]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-mq.c
Merge branch 'nvme-4.11-rc' of git://git.infradead.org/nvme into for-linus
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
34#include "blk-mq-tag.h"
cf43e6be 35#include "blk-stat.h"
87760e5e 36#include "blk-wbt.h"
bd166ef1 37#include "blk-mq-sched.h"
320ae51f
JA
38
39static DEFINE_MUTEX(all_q_mutex);
40static LIST_HEAD(all_q_list);
41
320ae51f
JA
42/*
43 * Check if any of the ctx's have pending work in this hardware queue
44 */
50e1dab8 45bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 46{
bd166ef1
JA
47 return sbitmap_any_bit_set(&hctx->ctx_map) ||
48 !list_empty_careful(&hctx->dispatch) ||
49 blk_mq_sched_has_work(hctx);
1429d7c9
JA
50}
51
320ae51f
JA
52/*
53 * Mark this ctx as having pending work in this hardware queue
54 */
55static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
56 struct blk_mq_ctx *ctx)
57{
88459642
OS
58 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
59 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
60}
61
62static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64{
88459642 65 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
66}
67
b4c6a028 68void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 69{
4ecd4fef 70 int freeze_depth;
cddd5d17 71
4ecd4fef
CH
72 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
73 if (freeze_depth == 1) {
3ef28e83 74 percpu_ref_kill(&q->q_usage_counter);
b94ec296 75 blk_mq_run_hw_queues(q, false);
cddd5d17 76 }
f3af020b 77}
b4c6a028 78EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
f3af020b 79
6bae363e 80void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 81{
3ef28e83 82 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 83}
6bae363e 84EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 85
f91328c4
KB
86int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
87 unsigned long timeout)
88{
89 return wait_event_timeout(q->mq_freeze_wq,
90 percpu_ref_is_zero(&q->q_usage_counter),
91 timeout);
92}
93EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 94
f3af020b
TH
95/*
96 * Guarantee no request is in use, so we can change any data structure of
97 * the queue afterward.
98 */
3ef28e83 99void blk_freeze_queue(struct request_queue *q)
f3af020b 100{
3ef28e83
DW
101 /*
102 * In the !blk_mq case we are only calling this to kill the
103 * q_usage_counter, otherwise this increases the freeze depth
104 * and waits for it to return to zero. For this reason there is
105 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
106 * exported to drivers as the only user for unfreeze is blk_mq.
107 */
f3af020b
TH
108 blk_mq_freeze_queue_start(q);
109 blk_mq_freeze_queue_wait(q);
110}
3ef28e83
DW
111
112void blk_mq_freeze_queue(struct request_queue *q)
113{
114 /*
115 * ...just an alias to keep freeze and unfreeze actions balanced
116 * in the blk_mq_* namespace
117 */
118 blk_freeze_queue(q);
119}
c761d96b 120EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 121
b4c6a028 122void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 123{
4ecd4fef 124 int freeze_depth;
320ae51f 125
4ecd4fef
CH
126 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
127 WARN_ON_ONCE(freeze_depth < 0);
128 if (!freeze_depth) {
3ef28e83 129 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 130 wake_up_all(&q->mq_freeze_wq);
add703fd 131 }
320ae51f 132}
b4c6a028 133EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 134
6a83e74d
BVA
135/**
136 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
137 * @q: request queue.
138 *
139 * Note: this function does not prevent that the struct request end_io()
140 * callback function is invoked. Additionally, it is not prevented that
141 * new queue_rq() calls occur unless the queue has been stopped first.
142 */
143void blk_mq_quiesce_queue(struct request_queue *q)
144{
145 struct blk_mq_hw_ctx *hctx;
146 unsigned int i;
147 bool rcu = false;
148
149 blk_mq_stop_hw_queues(q);
150
151 queue_for_each_hw_ctx(q, hctx, i) {
152 if (hctx->flags & BLK_MQ_F_BLOCKING)
153 synchronize_srcu(&hctx->queue_rq_srcu);
154 else
155 rcu = true;
156 }
157 if (rcu)
158 synchronize_rcu();
159}
160EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
161
aed3ea94
JA
162void blk_mq_wake_waiters(struct request_queue *q)
163{
164 struct blk_mq_hw_ctx *hctx;
165 unsigned int i;
166
167 queue_for_each_hw_ctx(q, hctx, i)
168 if (blk_mq_hw_queue_mapped(hctx))
169 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
170
171 /*
172 * If we are called because the queue has now been marked as
173 * dying, we need to ensure that processes currently waiting on
174 * the queue are notified as well.
175 */
176 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
177}
178
320ae51f
JA
179bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
180{
181 return blk_mq_has_free_tags(hctx->tags);
182}
183EXPORT_SYMBOL(blk_mq_can_queue);
184
2c3ad667
JA
185void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
186 struct request *rq, unsigned int op)
320ae51f 187{
af76e555
CH
188 INIT_LIST_HEAD(&rq->queuelist);
189 /* csd/requeue_work/fifo_time is initialized before use */
190 rq->q = q;
320ae51f 191 rq->mq_ctx = ctx;
ef295ecf 192 rq->cmd_flags = op;
e8064021
CH
193 if (blk_queue_io_stat(q))
194 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
195 /* do not touch atomic flags, it needs atomic ops against the timer */
196 rq->cpu = -1;
af76e555
CH
197 INIT_HLIST_NODE(&rq->hash);
198 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
199 rq->rq_disk = NULL;
200 rq->part = NULL;
3ee32372 201 rq->start_time = jiffies;
af76e555
CH
202#ifdef CONFIG_BLK_CGROUP
203 rq->rl = NULL;
0fec08b4 204 set_start_time_ns(rq);
af76e555
CH
205 rq->io_start_time_ns = 0;
206#endif
207 rq->nr_phys_segments = 0;
208#if defined(CONFIG_BLK_DEV_INTEGRITY)
209 rq->nr_integrity_segments = 0;
210#endif
af76e555
CH
211 rq->special = NULL;
212 /* tag was already set */
213 rq->errors = 0;
af76e555 214 rq->extra_len = 0;
af76e555 215
af76e555 216 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
217 rq->timeout = 0;
218
af76e555
CH
219 rq->end_io = NULL;
220 rq->end_io_data = NULL;
221 rq->next_rq = NULL;
222
ef295ecf 223 ctx->rq_dispatched[op_is_sync(op)]++;
320ae51f 224}
2c3ad667 225EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
320ae51f 226
2c3ad667
JA
227struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
228 unsigned int op)
5dee8577
CH
229{
230 struct request *rq;
231 unsigned int tag;
232
cb96a42c 233 tag = blk_mq_get_tag(data);
5dee8577 234 if (tag != BLK_MQ_TAG_FAIL) {
bd166ef1
JA
235 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
236
237 rq = tags->static_rqs[tag];
5dee8577 238
bd166ef1
JA
239 if (data->flags & BLK_MQ_REQ_INTERNAL) {
240 rq->tag = -1;
241 rq->internal_tag = tag;
242 } else {
200e86b3
JA
243 if (blk_mq_tag_busy(data->hctx)) {
244 rq->rq_flags = RQF_MQ_INFLIGHT;
245 atomic_inc(&data->hctx->nr_active);
246 }
bd166ef1
JA
247 rq->tag = tag;
248 rq->internal_tag = -1;
562bef42 249 data->hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
250 }
251
ef295ecf 252 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
5dee8577
CH
253 return rq;
254 }
255
256 return NULL;
257}
2c3ad667 258EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
5dee8577 259
6f3b0e8b
CH
260struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
261 unsigned int flags)
320ae51f 262{
5a797e00 263 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 264 struct request *rq;
a492f075 265 int ret;
320ae51f 266
6f3b0e8b 267 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
268 if (ret)
269 return ERR_PTR(ret);
320ae51f 270
bd166ef1 271 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
841bac2c 272
bd166ef1
JA
273 blk_mq_put_ctx(alloc_data.ctx);
274 blk_queue_exit(q);
275
276 if (!rq)
a492f075 277 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
278
279 rq->__data_len = 0;
280 rq->__sector = (sector_t) -1;
281 rq->bio = rq->biotail = NULL;
320ae51f
JA
282 return rq;
283}
4bb659b1 284EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 285
1f5bd336
ML
286struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
287 unsigned int flags, unsigned int hctx_idx)
288{
6d2809d5 289 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 290 struct request *rq;
6d2809d5 291 unsigned int cpu;
1f5bd336
ML
292 int ret;
293
294 /*
295 * If the tag allocator sleeps we could get an allocation for a
296 * different hardware context. No need to complicate the low level
297 * allocator for this for the rare use case of a command tied to
298 * a specific queue.
299 */
300 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
301 return ERR_PTR(-EINVAL);
302
303 if (hctx_idx >= q->nr_hw_queues)
304 return ERR_PTR(-EIO);
305
306 ret = blk_queue_enter(q, true);
307 if (ret)
308 return ERR_PTR(ret);
309
c8712c6a
CH
310 /*
311 * Check if the hardware context is actually mapped to anything.
312 * If not tell the caller that it should skip this queue.
313 */
6d2809d5
OS
314 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
315 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
316 blk_queue_exit(q);
317 return ERR_PTR(-EXDEV);
c8712c6a 318 }
6d2809d5
OS
319 cpu = cpumask_first(alloc_data.hctx->cpumask);
320 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 321
6d2809d5 322 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
c8712c6a 323
c8712c6a 324 blk_queue_exit(q);
6d2809d5
OS
325
326 if (!rq)
327 return ERR_PTR(-EWOULDBLOCK);
328
329 return rq;
1f5bd336
ML
330}
331EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
332
bd166ef1
JA
333void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
334 struct request *rq)
320ae51f 335{
bd166ef1 336 const int sched_tag = rq->internal_tag;
320ae51f
JA
337 struct request_queue *q = rq->q;
338
e8064021 339 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 340 atomic_dec(&hctx->nr_active);
87760e5e
JA
341
342 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 343 rq->rq_flags = 0;
0d2602ca 344
af76e555 345 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 346 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
347 if (rq->tag != -1)
348 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
349 if (sched_tag != -1)
350 blk_mq_sched_completed_request(hctx, rq);
50e1dab8 351 blk_mq_sched_restart_queues(hctx);
3ef28e83 352 blk_queue_exit(q);
320ae51f
JA
353}
354
bd166ef1 355static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
16a3c2a7 356 struct request *rq)
320ae51f
JA
357{
358 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
359
360 ctx->rq_completed[rq_is_sync(rq)]++;
bd166ef1
JA
361 __blk_mq_finish_request(hctx, ctx, rq);
362}
363
364void blk_mq_finish_request(struct request *rq)
365{
366 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
7c7f2f2b 367}
7c7f2f2b
JA
368
369void blk_mq_free_request(struct request *rq)
370{
bd166ef1 371 blk_mq_sched_put_request(rq);
320ae51f 372}
1a3b595a 373EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 374
c8a446ad 375inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 376{
0d11e6ac
ML
377 blk_account_io_done(rq);
378
91b63639 379 if (rq->end_io) {
87760e5e 380 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 381 rq->end_io(rq, error);
91b63639
CH
382 } else {
383 if (unlikely(blk_bidi_rq(rq)))
384 blk_mq_free_request(rq->next_rq);
320ae51f 385 blk_mq_free_request(rq);
91b63639 386 }
320ae51f 387}
c8a446ad 388EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 389
c8a446ad 390void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
391{
392 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
393 BUG();
c8a446ad 394 __blk_mq_end_request(rq, error);
63151a44 395}
c8a446ad 396EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 397
30a91cb4 398static void __blk_mq_complete_request_remote(void *data)
320ae51f 399{
3d6efbf6 400 struct request *rq = data;
320ae51f 401
30a91cb4 402 rq->q->softirq_done_fn(rq);
320ae51f 403}
320ae51f 404
ed851860 405static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
406{
407 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 408 bool shared = false;
320ae51f
JA
409 int cpu;
410
38535201 411 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
412 rq->q->softirq_done_fn(rq);
413 return;
414 }
320ae51f
JA
415
416 cpu = get_cpu();
38535201
CH
417 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
418 shared = cpus_share_cache(cpu, ctx->cpu);
419
420 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 421 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
422 rq->csd.info = rq;
423 rq->csd.flags = 0;
c46fff2a 424 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 425 } else {
30a91cb4 426 rq->q->softirq_done_fn(rq);
3d6efbf6 427 }
320ae51f
JA
428 put_cpu();
429}
30a91cb4 430
cf43e6be
JA
431static void blk_mq_stat_add(struct request *rq)
432{
433 if (rq->rq_flags & RQF_STATS) {
434 /*
435 * We could rq->mq_ctx here, but there's less of a risk
436 * of races if we have the completion event add the stats
437 * to the local software queue.
