]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-mq.c
block: add kblock_mod_delayed_work_on()
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
34#include "blk-mq-tag.h"
cf43e6be 35#include "blk-stat.h"
87760e5e 36#include "blk-wbt.h"
bd166ef1 37#include "blk-mq-sched.h"
320ae51f
JA
38
39static DEFINE_MUTEX(all_q_mutex);
40static LIST_HEAD(all_q_list);
41
34dbad5d
OS
42static void blk_mq_poll_stats_start(struct request_queue *q);
43static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
720b8ccc
SB
45static int blk_mq_poll_stats_bkt(const struct request *rq)
46{
47 int ddir, bytes, bucket;
48
99c749a4 49 ddir = rq_data_dir(rq);
720b8ccc
SB
50 bytes = blk_rq_bytes(rq);
51
52 bucket = ddir + 2*(ilog2(bytes) - 9);
53
54 if (bucket < 0)
55 return -1;
56 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58
59 return bucket;
60}
61
320ae51f
JA
62/*
63 * Check if any of the ctx's have pending work in this hardware queue
64 */
50e1dab8 65bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 66{
bd166ef1
JA
67 return sbitmap_any_bit_set(&hctx->ctx_map) ||
68 !list_empty_careful(&hctx->dispatch) ||
69 blk_mq_sched_has_work(hctx);
1429d7c9
JA
70}
71
320ae51f
JA
72/*
73 * Mark this ctx as having pending work in this hardware queue
74 */
75static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
76 struct blk_mq_ctx *ctx)
77{
88459642
OS
78 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
79 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
80}
81
82static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
83 struct blk_mq_ctx *ctx)
84{
88459642 85 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
86}
87
1671d522 88void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 89{
4ecd4fef 90 int freeze_depth;
cddd5d17 91
4ecd4fef
CH
92 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
93 if (freeze_depth == 1) {
3ef28e83 94 percpu_ref_kill(&q->q_usage_counter);
b94ec296 95 blk_mq_run_hw_queues(q, false);
cddd5d17 96 }
f3af020b 97}
1671d522 98EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 99
6bae363e 100void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 101{
3ef28e83 102 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 103}
6bae363e 104EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 105
f91328c4
KB
106int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
107 unsigned long timeout)
108{
109 return wait_event_timeout(q->mq_freeze_wq,
110 percpu_ref_is_zero(&q->q_usage_counter),
111 timeout);
112}
113EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 114
f3af020b
TH
115/*
116 * Guarantee no request is in use, so we can change any data structure of
117 * the queue afterward.
118 */
3ef28e83 119void blk_freeze_queue(struct request_queue *q)
f3af020b 120{
3ef28e83
DW
121 /*
122 * In the !blk_mq case we are only calling this to kill the
123 * q_usage_counter, otherwise this increases the freeze depth
124 * and waits for it to return to zero. For this reason there is
125 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
126 * exported to drivers as the only user for unfreeze is blk_mq.
127 */
1671d522 128 blk_freeze_queue_start(q);
f3af020b
TH
129 blk_mq_freeze_queue_wait(q);
130}
3ef28e83
DW
131
132void blk_mq_freeze_queue(struct request_queue *q)
133{
134 /*
135 * ...just an alias to keep freeze and unfreeze actions balanced
136 * in the blk_mq_* namespace
137 */
138 blk_freeze_queue(q);
139}
c761d96b 140EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 141
b4c6a028 142void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 143{
4ecd4fef 144 int freeze_depth;
320ae51f 145
4ecd4fef
CH
146 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
147 WARN_ON_ONCE(freeze_depth < 0);
148 if (!freeze_depth) {
3ef28e83 149 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 150 wake_up_all(&q->mq_freeze_wq);
add703fd 151 }
320ae51f 152}
b4c6a028 153EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 154
6a83e74d
BVA
155/**
156 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
157 * @q: request queue.
158 *
159 * Note: this function does not prevent that the struct request end_io()
160 * callback function is invoked. Additionally, it is not prevented that
161 * new queue_rq() calls occur unless the queue has been stopped first.
162 */
163void blk_mq_quiesce_queue(struct request_queue *q)
164{
165 struct blk_mq_hw_ctx *hctx;
166 unsigned int i;
167 bool rcu = false;
168
169 blk_mq_stop_hw_queues(q);
170
171 queue_for_each_hw_ctx(q, hctx, i) {
172 if (hctx->flags & BLK_MQ_F_BLOCKING)
173 synchronize_srcu(&hctx->queue_rq_srcu);
174 else
175 rcu = true;
176 }
177 if (rcu)
178 synchronize_rcu();
179}
180EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
181
aed3ea94
JA
182void blk_mq_wake_waiters(struct request_queue *q)
183{
184 struct blk_mq_hw_ctx *hctx;
185 unsigned int i;
186
187 queue_for_each_hw_ctx(q, hctx, i)
188 if (blk_mq_hw_queue_mapped(hctx))
189 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
190
191 /*
192 * If we are called because the queue has now been marked as
193 * dying, we need to ensure that processes currently waiting on
194 * the queue are notified as well.
195 */
196 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
197}
198
320ae51f
JA
199bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
200{
201 return blk_mq_has_free_tags(hctx->tags);
202}
203EXPORT_SYMBOL(blk_mq_can_queue);
204
2c3ad667
JA
205void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
206 struct request *rq, unsigned int op)
320ae51f 207{
af76e555
CH
208 INIT_LIST_HEAD(&rq->queuelist);
209 /* csd/requeue_work/fifo_time is initialized before use */
210 rq->q = q;
320ae51f 211 rq->mq_ctx = ctx;
ef295ecf 212 rq->cmd_flags = op;
e8064021
CH
213 if (blk_queue_io_stat(q))
214 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
215 /* do not touch atomic flags, it needs atomic ops against the timer */
216 rq->cpu = -1;
af76e555
CH
217 INIT_HLIST_NODE(&rq->hash);
218 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
219 rq->rq_disk = NULL;
220 rq->part = NULL;
3ee32372 221 rq->start_time = jiffies;
af76e555
CH
222#ifdef CONFIG_BLK_CGROUP
223 rq->rl = NULL;
0fec08b4 224 set_start_time_ns(rq);
af76e555
CH
225 rq->io_start_time_ns = 0;
226#endif
227 rq->nr_phys_segments = 0;
228#if defined(CONFIG_BLK_DEV_INTEGRITY)
229 rq->nr_integrity_segments = 0;
230#endif
af76e555
CH
231 rq->special = NULL;
232 /* tag was already set */
af76e555 233 rq->extra_len = 0;
af76e555 234
af76e555 235 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
236 rq->timeout = 0;
237
af76e555
CH
238 rq->end_io = NULL;
239 rq->end_io_data = NULL;
240 rq->next_rq = NULL;
241
ef295ecf 242 ctx->rq_dispatched[op_is_sync(op)]++;
320ae51f 243}
2c3ad667 244EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
320ae51f 245
2c3ad667
JA
246struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
247 unsigned int op)
5dee8577
CH
248{
249 struct request *rq;
250 unsigned int tag;
251
cb96a42c 252 tag = blk_mq_get_tag(data);
5dee8577 253 if (tag != BLK_MQ_TAG_FAIL) {
bd166ef1
JA
254 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
255
256 rq = tags->static_rqs[tag];
5dee8577 257
bd166ef1
JA
258 if (data->flags & BLK_MQ_REQ_INTERNAL) {
259 rq->tag = -1;
260 rq->internal_tag = tag;
261 } else {
200e86b3
JA
262 if (blk_mq_tag_busy(data->hctx)) {
263 rq->rq_flags = RQF_MQ_INFLIGHT;
264 atomic_inc(&data->hctx->nr_active);
265 }
bd166ef1
JA
266 rq->tag = tag;
267 rq->internal_tag = -1;
562bef42 268 data->hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
269 }
270
ef295ecf 271 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
5dee8577
CH
272 return rq;
273 }
274
275 return NULL;
276}
2c3ad667 277EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
5dee8577 278
6f3b0e8b
CH
279struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
280 unsigned int flags)
320ae51f 281{
5a797e00 282 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 283 struct request *rq;
a492f075 284 int ret;
320ae51f 285
6f3b0e8b 286 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
287 if (ret)
288 return ERR_PTR(ret);
320ae51f 289
bd166ef1 290 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
841bac2c 291
bd166ef1
JA
292 blk_mq_put_ctx(alloc_data.ctx);
293 blk_queue_exit(q);
294
295 if (!rq)
a492f075 296 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
297
298 rq->__data_len = 0;
299 rq->__sector = (sector_t) -1;
300 rq->bio = rq->biotail = NULL;
320ae51f
JA
301 return rq;
302}
4bb659b1 303EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 304
1f5bd336
ML
305struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
306 unsigned int flags, unsigned int hctx_idx)
307{
6d2809d5 308 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 309 struct request *rq;
6d2809d5 310 unsigned int cpu;
1f5bd336
ML
311 int ret;
312
313 /*
314 * If the tag allocator sleeps we could get an allocation for a
315 * different hardware context. No need to complicate the low level
316 * allocator for this for the rare use case of a command tied to
317 * a specific queue.
318 */
319 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
320 return ERR_PTR(-EINVAL);
321
322 if (hctx_idx >= q->nr_hw_queues)
323 return ERR_PTR(-EIO);
324
325 ret = blk_queue_enter(q, true);
326 if (ret)
327 return ERR_PTR(ret);
328
c8712c6a
CH
329 /*
330 * Check if the hardware context is actually mapped to anything.
331 * If not tell the caller that it should skip this queue.
