]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-mq.c
block: add kblockd_schedule_delayed_work_on()
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
CommitLineData
320ae51f
JA
1#include <linux/kernel.h>
2#include <linux/module.h>
3#include <linux/backing-dev.h>
4#include <linux/bio.h>
5#include <linux/blkdev.h>
6#include <linux/mm.h>
7#include <linux/init.h>
8#include <linux/slab.h>
9#include <linux/workqueue.h>
10#include <linux/smp.h>
11#include <linux/llist.h>
12#include <linux/list_sort.h>
13#include <linux/cpu.h>
14#include <linux/cache.h>
15#include <linux/sched/sysctl.h>
16#include <linux/delay.h>
17
18#include <trace/events/block.h>
19
20#include <linux/blk-mq.h>
21#include "blk.h"
22#include "blk-mq.h"
23#include "blk-mq-tag.h"
24
25static DEFINE_MUTEX(all_q_mutex);
26static LIST_HEAD(all_q_list);
27
28static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
320ae51f
JA
30static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
32{
33 return per_cpu_ptr(q->queue_ctx, cpu);
34}
35
36/*
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
41 */
42static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43{
44 return __blk_mq_get_ctx(q, get_cpu());
45}
46
47static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48{
49 put_cpu();
50}
51
52/*
53 * Check if any of the ctx's have pending work in this hardware queue
54 */
55static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56{
57 unsigned int i;
58
59 for (i = 0; i < hctx->nr_ctx_map; i++)
60 if (hctx->ctx_map[i])
61 return true;
62
63 return false;
64}
65
66/*
67 * Mark this ctx as having pending work in this hardware queue
68 */
69static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 struct blk_mq_ctx *ctx)
71{
72 if (!test_bit(ctx->index_hw, hctx->ctx_map))
73 set_bit(ctx->index_hw, hctx->ctx_map);
74}
75
081241e5
CH
76static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
77 gfp_t gfp, bool reserved)
320ae51f
JA
78{
79 struct request *rq;
80 unsigned int tag;
81
82 tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
83 if (tag != BLK_MQ_TAG_FAIL) {
84 rq = hctx->rqs[tag];
85 rq->tag = tag;
86
87 return rq;
88 }
89
90 return NULL;
91}
92
93static int blk_mq_queue_enter(struct request_queue *q)
94{
95 int ret;
96
97 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
98 smp_wmb();
99 /* we have problems to freeze the queue if it's initializing */
100 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
101 return 0;
102
103 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
104
105 spin_lock_irq(q->queue_lock);
106 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
43a5e4e2
ML
107 !blk_queue_bypass(q) || blk_queue_dying(q),
108 *q->queue_lock);
320ae51f 109 /* inc usage with lock hold to avoid freeze_queue runs here */
43a5e4e2 110 if (!ret && !blk_queue_dying(q))
320ae51f 111 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
43a5e4e2
ML
112 else if (blk_queue_dying(q))
113 ret = -ENODEV;
320ae51f
JA
114 spin_unlock_irq(q->queue_lock);
115
116 return ret;
117}
118
119static void blk_mq_queue_exit(struct request_queue *q)
120{
121 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
122}
123
43a5e4e2
ML
124static void __blk_mq_drain_queue(struct request_queue *q)
125{
126 while (true) {
127 s64 count;
128
129 spin_lock_irq(q->queue_lock);
130 count = percpu_counter_sum(&q->mq_usage_counter);
131 spin_unlock_irq(q->queue_lock);
132
133 if (count == 0)
134 break;
135 blk_mq_run_queues(q, false);
136 msleep(10);
137 }
138}
139
320ae51f
JA
140/*
141 * Guarantee no request is in use, so we can change any data structure of
142 * the queue afterward.
