903 2487
6637fadf
SL
2488 /*
2489 * If a crashdump is active, then we are potentially in a very
2490 * memory constrained environment. Limit us to 1 queue and
2491 * 64 tags to prevent using too much memory.
2492 */
2493 if (is_kdump_kernel()) {
2494 set->nr_hw_queues = 1;
2495 set->queue_depth = min(64U, set->queue_depth);
2496 }
868f2f0b
KB
2497 /*
2498 * There is no use for more h/w queues than cpus.
2499 */
2500 if (set->nr_hw_queues > nr_cpu_ids)
2501 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2502
868f2f0b 2503 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2504 GFP_KERNEL, set->numa_node);
2505 if (!set->tags)
a5164405 2506 return -ENOMEM;
24d2f903 2507
da695ba2
CH
2508 ret = -ENOMEM;
2509 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2510 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2511 if (!set->mq_map)
2512 goto out_free_tags;
2513
da695ba2
CH
2514 if (set->ops->map_queues)
2515 ret = set->ops->map_queues(set);
2516 else
2517 ret = blk_mq_map_queues(set);
2518 if (ret)
2519 goto out_free_mq_map;
2520
2521 ret = blk_mq_alloc_rq_maps(set);
2522 if (ret)
bdd17e75 2523 goto out_free_mq_map;
24d2f903 2524
0d2602ca
JA
2525 mutex_init(&set->tag_list_lock);
2526 INIT_LIST_HEAD(&set->tag_list);
2527
24d2f903 2528 return 0;
bdd17e75
CH
2529
2530out_free_mq_map:
2531 kfree(set->mq_map);
2532 set->mq_map = NULL;
2533out_free_tags:
5676e7b6
RE
2534 kfree(set->tags);
2535 set->tags = NULL;
da695ba2 2536 return ret;
24d2f903
CH
2537}
2538EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2539
2540void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2541{
2542 int i;
2543
cc71a6f4
JA
2544 for (i = 0; i < nr_cpu_ids; i++)
2545 blk_mq_free_map_and_requests(set, i);
484b4061 2546
bdd17e75
CH
2547 kfree(set->mq_map);
2548 set->mq_map = NULL;
2549
981bd189 2550 kfree(set->tags);
5676e7b6 2551 set->tags = NULL;
24d2f903
CH
2552}
2553EXPORT_SYMBOL(blk_mq_free_tag_set);
2554
e3a2b3f9
JA
2555int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2556{
2557 struct blk_mq_tag_set *set = q->tag_set;
2558 struct blk_mq_hw_ctx *hctx;
2559 int i, ret;
2560
bd166ef1 2561 if (!set)
e3a2b3f9
JA
2562 return -EINVAL;
2563
2564 ret = 0;
2565 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2566 if (!hctx->tags)
2567 continue;
bd166ef1
JA
2568 /*
2569 * If we're using an MQ scheduler, just update the scheduler
2570 * queue depth. This is similar to what the old code would do.
2571 */
2572 if (!hctx->sched_tags)
2573 ret = blk_mq_tag_update_depth(hctx->tags,
2574 min(nr, set->queue_depth));
2575 else
2576 ret = blk_mq_tag_update_depth(hctx->sched_tags, nr);
e3a2b3f9
JA
2577 if (ret)
2578 break;
2579 }
2580
2581 if (!ret)
2582 q->nr_requests = nr;
2583
2584 return ret;
2585}
2586
868f2f0b
KB
2587void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2588{
2589 struct request_queue *q;
2590
2591 if (nr_hw_queues > nr_cpu_ids)
2592 nr_hw_queues = nr_cpu_ids;
2593 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2594 return;
2595
2596 list_for_each_entry(q, &set->tag_list, tag_set_list)
2597 blk_mq_freeze_queue(q);
2598
2599 set->nr_hw_queues = nr_hw_queues;
2600 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2601 blk_mq_realloc_hw_ctxs(set, q);
2602
2603 if (q->nr_hw_queues > 1)
2604 blk_queue_make_request(q, blk_mq_make_request);
2605 else
2606 blk_queue_make_request(q, blk_sq_make_request);
2607
2608 blk_mq_queue_reinit(q, cpu_online_mask);
2609 }
2610
2611 list_for_each_entry(q, &set->tag_list, tag_set_list)
2612 blk_mq_unfreeze_queue(q);
2613}
2614EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2615
64f1c21e
JA
2616static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2617 struct blk_mq_hw_ctx *hctx,
2618 struct request *rq)
2619{
2620 struct blk_rq_stat stat[2];
2621 unsigned long ret = 0;
2622
2623 /*
2624 * If stats collection isn't on, don't sleep but turn it on for
2625 * future users
2626 */
2627 if (!blk_stat_enable(q))
2628 return 0;
2629
2630 /*
2631 * We don't have to do this once per IO, should optimize this
2632 * to just use the current window of stats until it changes
2633 */
2634 memset(&stat, 0, sizeof(stat));
2635 blk_hctx_stat_get(hctx, stat);
2636
2637 /*
2638 * As an optimistic guess, use half of the mean service time
2639 * for this type of request. We can (and should) make this smarter.