332 */
6d2809d5
OS
333 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
334 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
335 blk_queue_exit(q);
336 return ERR_PTR(-EXDEV);
c8712c6a 337 }
6d2809d5
OS
338 cpu = cpumask_first(alloc_data.hctx->cpumask);
339 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 340
6d2809d5 341 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
c8712c6a 342
c8712c6a 343 blk_queue_exit(q);
6d2809d5
OS
344
345 if (!rq)
346 return ERR_PTR(-EWOULDBLOCK);
347
348 return rq;
1f5bd336
ML
349}
350EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
351
bd166ef1
JA
352void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
353 struct request *rq)
320ae51f 354{
bd166ef1 355 const int sched_tag = rq->internal_tag;
320ae51f
JA
356 struct request_queue *q = rq->q;
357
e8064021 358 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 359 atomic_dec(&hctx->nr_active);
87760e5e
JA
360
361 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 362 rq->rq_flags = 0;
0d2602ca 363
af76e555 364 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 365 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
366 if (rq->tag != -1)
367 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
368 if (sched_tag != -1)
c05f8525 369 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
6d8c6c0f 370 blk_mq_sched_restart(hctx);
3ef28e83 371 blk_queue_exit(q);
320ae51f
JA
372}
373
bd166ef1 374static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
16a3c2a7 375 struct request *rq)
320ae51f
JA
376{
377 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
378
379 ctx->rq_completed[rq_is_sync(rq)]++;
bd166ef1
JA
380 __blk_mq_finish_request(hctx, ctx, rq);
381}
382
383void blk_mq_finish_request(struct request *rq)
384{
385 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
7c7f2f2b 386}
5b727272 387EXPORT_SYMBOL_GPL(blk_mq_finish_request);
7c7f2f2b
JA
388
389void blk_mq_free_request(struct request *rq)
390{
bd166ef1 391 blk_mq_sched_put_request(rq);
320ae51f 392}
1a3b595a 393EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 394
c8a446ad 395inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 396{
0d11e6ac
ML
397 blk_account_io_done(rq);
398
91b63639 399 if (rq->end_io) {
87760e5e 400 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 401 rq->end_io(rq, error);
91b63639
CH
402 } else {
403 if (unlikely(blk_bidi_rq(rq)))
404 blk_mq_free_request(rq->next_rq);
320ae51f 405 blk_mq_free_request(rq);
91b63639 406 }
320ae51f 407}
c8a446ad 408EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 409
c8a446ad 410void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
411{
412 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
413 BUG();
c8a446ad 414 __blk_mq_end_request(rq, error);
63151a44 415}
c8a446ad 416EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 417
30a91cb4 418static void __blk_mq_complete_request_remote(void *data)
320ae51f 419{
3d6efbf6 420 struct request *rq = data;
320ae51f 421
30a91cb4 422 rq->q->softirq_done_fn(rq);
320ae51f 423}
320ae51f 424
453f8341 425static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
426{
427 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 428 bool shared = false;
320ae51f
JA
429 int cpu;
430
453f8341
CH
431 if (rq->internal_tag != -1)
432 blk_mq_sched_completed_request(rq);
433 if (rq->rq_flags & RQF_STATS) {
434 blk_mq_poll_stats_start(rq->q);
435 blk_stat_add(rq);
436 }
437
38535201 438 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
439 rq->q->softirq_done_fn(rq);
440 return;
441 }
320ae51f
JA
442
443 cpu = get_cpu();
38535201
CH
444 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
445 shared = cpus_share_cache(cpu, ctx->cpu);
446
447 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 448 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
449 rq->csd.info = rq;
450 rq->csd.flags = 0;
c46fff2a 451 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 452 } else {
30a91cb4 453 rq->q->softirq_done_fn(rq);
3d6efbf6 454 }
320ae51f
JA
455 put_cpu();
456}
30a91cb4
CH
457
458/**
459 * blk_mq_complete_request - end I/O on a request
460 * @rq: the request being processed
461 *
462 * Description:
463 * Ends all I/O on a request. It does not handle partial completions.
464 * The actual completion happens out-of-order, through a IPI handler.
465 **/
08e0029a 466void blk_mq_complete_request(struct request *rq)
30a91cb4 467{
95f09684
JA
468 struct request_queue *q = rq->q;
469
470 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 471 return;
08e0029a 472 if (!blk_mark_rq_complete(rq))
ed851860 473 __blk_mq_complete_request(rq);
30a91cb4
CH
474}
475EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 476
973c0191
KB
477int blk_mq_request_started(struct request *rq)
478{
479 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
480}
481EXPORT_SYMBOL_GPL(blk_mq_request_started);
482
e2490073 483void blk_mq_start_request(struct request *rq)
320ae51f
JA
484{
485 struct request_queue *q = rq->q;
486
bd166ef1
JA
487 blk_mq_sched_started_request(rq);
488
320ae51f
JA
489 trace_block_rq_issue(q, rq);
490
cf43e6be 491 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 492 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 493 rq->rq_flags |= RQF_STATS;
87760e5e 494 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
495 }
496
2b8393b4 497 blk_add_timer(rq);
87ee7b11 498
538b7534
JA
499 /*
500 * Ensure that ->deadline is visible before set the started
501 * flag and clear the completed flag.
502 */
503 smp_mb__before_atomic();
504
87ee7b11
JA
505 /*
506 * Mark us as started and clear complete. Complete might have been
507 * set if requeue raced with timeout, which then marked it as
508 * complete. So be sure to clear complete again when we start
509 * the request, otherwise we'll ignore the completion event.
510 */
4b570521
JA
511 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
512 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
513 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
514 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
515
516 if (q->dma_drain_size && blk_rq_bytes(rq)) {
517 /*
518 * Make sure space for the drain appears. We know we can do
519 * this because max_hw_segments has been adjusted to be one
520 * fewer than the device can handle.
521 */
522 rq->nr_phys_segments++;
523 }
320ae51f 524}
e2490073 525EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 526
d9d149a3
ML
527/*
528 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
48b99c9d 529 * flag isn't set yet, so there may be race with timeout handler,
d9d149a3
ML
530 * but given rq->deadline is just set in .queue_rq() under
531 * this situation, the race won't be possible in reality because
532 * rq->timeout should be set as big enough to cover the window
533 * between blk_mq_start_request() called from .queue_rq() and
534 * clearing REQ_ATOM_STARTED here.
535 */
ed0791b2 536static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
537{
538 struct request_queue *q = rq->q;
539
540 trace_block_rq_requeue(q, rq);
87760e5e 541 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 542 blk_mq_sched_requeue_request(rq);
49f5baa5 543
e2490073
CH
544 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
545 if (q->dma_drain_size && blk_rq_bytes(rq))
546 rq->nr_phys_segments--;
547 }
320ae51f
JA
548}
549
2b053aca 550void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 551{
ed0791b2 552 __blk_mq_requeue_request(rq);
ed0791b2 553
ed0791b2 554 BUG_ON(blk_queued_rq(rq));
2b053aca 555 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
556}
557EXPORT_SYMBOL(blk_mq_requeue_request);
558
6fca6a61
CH
559static void blk_mq_requeue_work(struct work_struct *work)
560{
561 struct request_queue *q =
2849450a 562 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
563 LIST_HEAD(rq_list);
564 struct request *rq, *next;
565 unsigned long flags;
566
567 spin_lock_irqsave(&q->requeue_lock, flags);
568 list_splice_init(&q->requeue_list, &rq_list);
569 spin_unlock_irqrestore(&q->requeue_lock, flags);
570
571 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 572 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
573 continue;
574
e8064021 575 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 576 list_del_init(&rq->queuelist);
bd6737f1 577 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
578 }
579
580 while (!list_empty(&rq_list)) {
581 rq = list_entry(rq_list.next, struct request, queuelist);
582 list_del_init(&rq->queuelist);
bd6737f1 583 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
584 }
585
52d7f1b5 586 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
587}
588
2b053aca
BVA
589void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
590 bool kick_requeue_list)
6fca6a61
CH
591{
592 struct request_queue *q = rq->q;
593 unsigned long flags;
594
595 /*
596 * We abuse this flag that is otherwise used by the I/O scheduler to
597 * request head insertation from the workqueue.
598 */
e8064021 599 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
600
601 spin_lock_irqsave(&q->requeue_lock, flags);
602 if (at_head) {
e8064021 603 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
604 list_add(&rq->queuelist, &q->requeue_list);
605 } else {
606 list_add_tail(&rq->queuelist, &q->requeue_list);
607 }
608 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
609
610 if (kick_requeue_list)
611 blk_mq_kick_requeue_list(q);
6fca6a61
CH
612}
613EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
614
615void blk_mq_kick_requeue_list(struct request_queue *q)
616{
2849450a 617 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
618}
619EXPORT_SYMBOL(blk_mq_kick_requeue_list);
620
2849450a
MS
621void blk_mq_delay_kick_requeue_list(struct request_queue *q,
622 unsigned long msecs)
623{
624 kblockd_schedule_delayed_work(&q->requeue_work,
625 msecs_to_jiffies(msecs));
626}
627EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
628
1885b24d
JA
629void blk_mq_abort_requeue_list(struct request_queue *q)
630{
631 unsigned long flags;
632 LIST_HEAD(rq_list);
633
634 spin_lock_irqsave(&q->requeue_lock, flags);
635 list_splice_init(&q->requeue_list, &rq_list);
636 spin_unlock_irqrestore(&q->requeue_lock, flags);
637
638 while (!list_empty(&rq_list)) {
639 struct request *rq;
640
641 rq = list_first_entry(&rq_list, struct request, queuelist);
642 list_del_init(&rq->queuelist);
caf7df12 643 blk_mq_end_request(rq, -EIO);
1885b24d
JA
644 }
645}
646EXPORT_SYMBOL(blk_mq_abort_requeue_list);
647
0e62f51f
JA
648struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
649{
88c7b2b7
JA
650 if (tag < tags->nr_tags) {
651 prefetch(tags->rqs[tag]);
4ee86bab 652 return tags->rqs[tag];
88c7b2b7 653 }
4ee86bab
HR
654
655 return NULL;
24d2f903
CH
656}
657EXPORT_SYMBOL(blk_mq_tag_to_rq);
658
320ae51f 659struct blk_mq_timeout_data {
46f92d42
CH
660 unsigned long next;
661 unsigned int next_set;
320ae51f
JA
662};
663
90415837 664void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 665{
f8a5b122 666 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 667 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
668
669 /*
670 * We know that complete is set at this point. If STARTED isn't set
671 * anymore, then the request isn't active and the "timeout" should
672 * just be ignored. This can happen due to the bitflag ordering.
673 * Timeout first checks if STARTED is set, and if it is, assumes
674 * the request is active. But if we race with completion, then
48b99c9d 675 * both flags will get cleared. So check here again, and ignore
87ee7b11
JA
676 * a timeout event with a request that isn't active.
677 */
46f92d42
CH
678 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
679 return;
87ee7b11 680
46f92d42 681 if (ops->timeout)
0152fb6b 682 ret = ops->timeout(req, reserved);
46f92d42
CH
683
684 switch (ret) {
685 case BLK_EH_HANDLED:
686 __blk_mq_complete_request(req);
687 break;
688 case BLK_EH_RESET_TIMER:
689 blk_add_timer(req);
690 blk_clear_rq_complete(req);
691 break;
692 case BLK_EH_NOT_HANDLED:
693 break;
694 default:
695 printk(KERN_ERR "block: bad eh return: %d\n", ret);
696 break;
697 }
87ee7b11 698}
5b3f25fc 699
81481eb4
CH
700static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
701 struct request *rq, void *priv, bool reserved)
702{
703 struct blk_mq_timeout_data *data = priv;
87ee7b11 704
a4ef8e56 705 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 706 return;
87ee7b11 707
d9d149a3
ML
708 /*
709 * The rq being checked may have been freed and reallocated
710 * out already here, we avoid this race by checking rq->deadline
711 * and REQ_ATOM_COMPLETE flag together:
712 *
713 * - if rq->deadline is observed as new value because of
714 * reusing, the rq won't be timed out because of timing.
715 * - if rq->deadline is observed as previous value,
716 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
717 * because we put a barrier between setting rq->deadline
718 * and clearing the flag in blk_mq_start_request(), so
719 * this rq won't be timed out too.
720 */
46f92d42
CH
721 if (time_after_eq(jiffies, rq->deadline)) {
722 if (!blk_mark_rq_complete(rq))
0152fb6b 723 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
724 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
725 data->next = rq->deadline;
726 data->next_set = 1;
727 }
87ee7b11
JA
728}
729
287922eb 730static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 731{
287922eb
CH
732 struct request_queue *q =
733 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
734 struct blk_mq_timeout_data data = {
735 .next = 0,
736 .next_set = 0,
737 };
81481eb4 738 int i;
320ae51f 739
71f79fb3
GKB
740 /* A deadlock might occur if a request is stuck requiring a
741 * timeout at the same time a queue freeze is waiting
742 * completion, since the timeout code would not be able to
743 * acquire the queue reference here.