143 */
144static void blk_mq_freeze_queue(struct request_queue *q)
145{
146 bool drain;
147
148 spin_lock_irq(q->queue_lock);
149 drain = !q->bypass_depth++;
150 queue_flag_set(QUEUE_FLAG_BYPASS, q);
151 spin_unlock_irq(q->queue_lock);
152
43a5e4e2
ML
153 if (drain)
154 __blk_mq_drain_queue(q);
155}
320ae51f 156
43a5e4e2
ML
157void blk_mq_drain_queue(struct request_queue *q)
158{
159 __blk_mq_drain_queue(q);
320ae51f
JA
160}
161
162static void blk_mq_unfreeze_queue(struct request_queue *q)
163{
164 bool wake = false;
165
166 spin_lock_irq(q->queue_lock);
167 if (!--q->bypass_depth) {
168 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
169 wake = true;
170 }
171 WARN_ON_ONCE(q->bypass_depth < 0);
172 spin_unlock_irq(q->queue_lock);
173 if (wake)
174 wake_up_all(&q->mq_freeze_wq);
175}
176
177bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
178{
179 return blk_mq_has_free_tags(hctx->tags);
180}
181EXPORT_SYMBOL(blk_mq_can_queue);
182
94eddfbe
JA
183static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
184 struct request *rq, unsigned int rw_flags)
320ae51f 185{
94eddfbe
JA
186 if (blk_queue_io_stat(q))
187 rw_flags |= REQ_IO_STAT;
188
320ae51f
JA
189 rq->mq_ctx = ctx;
190 rq->cmd_flags = rw_flags;
0fec08b4
ML
191 rq->start_time = jiffies;
192 set_start_time_ns(rq);
320ae51f
JA
193 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
194}
195
320ae51f
JA
196static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
197 int rw, gfp_t gfp,
198 bool reserved)
199{
200 struct request *rq;
201
202 do {
203 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
204 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
205
18741986 206 rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved);
320ae51f 207 if (rq) {
94eddfbe 208 blk_mq_rq_ctx_init(q, ctx, rq, rw);
320ae51f 209 break;
959a35f1 210 }
320ae51f
JA
211
212 blk_mq_put_ctx(ctx);
959a35f1
JM
213 if (!(gfp & __GFP_WAIT))
214 break;
215
320ae51f
JA
216 __blk_mq_run_hw_queue(hctx);
217 blk_mq_wait_for_tags(hctx->tags);
218 } while (1);
219
220 return rq;
221}
222
18741986 223struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
320ae51f
JA
224{
225 struct request *rq;
226
227 if (blk_mq_queue_enter(q))
228 return NULL;
229
18741986 230 rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
959a35f1
JM
231 if (rq)
232 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
233 return rq;
234}
235
236struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
237 gfp_t gfp)
238{
239 struct request *rq;
240
241 if (blk_mq_queue_enter(q))
242 return NULL;
243
244 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
959a35f1
JM
245 if (rq)
246 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
247 return rq;
248}
249EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
250
251/*
252 * Re-init and set pdu, if we have it
253 */
18741986 254void blk_mq_rq_init(struct blk_mq_hw_ctx *hctx, struct request *rq)
320ae51f
JA
255{
256 blk_rq_init(hctx->queue, rq);
257
258 if (hctx->cmd_size)
259 rq->special = blk_mq_rq_to_pdu(rq);
260}
261
262static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
263 struct blk_mq_ctx *ctx, struct request *rq)
264{
265 const int tag = rq->tag;
266 struct request_queue *q = rq->q;
267
268 blk_mq_rq_init(hctx, rq);
269 blk_mq_put_tag(hctx->tags, tag);
270
271 blk_mq_queue_exit(q);
272}
273
274void blk_mq_free_request(struct request *rq)
275{
276 struct blk_mq_ctx *ctx = rq->mq_ctx;
277 struct blk_mq_hw_ctx *hctx;
278 struct request_queue *q = rq->q;
279
280 ctx->rq_completed[rq_is_sync(rq)]++;
281
282 hctx = q->mq_ops->map_queue(q, ctx->cpu);
283 __blk_mq_free_request(hctx, ctx, rq);
284}
285
7237c740 286bool blk_mq_end_io_partial(struct request *rq, int error, unsigned int nr_bytes)