438 */
439 struct blk_mq_ctx *ctx;
440
441 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
442 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
443 }
444}
445
1fa8cc52 446static void __blk_mq_complete_request(struct request *rq)
ed851860
JA
447{
448 struct request_queue *q = rq->q;
449
cf43e6be
JA
450 blk_mq_stat_add(rq);
451
ed851860 452 if (!q->softirq_done_fn)
c8a446ad 453 blk_mq_end_request(rq, rq->errors);
ed851860
JA
454 else
455 blk_mq_ipi_complete_request(rq);
456}
457
30a91cb4
CH
458/**
459 * blk_mq_complete_request - end I/O on a request
460 * @rq: the request being processed
461 *
462 * Description:
463 * Ends all I/O on a request. It does not handle partial completions.
464 * The actual completion happens out-of-order, through a IPI handler.
465 **/
f4829a9b 466void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 467{
95f09684
JA
468 struct request_queue *q = rq->q;
469
470 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 471 return;
f4829a9b
CH
472 if (!blk_mark_rq_complete(rq)) {
473 rq->errors = error;
ed851860 474 __blk_mq_complete_request(rq);
f4829a9b 475 }
30a91cb4
CH
476}
477EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 478
973c0191
KB
479int blk_mq_request_started(struct request *rq)
480{
481 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
482}
483EXPORT_SYMBOL_GPL(blk_mq_request_started);
484
e2490073 485void blk_mq_start_request(struct request *rq)
320ae51f
JA
486{
487 struct request_queue *q = rq->q;
488
bd166ef1
JA
489 blk_mq_sched_started_request(rq);
490
320ae51f
JA
491 trace_block_rq_issue(q, rq);
492
cf43e6be
JA
493 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
494 blk_stat_set_issue_time(&rq->issue_stat);
495 rq->rq_flags |= RQF_STATS;
87760e5e 496 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
497 }
498
2b8393b4 499 blk_add_timer(rq);
87ee7b11 500
538b7534
JA
501 /*
502 * Ensure that ->deadline is visible before set the started
503 * flag and clear the completed flag.
504 */
505 smp_mb__before_atomic();
506
87ee7b11
JA
507 /*
508 * Mark us as started and clear complete. Complete might have been
509 * set if requeue raced with timeout, which then marked it as
510 * complete. So be sure to clear complete again when we start
511 * the request, otherwise we'll ignore the completion event.
512 */
4b570521
JA
513 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
514 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
515 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
516 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
517
518 if (q->dma_drain_size && blk_rq_bytes(rq)) {
519 /*
520 * Make sure space for the drain appears. We know we can do
521 * this because max_hw_segments has been adjusted to be one
522 * fewer than the device can handle.
523 */
524 rq->nr_phys_segments++;
525 }
320ae51f 526}
e2490073 527EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 528
ed0791b2 529static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
530{
531 struct request_queue *q = rq->q;
532
533 trace_block_rq_requeue(q, rq);
87760e5e 534 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 535 blk_mq_sched_requeue_request(rq);
49f5baa5 536
e2490073
CH
537 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
538 if (q->dma_drain_size && blk_rq_bytes(rq))
539 rq->nr_phys_segments--;
540 }
320ae51f
JA
541}
542
2b053aca 543void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 544{
ed0791b2 545 __blk_mq_requeue_request(rq);
ed0791b2 546
ed0791b2 547 BUG_ON(blk_queued_rq(rq));
2b053aca 548 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
549}
550EXPORT_SYMBOL(blk_mq_requeue_request);
551
6fca6a61
CH
552static void blk_mq_requeue_work(struct work_struct *work)
553{
554 struct request_queue *q =
2849450a 555 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
556 LIST_HEAD(rq_list);
557 struct request *rq, *next;
558 unsigned long flags;
559
560 spin_lock_irqsave(&q->requeue_lock, flags);
561 list_splice_init(&q->requeue_list, &rq_list);
562 spin_unlock_irqrestore(&q->requeue_lock, flags);
563
564 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 565 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
566 continue;
567
e8064021 568 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 569 list_del_init(&rq->queuelist);
bd6737f1 570 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
571 }
572
573 while (!list_empty(&rq_list)) {
574 rq = list_entry(rq_list.next, struct request, queuelist);
575 list_del_init(&rq->queuelist);
bd6737f1 576 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
577 }
578
52d7f1b5 579 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
580}
581
2b053aca
BVA
582void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
583 bool kick_requeue_list)
6fca6a61
CH
584{
585 struct request_queue *q = rq->q;
586 unsigned long flags;
587
588 /*
589 * We abuse this flag that is otherwise used by the I/O scheduler to
590 * request head insertation from the workqueue.
591 */
e8064021 592 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
593
594 spin_lock_irqsave(&q->requeue_lock, flags);
595 if (at_head) {
e8064021 596 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
597 list_add(&rq->queuelist, &q->requeue_list);
598 } else {
599 list_add_tail(&rq->queuelist, &q->requeue_list);
600 }
601 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
602
603 if (kick_requeue_list)
604 blk_mq_kick_requeue_list(q);
6fca6a61
CH
605}
606EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
607
608void blk_mq_kick_requeue_list(struct request_queue *q)
609{
2849450a 610 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
611}
612EXPORT_SYMBOL(blk_mq_kick_requeue_list);
613
2849450a
MS
614void blk_mq_delay_kick_requeue_list(struct request_queue *q,
615 unsigned long msecs)
616{
617 kblockd_schedule_delayed_work(&q->requeue_work,
618 msecs_to_jiffies(msecs));
619}
620EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
621
1885b24d
JA
622void blk_mq_abort_requeue_list(struct request_queue *q)
623{
624 unsigned long flags;
625 LIST_HEAD(rq_list);
626
627 spin_lock_irqsave(&q->requeue_lock, flags);
628 list_splice_init(&q->requeue_list, &rq_list);
629 spin_unlock_irqrestore(&q->requeue_lock, flags);
630
631 while (!list_empty(&rq_list)) {
632 struct request *rq;
633
634 rq = list_first_entry(&rq_list, struct request, queuelist);
635 list_del_init(&rq->queuelist);
636 rq->errors = -EIO;
637 blk_mq_end_request(rq, rq->errors);
638 }
639}
640EXPORT_SYMBOL(blk_mq_abort_requeue_list);
641
0e62f51f
JA
642struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
643{
88c7b2b7
JA
644 if (tag < tags->nr_tags) {
645 prefetch(tags->rqs[tag]);
4ee86bab 646 return tags->rqs[tag];
88c7b2b7 647 }
4ee86bab
HR
648
649 return NULL;
24d2f903
CH
650}
651EXPORT_SYMBOL(blk_mq_tag_to_rq);
652
320ae51f 653struct blk_mq_timeout_data {
46f92d42
CH
654 unsigned long next;
655 unsigned int next_set;
320ae51f
JA
656};
657
90415837 658void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 659{
f8a5b122 660 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 661 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
662
663 /*
664 * We know that complete is set at this point. If STARTED isn't set
665 * anymore, then the request isn't active and the "timeout" should
666 * just be ignored. This can happen due to the bitflag ordering.
667 * Timeout first checks if STARTED is set, and if it is, assumes
668 * the request is active. But if we race with completion, then
669 * we both flags will get cleared. So check here again, and ignore
670 * a timeout event with a request that isn't active.
671 */
46f92d42
CH
672 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
673 return;
87ee7b11 674
46f92d42 675 if (ops->timeout)
0152fb6b 676 ret = ops->timeout(req, reserved);
46f92d42
CH
677
678 switch (ret) {
679 case BLK_EH_HANDLED:
680 __blk_mq_complete_request(req);
681 break;
682 case BLK_EH_RESET_TIMER:
683 blk_add_timer(req);
684 blk_clear_rq_complete(req);
685 break;
686 case BLK_EH_NOT_HANDLED:
687 break;
688 default:
689 printk(KERN_ERR "block: bad eh return: %d\n", ret);
690 break;
691 }
87ee7b11 692}
5b3f25fc 693
81481eb4
CH
694static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
695 struct request *rq, void *priv, bool reserved)
696{
697 struct blk_mq_timeout_data *data = priv;
87ee7b11 698
95a49603 699 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 700 return;
87ee7b11 701
46f92d42
CH
702 if (time_after_eq(jiffies, rq->deadline)) {
703 if (!blk_mark_rq_complete(rq))
0152fb6b 704 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
705 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
706 data->next = rq->deadline;
707 data->next_set = 1;
708 }
87ee7b11
JA
709}
710
287922eb 711static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 712{
287922eb
CH
713 struct request_queue *q =
714 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
715 struct blk_mq_timeout_data data = {
716 .next = 0,
717 .next_set = 0,
718 };
81481eb4 719 int i;
320ae51f 720
71f79fb3
GKB
721 /* A deadlock might occur if a request is stuck requiring a
722 * timeout at the same time a queue freeze is waiting
723 * completion, since the timeout code would not be able to
724 * acquire the queue reference here.
725 *
726 * That's why we don't use blk_queue_enter here; instead, we use
727 * percpu_ref_tryget directly, because we need to be able to
728 * obtain a reference even in the short window between the queue
729 * starting to freeze, by dropping the first reference in
730 * blk_mq_freeze_queue_start, and the moment the last request is
731 * consumed, marked by the instant q_usage_counter reaches
732 * zero.
733 */
734 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
735 return;
736
0bf6cd5b 737 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 738
81481eb4
CH
739 if (data.next_set) {
740 data.next = blk_rq_timeout(round_jiffies_up(data.next));
741 mod_timer(&q->timeout, data.next);
0d2602ca 742 } else {
0bf6cd5b
CH
743 struct blk_mq_hw_ctx *hctx;
744
f054b56c
ML
745 queue_for_each_hw_ctx(q, hctx, i) {
746 /* the hctx may be unmapped, so check it here */
747 if (blk_mq_hw_queue_mapped(hctx))
748 blk_mq_tag_idle(hctx);
749 }
0d2602ca 750 }
287922eb 751 blk_queue_exit(q);
320ae51f
JA
752}
753
754/*
755 * Reverse check our software queue for entries that we could potentially
756 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
757 * too much time checking for merges.