744 *
745 * That's why we don't use blk_queue_enter here; instead, we use
746 * percpu_ref_tryget directly, because we need to be able to
747 * obtain a reference even in the short window between the queue
748 * starting to freeze, by dropping the first reference in
1671d522 749 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
750 * consumed, marked by the instant q_usage_counter reaches
751 * zero.
752 */
753 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
754 return;
755
0bf6cd5b 756 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 757
81481eb4
CH
758 if (data.next_set) {
759 data.next = blk_rq_timeout(round_jiffies_up(data.next));
760 mod_timer(&q->timeout, data.next);
0d2602ca 761 } else {
0bf6cd5b
CH
762 struct blk_mq_hw_ctx *hctx;
763
f054b56c
ML
764 queue_for_each_hw_ctx(q, hctx, i) {
765 /* the hctx may be unmapped, so check it here */
766 if (blk_mq_hw_queue_mapped(hctx))
767 blk_mq_tag_idle(hctx);
768 }
0d2602ca 769 }
287922eb 770 blk_queue_exit(q);
320ae51f
JA
771}
772
773/*
774 * Reverse check our software queue for entries that we could potentially
775 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
776 * too much time checking for merges.
777 */
778static bool blk_mq_attempt_merge(struct request_queue *q,
779 struct blk_mq_ctx *ctx, struct bio *bio)
780{
781 struct request *rq;
782 int checked = 8;
783
784 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
34fe7c05 785 bool merged = false;
320ae51f
JA
786
787 if (!checked--)
788 break;
789
790 if (!blk_rq_merge_ok(rq, bio))
791 continue;
792
34fe7c05
CH
793 switch (blk_try_merge(rq, bio)) {
794 case ELEVATOR_BACK_MERGE:
795 if (blk_mq_sched_allow_merge(q, rq, bio))
796 merged = bio_attempt_back_merge(q, rq, bio);
bd166ef1 797 break;
34fe7c05
CH
798 case ELEVATOR_FRONT_MERGE:
799 if (blk_mq_sched_allow_merge(q, rq, bio))
800 merged = bio_attempt_front_merge(q, rq, bio);
320ae51f 801 break;
1e739730
CH
802 case ELEVATOR_DISCARD_MERGE:
803 merged = bio_attempt_discard_merge(q, rq, bio);
320ae51f 804 break;
34fe7c05
CH
805 default:
806 continue;
320ae51f 807 }
34fe7c05
CH
808
809 if (merged)
810 ctx->rq_merged++;
811 return merged;
320ae51f
JA
812 }
813
814 return false;
815}
816
88459642
OS
817struct flush_busy_ctx_data {
818 struct blk_mq_hw_ctx *hctx;
819 struct list_head *list;
820};
821
822static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
823{
824 struct flush_busy_ctx_data *flush_data = data;
825 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
826 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
827
828 sbitmap_clear_bit(sb, bitnr);
829 spin_lock(&ctx->lock);
830 list_splice_tail_init(&ctx->rq_list, flush_data->list);
831 spin_unlock(&ctx->lock);
832 return true;
833}
834
1429d7c9
JA
835/*
836 * Process software queues that have been marked busy, splicing them
837 * to the for-dispatch
838 */
2c3ad667 839void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 840{
88459642
OS
841 struct flush_busy_ctx_data data = {
842 .hctx = hctx,
843 .list = list,
844 };
1429d7c9 845
88459642 846 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 847}
2c3ad667 848EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 849
703fd1c0
JA
850static inline unsigned int queued_to_index(unsigned int queued)
851{
852 if (!queued)
853 return 0;
1429d7c9 854
703fd1c0 855 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
856}
857
bd6737f1
JA
858bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
859 bool wait)
bd166ef1
JA
860{
861 struct blk_mq_alloc_data data = {
862 .q = rq->q,
bd166ef1
JA
863 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
864 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
865 };
866
5feeacdd
JA
867 might_sleep_if(wait);
868
81380ca1
OS
869 if (rq->tag != -1)
870 goto done;
bd166ef1 871
415b806d
SG
872 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
873 data.flags |= BLK_MQ_REQ_RESERVED;
874
bd166ef1
JA
875 rq->tag = blk_mq_get_tag(&data);
876 if (rq->tag >= 0) {
200e86b3
JA
877 if (blk_mq_tag_busy(data.hctx)) {
878 rq->rq_flags |= RQF_MQ_INFLIGHT;
879 atomic_inc(&data.hctx->nr_active);
880 }
bd166ef1 881 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
882 }
883
81380ca1
OS
884done:
885 if (hctx)
886 *hctx = data.hctx;
887 return rq->tag != -1;
bd166ef1
JA
888}
889
113285b4
JA
890static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
891 struct request *rq)
99cf1dc5 892{
99cf1dc5
JA
893 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
894 rq->tag = -1;
895
896 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
897 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
898 atomic_dec(&hctx->nr_active);
899 }
900}
901
113285b4
JA
902static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
903 struct request *rq)
904{
905 if (rq->tag == -1 || rq->internal_tag == -1)
906 return;
907
908 __blk_mq_put_driver_tag(hctx, rq);
909}
910
911static void blk_mq_put_driver_tag(struct request *rq)
912{
913 struct blk_mq_hw_ctx *hctx;
914
915 if (rq->tag == -1 || rq->internal_tag == -1)
916 return;
917
918 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
919 __blk_mq_put_driver_tag(hctx, rq);
920}
921
bd166ef1
JA
922/*
923 * If we fail getting a driver tag because all the driver tags are already
924 * assigned and on the dispatch list, BUT the first entry does not have a
925 * tag, then we could deadlock. For that case, move entries with assigned
926 * driver tags to the front, leaving the set of tagged requests in the
927 * same order, and the untagged set in the same order.
928 */
929static bool reorder_tags_to_front(struct list_head *list)
930{
931 struct request *rq, *tmp, *first = NULL;
932
933 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
934 if (rq == first)
935 break;
936 if (rq->tag != -1) {
937 list_move(&rq->queuelist, list);
938 if (!first)
939 first = rq;
940 }
941 }
942
943 return first != NULL;
944}
945
da55f2cc
OS
946static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
947 void *key)
948{
949 struct blk_mq_hw_ctx *hctx;
950
951 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
952
953 list_del(&wait->task_list);
954 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
955 blk_mq_run_hw_queue(hctx, true);
956 return 1;
957}
958
959static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
960{
961 struct sbq_wait_state *ws;
962
963 /*
964 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
965 * The thread which wins the race to grab this bit adds the hardware
966 * queue to the wait queue.
967 */
968 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
969 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
970 return false;
971
972 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
973 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
974
975 /*
976 * As soon as this returns, it's no longer safe to fiddle with
977 * hctx->dispatch_wait, since a completion can wake up the wait queue
978 * and unlock the bit.
979 */
980 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
981 return true;
982}
983
81380ca1 984bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
320ae51f 985{
81380ca1 986 struct blk_mq_hw_ctx *hctx;
320ae51f 987 struct request *rq;
3e8a7069 988 int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
320ae51f 989
81380ca1
OS
990 if (list_empty(list))
991 return false;
992
320ae51f
JA
993 /*
994 * Now process all the entries, sending them to the driver.
995 */
3e8a7069 996 errors = queued = 0;
81380ca1 997 do {
74c45052 998 struct blk_mq_queue_data bd;
320ae51f 999
f04c3df3 1000 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
1001 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1002 if (!queued && reorder_tags_to_front(list))
1003 continue;
3c782d67
JA
1004
1005 /*
da55f2cc
OS
1006 * The initial allocation attempt failed, so we need to
1007 * rerun the hardware queue when a tag is freed.
3c782d67 1008 */
807b1041
OS
1009 if (!blk_mq_dispatch_wait_add(hctx))
1010 break;
1011
1012 /*
1013 * It's possible that a tag was freed in the window
1014 * between the allocation failure and adding the
1015 * hardware queue to the wait queue.
1016 */
1017 if (!blk_mq_get_driver_tag(rq, &hctx, false))
3c782d67 1018 break;
bd166ef1 1019 }
da55f2cc 1020
320ae51f 1021 list_del_init(&rq->queuelist);
320ae51f 1022
74c45052 1023 bd.rq = rq;
113285b4
JA
1024
1025 /*
1026 * Flag last if we have no more requests, or if we have more
1027 * but can't assign a driver tag to it.
1028 */
1029 if (list_empty(list))
1030 bd.last = true;
1031 else {
1032 struct request *nxt;
1033
1034 nxt = list_first_entry(list, struct request, queuelist);
1035 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1036 }
74c45052
JA
1037
1038 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
1039 switch (ret) {
1040 case BLK_MQ_RQ_QUEUE_OK:
1041 queued++;
52b9c330 1042 break;
320ae51f 1043 case BLK_MQ_RQ_QUEUE_BUSY:
113285b4 1044 blk_mq_put_driver_tag_hctx(hctx, rq);
f04c3df3 1045 list_add(&rq->queuelist, list);
ed0791b2 1046 __blk_mq_requeue_request(rq);
320ae51f
JA
1047 break;
1048 default:
1049 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 1050 case BLK_MQ_RQ_QUEUE_ERROR:
3e8a7069 1051 errors++;
caf7df12 1052 blk_mq_end_request(rq, -EIO);
320ae51f
JA
1053 break;
1054 }
1055
1056 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1057 break;
81380ca1 1058 } while (!list_empty(list));
320ae51f 1059
703fd1c0 1060 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1061
1062 /*
1063 * Any items that need requeuing? Stuff them into hctx->dispatch,
1064 * that is where we will continue on next queue run.
1065 */
f04c3df3 1066 if (!list_empty(list)) {
113285b4 1067 /*
710c785f
BVA
1068 * If an I/O scheduler has been configured and we got a driver
1069 * tag for the next request already, free it again.
113285b4
JA
1070 */
1071 rq = list_first_entry(list, struct request, queuelist);
1072 blk_mq_put_driver_tag(rq);
1073
320ae51f 1074 spin_lock(&hctx->lock);
c13660a0 1075 list_splice_init(list, &hctx->dispatch);
320ae51f 1076 spin_unlock(&hctx->lock);
f04c3df3 1077
9ba52e58 1078 /*
710c785f
BVA
1079 * If SCHED_RESTART was set by the caller of this function and
1080 * it is no longer set that means that it was cleared by another
1081 * thread and hence that a queue rerun is needed.
9ba52e58 1082 *
710c785f
BVA
1083 * If TAG_WAITING is set that means that an I/O scheduler has
1084 * been configured and another thread is waiting for a driver
1085 * tag. To guarantee fairness, do not rerun this hardware queue
1086 * but let the other thread grab the driver tag.
bd166ef1 1087 *
710c785f
BVA
1088 * If no I/O scheduler has been configured it is possible that
1089 * the hardware queue got stopped and restarted before requests
1090 * were pushed back onto the dispatch list. Rerun the queue to
1091 * avoid starvation. Notes:
1092 * - blk_mq_run_hw_queue() checks whether or not a queue has
1093 * been stopped before rerunning a queue.