320ae51f 287{
7237c740
CH
288 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
289 return true;
320ae51f 290
0d11e6ac
ML
291 blk_account_io_done(rq);
292
320ae51f
JA
293 if (rq->end_io)
294 rq->end_io(rq, error);
295 else
296 blk_mq_free_request(rq);
7237c740 297 return false;
320ae51f 298}
7237c740 299EXPORT_SYMBOL(blk_mq_end_io_partial);
320ae51f 300
30a91cb4 301static void __blk_mq_complete_request_remote(void *data)
320ae51f 302{
3d6efbf6 303 struct request *rq = data;
320ae51f 304
30a91cb4 305 rq->q->softirq_done_fn(rq);
320ae51f 306}
320ae51f 307
30a91cb4 308void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
309{
310 struct blk_mq_ctx *ctx = rq->mq_ctx;
311 int cpu;
312
30a91cb4
CH
313 if (!ctx->ipi_redirect) {
314 rq->q->softirq_done_fn(rq);
315 return;
316 }
320ae51f
JA
317
318 cpu = get_cpu();
3d6efbf6 319 if (cpu != ctx->cpu && cpu_online(ctx->cpu)) {
30a91cb4 320 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
321 rq->csd.info = rq;
322 rq->csd.flags = 0;
c46fff2a 323 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 324 } else {
30a91cb4 325 rq->q->softirq_done_fn(rq);
3d6efbf6 326 }
320ae51f
JA
327 put_cpu();
328}
30a91cb4
CH
329
330/**
331 * blk_mq_complete_request - end I/O on a request
332 * @rq: the request being processed
333 *
334 * Description:
335 * Ends all I/O on a request. It does not handle partial completions.
336 * The actual completion happens out-of-order, through a IPI handler.
337 **/
338void blk_mq_complete_request(struct request *rq)
339{
340 if (unlikely(blk_should_fake_timeout(rq->q)))
341 return;
342 if (!blk_mark_rq_complete(rq))
343 __blk_mq_complete_request(rq);
344}
345EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 346
49f5baa5 347static void blk_mq_start_request(struct request *rq, bool last)
320ae51f
JA
348{
349 struct request_queue *q = rq->q;
350
351 trace_block_rq_issue(q, rq);
352
353 /*
354 * Just mark start time and set the started bit. Due to memory
355 * ordering, we know we'll see the correct deadline as long as
356 * REQ_ATOMIC_STARTED is seen.
357 */
358 rq->deadline = jiffies + q->rq_timeout;
359 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
49f5baa5
CH
360
361 if (q->dma_drain_size && blk_rq_bytes(rq)) {
362 /*
363 * Make sure space for the drain appears. We know we can do
364 * this because max_hw_segments has been adjusted to be one
365 * fewer than the device can handle.
366 */
367 rq->nr_phys_segments++;
368 }
369
370 /*
371 * Flag the last request in the series so that drivers know when IO
372 * should be kicked off, if they don't do it on a per-request basis.
373 *
374 * Note: the flag isn't the only condition drivers should do kick off.
375 * If drive is busy, the last request might not have the bit set.
376 */
377 if (last)
378 rq->cmd_flags |= REQ_END;
320ae51f
JA
379}
380
381static void blk_mq_requeue_request(struct request *rq)
382{
383 struct request_queue *q = rq->q;
384
385 trace_block_rq_requeue(q, rq);
386 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
49f5baa5
CH
387
388 rq->cmd_flags &= ~REQ_END;
389
390 if (q->dma_drain_size && blk_rq_bytes(rq))
391 rq->nr_phys_segments--;
320ae51f
JA
392}
393
394struct blk_mq_timeout_data {
395 struct blk_mq_hw_ctx *hctx;
396 unsigned long *next;
397 unsigned int *next_set;
398};
399
400static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
401{
402 struct blk_mq_timeout_data *data = __data;
403 struct blk_mq_hw_ctx *hctx = data->hctx;
404 unsigned int tag;
405
406 /* It may not be in flight yet (this is where
407 * the REQ_ATOMIC_STARTED flag comes in). The requests are
408 * statically allocated, so we know it's always safe to access the
409 * memory associated with a bit offset into ->rqs[].