758 */
759static bool blk_mq_attempt_merge(struct request_queue *q,
760 struct blk_mq_ctx *ctx, struct bio *bio)
761{
762 struct request *rq;
763 int checked = 8;
764
765 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
34fe7c05 766 bool merged = false;
320ae51f
JA
767
768 if (!checked--)
769 break;
770
771 if (!blk_rq_merge_ok(rq, bio))
772 continue;
773
34fe7c05
CH
774 switch (blk_try_merge(rq, bio)) {
775 case ELEVATOR_BACK_MERGE:
776 if (blk_mq_sched_allow_merge(q, rq, bio))
777 merged = bio_attempt_back_merge(q, rq, bio);
bd166ef1 778 break;
34fe7c05
CH
779 case ELEVATOR_FRONT_MERGE:
780 if (blk_mq_sched_allow_merge(q, rq, bio))
781 merged = bio_attempt_front_merge(q, rq, bio);
320ae51f 782 break;
1e739730
CH
783 case ELEVATOR_DISCARD_MERGE:
784 merged = bio_attempt_discard_merge(q, rq, bio);
320ae51f 785 break;
34fe7c05
CH
786 default:
787 continue;
320ae51f 788 }
34fe7c05
CH
789
790 if (merged)
791 ctx->rq_merged++;
792 return merged;
320ae51f
JA
793 }
794
795 return false;
796}
797
88459642
OS
798struct flush_busy_ctx_data {
799 struct blk_mq_hw_ctx *hctx;
800 struct list_head *list;
801};
802
803static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
804{
805 struct flush_busy_ctx_data *flush_data = data;
806 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
807 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
808
809 sbitmap_clear_bit(sb, bitnr);
810 spin_lock(&ctx->lock);
811 list_splice_tail_init(&ctx->rq_list, flush_data->list);
812 spin_unlock(&ctx->lock);
813 return true;
814}
815
1429d7c9
JA
816/*
817 * Process software queues that have been marked busy, splicing them
818 * to the for-dispatch
819 */
2c3ad667 820void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 821{
88459642
OS
822 struct flush_busy_ctx_data data = {
823 .hctx = hctx,
824 .list = list,
825 };
1429d7c9 826
88459642 827 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 828}
2c3ad667 829EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 830
703fd1c0
JA
831static inline unsigned int queued_to_index(unsigned int queued)
832{
833 if (!queued)
834 return 0;
1429d7c9 835
703fd1c0 836 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
837}
838
bd6737f1
JA
839bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
840 bool wait)
bd166ef1
JA
841{
842 struct blk_mq_alloc_data data = {
843 .q = rq->q,
bd166ef1
JA
844 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
845 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
846 };
847
bd166ef1
JA
848 if (rq->tag != -1) {
849done:
850 if (hctx)
851 *hctx = data.hctx;
852 return true;
853 }
854
415b806d
SG
855 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
856 data.flags |= BLK_MQ_REQ_RESERVED;
857
bd166ef1
JA
858 rq->tag = blk_mq_get_tag(&data);
859 if (rq->tag >= 0) {
200e86b3
JA
860 if (blk_mq_tag_busy(data.hctx)) {
861 rq->rq_flags |= RQF_MQ_INFLIGHT;
862 atomic_inc(&data.hctx->nr_active);
863 }
bd166ef1
JA
864 data.hctx->tags->rqs[rq->tag] = rq;
865 goto done;
866 }
867
868 return false;
869}
870
113285b4
JA
871static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
872 struct request *rq)
99cf1dc5 873{
99cf1dc5
JA
874 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
875 rq->tag = -1;
876
877 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
878 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
879 atomic_dec(&hctx->nr_active);
880 }
881}
882
113285b4
JA
883static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
884 struct request *rq)
885{
886 if (rq->tag == -1 || rq->internal_tag == -1)
887 return;
888
889 __blk_mq_put_driver_tag(hctx, rq);
890}
891
892static void blk_mq_put_driver_tag(struct request *rq)
893{
894 struct blk_mq_hw_ctx *hctx;
895
896 if (rq->tag == -1 || rq->internal_tag == -1)
897 return;
898
899 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
900 __blk_mq_put_driver_tag(hctx, rq);
901}
902
bd166ef1
JA
903/*
904 * If we fail getting a driver tag because all the driver tags are already
905 * assigned and on the dispatch list, BUT the first entry does not have a
906 * tag, then we could deadlock. For that case, move entries with assigned
907 * driver tags to the front, leaving the set of tagged requests in the
908 * same order, and the untagged set in the same order.
909 */
910static bool reorder_tags_to_front(struct list_head *list)
911{
912 struct request *rq, *tmp, *first = NULL;
913
914 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
915 if (rq == first)
916 break;
917 if (rq->tag != -1) {
918 list_move(&rq->queuelist, list);
919 if (!first)
920 first = rq;
921 }
922 }
923
924 return first != NULL;
925}
926
da55f2cc
OS
927static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
928 void *key)
929{
930 struct blk_mq_hw_ctx *hctx;
931
932 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
933
934 list_del(&wait->task_list);
935 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
936 blk_mq_run_hw_queue(hctx, true);
937 return 1;
938}
939
940static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
941{
942 struct sbq_wait_state *ws;
943
944 /*
945 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
946 * The thread which wins the race to grab this bit adds the hardware
947 * queue to the wait queue.
948 */
949 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
950 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
951 return false;
952
953 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
954 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
955
956 /*
957 * As soon as this returns, it's no longer safe to fiddle with
958 * hctx->dispatch_wait, since a completion can wake up the wait queue
959 * and unlock the bit.
960 */
961 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
962 return true;
963}
964
f04c3df3 965bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
320ae51f
JA
966{
967 struct request_queue *q = hctx->queue;
320ae51f 968 struct request *rq;
74c45052
JA
969 LIST_HEAD(driver_list);
970 struct list_head *dptr;
93efe981 971 int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
320ae51f 972
74c45052
JA
973 /*
974 * Start off with dptr being NULL, so we start the first request
975 * immediately, even if we have more pending.
976 */
977 dptr = NULL;
978
320ae51f
JA
979 /*
980 * Now process all the entries, sending them to the driver.
981 */
93efe981 982 errors = queued = 0;
f04c3df3 983 while (!list_empty(list)) {
74c45052 984 struct blk_mq_queue_data bd;
320ae51f 985
f04c3df3 986 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
987 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
988 if (!queued && reorder_tags_to_front(list))
989 continue;
3c782d67
JA
990
991 /*
da55f2cc
OS
992 * The initial allocation attempt failed, so we need to
993 * rerun the hardware queue when a tag is freed.
3c782d67 994 */
da55f2cc
OS
995 if (blk_mq_dispatch_wait_add(hctx)) {
996 /*
997 * It's possible that a tag was freed in the
998 * window between the allocation failure and
999 * adding the hardware queue to the wait queue.
1000 */
1001 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1002 break;
1003 } else {
3c782d67 1004 break;
da55f2cc 1005 }
bd166ef1 1006 }
da55f2cc 1007
320ae51f 1008 list_del_init(&rq->queuelist);
320ae51f 1009
74c45052
JA
1010 bd.rq = rq;
1011 bd.list = dptr;
113285b4
JA
1012
1013 /*
1014 * Flag last if we have no more requests, or if we have more
1015 * but can't assign a driver tag to it.
1016 */
1017 if (list_empty(list))
1018 bd.last = true;
1019 else {
1020 struct request *nxt;
1021
1022 nxt = list_first_entry(list, struct request, queuelist);
1023 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1024 }
74c45052
JA
1025
1026 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
1027 switch (ret) {
1028 case BLK_MQ_RQ_QUEUE_OK:
1029 queued++;
52b9c330 1030 break;
320ae51f 1031 case BLK_MQ_RQ_QUEUE_BUSY:
113285b4 1032 blk_mq_put_driver_tag_hctx(hctx, rq);
f04c3df3 1033 list_add(&rq->queuelist, list);
ed0791b2 1034 __blk_mq_requeue_request(rq);
320ae51f
JA
1035 break;
1036 default:
1037 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 1038 case BLK_MQ_RQ_QUEUE_ERROR:
93efe981 1039 errors++;
1e93b8c2 1040 rq->errors = -EIO;
c8a446ad 1041 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
1042 break;
1043 }
1044
1045 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1046 break;
74c45052
JA
1047
1048 /*
1049 * We've done the first request. If we have more than 1
1050 * left in the list, set dptr to defer issue.
1051 */
f04c3df3 1052 if (!dptr && list->next != list->prev)
74c45052 1053 dptr = &driver_list;
320ae51f
JA
1054 }
1055
703fd1c0 1056 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1057
1058 /*
1059 * Any items that need requeuing? Stuff them into hctx->dispatch,
1060 * that is where we will continue on next queue run.
1061 */
f04c3df3 1062 if (!list_empty(list)) {
113285b4
JA
1063 /*
1064 * If we got a driver tag for the next request already,
1065 * free it again.
1066 */
1067 rq = list_first_entry(list, struct request, queuelist);
1068 blk_mq_put_driver_tag(rq);
1069
320ae51f 1070 spin_lock(&hctx->lock);
c13660a0 1071 list_splice_init(list, &hctx->dispatch);
320ae51f 1072 spin_unlock(&hctx->lock);
f04c3df3 1073
9ba52e58
SL
1074 /*
1075 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1076 * it's possible the queue is stopped and restarted again
1077 * before this. Queue restart will dispatch requests. And since
1078 * requests in rq_list aren't added into hctx->dispatch yet,
1079 * the requests in rq_list might get lost.
1080 *
1081 * blk_mq_run_hw_queue() already checks the STOPPED bit
bd166ef1 1082 *
da55f2cc
OS
1083 * If RESTART or TAG_WAITING is set, then let completion restart
1084 * the queue instead of potentially looping here.
bd166ef1 1085 */
da55f2cc
OS
1086 if (!blk_mq_sched_needs_restart(hctx) &&
1087 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
bd166ef1 1088 blk_mq_run_hw_queue(hctx, true);
320ae51f 1089 }
f04c3df3 1090
93efe981 1091 return (queued + errors) != 0;
f04c3df3
JA
1092}
1093
6a83e74d
BVA
1094static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1095{
1096 int srcu_idx;
1097
1098 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1099 cpu_online(hctx->next_cpu));
1100
1101 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1102 rcu_read_lock();
bd166ef1 1103 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1104 rcu_read_unlock();
1105 } else {
1106 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
bd166ef1 1107 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1108 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1109 }
1110}
1111
506e931f
JA
1112/*
1113 * It'd be great if the workqueue API had a way to pass
1114 * in a mask and had some smarts for more clever placement.
1115 * For now we just round-robin here, switching for every
1116 * BLK_MQ_CPU_WORK_BATCH queued items.