1094 * - Some but not all block drivers stop a queue before
1095 * returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
1096 * and dm-rq.
bd166ef1 1097 */
da55f2cc
OS
1098 if (!blk_mq_sched_needs_restart(hctx) &&
1099 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
bd166ef1 1100 blk_mq_run_hw_queue(hctx, true);
320ae51f 1101 }
f04c3df3 1102
3e8a7069 1103 return (queued + errors) != 0;
f04c3df3
JA
1104}
1105
6a83e74d
BVA
1106static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1107{
1108 int srcu_idx;
1109
1110 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1111 cpu_online(hctx->next_cpu));
1112
1113 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1114 rcu_read_lock();
bd166ef1 1115 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1116 rcu_read_unlock();
1117 } else {
bf4907c0
JA
1118 might_sleep();
1119
6a83e74d 1120 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
bd166ef1 1121 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1122 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1123 }
1124}
1125
506e931f
JA
1126/*
1127 * It'd be great if the workqueue API had a way to pass
1128 * in a mask and had some smarts for more clever placement.
1129 * For now we just round-robin here, switching for every
1130 * BLK_MQ_CPU_WORK_BATCH queued items.
1131 */
1132static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1133{
b657d7e6
CH
1134 if (hctx->queue->nr_hw_queues == 1)
1135 return WORK_CPU_UNBOUND;
506e931f
JA
1136
1137 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1138 int next_cpu;
506e931f
JA
1139
1140 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1141 if (next_cpu >= nr_cpu_ids)
1142 next_cpu = cpumask_first(hctx->cpumask);
1143
1144 hctx->next_cpu = next_cpu;
1145 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1146 }
1147
b657d7e6 1148 return hctx->next_cpu;
506e931f
JA
1149}
1150
7587a5ae
BVA
1151static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1152 unsigned long msecs)
320ae51f 1153{
5d1b25c1
BVA
1154 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1155 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
1156 return;
1157
1b792f2f 1158 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1159 int cpu = get_cpu();
1160 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1161 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1162 put_cpu();
398205b8
PB
1163 return;
1164 }
e4043dcf 1165
2a90d4aa 1166 put_cpu();
e4043dcf 1167 }
398205b8 1168
9f993737
JA
1169 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1170 &hctx->run_work,
1171 msecs_to_jiffies(msecs));
7587a5ae
BVA
1172}
1173
1174void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1175{
1176 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1177}
1178EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1179
1180void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1181{
1182 __blk_mq_delay_run_hw_queue(hctx, async, 0);
320ae51f 1183}
5b727272 1184EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1185
b94ec296 1186void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1187{
1188 struct blk_mq_hw_ctx *hctx;
1189 int i;
1190
1191 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1192 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1193 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1194 continue;
1195
b94ec296 1196 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1197 }
1198}
b94ec296 1199EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1200
fd001443
BVA
1201/**
1202 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1203 * @q: request queue.
1204 *
1205 * The caller is responsible for serializing this function against
1206 * blk_mq_{start,stop}_hw_queue().
1207 */
1208bool blk_mq_queue_stopped(struct request_queue *q)
1209{
1210 struct blk_mq_hw_ctx *hctx;
1211 int i;
1212
1213 queue_for_each_hw_ctx(q, hctx, i)
1214 if (blk_mq_hctx_stopped(hctx))
1215 return true;
1216
1217 return false;
1218}
1219EXPORT_SYMBOL(blk_mq_queue_stopped);
1220
320ae51f
JA
1221void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1222{
9f993737 1223 cancel_delayed_work_sync(&hctx->run_work);
70f4db63 1224 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
1225 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1226}
1227EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1228
280d45f6
CH
1229void blk_mq_stop_hw_queues(struct request_queue *q)
1230{
1231 struct blk_mq_hw_ctx *hctx;
1232 int i;
1233
1234 queue_for_each_hw_ctx(q, hctx, i)
1235 blk_mq_stop_hw_queue(hctx);
1236}
1237EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1238
320ae51f
JA
1239void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1240{
1241 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1242
0ffbce80 1243 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1244}
1245EXPORT_SYMBOL(blk_mq_start_hw_queue);
1246
2f268556
CH
1247void blk_mq_start_hw_queues(struct request_queue *q)
1248{
1249 struct blk_mq_hw_ctx *hctx;
1250 int i;
1251
1252 queue_for_each_hw_ctx(q, hctx, i)
1253 blk_mq_start_hw_queue(hctx);
1254}
1255EXPORT_SYMBOL(blk_mq_start_hw_queues);
1256
ae911c5e
JA
1257void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1258{
1259 if (!blk_mq_hctx_stopped(hctx))
1260 return;
1261
1262 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1263 blk_mq_run_hw_queue(hctx, async);
1264}
1265EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1266
1b4a3258 1267void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1268{
1269 struct blk_mq_hw_ctx *hctx;
1270 int i;
1271
ae911c5e
JA
1272 queue_for_each_hw_ctx(q, hctx, i)
1273 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1274}
1275EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1276
70f4db63 1277static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1278{
1279 struct blk_mq_hw_ctx *hctx;
1280
9f993737 1281 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
7587a5ae
BVA
1282 __blk_mq_run_hw_queue(hctx);
1283}
1284
70f4db63
CH
1285static void blk_mq_delay_work_fn(struct work_struct *work)
1286{
1287 struct blk_mq_hw_ctx *hctx;
1288
1289 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1290
1291 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1292 __blk_mq_run_hw_queue(hctx);
1293}
1294
1295void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1296{
19c66e59
ML
1297 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1298 return;
70f4db63 1299
7e79dadc 1300 blk_mq_stop_hw_queue(hctx);
b657d7e6
CH
1301 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1302 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
1303}
1304EXPORT_SYMBOL(blk_mq_delay_queue);
1305
cfd0c552 1306static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1307 struct request *rq,
1308 bool at_head)
320ae51f 1309{
e57690fe
JA
1310 struct blk_mq_ctx *ctx = rq->mq_ctx;
1311
01b983c9
JA
1312 trace_block_rq_insert(hctx->queue, rq);
1313
72a0a36e
CH
1314 if (at_head)
1315 list_add(&rq->queuelist, &ctx->rq_list);
1316 else
1317 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1318}
4bb659b1 1319
2c3ad667
JA
1320void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1321 bool at_head)
cfd0c552
ML
1322{
1323 struct blk_mq_ctx *ctx = rq->mq_ctx;
1324
e57690fe 1325 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1326 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1327}
1328
bd166ef1
JA
1329void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1330 struct list_head *list)
320ae51f
JA
1331
1332{
320ae51f
JA
1333 /*
1334 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1335 * offline now
1336 */
1337 spin_lock(&ctx->lock);
1338 while (!list_empty(list)) {
1339 struct request *rq;
1340
1341 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1342 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1343 list_del_init(&rq->queuelist);
e57690fe 1344 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1345 }
cfd0c552 1346 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1347 spin_unlock(&ctx->lock);
320ae51f
JA
1348}
1349
1350static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1351{
1352 struct request *rqa = container_of(a, struct request, queuelist);
1353 struct request *rqb = container_of(b, struct request, queuelist);
1354
1355 return !(rqa->mq_ctx < rqb->mq_ctx ||
1356 (rqa->mq_ctx == rqb->mq_ctx &&
1357 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1358}
1359
1360void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1361{
1362 struct blk_mq_ctx *this_ctx;
1363 struct request_queue *this_q;
1364 struct request *rq;
1365 LIST_HEAD(list);
1366 LIST_HEAD(ctx_list);
1367 unsigned int depth;
1368
1369 list_splice_init(&plug->mq_list, &list);
1370
1371 list_sort(NULL, &list, plug_ctx_cmp);
1372
1373 this_q = NULL;
1374 this_ctx = NULL;
1375 depth = 0;
1376
1377 while (!list_empty(&list)) {
1378 rq = list_entry_rq(list.next);
1379 list_del_init(&rq->queuelist);
1380 BUG_ON(!rq->q);
1381 if (rq->mq_ctx != this_ctx) {
1382 if (this_ctx) {
bd166ef1
JA
1383 trace_block_unplug(this_q, depth, from_schedule);
1384 blk_mq_sched_insert_requests(this_q, this_ctx,
1385 &ctx_list,
1386 from_schedule);
320ae51f
JA
1387 }
1388
1389 this_ctx = rq->mq_ctx;
1390 this_q = rq->q;
1391 depth = 0;
1392 }
1393
1394 depth++;
1395 list_add_tail(&rq->queuelist, &ctx_list);
1396 }
1397
1398 /*
1399 * If 'this_ctx' is set, we know we have entries to complete
1400 * on 'ctx_list'. Do those.