410 */
411 tag = 0;
412 do {
413 struct request *rq;
414
415 tag = find_next_zero_bit(free_tags, hctx->queue_depth, tag);
416 if (tag >= hctx->queue_depth)
417 break;
418
419 rq = hctx->rqs[tag++];
420
421 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
422 continue;
423
424 blk_rq_check_expired(rq, data->next, data->next_set);
425 } while (1);
426}
427
428static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
429 unsigned long *next,
430 unsigned int *next_set)
431{
432 struct blk_mq_timeout_data data = {
433 .hctx = hctx,
434 .next = next,
435 .next_set = next_set,
436 };
437
438 /*
439 * Ask the tagging code to iterate busy requests, so we can
440 * check them for timeout.
441 */
442 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
443}
444
445static void blk_mq_rq_timer(unsigned long data)
446{
447 struct request_queue *q = (struct request_queue *) data;
448 struct blk_mq_hw_ctx *hctx;
449 unsigned long next = 0;
450 int i, next_set = 0;
451
452 queue_for_each_hw_ctx(q, hctx, i)
453 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
454
455 if (next_set)
456 mod_timer(&q->timeout, round_jiffies_up(next));
457}
458
459/*
460 * Reverse check our software queue for entries that we could potentially
461 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
462 * too much time checking for merges.
463 */
464static bool blk_mq_attempt_merge(struct request_queue *q,
465 struct blk_mq_ctx *ctx, struct bio *bio)
466{
467 struct request *rq;
468 int checked = 8;
469
470 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
471 int el_ret;
472
473 if (!checked--)
474 break;
475
476 if (!blk_rq_merge_ok(rq, bio))
477 continue;
478
479 el_ret = blk_try_merge(rq, bio);
480 if (el_ret == ELEVATOR_BACK_MERGE) {
481 if (bio_attempt_back_merge(q, rq, bio)) {
482 ctx->rq_merged++;
483 return true;
484 }
485 break;
486 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
487 if (bio_attempt_front_merge(q, rq, bio)) {
488 ctx->rq_merged++;
489 return true;
490 }
491 break;
492 }
493 }
494
495 return false;
496}
497
498void blk_mq_add_timer(struct request *rq)
499{
500 __blk_add_timer(rq, NULL);
501}
502
503/*
504 * Run this hardware queue, pulling any software queues mapped to it in.
505 * Note that this function currently has various problems around ordering
506 * of IO. In particular, we'd like FIFO behaviour on handling existing
507 * items on the hctx->dispatch list. Ignore that for now.
508 */
509static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
510{
511 struct request_queue *q = hctx->queue;
512 struct blk_mq_ctx *ctx;
513 struct request *rq;
514 LIST_HEAD(rq_list);
515 int bit, queued;
516
5d12f905 517 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
518 return;
519
520 hctx->run++;
521
522 /*
523 * Touch any software queue that has pending entries.
524 */
525 for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
526 clear_bit(bit, hctx->ctx_map);
527 ctx = hctx->ctxs[bit];
528 BUG_ON(bit != ctx->index_hw);
529
530 spin_lock(&ctx->lock);
531 list_splice_tail_init(&ctx->rq_list, &rq_list);
532 spin_unlock(&ctx->lock);
533 }
534
535 /*
536 * If we have previous entries on our dispatch list, grab them
537 * and stuff them at the front for more fair dispatch.
538 */
539 if (!list_empty_careful(&hctx->dispatch)) {
540 spin_lock(&hctx->lock);
541 if (!list_empty(&hctx->dispatch))
542 list_splice_init(&hctx->dispatch, &rq_list);
543 spin_unlock(&hctx->lock);
544 }
545
546 /*
547 * Delete and return all entries from our dispatch list
548 */
549 queued = 0;
550
551 /*
552 * Now process all the entries, sending them to the driver.