1117 */
1118static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1119{
b657d7e6
CH
1120 if (hctx->queue->nr_hw_queues == 1)
1121 return WORK_CPU_UNBOUND;
506e931f
JA
1122
1123 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1124 int next_cpu;
506e931f
JA
1125
1126 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1127 if (next_cpu >= nr_cpu_ids)
1128 next_cpu = cpumask_first(hctx->cpumask);
1129
1130 hctx->next_cpu = next_cpu;
1131 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1132 }
1133
b657d7e6 1134 return hctx->next_cpu;
506e931f
JA
1135}
1136
320ae51f
JA
1137void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1138{
5d1b25c1
BVA
1139 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1140 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
1141 return;
1142
1b792f2f 1143 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1144 int cpu = get_cpu();
1145 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1146 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1147 put_cpu();
398205b8
PB
1148 return;
1149 }
e4043dcf 1150
2a90d4aa 1151 put_cpu();
e4043dcf 1152 }
398205b8 1153
27489a3c 1154 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
320ae51f
JA
1155}
1156
b94ec296 1157void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1158{
1159 struct blk_mq_hw_ctx *hctx;
1160 int i;
1161
1162 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1163 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1164 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1165 continue;
1166
b94ec296 1167 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1168 }
1169}
b94ec296 1170EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1171
fd001443
BVA
1172/**
1173 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1174 * @q: request queue.
1175 *
1176 * The caller is responsible for serializing this function against
1177 * blk_mq_{start,stop}_hw_queue().
1178 */
1179bool blk_mq_queue_stopped(struct request_queue *q)
1180{
1181 struct blk_mq_hw_ctx *hctx;
1182 int i;
1183
1184 queue_for_each_hw_ctx(q, hctx, i)
1185 if (blk_mq_hctx_stopped(hctx))
1186 return true;
1187
1188 return false;
1189}
1190EXPORT_SYMBOL(blk_mq_queue_stopped);
1191
320ae51f
JA
1192void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1193{
27489a3c 1194 cancel_work(&hctx->run_work);
70f4db63 1195 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
1196 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1197}
1198EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1199
280d45f6
CH
1200void blk_mq_stop_hw_queues(struct request_queue *q)
1201{
1202 struct blk_mq_hw_ctx *hctx;
1203 int i;
1204
1205 queue_for_each_hw_ctx(q, hctx, i)
1206 blk_mq_stop_hw_queue(hctx);
1207}
1208EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1209
320ae51f
JA
1210void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1211{
1212 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1213
0ffbce80 1214 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1215}
1216EXPORT_SYMBOL(blk_mq_start_hw_queue);
1217
2f268556
CH
1218void blk_mq_start_hw_queues(struct request_queue *q)
1219{
1220 struct blk_mq_hw_ctx *hctx;
1221 int i;
1222
1223 queue_for_each_hw_ctx(q, hctx, i)
1224 blk_mq_start_hw_queue(hctx);
1225}
1226EXPORT_SYMBOL(blk_mq_start_hw_queues);
1227
ae911c5e
JA
1228void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1229{
1230 if (!blk_mq_hctx_stopped(hctx))
1231 return;
1232
1233 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1234 blk_mq_run_hw_queue(hctx, async);
1235}
1236EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1237
1b4a3258 1238void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1239{
1240 struct blk_mq_hw_ctx *hctx;
1241 int i;
1242
ae911c5e
JA
1243 queue_for_each_hw_ctx(q, hctx, i)
1244 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1245}
1246EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1247
70f4db63 1248static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1249{
1250 struct blk_mq_hw_ctx *hctx;
1251
27489a3c 1252 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
e4043dcf 1253
320ae51f
JA
1254 __blk_mq_run_hw_queue(hctx);
1255}
1256
70f4db63
CH
1257static void blk_mq_delay_work_fn(struct work_struct *work)
1258{
1259 struct blk_mq_hw_ctx *hctx;
1260
1261 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1262
1263 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1264 __blk_mq_run_hw_queue(hctx);
1265}
1266
1267void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1268{
19c66e59
ML
1269 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1270 return;
70f4db63 1271
7e79dadc 1272 blk_mq_stop_hw_queue(hctx);
b657d7e6
CH
1273 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1274 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
1275}
1276EXPORT_SYMBOL(blk_mq_delay_queue);
1277
cfd0c552 1278static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1279 struct request *rq,
1280 bool at_head)
320ae51f 1281{
e57690fe
JA
1282 struct blk_mq_ctx *ctx = rq->mq_ctx;
1283
01b983c9
JA
1284 trace_block_rq_insert(hctx->queue, rq);
1285
72a0a36e
CH
1286 if (at_head)
1287 list_add(&rq->queuelist, &ctx->rq_list);
1288 else
1289 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1290}
4bb659b1 1291
2c3ad667
JA
1292void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1293 bool at_head)
cfd0c552
ML
1294{
1295 struct blk_mq_ctx *ctx = rq->mq_ctx;
1296
e57690fe 1297 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1298 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1299}
1300
bd166ef1
JA
1301void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1302 struct list_head *list)
320ae51f
JA
1303
1304{
320ae51f
JA
1305 /*
1306 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1307 * offline now
1308 */
1309 spin_lock(&ctx->lock);
1310 while (!list_empty(list)) {
1311 struct request *rq;
1312
1313 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1314 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1315 list_del_init(&rq->queuelist);
e57690fe 1316 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1317 }
cfd0c552 1318 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1319 spin_unlock(&ctx->lock);
320ae51f
JA
1320}
1321
1322static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1323{
1324 struct request *rqa = container_of(a, struct request, queuelist);
1325 struct request *rqb = container_of(b, struct request, queuelist);
1326
1327 return !(rqa->mq_ctx < rqb->mq_ctx ||
1328 (rqa->mq_ctx == rqb->mq_ctx &&
1329 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1330}
1331
1332void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1333{
1334 struct blk_mq_ctx *this_ctx;
1335 struct request_queue *this_q;
1336 struct request *rq;
1337 LIST_HEAD(list);
1338 LIST_HEAD(ctx_list);
1339 unsigned int depth;
1340
1341 list_splice_init(&plug->mq_list, &list);
1342
1343 list_sort(NULL, &list, plug_ctx_cmp);
1344
1345 this_q = NULL;
1346 this_ctx = NULL;
1347 depth = 0;
1348
1349 while (!list_empty(&list)) {
1350 rq = list_entry_rq(list.next);
1351 list_del_init(&rq->queuelist);
1352 BUG_ON(!rq->q);
1353 if (rq->mq_ctx != this_ctx) {
1354 if (this_ctx) {
bd166ef1
JA
1355 trace_block_unplug(this_q, depth, from_schedule);
1356 blk_mq_sched_insert_requests(this_q, this_ctx,
1357 &ctx_list,
1358 from_schedule);
320ae51f
JA
1359 }
1360
1361 this_ctx = rq->mq_ctx;
1362 this_q = rq->q;
1363 depth = 0;
1364 }
1365
1366 depth++;
1367 list_add_tail(&rq->queuelist, &ctx_list);
1368 }
1369
1370 /*
1371 * If 'this_ctx' is set, we know we have entries to complete
1372 * on 'ctx_list'. Do those.
1373 */
1374 if (this_ctx) {
bd166ef1
JA
1375 trace_block_unplug(this_q, depth, from_schedule);
1376 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1377 from_schedule);
320ae51f
JA
1378 }
1379}
1380
1381static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1382{
1383 init_request_from_bio(rq, bio);
4b570521 1384
6e85eaf3 1385 blk_account_io_start(rq, true);
320ae51f
JA
1386}
1387
274a5843
JA
1388static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1389{
1390 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1391 !blk_queue_nomerges(hctx->queue);
1392}
1393
07068d5b
JA
1394static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1395 struct blk_mq_ctx *ctx,
1396 struct request *rq, struct bio *bio)
320ae51f 1397{
e18378a6 1398 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1399 blk_mq_bio_to_request(rq, bio);
1400 spin_lock(&ctx->lock);
1401insert_rq:
1402 __blk_mq_insert_request(hctx, rq, false);
1403 spin_unlock(&ctx->lock);
1404 return false;
1405 } else {
274a5843
JA
1406 struct request_queue *q = hctx->queue;
1407
07068d5b
JA
1408 spin_lock(&ctx->lock);
1409 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1410 blk_mq_bio_to_request(rq, bio);
1411 goto insert_rq;
1412 }
320ae51f 1413
07068d5b 1414 spin_unlock(&ctx->lock);
bd166ef1 1415 __blk_mq_finish_request(hctx, ctx, rq);
07068d5b 1416 return true;
14ec77f3 1417 }
07068d5b 1418}
14ec77f3 1419
fd2d3326
JA
1420static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1421{
bd166ef1
JA
1422 if (rq->tag != -1)
1423 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1424
1425 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1426}
1427
9c621104
JA
1428static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1429 bool may_sleep)
f984df1f 1430{
f984df1f 1431 struct request_queue *q = rq->q;
f984df1f
SL
1432 struct blk_mq_queue_data bd = {
1433 .rq = rq,
1434 .list = NULL,
1435 .last = 1
1436 };
bd166ef1
JA
1437 struct blk_mq_hw_ctx *hctx;
1438 blk_qc_t new_cookie;
1439 int ret;
f984df1f 1440
bd166ef1 1441 if (q->elevator)
2253efc8
BVA
1442 goto insert;
1443
bd166ef1
JA
1444 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1445 goto insert;
1446
1447 new_cookie = request_to_qc_t(hctx, rq);
1448
f984df1f
SL
1449 /*
1450 * For OK queue, we are done. For error, kill it. Any other
1451 * error (busy), just add it to our list as we previously
1452 * would have done
1453 */
1454 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1455 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1456 *cookie = new_cookie;
2253efc8 1457 return;
7b371636 1458 }
f984df1f 1459
7b371636
JA
1460 __blk_mq_requeue_request(rq);
1461
1462 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1463 *cookie = BLK_QC_T_NONE;
1464 rq->errors = -EIO;
1465 blk_mq_end_request(rq, rq->errors);
2253efc8 1466 return;
f984df1f 1467 }
7b371636 1468
2253efc8 1469insert:
9c621104 1470 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
f984df1f
SL
1471}
1472
07068d5b
JA
1473/*
1474 * Multiple hardware queue variant. This will not use per-process plugs,
1475 * but will attempt to bypass the hctx queueing if we can go straight to
1476 * hardware for SYNC IO.
1477 */
dece1635 1478static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1479{
ef295ecf 1480 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1481 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1482 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1483 struct request *rq;
6a83e74d 1484 unsigned int request_count = 0, srcu_idx;
f984df1f 1485 struct blk_plug *plug;
5b3f341f 1486 struct request *same_queue_rq = NULL;
7b371636 1487 blk_qc_t cookie;
87760e5e 1488 unsigned int wb_acct;
07068d5b
JA
1489
1490 blk_queue_bounce(q, &bio);
1491
1492 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1493 bio_io_error(bio);
dece1635 1494 return BLK_QC_T_NONE;
07068d5b
JA
1495 }
1496
54efd50b
KO
1497 blk_queue_split(q, &bio, q->bio_split);
1498
87c279e6
OS
1499 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1500 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1501 return BLK_QC_T_NONE;
f984df1f 1502
bd166ef1
JA
1503 if (blk_mq_sched_bio_merge(q, bio))
1504 return BLK_QC_T_NONE;
1505
87760e5e
JA
1506 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1507
bd166ef1
JA
1508 trace_block_getrq(q, bio, bio->bi_opf);
1509
1510 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1511 if (unlikely(!rq)) {
1512 __wbt_done(q->rq_wb, wb_acct);
dece1635 1513 return BLK_QC_T_NONE;
87760e5e
JA
1514 }
1515
1516 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1517
fd2d3326 1518 cookie = request_to_qc_t(data.hctx, rq);
07068d5b
JA
1519
1520 if (unlikely(is_flush_fua)) {
0c2a6fe4
JA
1521 if (q->elevator)
1522 goto elv_insert;
07068d5b
JA
1523 blk_mq_bio_to_request(rq, bio);
1524 blk_insert_flush(rq);
0c2a6fe4 1525 goto run_queue;
07068d5b
JA
1526 }
1527
f984df1f 1528 plug = current->plug;
e167dfb5
JA
1529 /*
1530 * If the driver supports defer issued based on 'last', then
1531 * queue it up like normal since we can potentially save some
1532 * CPU this way.