1401 */
1402 if (this_ctx) {
bd166ef1
JA
1403 trace_block_unplug(this_q, depth, from_schedule);
1404 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1405 from_schedule);
320ae51f
JA
1406 }
1407}
1408
1409static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1410{
da8d7f07 1411 blk_init_request_from_bio(rq, bio);
4b570521 1412
6e85eaf3 1413 blk_account_io_start(rq, true);
320ae51f
JA
1414}
1415
274a5843
JA
1416static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1417{
1418 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1419 !blk_queue_nomerges(hctx->queue);
1420}
1421
07068d5b
JA
1422static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1423 struct blk_mq_ctx *ctx,
1424 struct request *rq, struct bio *bio)
320ae51f 1425{
e18378a6 1426 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1427 blk_mq_bio_to_request(rq, bio);
1428 spin_lock(&ctx->lock);
1429insert_rq:
1430 __blk_mq_insert_request(hctx, rq, false);
1431 spin_unlock(&ctx->lock);
1432 return false;
1433 } else {
274a5843
JA
1434 struct request_queue *q = hctx->queue;
1435
07068d5b
JA
1436 spin_lock(&ctx->lock);
1437 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1438 blk_mq_bio_to_request(rq, bio);
1439 goto insert_rq;
1440 }
320ae51f 1441
07068d5b 1442 spin_unlock(&ctx->lock);
bd166ef1 1443 __blk_mq_finish_request(hctx, ctx, rq);
07068d5b 1444 return true;
14ec77f3 1445 }
07068d5b 1446}
14ec77f3 1447
fd2d3326
JA
1448static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1449{
bd166ef1
JA
1450 if (rq->tag != -1)
1451 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1452
1453 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1454}
1455
5eb6126e 1456static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
9c621104 1457 bool may_sleep)
f984df1f 1458{
f984df1f 1459 struct request_queue *q = rq->q;
f984df1f
SL
1460 struct blk_mq_queue_data bd = {
1461 .rq = rq,
d945a365 1462 .last = true,
f984df1f 1463 };
bd166ef1
JA
1464 struct blk_mq_hw_ctx *hctx;
1465 blk_qc_t new_cookie;
1466 int ret;
f984df1f 1467
bd166ef1 1468 if (q->elevator)
2253efc8
BVA
1469 goto insert;
1470
bd166ef1
JA
1471 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1472 goto insert;
1473
1474 new_cookie = request_to_qc_t(hctx, rq);
1475
f984df1f
SL
1476 /*
1477 * For OK queue, we are done. For error, kill it. Any other
1478 * error (busy), just add it to our list as we previously
1479 * would have done
1480 */
1481 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1482 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1483 *cookie = new_cookie;
2253efc8 1484 return;
7b371636 1485 }
f984df1f 1486
7b371636
JA
1487 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1488 *cookie = BLK_QC_T_NONE;
caf7df12 1489 blk_mq_end_request(rq, -EIO);
2253efc8 1490 return;
f984df1f 1491 }
7b371636 1492
b58e1769 1493 __blk_mq_requeue_request(rq);
2253efc8 1494insert:
9c621104 1495 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
f984df1f
SL
1496}
1497
5eb6126e
CH
1498static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1499 struct request *rq, blk_qc_t *cookie)
1500{
1501 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1502 rcu_read_lock();
1503 __blk_mq_try_issue_directly(rq, cookie, false);
1504 rcu_read_unlock();
1505 } else {
bf4907c0
JA
1506 unsigned int srcu_idx;
1507
1508 might_sleep();
1509
1510 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
5eb6126e
CH
1511 __blk_mq_try_issue_directly(rq, cookie, true);
1512 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1513 }
1514}
1515
dece1635 1516static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1517{
ef295ecf 1518 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1519 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1520 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1521 struct request *rq;
5eb6126e 1522 unsigned int request_count = 0;
f984df1f 1523 struct blk_plug *plug;
5b3f341f 1524 struct request *same_queue_rq = NULL;
7b371636 1525 blk_qc_t cookie;
87760e5e 1526 unsigned int wb_acct;
07068d5b
JA
1527
1528 blk_queue_bounce(q, &bio);
1529
1530 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1531 bio_io_error(bio);
dece1635 1532 return BLK_QC_T_NONE;
07068d5b
JA
1533 }
1534
54efd50b
KO
1535 blk_queue_split(q, &bio, q->bio_split);
1536
87c279e6
OS
1537 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1538 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1539 return BLK_QC_T_NONE;
f984df1f 1540
bd166ef1
JA
1541 if (blk_mq_sched_bio_merge(q, bio))
1542 return BLK_QC_T_NONE;
1543
87760e5e
JA
1544 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1545
bd166ef1
JA
1546 trace_block_getrq(q, bio, bio->bi_opf);
1547
1548 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1549 if (unlikely(!rq)) {
1550 __wbt_done(q->rq_wb, wb_acct);
dece1635 1551 return BLK_QC_T_NONE;
87760e5e
JA
1552 }
1553
1554 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1555
fd2d3326 1556 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1557
a4d907b6 1558 plug = current->plug;
07068d5b 1559 if (unlikely(is_flush_fua)) {
b00c53e8 1560 blk_mq_put_ctx(data.ctx);
07068d5b 1561 blk_mq_bio_to_request(rq, bio);
a4d907b6
CH
1562 if (q->elevator) {
1563 blk_mq_sched_insert_request(rq, false, true, true,
1564 true);
1565 } else {
1566 blk_insert_flush(rq);
1567 blk_mq_run_hw_queue(data.hctx, true);
1568 }
1569 } else if (plug && q->nr_hw_queues == 1) {
254d259d
CH
1570 struct request *last = NULL;
1571
b00c53e8 1572 blk_mq_put_ctx(data.ctx);
254d259d
CH
1573 blk_mq_bio_to_request(rq, bio);
1574
1575 /*
1576 * @request_count may become stale because of schedule
1577 * out, so check the list again.
1578 */
1579 if (list_empty(&plug->mq_list))
1580 request_count = 0;
1581 else if (blk_queue_nomerges(q))
1582 request_count = blk_plug_queued_count(q);
1583
1584 if (!request_count)
1585 trace_block_plug(q);
1586 else
1587 last = list_entry_rq(plug->mq_list.prev);
1588
254d259d
CH
1589 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1590 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1591 blk_flush_plug_list(plug, false);
1592 trace_block_plug(q);
1593 }
1594
1595 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1596 } else if (plug && !blk_queue_nomerges(q)) {
07068d5b 1597 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1598
1599 /*
6a83e74d 1600 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1601 * Otherwise the existing request in the plug list will be
1602 * issued. So the plug list will have one request at most
2299722c
CH
1603 * The plug list might get flushed before this. If that happens,
1604 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1605 */
2299722c
CH
1606 if (list_empty(&plug->mq_list))
1607 same_queue_rq = NULL;
1608 if (same_queue_rq)
1609 list_del_init(&same_queue_rq->queuelist);
1610 list_add_tail(&rq->queuelist, &plug->mq_list);
1611
bf4907c0
JA
1612 blk_mq_put_ctx(data.ctx);
1613
2299722c
CH
1614 if (same_queue_rq)
1615 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1616 &cookie);
a4d907b6 1617 } else if (q->nr_hw_queues > 1 && is_sync) {
bf4907c0 1618 blk_mq_put_ctx(data.ctx);
2299722c 1619 blk_mq_bio_to_request(rq, bio);
2299722c 1620 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
a4d907b6 1621 } else if (q->elevator) {
b00c53e8 1622 blk_mq_put_ctx(data.ctx);
bd166ef1 1623 blk_mq_bio_to_request(rq, bio);
a4d907b6 1624 blk_mq_sched_insert_request(rq, false, true, true, true);
b00c53e8
JA
1625 } else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1626 blk_mq_put_ctx(data.ctx);
a4d907b6 1627 blk_mq_run_hw_queue(data.hctx, true);
abc25a69
BVA
1628 } else
1629 blk_mq_put_ctx(data.ctx);
a4d907b6 1630
7b371636 1631 return cookie;
07068d5b
JA
1632}
1633
cc71a6f4
JA
1634void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1635 unsigned int hctx_idx)
95363efd 1636{
e9b267d9 1637 struct page *page;
320ae51f 1638
24d2f903 1639 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1640 int i;
320ae51f 1641
24d2f903 1642 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1643 struct request *rq = tags->static_rqs[i];
1644
1645 if (!rq)
e9b267d9 1646 continue;
2af8cbe3 1647 set->ops->exit_request(set->driver_data, rq,
24d2f903 1648 hctx_idx, i);
2af8cbe3 1649 tags->static_rqs[i] = NULL;
e9b267d9 1650 }
320ae51f 1651 }
320ae51f 1652
24d2f903
CH
1653 while (!list_empty(&tags->page_list)) {
1654 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1655 list_del_init(&page->lru);
f75782e4
CM
1656 /*
1657 * Remove kmemleak object previously allocated in
1658 * blk_mq_init_rq_map().
1659 */
1660 kmemleak_free(page_address(page));
320ae51f
JA
1661 __free_pages(page, page->private);
1662 }
cc71a6f4 1663}
320ae51f 1664
cc71a6f4
JA
1665void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1666{
24d2f903 1667 kfree(tags->rqs);
cc71a6f4 1668 tags->rqs = NULL;
2af8cbe3
JA
1669 kfree(tags->static_rqs);
1670 tags->static_rqs = NULL;
320ae51f 1671
24d2f903 1672 blk_mq_free_tags(tags);
320ae51f
JA
1673}
1674
cc71a6f4
JA
1675struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1676 unsigned int hctx_idx,
1677 unsigned int nr_tags,
1678 unsigned int reserved_tags)
320ae51f 1679{
24d2f903 1680 struct blk_mq_tags *tags;
59f082e4 1681 int node;
320ae51f 1682
59f082e4
SL
1683 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1684 if (node == NUMA_NO_NODE)
1685 node = set->numa_node;
1686
1687 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1688 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1689 if (!tags)
1690 return NULL;
320ae51f 1691
cc71a6f4 1692 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1693 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1694 node);
24d2f903
CH
1695 if (!tags->rqs) {
1696 blk_mq_free_tags(tags);
1697 return NULL;
1698 }
320ae51f 1699
2af8cbe3
JA
1700 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1701 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1702 node);
2af8cbe3
JA
1703 if (!tags->static_rqs) {
1704 kfree(tags->rqs);
1705 blk_mq_free_tags(tags);
1706 return NULL;
1707 }
1708
cc71a6f4
JA
1709 return tags;
1710}
1711
1712static size_t order_to_size(unsigned int order)
1713{
1714 return (size_t)PAGE_SIZE << order;
1715}
1716
1717int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1718 unsigned int hctx_idx, unsigned int depth)
1719{
1720 unsigned int i, j, entries_per_page, max_order = 4;
1721 size_t rq_size, left;
59f082e4
SL
1722 int node;
1723
1724 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1725 if (node == NUMA_NO_NODE)
1726 node = set->numa_node;
cc71a6f4
JA
1727
1728 INIT_LIST_HEAD(&tags->page_list);
1729
320ae51f
JA
1730 /*
1731 * rq_size is the size of the request plus driver payload, rounded
1732 * to the cacheline size
1733 */
24d2f903 1734 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1735 cache_line_size());
cc71a6f4 1736 left = rq_size * depth;
320ae51f 1737
cc71a6f4 1738 for (i = 0; i < depth; ) {
320ae51f
JA
1739 int this_order = max_order;
1740 struct page *page;
1741 int to_do;
1742 void *p;
1743
b3a834b1 1744 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1745 this_order--;
1746
1747 do {
59f082e4 1748 page = alloc_pages_node(node,
36e1f3d1 1749 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1750 this_order);
320ae51f
JA
1751 if (page)
1752 break;
1753 if (!this_order--)
1754 break;
1755 if (order_to_size(this_order) < rq_size)
1756 break;
1757 } while (1);
1758
1759 if (!page)
24d2f903 1760 goto fail;
320ae51f
JA
1761
1762 page->private = this_order;
24d2f903 1763 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1764
1765 p = page_address(page);
f75782e4
CM
1766 /*
1767 * Allow kmemleak to scan these pages as they contain pointers
1768 * to additional allocations like via ops->init_request().
1769 */
36e1f3d1 1770 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1771 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1772 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1773 left -= to_do * rq_size;
1774 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1775 struct request *rq = p;
1776
1777 tags->static_rqs[i] = rq;
24d2f903
CH
1778 if (set->ops->init_request) {
1779 if (set->ops->init_request(set->driver_data,
2af8cbe3 1780 rq, hctx_idx, i,
59f082e4 1781 node)) {
2af8cbe3 1782 tags->static_rqs[i] = NULL;
24d2f903 1783 goto fail;
a5164405 1784 }
e9b267d9
CH
1785 }
1786
320ae51f
JA
1787 p += rq_size;
1788 i++;
1789 }
1790 }
cc71a6f4 1791 return 0;
320ae51f 1792
24d2f903 1793fail:
cc71a6f4
JA
1794 blk_mq_free_rqs(set, tags, hctx_idx);
1795 return -ENOMEM;
320ae51f
JA
1796}
1797
e57690fe
JA
1798/*
1799 * 'cpu' is going away. splice any existing rq_list entries from this
1800 * software queue to the hw queue dispatch list, and ensure that it
1801 * gets run.