553 */
554 while (!list_empty(&rq_list)) {
555 int ret;
556
557 rq = list_first_entry(&rq_list, struct request, queuelist);
558 list_del_init(&rq->queuelist);
320ae51f 559
49f5baa5 560 blk_mq_start_request(rq, list_empty(&rq_list));
320ae51f
JA
561
562 ret = q->mq_ops->queue_rq(hctx, rq);
563 switch (ret) {
564 case BLK_MQ_RQ_QUEUE_OK:
565 queued++;
566 continue;
567 case BLK_MQ_RQ_QUEUE_BUSY:
568 /*
569 * FIXME: we should have a mechanism to stop the queue
570 * like blk_stop_queue, otherwise we will waste cpu
571 * time
572 */
573 list_add(&rq->queuelist, &rq_list);
574 blk_mq_requeue_request(rq);
575 break;
576 default:
577 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 578 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 579 rq->errors = -EIO;
320ae51f
JA
580 blk_mq_end_io(rq, rq->errors);
581 break;
582 }
583
584 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
585 break;
586 }
587
588 if (!queued)
589 hctx->dispatched[0]++;
590 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
591 hctx->dispatched[ilog2(queued) + 1]++;
592
593 /*
594 * Any items that need requeuing? Stuff them into hctx->dispatch,
595 * that is where we will continue on next queue run.
596 */
597 if (!list_empty(&rq_list)) {
598 spin_lock(&hctx->lock);
599 list_splice(&rq_list, &hctx->dispatch);
600 spin_unlock(&hctx->lock);
601 }
602}
603
604void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
605{
5d12f905 606 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
607 return;
608
609 if (!async)
610 __blk_mq_run_hw_queue(hctx);
59c3d45e
JA
611 else
612 kblockd_schedule_delayed_work(&hctx->delayed_work, 0);
320ae51f
JA
613}
614
615void blk_mq_run_queues(struct request_queue *q, bool async)
616{
617 struct blk_mq_hw_ctx *hctx;
618 int i;
619
620 queue_for_each_hw_ctx(q, hctx, i) {
621 if ((!blk_mq_hctx_has_pending(hctx) &&
622 list_empty_careful(&hctx->dispatch)) ||
5d12f905 623 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
624 continue;
625
626 blk_mq_run_hw_queue(hctx, async);
627 }
628}
629EXPORT_SYMBOL(blk_mq_run_queues);
630
631void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
632{
633 cancel_delayed_work(&hctx->delayed_work);
634 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
635}
636EXPORT_SYMBOL(blk_mq_stop_hw_queue);
637
280d45f6
CH
638void blk_mq_stop_hw_queues(struct request_queue *q)
639{
640 struct blk_mq_hw_ctx *hctx;
641 int i;
642
643 queue_for_each_hw_ctx(q, hctx, i)
644 blk_mq_stop_hw_queue(hctx);
645}
646EXPORT_SYMBOL(blk_mq_stop_hw_queues);
647
320ae51f
JA
648void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
649{
650 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
651 __blk_mq_run_hw_queue(hctx);
652}
653EXPORT_SYMBOL(blk_mq_start_hw_queue);
654
655void blk_mq_start_stopped_hw_queues(struct request_queue *q)
656{
657 struct blk_mq_hw_ctx *hctx;
658 int i;
659
660 queue_for_each_hw_ctx(q, hctx, i) {
661 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
662 continue;
663
664 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
665 blk_mq_run_hw_queue(hctx, true);
666 }
667}
668EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
669
670static void blk_mq_work_fn(struct work_struct *work)
671{
672 struct blk_mq_hw_ctx *hctx;
673
674 hctx = container_of(work, struct blk_mq_hw_ctx, delayed_work.work);
675 __blk_mq_run_hw_queue(hctx);
676}
677
678static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 679 struct request *rq, bool at_head)
320ae51f
JA
680{
681 struct blk_mq_ctx *ctx = rq->mq_ctx;
682
01b983c9
JA
683 trace_block_rq_insert(hctx->queue, rq);
684
72a0a36e
CH
685 if (at_head)
686 list_add(&rq->queuelist, &ctx->rq_list);
687 else
688 list_add_tail(&rq->queuelist, &ctx->rq_list);
320ae51f
JA
689 blk_mq_hctx_mark_pending(hctx, ctx);
690
691 /*
692 * We do this early, to ensure we are on the right CPU.