1533 */
f984df1f
SL
1534 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1535 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1536 struct request *old_rq = NULL;
07068d5b
JA
1537
1538 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1539
1540 /*
6a83e74d 1541 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1542 * Otherwise the existing request in the plug list will be
1543 * issued. So the plug list will have one request at most
07068d5b 1544 */
f984df1f 1545 if (plug) {
5b3f341f
SL
1546 /*
1547 * The plug list might get flushed before this. If that
b094f89c
JA
1548 * happens, same_queue_rq is invalid and plug list is
1549 * empty
1550 */
5b3f341f
SL
1551 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1552 old_rq = same_queue_rq;
f984df1f 1553 list_del_init(&old_rq->queuelist);
07068d5b 1554 }
f984df1f
SL
1555 list_add_tail(&rq->queuelist, &plug->mq_list);
1556 } else /* is_sync */
1557 old_rq = rq;
1558 blk_mq_put_ctx(data.ctx);
1559 if (!old_rq)
7b371636 1560 goto done;
6a83e74d
BVA
1561
1562 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1563 rcu_read_lock();
9c621104 1564 blk_mq_try_issue_directly(old_rq, &cookie, false);
6a83e74d
BVA
1565 rcu_read_unlock();
1566 } else {
1567 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
9c621104 1568 blk_mq_try_issue_directly(old_rq, &cookie, true);
6a83e74d
BVA
1569 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1570 }
7b371636 1571 goto done;
07068d5b
JA
1572 }
1573
bd166ef1 1574 if (q->elevator) {
0c2a6fe4 1575elv_insert:
bd166ef1
JA
1576 blk_mq_put_ctx(data.ctx);
1577 blk_mq_bio_to_request(rq, bio);
0abad774 1578 blk_mq_sched_insert_request(rq, false, true,
bd6737f1 1579 !is_sync || is_flush_fua, true);
bd166ef1
JA
1580 goto done;
1581 }
07068d5b
JA
1582 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1583 /*
1584 * For a SYNC request, send it to the hardware immediately. For
1585 * an ASYNC request, just ensure that we run it later on. The
1586 * latter allows for merging opportunities and more efficient
1587 * dispatching.
1588 */
0c2a6fe4 1589run_queue:
07068d5b
JA
1590 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1591 }
07068d5b 1592 blk_mq_put_ctx(data.ctx);
7b371636
JA
1593done:
1594 return cookie;
07068d5b
JA
1595}
1596
1597/*
1598 * Single hardware queue variant. This will attempt to use any per-process
1599 * plug for merging and IO deferral.
1600 */
dece1635 1601static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1602{
ef295ecf 1603 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1604 const int is_flush_fua = op_is_flush(bio->bi_opf);
e6c4438b
JM
1605 struct blk_plug *plug;
1606 unsigned int request_count = 0;
5a797e00 1607 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1608 struct request *rq;
7b371636 1609 blk_qc_t cookie;
87760e5e 1610 unsigned int wb_acct;
07068d5b 1611
07068d5b
JA
1612 blk_queue_bounce(q, &bio);
1613
1614 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1615 bio_io_error(bio);
dece1635 1616 return BLK_QC_T_NONE;
07068d5b
JA
1617 }
1618
54efd50b
KO
1619 blk_queue_split(q, &bio, q->bio_split);
1620
87c279e6
OS
1621 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1622 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1623 return BLK_QC_T_NONE;
1624 } else
1625 request_count = blk_plug_queued_count(q);
07068d5b 1626
bd166ef1
JA
1627 if (blk_mq_sched_bio_merge(q, bio))
1628 return BLK_QC_T_NONE;
1629
87760e5e
JA
1630 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1631
bd166ef1
JA
1632 trace_block_getrq(q, bio, bio->bi_opf);
1633
1634 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1635 if (unlikely(!rq)) {
1636 __wbt_done(q->rq_wb, wb_acct);
dece1635 1637 return BLK_QC_T_NONE;
87760e5e
JA
1638 }
1639
1640 wbt_track(&rq->issue_stat, wb_acct);
320ae51f 1641
fd2d3326 1642 cookie = request_to_qc_t(data.hctx, rq);
320ae51f
JA
1643
1644 if (unlikely(is_flush_fua)) {
0c2a6fe4
JA
1645 if (q->elevator)
1646 goto elv_insert;
320ae51f 1647 blk_mq_bio_to_request(rq, bio);
320ae51f 1648 blk_insert_flush(rq);
0c2a6fe4 1649 goto run_queue;
320ae51f
JA
1650 }
1651
1652 /*
1653 * A task plug currently exists. Since this is completely lockless,
1654 * utilize that to temporarily store requests until the task is
1655 * either done or scheduled away.
1656 */
e6c4438b
JM
1657 plug = current->plug;
1658 if (plug) {
600271d9
SL
1659 struct request *last = NULL;
1660
e6c4438b 1661 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1662
1663 /*
1664 * @request_count may become stale because of schedule
1665 * out, so check the list again.
1666 */
1667 if (list_empty(&plug->mq_list))
1668 request_count = 0;
676d0607 1669 if (!request_count)
e6c4438b 1670 trace_block_plug(q);
600271d9
SL
1671 else
1672 last = list_entry_rq(plug->mq_list.prev);
b094f89c
JA
1673
1674 blk_mq_put_ctx(data.ctx);
1675
600271d9
SL
1676 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1677 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1678 blk_flush_plug_list(plug, false);
1679 trace_block_plug(q);
320ae51f 1680 }
b094f89c 1681
e6c4438b 1682 list_add_tail(&rq->queuelist, &plug->mq_list);
7b371636 1683 return cookie;
320ae51f
JA
1684 }
1685
bd166ef1 1686 if (q->elevator) {
0c2a6fe4 1687elv_insert:
bd166ef1
JA
1688 blk_mq_put_ctx(data.ctx);
1689 blk_mq_bio_to_request(rq, bio);
0abad774 1690 blk_mq_sched_insert_request(rq, false, true,
bd6737f1 1691 !is_sync || is_flush_fua, true);
bd166ef1
JA
1692 goto done;
1693 }
07068d5b
JA
1694 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1695 /*
1696 * For a SYNC request, send it to the hardware immediately. For
1697 * an ASYNC request, just ensure that we run it later on. The
1698 * latter allows for merging opportunities and more efficient
1699 * dispatching.
1700 */
0c2a6fe4 1701run_queue:
07068d5b 1702 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1703 }
1704
07068d5b 1705 blk_mq_put_ctx(data.ctx);
bd166ef1 1706done:
7b371636 1707 return cookie;
320ae51f
JA
1708}
1709
cc71a6f4
JA
1710void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1711 unsigned int hctx_idx)
95363efd 1712{
e9b267d9 1713 struct page *page;
320ae51f 1714
24d2f903 1715 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1716 int i;
320ae51f 1717
24d2f903 1718 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1719 struct request *rq = tags->static_rqs[i];
1720
1721 if (!rq)
e9b267d9 1722 continue;
2af8cbe3 1723 set->ops->exit_request(set->driver_data, rq,
24d2f903 1724 hctx_idx, i);
2af8cbe3 1725 tags->static_rqs[i] = NULL;
e9b267d9 1726 }
320ae51f 1727 }
320ae51f 1728
24d2f903
CH
1729 while (!list_empty(&tags->page_list)) {
1730 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1731 list_del_init(&page->lru);
f75782e4
CM
1732 /*
1733 * Remove kmemleak object previously allocated in
1734 * blk_mq_init_rq_map().
1735 */
1736 kmemleak_free(page_address(page));
320ae51f
JA
1737 __free_pages(page, page->private);
1738 }
cc71a6f4 1739}
320ae51f 1740
cc71a6f4
JA
1741void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1742{
24d2f903 1743 kfree(tags->rqs);
cc71a6f4 1744 tags->rqs = NULL;
2af8cbe3
JA
1745 kfree(tags->static_rqs);
1746 tags->static_rqs = NULL;
320ae51f 1747
24d2f903 1748 blk_mq_free_tags(tags);
320ae51f
JA
1749}
1750
cc71a6f4
JA
1751struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1752 unsigned int hctx_idx,
1753 unsigned int nr_tags,
1754 unsigned int reserved_tags)
320ae51f 1755{
24d2f903 1756 struct blk_mq_tags *tags;
59f082e4 1757 int node;
320ae51f 1758
59f082e4
SL
1759 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1760 if (node == NUMA_NO_NODE)
1761 node = set->numa_node;
1762
1763 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1764 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1765 if (!tags)
1766 return NULL;
320ae51f 1767
cc71a6f4 1768 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1769 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1770 node);
24d2f903
CH
1771 if (!tags->rqs) {
1772 blk_mq_free_tags(tags);
1773 return NULL;
1774 }
320ae51f 1775
2af8cbe3
JA
1776 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1777 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1778 node);
2af8cbe3
JA
1779 if (!tags->static_rqs) {
1780 kfree(tags->rqs);
1781 blk_mq_free_tags(tags);
1782 return NULL;
1783 }
1784
cc71a6f4
JA
1785 return tags;
1786}
1787
1788static size_t order_to_size(unsigned int order)
1789{
1790 return (size_t)PAGE_SIZE << order;
1791}
1792
1793int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1794 unsigned int hctx_idx, unsigned int depth)
1795{
1796 unsigned int i, j, entries_per_page, max_order = 4;
1797 size_t rq_size, left;
59f082e4
SL
1798 int node;
1799
1800 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1801 if (node == NUMA_NO_NODE)
1802 node = set->numa_node;
cc71a6f4
JA
1803
1804 INIT_LIST_HEAD(&tags->page_list);
1805
320ae51f
JA
1806 /*
1807 * rq_size is the size of the request plus driver payload, rounded
1808 * to the cacheline size
1809 */
24d2f903 1810 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1811 cache_line_size());
cc71a6f4 1812 left = rq_size * depth;
320ae51f 1813
cc71a6f4 1814 for (i = 0; i < depth; ) {
320ae51f
JA
1815 int this_order = max_order;
1816 struct page *page;
1817 int to_do;
1818 void *p;
1819
b3a834b1 1820 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1821 this_order--;
1822
1823 do {
59f082e4 1824 page = alloc_pages_node(node,
36e1f3d1 1825 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1826 this_order);
320ae51f
JA
1827 if (page)
1828 break;
1829 if (!this_order--)
1830 break;
1831 if (order_to_size(this_order) < rq_size)
1832 break;
1833 } while (1);
1834
1835 if (!page)
24d2f903 1836 goto fail;
320ae51f
JA
1837
1838 page->private = this_order;
24d2f903 1839 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1840
1841 p = page_address(page);
f75782e4
CM
1842 /*
1843 * Allow kmemleak to scan these pages as they contain pointers
1844 * to additional allocations like via ops->init_request().