1802 */
9467f859 1803static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1804{
9467f859 1805 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1806 struct blk_mq_ctx *ctx;
1807 LIST_HEAD(tmp);
1808
9467f859 1809 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1810 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1811
1812 spin_lock(&ctx->lock);
1813 if (!list_empty(&ctx->rq_list)) {
1814 list_splice_init(&ctx->rq_list, &tmp);
1815 blk_mq_hctx_clear_pending(hctx, ctx);
1816 }
1817 spin_unlock(&ctx->lock);
1818
1819 if (list_empty(&tmp))
9467f859 1820 return 0;
484b4061 1821
e57690fe
JA
1822 spin_lock(&hctx->lock);
1823 list_splice_tail_init(&tmp, &hctx->dispatch);
1824 spin_unlock(&hctx->lock);
484b4061
JA
1825
1826 blk_mq_run_hw_queue(hctx, true);
9467f859 1827 return 0;
484b4061
JA
1828}
1829
9467f859 1830static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1831{
9467f859
TG
1832 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1833 &hctx->cpuhp_dead);
484b4061
JA
1834}
1835
c3b4afca 1836/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1837static void blk_mq_exit_hctx(struct request_queue *q,
1838 struct blk_mq_tag_set *set,
1839 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1840{
f70ced09
ML
1841 unsigned flush_start_tag = set->queue_depth;
1842
08e98fc6
ML
1843 blk_mq_tag_idle(hctx);
1844
f70ced09
ML
1845 if (set->ops->exit_request)
1846 set->ops->exit_request(set->driver_data,
1847 hctx->fq->flush_rq, hctx_idx,
1848 flush_start_tag + hctx_idx);
1849
93252632
OS
1850 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1851
08e98fc6
ML
1852 if (set->ops->exit_hctx)
1853 set->ops->exit_hctx(hctx, hctx_idx);
1854
6a83e74d
BVA
1855 if (hctx->flags & BLK_MQ_F_BLOCKING)
1856 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1857
9467f859 1858 blk_mq_remove_cpuhp(hctx);
f70ced09 1859 blk_free_flush_queue(hctx->fq);
88459642 1860 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1861}
1862
624dbe47
ML
1863static void blk_mq_exit_hw_queues(struct request_queue *q,
1864 struct blk_mq_tag_set *set, int nr_queue)
1865{
1866 struct blk_mq_hw_ctx *hctx;
1867 unsigned int i;
1868
1869 queue_for_each_hw_ctx(q, hctx, i) {
1870 if (i == nr_queue)
1871 break;
08e98fc6 1872 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1873 }
624dbe47
ML
1874}
1875
08e98fc6
ML
1876static int blk_mq_init_hctx(struct request_queue *q,
1877 struct blk_mq_tag_set *set,
1878 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1879{
08e98fc6 1880 int node;
f70ced09 1881 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1882
1883 node = hctx->numa_node;
1884 if (node == NUMA_NO_NODE)
1885 node = hctx->numa_node = set->numa_node;
1886
9f993737 1887 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1888 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1889 spin_lock_init(&hctx->lock);
1890 INIT_LIST_HEAD(&hctx->dispatch);
1891 hctx->queue = q;
1892 hctx->queue_num = hctx_idx;
2404e607 1893 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1894
9467f859 1895 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1896
1897 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1898
1899 /*
08e98fc6
ML
1900 * Allocate space for all possible cpus to avoid allocation at
1901 * runtime
320ae51f 1902 */
08e98fc6
ML
1903 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1904 GFP_KERNEL, node);
1905 if (!hctx->ctxs)
1906 goto unregister_cpu_notifier;
320ae51f 1907
88459642
OS
1908 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1909 node))
08e98fc6 1910 goto free_ctxs;
320ae51f 1911
08e98fc6 1912 hctx->nr_ctx = 0;
320ae51f 1913
08e98fc6
ML
1914 if (set->ops->init_hctx &&
1915 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1916 goto free_bitmap;
320ae51f 1917
93252632
OS
1918 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1919 goto exit_hctx;
1920
f70ced09
ML
1921 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1922 if (!hctx->fq)
93252632 1923 goto sched_exit_hctx;
320ae51f 1924
f70ced09
ML
1925 if (set->ops->init_request &&
1926 set->ops->init_request(set->driver_data,
1927 hctx->fq->flush_rq, hctx_idx,
1928 flush_start_tag + hctx_idx, node))
1929 goto free_fq;
320ae51f 1930
6a83e74d
BVA
1931 if (hctx->flags & BLK_MQ_F_BLOCKING)
1932 init_srcu_struct(&hctx->queue_rq_srcu);
1933
08e98fc6 1934 return 0;
320ae51f 1935
f70ced09
ML
1936 free_fq:
1937 kfree(hctx->fq);
93252632
OS
1938 sched_exit_hctx:
1939 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
1940 exit_hctx:
1941 if (set->ops->exit_hctx)
1942 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1943 free_bitmap:
88459642 1944 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1945 free_ctxs:
1946 kfree(hctx->ctxs);
1947 unregister_cpu_notifier:
9467f859 1948 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
1949 return -1;
1950}
320ae51f 1951
320ae51f
JA
1952static void blk_mq_init_cpu_queues(struct request_queue *q,
1953 unsigned int nr_hw_queues)
1954{
1955 unsigned int i;
1956
1957 for_each_possible_cpu(i) {
1958 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1959 struct blk_mq_hw_ctx *hctx;
1960
320ae51f
JA
1961 __ctx->cpu = i;
1962 spin_lock_init(&__ctx->lock);
1963 INIT_LIST_HEAD(&__ctx->rq_list);
1964 __ctx->queue = q;
1965
1966 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1967 if (!cpu_online(i))
1968 continue;
1969
7d7e0f90 1970 hctx = blk_mq_map_queue(q, i);
e4043dcf 1971
320ae51f
JA
1972 /*
1973 * Set local node, IFF we have more than one hw queue. If
1974 * not, we remain on the home node of the device
1975 */
1976 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1977 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
1978 }
1979}
1980
cc71a6f4
JA
1981static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1982{
1983 int ret = 0;
1984
1985 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1986 set->queue_depth, set->reserved_tags);
1987 if (!set->tags[hctx_idx])
1988 return false;
1989
1990 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1991 set->queue_depth);
1992 if (!ret)
1993 return true;
1994
1995 blk_mq_free_rq_map(set->tags[hctx_idx]);
1996 set->tags[hctx_idx] = NULL;
1997 return false;
1998}
1999
2000static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2001 unsigned int hctx_idx)
2002{
bd166ef1
JA
2003 if (set->tags[hctx_idx]) {
2004 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2005 blk_mq_free_rq_map(set->tags[hctx_idx]);
2006 set->tags[hctx_idx] = NULL;
2007 }
cc71a6f4
JA
2008}
2009
5778322e
AM
2010static void blk_mq_map_swqueue(struct request_queue *q,
2011 const struct cpumask *online_mask)
320ae51f 2012{
d1b1cea1 2013 unsigned int i, hctx_idx;
320ae51f
JA
2014 struct blk_mq_hw_ctx *hctx;
2015 struct blk_mq_ctx *ctx;
2a34c087 2016 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2017
60de074b
AM
2018 /*
2019 * Avoid others reading imcomplete hctx->cpumask through sysfs
2020 */
2021 mutex_lock(&q->sysfs_lock);
2022
320ae51f 2023 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2024 cpumask_clear(hctx->cpumask);
320ae51f
JA
2025 hctx->nr_ctx = 0;
2026 }
2027
2028 /*
2029 * Map software to hardware queues
2030 */
897bb0c7 2031 for_each_possible_cpu(i) {
320ae51f 2032 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 2033 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
2034 continue;
2035
d1b1cea1
GKB
2036 hctx_idx = q->mq_map[i];
2037 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2038 if (!set->tags[hctx_idx] &&
2039 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2040 /*
2041 * If tags initialization fail for some hctx,
2042 * that hctx won't be brought online. In this
2043 * case, remap the current ctx to hctx[0] which
2044 * is guaranteed to always have tags allocated
2045 */
cc71a6f4 2046 q->mq_map[i] = 0;
d1b1cea1
GKB
2047 }
2048
897bb0c7 2049 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2050 hctx = blk_mq_map_queue(q, i);
868f2f0b 2051
e4043dcf 2052 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2053 ctx->index_hw = hctx->nr_ctx;
2054 hctx->ctxs[hctx->nr_ctx++] = ctx;
2055 }
506e931f 2056
60de074b
AM
2057 mutex_unlock(&q->sysfs_lock);
2058
506e931f 2059 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2060 /*
a68aafa5
JA
2061 * If no software queues are mapped to this hardware queue,
2062 * disable it and free the request entries.
484b4061
JA
2063 */
2064 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2065 /* Never unmap queue 0. We need it as a
2066 * fallback in case of a new remap fails
2067 * allocation
2068 */
cc71a6f4
JA
2069 if (i && set->tags[i])
2070 blk_mq_free_map_and_requests(set, i);
2071
2a34c087 2072 hctx->tags = NULL;
484b4061
JA
2073 continue;
2074 }
2075
2a34c087
ML
2076 hctx->tags = set->tags[i];
2077 WARN_ON(!hctx->tags);
2078
889fa31f
CY
2079 /*
2080 * Set the map size to the number of mapped software queues.
2081 * This is more accurate and more efficient than looping
2082 * over all possibly mapped software queues.
2083 */
88459642 2084 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2085
484b4061
JA
2086 /*
2087 * Initialize batch roundrobin counts
2088 */
506e931f
JA
2089 hctx->next_cpu = cpumask_first(hctx->cpumask);
2090 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2091 }
320ae51f
JA
2092}
2093
2404e607 2094static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2095{
2096 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2097 int i;
2098
2404e607
JM
2099 queue_for_each_hw_ctx(q, hctx, i) {
2100 if (shared)
2101 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2102 else
2103 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2104 }
2105}
2106
2107static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2108{
2109 struct request_queue *q;
0d2602ca 2110
705cda97
BVA
2111 lockdep_assert_held(&set->tag_list_lock);
2112
0d2602ca
JA
2113 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2114 blk_mq_freeze_queue(q);
2404e607 2115 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2116 blk_mq_unfreeze_queue(q);
2117 }
2118}
2119
2120static void blk_mq_del_queue_tag_set(struct request_queue *q)
2121{
2122 struct blk_mq_tag_set *set = q->tag_set;
2123
0d2602ca 2124 mutex_lock(&set->tag_list_lock);
705cda97
BVA
2125 list_del_rcu(&q->tag_set_list);
2126 INIT_LIST_HEAD(&q->tag_set_list);
2404e607
JM
2127 if (list_is_singular(&set->tag_list)) {
2128 /* just transitioned to unshared */
2129 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2130 /* update existing queue */
2131 blk_mq_update_tag_set_depth(set, false);
2132 }
0d2602ca 2133 mutex_unlock(&set->tag_list_lock);
705cda97
BVA
2134
2135 synchronize_rcu();
0d2602ca
JA
2136}
2137
2138static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2139 struct request_queue *q)
2140{
2141 q->tag_set = set;
2142
2143 mutex_lock(&set->tag_list_lock);
2404e607
JM
2144
2145 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2146 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2147 set->flags |= BLK_MQ_F_TAG_SHARED;
2148 /* update existing queue */
2149 blk_mq_update_tag_set_depth(set, true);
2150 }
2151 if (set->flags & BLK_MQ_F_TAG_SHARED)
2152 queue_set_hctx_shared(q, true);
705cda97 2153 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2154
0d2602ca
JA
2155 mutex_unlock(&set->tag_list_lock);
2156}
2157
e09aae7e
ML
2158/*
2159 * It is the actual release handler for mq, but we do it from
2160 * request queue's release handler for avoiding use-after-free
2161 * and headache because q->mq_kobj shouldn't have been introduced,
2162 * but we can't group ctx/kctx kobj without it.