693 */
694 blk_mq_add_timer(rq);
695}
696
eeabc850
CH
697void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
698 bool async)
320ae51f 699{
eeabc850 700 struct request_queue *q = rq->q;
320ae51f 701 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
702 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
703
704 current_ctx = blk_mq_get_ctx(q);
705 if (!cpu_online(ctx->cpu))
706 rq->mq_ctx = ctx = current_ctx;
320ae51f 707
320ae51f
JA
708 hctx = q->mq_ops->map_queue(q, ctx->cpu);
709
eeabc850
CH
710 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
711 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
320ae51f
JA
712 blk_insert_flush(rq);
713 } else {
320ae51f 714 spin_lock(&ctx->lock);
72a0a36e 715 __blk_mq_insert_request(hctx, rq, at_head);
320ae51f 716 spin_unlock(&ctx->lock);
320ae51f
JA
717 }
718
320ae51f
JA
719 blk_mq_put_ctx(current_ctx);
720
721 if (run_queue)
722 blk_mq_run_hw_queue(hctx, async);
723}
724
725static void blk_mq_insert_requests(struct request_queue *q,
726 struct blk_mq_ctx *ctx,
727 struct list_head *list,
728 int depth,
729 bool from_schedule)
730
731{
732 struct blk_mq_hw_ctx *hctx;
733 struct blk_mq_ctx *current_ctx;
734
735 trace_block_unplug(q, depth, !from_schedule);
736
737 current_ctx = blk_mq_get_ctx(q);
738
739 if (!cpu_online(ctx->cpu))
740 ctx = current_ctx;
741 hctx = q->mq_ops->map_queue(q, ctx->cpu);
742
743 /*
744 * preemption doesn't flush plug list, so it's possible ctx->cpu is
745 * offline now
746 */
747 spin_lock(&ctx->lock);
748 while (!list_empty(list)) {
749 struct request *rq;
750
751 rq = list_first_entry(list, struct request, queuelist);
752 list_del_init(&rq->queuelist);
753 rq->mq_ctx = ctx;
72a0a36e 754 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
755 }
756 spin_unlock(&ctx->lock);
757
758 blk_mq_put_ctx(current_ctx);
759
760 blk_mq_run_hw_queue(hctx, from_schedule);
761}
762
763static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
764{
765 struct request *rqa = container_of(a, struct request, queuelist);
766 struct request *rqb = container_of(b, struct request, queuelist);
767
768 return !(rqa->mq_ctx < rqb->mq_ctx ||
769 (rqa->mq_ctx == rqb->mq_ctx &&
770 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
771}
772
773void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
774{
775 struct blk_mq_ctx *this_ctx;
776 struct request_queue *this_q;
777 struct request *rq;
778 LIST_HEAD(list);
779 LIST_HEAD(ctx_list);
780 unsigned int depth;
781
782 list_splice_init(&plug->mq_list, &list);
783
784 list_sort(NULL, &list, plug_ctx_cmp);
785
786 this_q = NULL;
787 this_ctx = NULL;
788 depth = 0;
789
790 while (!list_empty(&list)) {
791 rq = list_entry_rq(list.next);
792 list_del_init(&rq->queuelist);
793 BUG_ON(!rq->q);
794 if (rq->mq_ctx != this_ctx) {
795 if (this_ctx) {
796 blk_mq_insert_requests(this_q, this_ctx,
797 &ctx_list, depth,
798 from_schedule);
799 }
800
801 this_ctx = rq->mq_ctx;
802 this_q = rq->q;
803 depth = 0;
804 }
805
806 depth++;
807 list_add_tail(&rq->queuelist, &ctx_list);
808 }
809
810 /*
811 * If 'this_ctx' is set, we know we have entries to complete
812 * on 'ctx_list'. Do those.