1845 */
36e1f3d1 1846 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1847 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1848 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1849 left -= to_do * rq_size;
1850 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1851 struct request *rq = p;
1852
1853 tags->static_rqs[i] = rq;
24d2f903
CH
1854 if (set->ops->init_request) {
1855 if (set->ops->init_request(set->driver_data,
2af8cbe3 1856 rq, hctx_idx, i,
59f082e4 1857 node)) {
2af8cbe3 1858 tags->static_rqs[i] = NULL;
24d2f903 1859 goto fail;
a5164405 1860 }
e9b267d9
CH
1861 }
1862
320ae51f
JA
1863 p += rq_size;
1864 i++;
1865 }
1866 }
cc71a6f4 1867 return 0;
320ae51f 1868
24d2f903 1869fail:
cc71a6f4
JA
1870 blk_mq_free_rqs(set, tags, hctx_idx);
1871 return -ENOMEM;
320ae51f
JA
1872}
1873
e57690fe
JA
1874/*
1875 * 'cpu' is going away. splice any existing rq_list entries from this
1876 * software queue to the hw queue dispatch list, and ensure that it
1877 * gets run.
1878 */
9467f859 1879static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1880{
9467f859 1881 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1882 struct blk_mq_ctx *ctx;
1883 LIST_HEAD(tmp);
1884
9467f859 1885 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1886 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1887
1888 spin_lock(&ctx->lock);
1889 if (!list_empty(&ctx->rq_list)) {
1890 list_splice_init(&ctx->rq_list, &tmp);
1891 blk_mq_hctx_clear_pending(hctx, ctx);
1892 }
1893 spin_unlock(&ctx->lock);
1894
1895 if (list_empty(&tmp))
9467f859 1896 return 0;
484b4061 1897
e57690fe
JA
1898 spin_lock(&hctx->lock);
1899 list_splice_tail_init(&tmp, &hctx->dispatch);
1900 spin_unlock(&hctx->lock);
484b4061
JA
1901
1902 blk_mq_run_hw_queue(hctx, true);
9467f859 1903 return 0;
484b4061
JA
1904}
1905
9467f859 1906static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1907{
9467f859
TG
1908 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1909 &hctx->cpuhp_dead);
484b4061
JA
1910}
1911
c3b4afca 1912/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1913static void blk_mq_exit_hctx(struct request_queue *q,
1914 struct blk_mq_tag_set *set,
1915 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1916{
f70ced09
ML
1917 unsigned flush_start_tag = set->queue_depth;
1918
08e98fc6
ML
1919 blk_mq_tag_idle(hctx);
1920
f70ced09
ML
1921 if (set->ops->exit_request)
1922 set->ops->exit_request(set->driver_data,
1923 hctx->fq->flush_rq, hctx_idx,
1924 flush_start_tag + hctx_idx);
1925
08e98fc6
ML
1926 if (set->ops->exit_hctx)
1927 set->ops->exit_hctx(hctx, hctx_idx);
1928
6a83e74d
BVA
1929 if (hctx->flags & BLK_MQ_F_BLOCKING)
1930 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1931
9467f859 1932 blk_mq_remove_cpuhp(hctx);
f70ced09 1933 blk_free_flush_queue(hctx->fq);
88459642 1934 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1935}
1936
624dbe47
ML
1937static void blk_mq_exit_hw_queues(struct request_queue *q,
1938 struct blk_mq_tag_set *set, int nr_queue)
1939{
1940 struct blk_mq_hw_ctx *hctx;
1941 unsigned int i;
1942
1943 queue_for_each_hw_ctx(q, hctx, i) {
1944 if (i == nr_queue)
1945 break;
08e98fc6 1946 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1947 }
624dbe47
ML
1948}
1949
08e98fc6
ML
1950static int blk_mq_init_hctx(struct request_queue *q,
1951 struct blk_mq_tag_set *set,
1952 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1953{
08e98fc6 1954 int node;
f70ced09 1955 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1956
1957 node = hctx->numa_node;
1958 if (node == NUMA_NO_NODE)
1959 node = hctx->numa_node = set->numa_node;
1960
27489a3c 1961 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1962 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1963 spin_lock_init(&hctx->lock);
1964 INIT_LIST_HEAD(&hctx->dispatch);
1965 hctx->queue = q;
1966 hctx->queue_num = hctx_idx;
2404e607 1967 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1968
9467f859 1969 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1970
1971 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1972
1973 /*
08e98fc6
ML
1974 * Allocate space for all possible cpus to avoid allocation at
1975 * runtime
320ae51f 1976 */
08e98fc6
ML
1977 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1978 GFP_KERNEL, node);
1979 if (!hctx->ctxs)
1980 goto unregister_cpu_notifier;
320ae51f 1981
88459642
OS
1982 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1983 node))
08e98fc6 1984 goto free_ctxs;
320ae51f 1985
08e98fc6 1986 hctx->nr_ctx = 0;
320ae51f 1987
08e98fc6
ML
1988 if (set->ops->init_hctx &&
1989 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1990 goto free_bitmap;
320ae51f 1991
f70ced09
ML
1992 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1993 if (!hctx->fq)
1994 goto exit_hctx;
320ae51f 1995
f70ced09
ML
1996 if (set->ops->init_request &&
1997 set->ops->init_request(set->driver_data,
1998 hctx->fq->flush_rq, hctx_idx,
1999 flush_start_tag + hctx_idx, node))
2000 goto free_fq;
320ae51f 2001
6a83e74d
BVA
2002 if (hctx->flags & BLK_MQ_F_BLOCKING)
2003 init_srcu_struct(&hctx->queue_rq_srcu);
2004
08e98fc6 2005 return 0;
320ae51f 2006
f70ced09
ML
2007 free_fq:
2008 kfree(hctx->fq);
2009 exit_hctx:
2010 if (set->ops->exit_hctx)
2011 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 2012 free_bitmap:
88459642 2013 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2014 free_ctxs:
2015 kfree(hctx->ctxs);
2016 unregister_cpu_notifier:
9467f859 2017 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
2018 return -1;
2019}
320ae51f 2020
320ae51f
JA
2021static void blk_mq_init_cpu_queues(struct request_queue *q,
2022 unsigned int nr_hw_queues)
2023{
2024 unsigned int i;
2025
2026 for_each_possible_cpu(i) {
2027 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2028 struct blk_mq_hw_ctx *hctx;
2029
320ae51f
JA
2030 __ctx->cpu = i;
2031 spin_lock_init(&__ctx->lock);
2032 INIT_LIST_HEAD(&__ctx->rq_list);
2033 __ctx->queue = q;
cf43e6be
JA
2034 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
2035 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
320ae51f
JA
2036
2037 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
2038 if (!cpu_online(i))
2039 continue;
2040
7d7e0f90 2041 hctx = blk_mq_map_queue(q, i);
e4043dcf 2042
320ae51f
JA
2043 /*
2044 * Set local node, IFF we have more than one hw queue. If
2045 * not, we remain on the home node of the device
2046 */
2047 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 2048 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
2049 }
2050}
2051
cc71a6f4
JA
2052static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2053{
2054 int ret = 0;
2055
2056 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2057 set->queue_depth, set->reserved_tags);
2058 if (!set->tags[hctx_idx])
2059 return false;
2060
2061 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2062 set->queue_depth);
2063 if (!ret)
2064 return true;
2065
2066 blk_mq_free_rq_map(set->tags[hctx_idx]);
2067 set->tags[hctx_idx] = NULL;
2068 return false;
2069}
2070
2071static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2072 unsigned int hctx_idx)
2073{
bd166ef1
JA
2074 if (set->tags[hctx_idx]) {
2075 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2076 blk_mq_free_rq_map(set->tags[hctx_idx]);
2077 set->tags[hctx_idx] = NULL;
2078 }
cc71a6f4
JA
2079}
2080
5778322e
AM
2081static void blk_mq_map_swqueue(struct request_queue *q,
2082 const struct cpumask *online_mask)
320ae51f 2083{
d1b1cea1 2084 unsigned int i, hctx_idx;
320ae51f
JA
2085 struct blk_mq_hw_ctx *hctx;
2086 struct blk_mq_ctx *ctx;
2a34c087 2087 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2088
60de074b
AM
2089 /*
2090 * Avoid others reading imcomplete hctx->cpumask through sysfs
2091 */
2092 mutex_lock(&q->sysfs_lock);
2093
320ae51f 2094 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2095 cpumask_clear(hctx->cpumask);
320ae51f
JA
2096 hctx->nr_ctx = 0;
2097 }
2098
2099 /*
2100 * Map software to hardware queues
2101 */
897bb0c7 2102 for_each_possible_cpu(i) {
320ae51f 2103 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 2104 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
2105 continue;
2106
d1b1cea1
GKB
2107 hctx_idx = q->mq_map[i];
2108 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2109 if (!set->tags[hctx_idx] &&
2110 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2111 /*
2112 * If tags initialization fail for some hctx,
2113 * that hctx won't be brought online. In this
2114 * case, remap the current ctx to hctx[0] which
2115 * is guaranteed to always have tags allocated
2116 */
cc71a6f4 2117 q->mq_map[i] = 0;
d1b1cea1
GKB
2118 }
2119
897bb0c7 2120 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2121 hctx = blk_mq_map_queue(q, i);
868f2f0b 2122
e4043dcf 2123 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2124 ctx->index_hw = hctx->nr_ctx;
2125 hctx->ctxs[hctx->nr_ctx++] = ctx;
2126 }
506e931f 2127
60de074b
AM
2128 mutex_unlock(&q->sysfs_lock);
2129
506e931f 2130 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2131 /*
a68aafa5
JA
2132 * If no software queues are mapped to this hardware queue,
2133 * disable it and free the request entries.
484b4061
JA
2134 */
2135 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2136 /* Never unmap queue 0. We need it as a
2137 * fallback in case of a new remap fails
2138 * allocation
2139 */
cc71a6f4
JA
2140 if (i && set->tags[i])
2141 blk_mq_free_map_and_requests(set, i);
2142
2a34c087 2143 hctx->tags = NULL;
484b4061
JA
2144 continue;
2145 }
2146
2a34c087
ML
2147 hctx->tags = set->tags[i];
2148 WARN_ON(!hctx->tags);
2149
889fa31f
CY
2150 /*
2151 * Set the map size to the number of mapped software queues.
2152 * This is more accurate and more efficient than looping
2153 * over all possibly mapped software queues.