2163 */
2164void blk_mq_release(struct request_queue *q)
2165{
2166 struct blk_mq_hw_ctx *hctx;
2167 unsigned int i;
2168
2169 /* hctx kobj stays in hctx */
c3b4afca
ML
2170 queue_for_each_hw_ctx(q, hctx, i) {
2171 if (!hctx)
2172 continue;
6c8b232e 2173 kobject_put(&hctx->kobj);
c3b4afca 2174 }
e09aae7e 2175
a723bab3
AM
2176 q->mq_map = NULL;
2177
e09aae7e
ML
2178 kfree(q->queue_hw_ctx);
2179
7ea5fe31
ML
2180 /*
2181 * release .mq_kobj and sw queue's kobject now because
2182 * both share lifetime with request queue.
2183 */
2184 blk_mq_sysfs_deinit(q);
2185
e09aae7e
ML
2186 free_percpu(q->queue_ctx);
2187}
2188
24d2f903 2189struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2190{
2191 struct request_queue *uninit_q, *q;
2192
2193 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2194 if (!uninit_q)
2195 return ERR_PTR(-ENOMEM);
2196
2197 q = blk_mq_init_allocated_queue(set, uninit_q);
2198 if (IS_ERR(q))
2199 blk_cleanup_queue(uninit_q);
2200
2201 return q;
2202}
2203EXPORT_SYMBOL(blk_mq_init_queue);
2204
868f2f0b
KB
2205static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2206 struct request_queue *q)
320ae51f 2207{
868f2f0b
KB
2208 int i, j;
2209 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2210
868f2f0b 2211 blk_mq_sysfs_unregister(q);
24d2f903 2212 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2213 int node;
f14bbe77 2214
868f2f0b
KB
2215 if (hctxs[i])
2216 continue;
2217
2218 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2219 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2220 GFP_KERNEL, node);
320ae51f 2221 if (!hctxs[i])
868f2f0b 2222 break;
320ae51f 2223
a86073e4 2224 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2225 node)) {
2226 kfree(hctxs[i]);
2227 hctxs[i] = NULL;
2228 break;
2229 }
e4043dcf 2230
0d2602ca 2231 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2232 hctxs[i]->numa_node = node;
320ae51f 2233 hctxs[i]->queue_num = i;
868f2f0b
KB
2234
2235 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2236 free_cpumask_var(hctxs[i]->cpumask);
2237 kfree(hctxs[i]);
2238 hctxs[i] = NULL;
2239 break;
2240 }
2241 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2242 }
868f2f0b
KB
2243 for (j = i; j < q->nr_hw_queues; j++) {
2244 struct blk_mq_hw_ctx *hctx = hctxs[j];
2245
2246 if (hctx) {
cc71a6f4
JA
2247 if (hctx->tags)
2248 blk_mq_free_map_and_requests(set, j);
868f2f0b 2249 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2250 kobject_put(&hctx->kobj);
868f2f0b
KB
2251 hctxs[j] = NULL;
2252
2253 }
2254 }
2255 q->nr_hw_queues = i;
2256 blk_mq_sysfs_register(q);
2257}
2258
2259struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2260 struct request_queue *q)
2261{
66841672
ML
2262 /* mark the queue as mq asap */
2263 q->mq_ops = set->ops;
2264
34dbad5d 2265 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2266 blk_mq_poll_stats_bkt,
2267 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2268 if (!q->poll_cb)
2269 goto err_exit;
2270
868f2f0b
KB
2271 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2272 if (!q->queue_ctx)
c7de5726 2273 goto err_exit;
868f2f0b 2274
737f98cf
ML
2275 /* init q->mq_kobj and sw queues' kobjects */
2276 blk_mq_sysfs_init(q);
2277
868f2f0b
KB
2278 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2279 GFP_KERNEL, set->numa_node);
2280 if (!q->queue_hw_ctx)
2281 goto err_percpu;
2282
bdd17e75 2283 q->mq_map = set->mq_map;
868f2f0b
KB
2284
2285 blk_mq_realloc_hw_ctxs(set, q);
2286 if (!q->nr_hw_queues)
2287 goto err_hctxs;
320ae51f 2288
287922eb 2289 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2290 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2291
2292 q->nr_queues = nr_cpu_ids;
320ae51f 2293
94eddfbe 2294 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2295
05f1dd53
JA
2296 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2297 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2298
1be036e9
CH
2299 q->sg_reserved_size = INT_MAX;
2300
2849450a 2301 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2302 INIT_LIST_HEAD(&q->requeue_list);
2303 spin_lock_init(&q->requeue_lock);
2304
254d259d 2305 blk_queue_make_request(q, blk_mq_make_request);
07068d5b 2306
eba71768
JA
2307 /*
2308 * Do this after blk_queue_make_request() overrides it...
2309 */
2310 q->nr_requests = set->queue_depth;
2311
64f1c21e
JA
2312 /*
2313 * Default to classic polling
2314 */
2315 q->poll_nsec = -1;
2316
24d2f903
CH
2317 if (set->ops->complete)
2318 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2319
24d2f903 2320 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2321
5778322e 2322 get_online_cpus();
320ae51f 2323 mutex_lock(&all_q_mutex);
320ae51f 2324
4593fdbe 2325 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2326 blk_mq_add_queue_tag_set(set, q);
5778322e 2327 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2328
4593fdbe 2329 mutex_unlock(&all_q_mutex);
5778322e 2330 put_online_cpus();
4593fdbe 2331
d3484991
JA
2332 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2333 int ret;
2334
2335 ret = blk_mq_sched_init(q);
2336 if (ret)
2337 return ERR_PTR(ret);
2338 }
2339
320ae51f 2340 return q;
18741986 2341
320ae51f 2342err_hctxs:
868f2f0b 2343 kfree(q->queue_hw_ctx);
320ae51f 2344err_percpu:
868f2f0b 2345 free_percpu(q->queue_ctx);
c7de5726
ML
2346err_exit:
2347 q->mq_ops = NULL;
320ae51f
JA
2348 return ERR_PTR(-ENOMEM);
2349}
b62c21b7 2350EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2351
2352void blk_mq_free_queue(struct request_queue *q)
2353{
624dbe47 2354 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2355
0e626368
AM
2356 mutex_lock(&all_q_mutex);
2357 list_del_init(&q->all_q_node);
2358 mutex_unlock(&all_q_mutex);
2359
0d2602ca
JA
2360 blk_mq_del_queue_tag_set(q);
2361
624dbe47 2362 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2363}
320ae51f
JA
2364
2365/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2366static void blk_mq_queue_reinit(struct request_queue *q,
2367 const struct cpumask *online_mask)
320ae51f 2368{
4ecd4fef 2369 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2370
67aec14c
JA
2371 blk_mq_sysfs_unregister(q);
2372
320ae51f
JA
2373 /*
2374 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2375 * we should change hctx numa_node according to new topology (this
2376 * involves free and re-allocate memory, worthy doing?)
2377 */
2378
5778322e 2379 blk_mq_map_swqueue(q, online_mask);
320ae51f 2380
67aec14c 2381 blk_mq_sysfs_register(q);
320ae51f
JA
2382}
2383
65d5291e
SAS
2384/*
2385 * New online cpumask which is going to be set in this hotplug event.
2386 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2387 * one-by-one and dynamically allocating this could result in a failure.
2388 */
2389static struct cpumask cpuhp_online_new;
2390
2391static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2392{
2393 struct request_queue *q;
320ae51f
JA
2394
2395 mutex_lock(&all_q_mutex);
f3af020b
TH
2396 /*
2397 * We need to freeze and reinit all existing queues. Freezing
2398 * involves synchronous wait for an RCU grace period and doing it
2399 * one by one may take a long time. Start freezing all queues in
2400 * one swoop and then wait for the completions so that freezing can
2401 * take place in parallel.
2402 */
2403 list_for_each_entry(q, &all_q_list, all_q_node)
1671d522 2404 blk_freeze_queue_start(q);
415d3dab 2405 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2406 blk_mq_freeze_queue_wait(q);
2407
320ae51f 2408 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2409 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2410
2411 list_for_each_entry(q, &all_q_list, all_q_node)
2412 blk_mq_unfreeze_queue(q);
2413
320ae51f 2414 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2415}
2416
2417static int blk_mq_queue_reinit_dead(unsigned int cpu)
2418{
97a32864 2419 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2420 blk_mq_queue_reinit_work();
2421 return 0;
2422}
2423
2424/*
2425 * Before hotadded cpu starts handling requests, new mappings must be
2426 * established. Otherwise, these requests in hw queue might never be
2427 * dispatched.
2428 *
2429 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2430 * for CPU0, and ctx1 for CPU1).
2431 *
2432 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2433 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2434 *
2c3ad667
JA
2435 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2436 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2437 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2438 * ignored.
65d5291e
SAS
2439 */
2440static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2441{
2442 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2443 cpumask_set_cpu(cpu, &cpuhp_online_new);
2444 blk_mq_queue_reinit_work();
2445 return 0;
320ae51f
JA
2446}
2447
a5164405
JA
2448static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2449{
2450 int i;
2451
cc71a6f4
JA
2452 for (i = 0; i < set->nr_hw_queues; i++)
2453 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2454 goto out_unwind;
a5164405
JA
2455
2456 return 0;
2457
2458out_unwind:
2459 while (--i >= 0)
cc71a6f4 2460 blk_mq_free_rq_map(set->tags[i]);
a5164405 2461
a5164405
JA
2462 return -ENOMEM;
2463}
2464
2465/*
2466 * Allocate the request maps associated with this tag_set. Note that this
2467 * may reduce the depth asked for, if memory is tight. set->queue_depth
2468 * will be updated to reflect the allocated depth.
2469 */
2470static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2471{
2472 unsigned int depth;
2473 int err;
2474
2475 depth = set->queue_depth;
2476 do {
2477 err = __blk_mq_alloc_rq_maps(set);
2478 if (!err)
2479 break;
2480
2481 set->queue_depth >>= 1;
2482 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2483 err = -ENOMEM;
2484 break;
2485 }
2486 } while (set->queue_depth);
2487
2488 if (!set->queue_depth || err) {
2489 pr_err("blk-mq: failed to allocate request map\n");
2490 return -ENOMEM;
2491 }
2492
2493 if (depth != set->queue_depth)
2494 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2495 depth, set->queue_depth);
2496
2497 return 0;
2498}
2499
ebe8bddb
OS
2500static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2501{
2502 if (set->ops->map_queues)
2503 return set->ops->map_queues(set);
2504 else
2505 return blk_mq_map_queues(set);
2506}
2507
a4391c64
JA
2508/*
2509 * Alloc a tag set to be associated with one or more request queues.
2510 * May fail with EINVAL for various error conditions. May adjust the
2511 * requested depth down, if if it too large. In that case, the set
2512 * value will be stored in set->queue_depth.