813 */
814 if (this_ctx) {
815 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
816 from_schedule);
817 }
818}
819
820static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
821{
822 init_request_from_bio(rq, bio);
823 blk_account_io_start(rq, 1);
824}
825
826static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
827{
828 struct blk_mq_hw_ctx *hctx;
829 struct blk_mq_ctx *ctx;
830 const int is_sync = rw_is_sync(bio->bi_rw);
831 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
832 int rw = bio_data_dir(bio);
833 struct request *rq;
834 unsigned int use_plug, request_count = 0;
835
836 /*
837 * If we have multiple hardware queues, just go directly to
838 * one of those for sync IO.
839 */
840 use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
841
842 blk_queue_bounce(q, &bio);
843
14ec77f3
NB
844 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
845 bio_endio(bio, -EIO);
846 return;
847 }
848
320ae51f
JA
849 if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
850 return;
851
852 if (blk_mq_queue_enter(q)) {
853 bio_endio(bio, -EIO);
854 return;
855 }
856
857 ctx = blk_mq_get_ctx(q);
858 hctx = q->mq_ops->map_queue(q, ctx->cpu);
859
27fbf4e8
SL
860 if (is_sync)
861 rw |= REQ_SYNC;
320ae51f 862 trace_block_getrq(q, bio, rw);
18741986 863 rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false);
320ae51f 864 if (likely(rq))
18741986 865 blk_mq_rq_ctx_init(q, ctx, rq, rw);
320ae51f
JA
866 else {
867 blk_mq_put_ctx(ctx);
868 trace_block_sleeprq(q, bio, rw);
18741986
CH
869 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
870 false);
320ae51f
JA
871 ctx = rq->mq_ctx;
872 hctx = q->mq_ops->map_queue(q, ctx->cpu);
873 }
874
875 hctx->queued++;
876
877 if (unlikely(is_flush_fua)) {
878 blk_mq_bio_to_request(rq, bio);
879 blk_mq_put_ctx(ctx);
880 blk_insert_flush(rq);
881 goto run_queue;
882 }
883
884 /*
885 * A task plug currently exists. Since this is completely lockless,
886 * utilize that to temporarily store requests until the task is
887 * either done or scheduled away.
888 */
889 if (use_plug) {
890 struct blk_plug *plug = current->plug;
891
892 if (plug) {
893 blk_mq_bio_to_request(rq, bio);
92f399c7 894 if (list_empty(&plug->mq_list))
320ae51f
JA
895 trace_block_plug(q);
896 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
897 blk_flush_plug_list(plug, false);
898 trace_block_plug(q);
899 }
900 list_add_tail(&rq->queuelist, &plug->mq_list);
901 blk_mq_put_ctx(ctx);
902 return;
903 }
904 }
905
906 spin_lock(&ctx->lock);
907
908 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
909 blk_mq_attempt_merge(q, ctx, bio))
910 __blk_mq_free_request(hctx, ctx, rq);
911 else {
912 blk_mq_bio_to_request(rq, bio);
72a0a36e 913 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
914 }
915
916 spin_unlock(&ctx->lock);
917 blk_mq_put_ctx(ctx);
918
919 /*
920 * For a SYNC request, send it to the hardware immediately. For an
921 * ASYNC request, just ensure that we run it later on. The latter
922 * allows for merging opportunities and more efficient dispatching.
923 */
924run_queue:
925 blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
926}
927
928/*
929 * Default mapping to a software queue, since we use one per CPU.