2154 */
88459642 2155 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2156
484b4061
JA
2157 /*
2158 * Initialize batch roundrobin counts
2159 */
506e931f
JA
2160 hctx->next_cpu = cpumask_first(hctx->cpumask);
2161 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2162 }
320ae51f
JA
2163}
2164
2404e607 2165static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2166{
2167 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2168 int i;
2169
2404e607
JM
2170 queue_for_each_hw_ctx(q, hctx, i) {
2171 if (shared)
2172 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2173 else
2174 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2175 }
2176}
2177
2178static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2179{
2180 struct request_queue *q;
0d2602ca
JA
2181
2182 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2183 blk_mq_freeze_queue(q);
2404e607 2184 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2185 blk_mq_unfreeze_queue(q);
2186 }
2187}
2188
2189static void blk_mq_del_queue_tag_set(struct request_queue *q)
2190{
2191 struct blk_mq_tag_set *set = q->tag_set;
2192
0d2602ca
JA
2193 mutex_lock(&set->tag_list_lock);
2194 list_del_init(&q->tag_set_list);
2404e607
JM
2195 if (list_is_singular(&set->tag_list)) {
2196 /* just transitioned to unshared */
2197 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2198 /* update existing queue */
2199 blk_mq_update_tag_set_depth(set, false);
2200 }
0d2602ca 2201 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
2202}
2203
2204static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2205 struct request_queue *q)
2206{
2207 q->tag_set = set;
2208
2209 mutex_lock(&set->tag_list_lock);
2404e607
JM
2210
2211 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2212 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2213 set->flags |= BLK_MQ_F_TAG_SHARED;
2214 /* update existing queue */
2215 blk_mq_update_tag_set_depth(set, true);
2216 }
2217 if (set->flags & BLK_MQ_F_TAG_SHARED)
2218 queue_set_hctx_shared(q, true);
0d2602ca 2219 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 2220
0d2602ca
JA
2221 mutex_unlock(&set->tag_list_lock);
2222}
2223
e09aae7e
ML
2224/*
2225 * It is the actual release handler for mq, but we do it from
2226 * request queue's release handler for avoiding use-after-free
2227 * and headache because q->mq_kobj shouldn't have been introduced,
2228 * but we can't group ctx/kctx kobj without it.
2229 */
2230void blk_mq_release(struct request_queue *q)
2231{
2232 struct blk_mq_hw_ctx *hctx;
2233 unsigned int i;
2234
bd166ef1
JA
2235 blk_mq_sched_teardown(q);
2236
e09aae7e 2237 /* hctx kobj stays in hctx */
c3b4afca
ML
2238 queue_for_each_hw_ctx(q, hctx, i) {
2239 if (!hctx)
2240 continue;
6c8b232e 2241 kobject_put(&hctx->kobj);
c3b4afca 2242 }
e09aae7e 2243
a723bab3
AM
2244 q->mq_map = NULL;
2245
e09aae7e
ML
2246 kfree(q->queue_hw_ctx);
2247
7ea5fe31
ML
2248 /*
2249 * release .mq_kobj and sw queue's kobject now because
2250 * both share lifetime with request queue.
2251 */
2252 blk_mq_sysfs_deinit(q);
2253
e09aae7e
ML
2254 free_percpu(q->queue_ctx);
2255}
2256
24d2f903 2257struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2258{
2259 struct request_queue *uninit_q, *q;
2260
2261 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2262 if (!uninit_q)
2263 return ERR_PTR(-ENOMEM);
2264
2265 q = blk_mq_init_allocated_queue(set, uninit_q);
2266 if (IS_ERR(q))
2267 blk_cleanup_queue(uninit_q);
2268
2269 return q;
2270}
2271EXPORT_SYMBOL(blk_mq_init_queue);
2272
868f2f0b
KB
2273static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2274 struct request_queue *q)
320ae51f 2275{
868f2f0b
KB
2276 int i, j;
2277 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2278
868f2f0b 2279 blk_mq_sysfs_unregister(q);
24d2f903 2280 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2281 int node;
f14bbe77 2282
868f2f0b
KB
2283 if (hctxs[i])
2284 continue;
2285
2286 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2287 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2288 GFP_KERNEL, node);
320ae51f 2289 if (!hctxs[i])
868f2f0b 2290 break;
320ae51f 2291
a86073e4 2292 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2293 node)) {
2294 kfree(hctxs[i]);
2295 hctxs[i] = NULL;
2296 break;
2297 }
e4043dcf 2298
0d2602ca 2299 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2300 hctxs[i]->numa_node = node;
320ae51f 2301 hctxs[i]->queue_num = i;
868f2f0b
KB
2302
2303 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2304 free_cpumask_var(hctxs[i]->cpumask);
2305 kfree(hctxs[i]);
2306 hctxs[i] = NULL;
2307 break;
2308 }
2309 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2310 }
868f2f0b
KB
2311 for (j = i; j < q->nr_hw_queues; j++) {
2312 struct blk_mq_hw_ctx *hctx = hctxs[j];
2313
2314 if (hctx) {
cc71a6f4
JA
2315 if (hctx->tags)
2316 blk_mq_free_map_and_requests(set, j);
868f2f0b 2317 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2318 kobject_put(&hctx->kobj);
868f2f0b
KB
2319 hctxs[j] = NULL;
2320
2321 }
2322 }
2323 q->nr_hw_queues = i;
2324 blk_mq_sysfs_register(q);
2325}
2326
2327struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2328 struct request_queue *q)
2329{
66841672
ML
2330 /* mark the queue as mq asap */
2331 q->mq_ops = set->ops;
2332
868f2f0b
KB
2333 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2334 if (!q->queue_ctx)
c7de5726 2335 goto err_exit;
868f2f0b 2336
737f98cf
ML
2337 /* init q->mq_kobj and sw queues' kobjects */
2338 blk_mq_sysfs_init(q);
2339
868f2f0b
KB
2340 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2341 GFP_KERNEL, set->numa_node);
2342 if (!q->queue_hw_ctx)
2343 goto err_percpu;
2344
bdd17e75 2345 q->mq_map = set->mq_map;
868f2f0b
KB
2346
2347 blk_mq_realloc_hw_ctxs(set, q);
2348 if (!q->nr_hw_queues)
2349 goto err_hctxs;
320ae51f 2350
287922eb 2351 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2352 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2353
2354 q->nr_queues = nr_cpu_ids;
320ae51f 2355
94eddfbe 2356 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2357
05f1dd53
JA
2358 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2359 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2360
1be036e9
CH
2361 q->sg_reserved_size = INT_MAX;
2362
2849450a 2363 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2364 INIT_LIST_HEAD(&q->requeue_list);
2365 spin_lock_init(&q->requeue_lock);
2366
07068d5b
JA
2367 if (q->nr_hw_queues > 1)
2368 blk_queue_make_request(q, blk_mq_make_request);
2369 else
2370 blk_queue_make_request(q, blk_sq_make_request);
2371
eba71768
JA
2372 /*
2373 * Do this after blk_queue_make_request() overrides it...
2374 */
2375 q->nr_requests = set->queue_depth;
2376
64f1c21e
JA
2377 /*
2378 * Default to classic polling
2379 */
2380 q->poll_nsec = -1;
2381
24d2f903
CH
2382 if (set->ops->complete)
2383 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2384
24d2f903 2385 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2386
5778322e 2387 get_online_cpus();
320ae51f 2388 mutex_lock(&all_q_mutex);
320ae51f 2389
4593fdbe 2390 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2391 blk_mq_add_queue_tag_set(set, q);
5778322e 2392 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2393
4593fdbe 2394 mutex_unlock(&all_q_mutex);
5778322e 2395 put_online_cpus();
4593fdbe 2396
d3484991
JA
2397 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2398 int ret;
2399
2400 ret = blk_mq_sched_init(q);
2401 if (ret)
2402 return ERR_PTR(ret);
2403 }
2404
320ae51f 2405 return q;
18741986 2406
320ae51f 2407err_hctxs:
868f2f0b 2408 kfree(q->queue_hw_ctx);
320ae51f 2409err_percpu:
868f2f0b 2410 free_percpu(q->queue_ctx);
c7de5726
ML
2411err_exit:
2412 q->mq_ops = NULL;
320ae51f
JA
2413 return ERR_PTR(-ENOMEM);
2414}
b62c21b7 2415EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2416
2417void blk_mq_free_queue(struct request_queue *q)
2418{
624dbe47 2419 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2420
0e626368
AM
2421 mutex_lock(&all_q_mutex);
2422 list_del_init(&q->all_q_node);
2423 mutex_unlock(&all_q_mutex);
2424
87760e5e
JA
2425 wbt_exit(q);
2426
0d2602ca
JA
2427 blk_mq_del_queue_tag_set(q);
2428
624dbe47 2429 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2430}
320ae51f
JA
2431
2432/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2433static void blk_mq_queue_reinit(struct request_queue *q,
2434 const struct cpumask *online_mask)
320ae51f 2435{
4ecd4fef 2436 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2437
67aec14c
JA
2438 blk_mq_sysfs_unregister(q);
2439
320ae51f
JA
2440 /*
2441 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2442 * we should change hctx numa_node according to new topology (this
2443 * involves free and re-allocate memory, worthy doing?)
2444 */
2445
5778322e 2446 blk_mq_map_swqueue(q, online_mask);
320ae51f 2447
67aec14c 2448 blk_mq_sysfs_register(q);
320ae51f
JA
2449}
2450
65d5291e
SAS
2451/*
2452 * New online cpumask which is going to be set in this hotplug event.
2453 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2454 * one-by-one and dynamically allocating this could result in a failure.
2455 */
2456static struct cpumask cpuhp_online_new;
2457
2458static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2459{
2460 struct request_queue *q;
320ae51f
JA
2461
2462 mutex_lock(&all_q_mutex);
f3af020b
TH
2463 /*
2464 * We need to freeze and reinit all existing queues. Freezing
2465 * involves synchronous wait for an RCU grace period and doing it
2466 * one by one may take a long time. Start freezing all queues in
2467 * one swoop and then wait for the completions so that freezing can
2468 * take place in parallel.
2469 */
2470 list_for_each_entry(q, &all_q_list, all_q_node)
2471 blk_mq_freeze_queue_start(q);
415d3dab 2472 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2473 blk_mq_freeze_queue_wait(q);
2474
320ae51f 2475 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2476 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2477
2478 list_for_each_entry(q, &all_q_list, all_q_node)
2479 blk_mq_unfreeze_queue(q);
2480
320ae51f 2481 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2482}
2483
2484static int blk_mq_queue_reinit_dead(unsigned int cpu)
2485{
97a32864 2486 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2487 blk_mq_queue_reinit_work();
2488 return 0;
2489}
2490
2491/*
2492 * Before hotadded cpu starts handling requests, new mappings must be
2493 * established. Otherwise, these requests in hw queue might never be
2494 * dispatched.
2495 *
2496 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2497 * for CPU0, and ctx1 for CPU1).
2498 *
2499 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2500 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2501 *
2c3ad667
JA
2502 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2503 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2504 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2505 * ignored.
65d5291e
SAS
2506 */
2507static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2508{
2509 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2510 cpumask_set_cpu(cpu, &cpuhp_online_new);
2511 blk_mq_queue_reinit_work();
2512 return 0;
320ae51f
JA
2513}
2514
a5164405
JA
2515static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2516{
2517 int i;
2518
cc71a6f4
JA
2519 for (i = 0; i < set->nr_hw_queues; i++)
2520 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2521 goto out_unwind;
a5164405
JA
2522
2523 return 0;
2524
2525out_unwind:
2526 while (--i >= 0)
cc71a6f4 2527 blk_mq_free_rq_map(set->tags[i]);
a5164405 2528
a5164405
JA
2529 return -ENOMEM;
2530}
2531
2532/*
2533 * Allocate the request maps associated with this tag_set. Note that this
2534 * may reduce the depth asked for, if memory is tight. set->queue_depth
2535 * will be updated to reflect the allocated depth.