2640 * For instance, if the completion latencies are tight, we can
2641 * get closer than just half the mean. This is especially
2642 * important on devices where the completion latencies are longer
2643 * than ~10 usec.
2644 */
2645 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2646 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2647 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2648 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2649
2650 return ret;
2651}
2652
06426adf 2653static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2654 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2655 struct request *rq)
2656{
2657 struct hrtimer_sleeper hs;
2658 enum hrtimer_mode mode;
64f1c21e 2659 unsigned int nsecs;
06426adf
JA
2660 ktime_t kt;
2661
64f1c21e
JA
2662 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2663 return false;
2664
2665 /*
2666 * poll_nsec can be:
2667 *
2668 * -1: don't ever hybrid sleep
2669 * 0: use half of prev avg
2670 * >0: use this specific value
2671 */
2672 if (q->poll_nsec == -1)
2673 return false;
2674 else if (q->poll_nsec > 0)
2675 nsecs = q->poll_nsec;
2676 else
2677 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2678
2679 if (!nsecs)
06426adf
JA
2680 return false;
2681
2682 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2683
2684 /*
2685 * This will be replaced with the stats tracking code, using
2686 * 'avg_completion_time / 2' as the pre-sleep target.
2687 */
8b0e1953 2688 kt = nsecs;
06426adf
JA
2689
2690 mode = HRTIMER_MODE_REL;
2691 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2692 hrtimer_set_expires(&hs.timer, kt);
2693
2694 hrtimer_init_sleeper(&hs, current);
2695 do {
2696 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2697 break;
2698 set_current_state(TASK_UNINTERRUPTIBLE);
2699 hrtimer_start_expires(&hs.timer, mode);
2700 if (hs.task)
2701 io_schedule();
2702 hrtimer_cancel(&hs.timer);
2703 mode = HRTIMER_MODE_ABS;
2704 } while (hs.task && !signal_pending(current));
2705
2706 __set_current_state(TASK_RUNNING);
2707 destroy_hrtimer_on_stack(&hs.timer);
2708 return true;
2709}
2710
bbd7bb70
JA
2711static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2712{
2713 struct request_queue *q = hctx->queue;
2714 long state;
2715
06426adf
JA
2716 /*
2717 * If we sleep, have the caller restart the poll loop to reset
2718 * the state. Like for the other success return cases, the
2719 * caller is responsible for checking if the IO completed. If
2720 * the IO isn't complete, we'll get called again and will go
2721 * straight to the busy poll loop.
2722 */
64f1c21e 2723 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2724 return true;
2725
bbd7bb70
JA
2726 hctx->poll_considered++;
2727
2728 state = current->state;
2729 while (!need_resched()) {
2730 int ret;
2731
2732 hctx->poll_invoked++;
2733
2734 ret = q->mq_ops->poll(hctx, rq->tag);
2735 if (ret > 0) {
2736 hctx->poll_success++;
2737 set_current_state(TASK_RUNNING);
2738 return true;
2739 }
2740
2741 if (signal_pending_state(state, current))
2742 set_current_state(TASK_RUNNING);
2743
2744 if (current->state == TASK_RUNNING)
2745 return true;
2746 if (ret < 0)
2747 break;
2748 cpu_relax();
2749 }
2750
2751 return false;
2752}
2753
2754bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2755{
2756 struct blk_mq_hw_ctx *hctx;
2757 struct blk_plug *plug;
2758 struct request *rq;
2759
2760 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2761 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2762 return false;
2763
2764 plug = current->plug;
2765 if (plug)
2766 blk_flush_plug_list(plug, false);
2767
2768 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2769 if (!blk_qc_t_is_internal(cookie))
2770 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2771 else
2772 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
bbd7bb70
JA
2773
2774 return __blk_mq_poll(hctx, rq);
2775}
2776EXPORT_SYMBOL_GPL(blk_mq_poll);
2777
676141e4
JA
2778void blk_mq_disable_hotplug(void)
2779{
2780 mutex_lock(&all_q_mutex);
2781}
2782
2783void blk_mq_enable_hotplug(void)
2784{
2785 mutex_unlock(&all_q_mutex);
2786}
2787
320ae51f
JA
2788static int __init blk_mq_init(void)
2789{
9467f859
TG
2790 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2791 blk_mq_hctx_notify_dead);
320ae51f 2792
65d5291e
SAS
2793 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2794 blk_mq_queue_reinit_prepare,
2795 blk_mq_queue_reinit_dead);
320ae51f
JA
2796 return 0;
2797}
2798subsys_initcall(blk_mq_init);