2513 */
24d2f903
CH
2514int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2515{
da695ba2
CH
2516 int ret;
2517
205fb5f5
BVA
2518 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2519
24d2f903
CH
2520 if (!set->nr_hw_queues)
2521 return -EINVAL;
a4391c64 2522 if (!set->queue_depth)
24d2f903
CH
2523 return -EINVAL;
2524 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2525 return -EINVAL;
2526
7d7e0f90 2527 if (!set->ops->queue_rq)
24d2f903
CH
2528 return -EINVAL;
2529
a4391c64
JA
2530 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2531 pr_info("blk-mq: reduced tag depth to %u\n",
2532 BLK_MQ_MAX_DEPTH);
2533 set->queue_depth = BLK_MQ_MAX_DEPTH;
2534 }
24d2f903 2535
6637fadf
SL
2536 /*
2537 * If a crashdump is active, then we are potentially in a very
2538 * memory constrained environment. Limit us to 1 queue and
2539 * 64 tags to prevent using too much memory.
2540 */
2541 if (is_kdump_kernel()) {
2542 set->nr_hw_queues = 1;
2543 set->queue_depth = min(64U, set->queue_depth);
2544 }
868f2f0b
KB
2545 /*
2546 * There is no use for more h/w queues than cpus.
2547 */
2548 if (set->nr_hw_queues > nr_cpu_ids)
2549 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2550
868f2f0b 2551 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2552 GFP_KERNEL, set->numa_node);
2553 if (!set->tags)
a5164405 2554 return -ENOMEM;
24d2f903 2555
da695ba2
CH
2556 ret = -ENOMEM;
2557 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2558 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2559 if (!set->mq_map)
2560 goto out_free_tags;
2561
ebe8bddb 2562 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2563 if (ret)
2564 goto out_free_mq_map;
2565
2566 ret = blk_mq_alloc_rq_maps(set);
2567 if (ret)
bdd17e75 2568 goto out_free_mq_map;
24d2f903 2569
0d2602ca
JA
2570 mutex_init(&set->tag_list_lock);
2571 INIT_LIST_HEAD(&set->tag_list);
2572
24d2f903 2573 return 0;
bdd17e75
CH
2574
2575out_free_mq_map:
2576 kfree(set->mq_map);
2577 set->mq_map = NULL;
2578out_free_tags:
5676e7b6
RE
2579 kfree(set->tags);
2580 set->tags = NULL;
da695ba2 2581 return ret;
24d2f903
CH
2582}
2583EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2584
2585void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2586{
2587 int i;
2588
cc71a6f4
JA
2589 for (i = 0; i < nr_cpu_ids; i++)
2590 blk_mq_free_map_and_requests(set, i);
484b4061 2591
bdd17e75
CH
2592 kfree(set->mq_map);
2593 set->mq_map = NULL;
2594
981bd189 2595 kfree(set->tags);
5676e7b6 2596 set->tags = NULL;
24d2f903
CH
2597}
2598EXPORT_SYMBOL(blk_mq_free_tag_set);
2599
e3a2b3f9
JA
2600int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2601{
2602 struct blk_mq_tag_set *set = q->tag_set;
2603 struct blk_mq_hw_ctx *hctx;
2604 int i, ret;
2605
bd166ef1 2606 if (!set)
e3a2b3f9
JA
2607 return -EINVAL;
2608
70f36b60
JA
2609 blk_mq_freeze_queue(q);
2610 blk_mq_quiesce_queue(q);
2611
e3a2b3f9
JA
2612 ret = 0;
2613 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2614 if (!hctx->tags)
2615 continue;
bd166ef1
JA
2616 /*
2617 * If we're using an MQ scheduler, just update the scheduler
2618 * queue depth. This is similar to what the old code would do.
2619 */
70f36b60
JA
2620 if (!hctx->sched_tags) {
2621 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2622 min(nr, set->queue_depth),
2623 false);
2624 } else {
2625 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2626 nr, true);
2627 }
e3a2b3f9
JA
2628 if (ret)
2629 break;
2630 }
2631
2632 if (!ret)
2633 q->nr_requests = nr;
2634
70f36b60
JA
2635 blk_mq_unfreeze_queue(q);
2636 blk_mq_start_stopped_hw_queues(q, true);
2637
e3a2b3f9
JA
2638 return ret;
2639}
2640
868f2f0b
KB
2641void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2642{
2643 struct request_queue *q;
2644
705cda97
BVA
2645 lockdep_assert_held(&set->tag_list_lock);
2646
868f2f0b
KB
2647 if (nr_hw_queues > nr_cpu_ids)
2648 nr_hw_queues = nr_cpu_ids;
2649 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2650 return;
2651
2652 list_for_each_entry(q, &set->tag_list, tag_set_list)
2653 blk_mq_freeze_queue(q);
2654
2655 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2656 blk_mq_update_queue_map(set);
868f2f0b
KB
2657 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2658 blk_mq_realloc_hw_ctxs(set, q);
868f2f0b
KB
2659 blk_mq_queue_reinit(q, cpu_online_mask);
2660 }
2661
2662 list_for_each_entry(q, &set->tag_list, tag_set_list)
2663 blk_mq_unfreeze_queue(q);
2664}
2665EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2666
34dbad5d
OS
2667/* Enable polling stats and return whether they were already enabled. */
2668static bool blk_poll_stats_enable(struct request_queue *q)
2669{
2670 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2671 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2672 return true;
2673 blk_stat_add_callback(q, q->poll_cb);
2674 return false;
2675}
2676
2677static void blk_mq_poll_stats_start(struct request_queue *q)
2678{
2679 /*
2680 * We don't arm the callback if polling stats are not enabled or the
2681 * callback is already active.
2682 */
2683 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2684 blk_stat_is_active(q->poll_cb))
2685 return;
2686
2687 blk_stat_activate_msecs(q->poll_cb, 100);
2688}
2689
2690static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2691{
2692 struct request_queue *q = cb->data;
720b8ccc 2693 int bucket;
34dbad5d 2694
720b8ccc
SB
2695 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2696 if (cb->stat[bucket].nr_samples)
2697 q->poll_stat[bucket] = cb->stat[bucket];
2698 }
34dbad5d
OS
2699}
2700
64f1c21e
JA
2701static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2702 struct blk_mq_hw_ctx *hctx,
2703 struct request *rq)
2704{
64f1c21e 2705 unsigned long ret = 0;
720b8ccc 2706 int bucket;
64f1c21e
JA
2707
2708 /*
2709 * If stats collection isn't on, don't sleep but turn it on for
2710 * future users
2711 */
34dbad5d 2712 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2713 return 0;
2714
64f1c21e
JA
2715 /*
2716 * As an optimistic guess, use half of the mean service time
2717 * for this type of request. We can (and should) make this smarter.
2718 * For instance, if the completion latencies are tight, we can
2719 * get closer than just half the mean. This is especially
2720 * important on devices where the completion latencies are longer
720b8ccc
SB
2721 * than ~10 usec. We do use the stats for the relevant IO size
2722 * if available which does lead to better estimates.
64f1c21e 2723 */
720b8ccc
SB
2724 bucket = blk_mq_poll_stats_bkt(rq);
2725 if (bucket < 0)
2726 return ret;
2727
2728 if (q->poll_stat[bucket].nr_samples)
2729 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
2730
2731 return ret;
2732}
2733
06426adf 2734static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2735 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2736 struct request *rq)
2737{
2738 struct hrtimer_sleeper hs;
2739 enum hrtimer_mode mode;
64f1c21e 2740 unsigned int nsecs;
06426adf
JA
2741 ktime_t kt;
2742
64f1c21e
JA
2743 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2744 return false;
2745
2746 /*
2747 * poll_nsec can be:
2748 *
2749 * -1: don't ever hybrid sleep
2750 * 0: use half of prev avg
2751 * >0: use this specific value
2752 */
2753 if (q->poll_nsec == -1)
2754 return false;
2755 else if (q->poll_nsec > 0)
2756 nsecs = q->poll_nsec;
2757 else
2758 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2759
2760 if (!nsecs)
06426adf
JA
2761 return false;
2762
2763 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2764
2765 /*
2766 * This will be replaced with the stats tracking code, using
2767 * 'avg_completion_time / 2' as the pre-sleep target.
2768 */
8b0e1953 2769 kt = nsecs;
06426adf
JA
2770
2771 mode = HRTIMER_MODE_REL;
2772 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2773 hrtimer_set_expires(&hs.timer, kt);
2774
2775 hrtimer_init_sleeper(&hs, current);
2776 do {
2777 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2778 break;
2779 set_current_state(TASK_UNINTERRUPTIBLE);
2780 hrtimer_start_expires(&hs.timer, mode);
2781 if (hs.task)
2782 io_schedule();
2783 hrtimer_cancel(&hs.timer);
2784 mode = HRTIMER_MODE_ABS;
2785 } while (hs.task && !signal_pending(current));
2786
2787 __set_current_state(TASK_RUNNING);
2788 destroy_hrtimer_on_stack(&hs.timer);
2789 return true;
2790}
2791
bbd7bb70
JA
2792static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2793{
2794 struct request_queue *q = hctx->queue;
2795 long state;
2796
06426adf
JA
2797 /*
2798 * If we sleep, have the caller restart the poll loop to reset
2799 * the state. Like for the other success return cases, the
2800 * caller is responsible for checking if the IO completed. If
2801 * the IO isn't complete, we'll get called again and will go
2802 * straight to the busy poll loop.
2803 */
64f1c21e 2804 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2805 return true;
2806
bbd7bb70
JA
2807 hctx->poll_considered++;
2808
2809 state = current->state;
2810 while (!need_resched()) {
2811 int ret;
2812
2813 hctx->poll_invoked++;
2814
2815 ret = q->mq_ops->poll(hctx, rq->tag);
2816 if (ret > 0) {
2817 hctx->poll_success++;
2818 set_current_state(TASK_RUNNING);
2819 return true;
2820 }
2821
2822 if (signal_pending_state(state, current))
2823 set_current_state(TASK_RUNNING);
2824
2825 if (current->state == TASK_RUNNING)
2826 return true;
2827 if (ret < 0)
2828 break;
2829 cpu_relax();
2830 }
2831
2832 return false;
2833}
2834
2835bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2836{
2837 struct blk_mq_hw_ctx *hctx;
2838 struct blk_plug *plug;
2839 struct request *rq;
2840
2841 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2842 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2843 return false;
2844
2845 plug = current->plug;
2846 if (plug)
2847 blk_flush_plug_list(plug, false);
2848
2849 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2850 if (!blk_qc_t_is_internal(cookie))
2851 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2852 else
2853 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
bbd7bb70
JA
2854
2855 return __blk_mq_poll(hctx, rq);
2856}
2857EXPORT_SYMBOL_GPL(blk_mq_poll);
2858
676141e4
JA
2859void blk_mq_disable_hotplug(void)
2860{
2861 mutex_lock(&all_q_mutex);
2862}
2863
2864void blk_mq_enable_hotplug(void)
2865{
2866 mutex_unlock(&all_q_mutex);
2867}
2868
320ae51f
JA
2869static int __init blk_mq_init(void)
2870{
9467f859
TG
2871 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2872 blk_mq_hctx_notify_dead);
320ae51f 2873
65d5291e
SAS
2874 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2875 blk_mq_queue_reinit_prepare,
2876 blk_mq_queue_reinit_dead);
320ae51f
JA
2877 return 0;
2878}
2879subsys_initcall(blk_mq_init);