2536 */
2537static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2538{
2539 unsigned int depth;
2540 int err;
2541
2542 depth = set->queue_depth;
2543 do {
2544 err = __blk_mq_alloc_rq_maps(set);
2545 if (!err)
2546 break;
2547
2548 set->queue_depth >>= 1;
2549 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2550 err = -ENOMEM;
2551 break;
2552 }
2553 } while (set->queue_depth);
2554
2555 if (!set->queue_depth || err) {
2556 pr_err("blk-mq: failed to allocate request map\n");
2557 return -ENOMEM;
2558 }
2559
2560 if (depth != set->queue_depth)
2561 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2562 depth, set->queue_depth);
2563
2564 return 0;
2565}
2566
a4391c64
JA
2567/*
2568 * Alloc a tag set to be associated with one or more request queues.
2569 * May fail with EINVAL for various error conditions. May adjust the
2570 * requested depth down, if if it too large. In that case, the set
2571 * value will be stored in set->queue_depth.
2572 */
24d2f903
CH
2573int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2574{
da695ba2
CH
2575 int ret;
2576
205fb5f5
BVA
2577 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2578
24d2f903
CH
2579 if (!set->nr_hw_queues)
2580 return -EINVAL;
a4391c64 2581 if (!set->queue_depth)
24d2f903
CH
2582 return -EINVAL;
2583 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2584 return -EINVAL;
2585
7d7e0f90 2586 if (!set->ops->queue_rq)
24d2f903
CH
2587 return -EINVAL;
2588
a4391c64
JA
2589 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2590 pr_info("blk-mq: reduced tag depth to %u\n",
2591 BLK_MQ_MAX_DEPTH);
2592 set->queue_depth = BLK_MQ_MAX_DEPTH;
2593 }
24d2f903 2594
6637fadf
SL
2595 /*
2596 * If a crashdump is active, then we are potentially in a very
2597 * memory constrained environment. Limit us to 1 queue and
2598 * 64 tags to prevent using too much memory.
2599 */
2600 if (is_kdump_kernel()) {
2601 set->nr_hw_queues = 1;
2602 set->queue_depth = min(64U, set->queue_depth);
2603 }
868f2f0b
KB
2604 /*
2605 * There is no use for more h/w queues than cpus.
2606 */
2607 if (set->nr_hw_queues > nr_cpu_ids)
2608 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2609
868f2f0b 2610 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2611 GFP_KERNEL, set->numa_node);
2612 if (!set->tags)
a5164405 2613 return -ENOMEM;
24d2f903 2614
da695ba2
CH
2615 ret = -ENOMEM;
2616 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2617 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2618 if (!set->mq_map)
2619 goto out_free_tags;
2620
da695ba2
CH
2621 if (set->ops->map_queues)
2622 ret = set->ops->map_queues(set);
2623 else
2624 ret = blk_mq_map_queues(set);
2625 if (ret)
2626 goto out_free_mq_map;
2627
2628 ret = blk_mq_alloc_rq_maps(set);
2629 if (ret)
bdd17e75 2630 goto out_free_mq_map;
24d2f903 2631
0d2602ca
JA
2632 mutex_init(&set->tag_list_lock);
2633 INIT_LIST_HEAD(&set->tag_list);
2634
24d2f903 2635 return 0;
bdd17e75
CH
2636
2637out_free_mq_map:
2638 kfree(set->mq_map);
2639 set->mq_map = NULL;
2640out_free_tags:
5676e7b6
RE
2641 kfree(set->tags);
2642 set->tags = NULL;
da695ba2 2643 return ret;
24d2f903
CH
2644}
2645EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2646
2647void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2648{
2649 int i;
2650
cc71a6f4
JA
2651 for (i = 0; i < nr_cpu_ids; i++)
2652 blk_mq_free_map_and_requests(set, i);
484b4061 2653
bdd17e75
CH
2654 kfree(set->mq_map);
2655 set->mq_map = NULL;
2656
981bd189 2657 kfree(set->tags);
5676e7b6 2658 set->tags = NULL;
24d2f903
CH
2659}
2660EXPORT_SYMBOL(blk_mq_free_tag_set);
2661
e3a2b3f9
JA
2662int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2663{
2664 struct blk_mq_tag_set *set = q->tag_set;
2665 struct blk_mq_hw_ctx *hctx;
2666 int i, ret;
2667
bd166ef1 2668 if (!set)
e3a2b3f9
JA
2669 return -EINVAL;
2670
70f36b60
JA
2671 blk_mq_freeze_queue(q);
2672 blk_mq_quiesce_queue(q);
2673
e3a2b3f9
JA
2674 ret = 0;
2675 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2676 if (!hctx->tags)
2677 continue;
bd166ef1
JA
2678 /*
2679 * If we're using an MQ scheduler, just update the scheduler
2680 * queue depth. This is similar to what the old code would do.
2681 */
70f36b60
JA
2682 if (!hctx->sched_tags) {
2683 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2684 min(nr, set->queue_depth),
2685 false);
2686 } else {
2687 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2688 nr, true);
2689 }
e3a2b3f9
JA
2690 if (ret)
2691 break;
2692 }
2693
2694 if (!ret)
2695 q->nr_requests = nr;
2696
70f36b60
JA
2697 blk_mq_unfreeze_queue(q);
2698 blk_mq_start_stopped_hw_queues(q, true);
2699
e3a2b3f9
JA
2700 return ret;
2701}
2702
868f2f0b
KB
2703void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2704{
2705 struct request_queue *q;
2706
2707 if (nr_hw_queues > nr_cpu_ids)
2708 nr_hw_queues = nr_cpu_ids;
2709 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2710 return;
2711
2712 list_for_each_entry(q, &set->tag_list, tag_set_list)
2713 blk_mq_freeze_queue(q);
2714
2715 set->nr_hw_queues = nr_hw_queues;
2716 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2717 blk_mq_realloc_hw_ctxs(set, q);
2718
f6f94300
JB
2719 /*
2720 * Manually set the make_request_fn as blk_queue_make_request
2721 * resets a lot of the queue settings.
2722 */
868f2f0b 2723 if (q->nr_hw_queues > 1)
f6f94300 2724 q->make_request_fn = blk_mq_make_request;
868f2f0b 2725 else
f6f94300 2726 q->make_request_fn = blk_sq_make_request;
868f2f0b
KB
2727
2728 blk_mq_queue_reinit(q, cpu_online_mask);
2729 }
2730
2731 list_for_each_entry(q, &set->tag_list, tag_set_list)
2732 blk_mq_unfreeze_queue(q);
2733}
2734EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2735
64f1c21e
JA
2736static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2737 struct blk_mq_hw_ctx *hctx,
2738 struct request *rq)
2739{
2740 struct blk_rq_stat stat[2];
2741 unsigned long ret = 0;
2742
2743 /*
2744 * If stats collection isn't on, don't sleep but turn it on for
2745 * future users
2746 */
2747 if (!blk_stat_enable(q))
2748 return 0;
2749
2750 /*
2751 * We don't have to do this once per IO, should optimize this
2752 * to just use the current window of stats until it changes
2753 */
2754 memset(&stat, 0, sizeof(stat));
2755 blk_hctx_stat_get(hctx, stat);
2756
2757 /*
2758 * As an optimistic guess, use half of the mean service time
2759 * for this type of request. We can (and should) make this smarter.
2760 * For instance, if the completion latencies are tight, we can
2761 * get closer than just half the mean. This is especially
2762 * important on devices where the completion latencies are longer
2763 * than ~10 usec.
2764 */
2765 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2766 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2767 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2768 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2769
2770 return ret;
2771}
2772
06426adf 2773static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2774 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2775 struct request *rq)
2776{
2777 struct hrtimer_sleeper hs;
2778 enum hrtimer_mode mode;
64f1c21e 2779 unsigned int nsecs;
06426adf
JA
2780 ktime_t kt;
2781
64f1c21e
JA
2782 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2783 return false;
2784
2785 /*
2786 * poll_nsec can be:
2787 *
2788 * -1: don't ever hybrid sleep
2789 * 0: use half of prev avg
2790 * >0: use this specific value
2791 */
2792 if (q->poll_nsec == -1)
2793 return false;
2794 else if (q->poll_nsec > 0)
2795 nsecs = q->poll_nsec;
2796 else
2797 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2798
2799 if (!nsecs)
06426adf
JA
2800 return false;
2801
2802 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2803
2804 /*
2805 * This will be replaced with the stats tracking code, using
2806 * 'avg_completion_time / 2' as the pre-sleep target.
2807 */
8b0e1953 2808 kt = nsecs;
06426adf
JA
2809
2810 mode = HRTIMER_MODE_REL;
2811 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2812 hrtimer_set_expires(&hs.timer, kt);
2813
2814 hrtimer_init_sleeper(&hs, current);
2815 do {
2816 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2817 break;
2818 set_current_state(TASK_UNINTERRUPTIBLE);
2819 hrtimer_start_expires(&hs.timer, mode);
2820 if (hs.task)
2821 io_schedule();
2822 hrtimer_cancel(&hs.timer);
2823 mode = HRTIMER_MODE_ABS;
2824 } while (hs.task && !signal_pending(current));
2825
2826 __set_current_state(TASK_RUNNING);
2827 destroy_hrtimer_on_stack(&hs.timer);
2828 return true;
2829}
2830
bbd7bb70
JA
2831static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2832{
2833 struct request_queue *q = hctx->queue;
2834 long state;
2835
06426adf
JA
2836 /*
2837 * If we sleep, have the caller restart the poll loop to reset
2838 * the state. Like for the other success return cases, the
2839 * caller is responsible for checking if the IO completed. If
2840 * the IO isn't complete, we'll get called again and will go
2841 * straight to the busy poll loop.
2842 */
64f1c21e 2843 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2844 return true;
2845
bbd7bb70
JA
2846 hctx->poll_considered++;
2847
2848 state = current->state;
2849 while (!need_resched()) {
2850 int ret;
2851
2852 hctx->poll_invoked++;
2853
2854 ret = q->mq_ops->poll(hctx, rq->tag);
2855 if (ret > 0) {
2856 hctx->poll_success++;
2857 set_current_state(TASK_RUNNING);
2858 return true;
2859 }
2860
2861 if (signal_pending_state(state, current))
2862 set_current_state(TASK_RUNNING);
2863
2864 if (current->state == TASK_RUNNING)
2865 return true;
2866 if (ret < 0)
2867 break;
2868 cpu_relax();
2869 }
2870
2871 return false;
2872}
2873
2874bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2875{
2876 struct blk_mq_hw_ctx *hctx;
2877 struct blk_plug *plug;
2878 struct request *rq;
2879
2880 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2881 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2882 return false;
2883
2884 plug = current->plug;
2885 if (plug)
2886 blk_flush_plug_list(plug, false);
2887
2888 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2889 if (!blk_qc_t_is_internal(cookie))
2890 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2891 else
2892 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
bbd7bb70
JA
2893
2894 return __blk_mq_poll(hctx, rq);
2895}
2896EXPORT_SYMBOL_GPL(blk_mq_poll);
2897
676141e4
JA
2898void blk_mq_disable_hotplug(void)
2899{
2900 mutex_lock(&all_q_mutex);
2901}
2902
2903void blk_mq_enable_hotplug(void)
2904{
2905 mutex_unlock(&all_q_mutex);
2906}
2907
320ae51f
JA
2908static int __init blk_mq_init(void)
2909{
9467f859
TG
2910 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2911 blk_mq_hctx_notify_dead);
320ae51f 2912
65d5291e
SAS
2913 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2914 blk_mq_queue_reinit_prepare,
2915 blk_mq_queue_reinit_dead);
320ae51f
JA
2916 return 0;
2917}
2918subsys_initcall(blk_mq_init);