930 */
931struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
932{
933 return q->queue_hw_ctx[q->mq_map[cpu]];
934}
935EXPORT_SYMBOL(blk_mq_map_queue);
936
937struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_reg *reg,
938 unsigned int hctx_index)
939{
940 return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
941 GFP_KERNEL | __GFP_ZERO, reg->numa_node);
942}
943EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
944
945void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
946 unsigned int hctx_index)
947{
948 kfree(hctx);
949}
950EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
951
952static void blk_mq_hctx_notify(void *data, unsigned long action,
953 unsigned int cpu)
954{
955 struct blk_mq_hw_ctx *hctx = data;
bccb5f7c 956 struct request_queue *q = hctx->queue;
320ae51f
JA
957 struct blk_mq_ctx *ctx;
958 LIST_HEAD(tmp);
959
960 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
961 return;
962
963 /*
964 * Move ctx entries to new CPU, if this one is going away.
965 */
bccb5f7c 966 ctx = __blk_mq_get_ctx(q, cpu);
320ae51f
JA
967
968 spin_lock(&ctx->lock);
969 if (!list_empty(&ctx->rq_list)) {
970 list_splice_init(&ctx->rq_list, &tmp);
971 clear_bit(ctx->index_hw, hctx->ctx_map);
972 }
973 spin_unlock(&ctx->lock);
974
975 if (list_empty(&tmp))
976 return;
977
bccb5f7c 978 ctx = blk_mq_get_ctx(q);
320ae51f
JA
979 spin_lock(&ctx->lock);
980
981 while (!list_empty(&tmp)) {
982 struct request *rq;
983
984 rq = list_first_entry(&tmp, struct request, queuelist);
985 rq->mq_ctx = ctx;
986 list_move_tail(&rq->queuelist, &ctx->rq_list);
987 }
988
bccb5f7c 989 hctx = q->mq_ops->map_queue(q, ctx->cpu);
320ae51f
JA
990 blk_mq_hctx_mark_pending(hctx, ctx);
991
992 spin_unlock(&ctx->lock);
993 blk_mq_put_ctx(ctx);
bccb5f7c
JA
994
995 blk_mq_run_hw_queue(hctx, true);
320ae51f
JA
996}
997
95363efd
JA
998static int blk_mq_init_hw_commands(struct blk_mq_hw_ctx *hctx,
999 int (*init)(void *, struct blk_mq_hw_ctx *,
1000 struct request *, unsigned int),
1001 void *data)
1002{
1003 unsigned int i;
1004 int ret = 0;
1005
1006 for (i = 0; i < hctx->queue_depth; i++) {
1007 struct request *rq = hctx->rqs[i];
1008
1009 ret = init(data, hctx, rq, i);
1010 if (ret)
1011 break;
1012 }
1013
1014 return ret;
1015}
1016
1017int blk_mq_init_commands(struct request_queue *q,
1018 int (*init)(void *, struct blk_mq_hw_ctx *,
1019 struct request *, unsigned int),
1020 void *data)
1021{
1022 struct blk_mq_hw_ctx *hctx;
1023 unsigned int i;
1024 int ret = 0;
1025
1026 queue_for_each_hw_ctx(q, hctx, i) {
1027 ret = blk_mq_init_hw_commands(hctx, init, data);
1028 if (ret)
1029 break;
1030 }
1031
1032 return ret;
1033}
1034EXPORT_SYMBOL(blk_mq_init_commands);
1035
1036static void blk_mq_free_hw_commands(struct blk_mq_hw_ctx *hctx,
1037 void (*free)(void *, struct blk_mq_hw_ctx *,
320ae51f
JA
1038 struct request *, unsigned int),
1039 void *data)
1040{
1041 unsigned int i;
1042
1043 for (i = 0; i < hctx->queue_depth; i++) {
1044 struct request *rq = hctx->rqs[i];
1045
95363efd 1046 free(data, hctx, rq, i);
320ae51f
JA
1047 }
1048}
1049
95363efd
JA
1050void blk_mq_free_commands(struct request_queue *q,
1051 void (*free)(void *, struct blk_mq_hw_ctx *,
320ae51f
JA
1052 struct request *, unsigned int),
1053 void *data)
1054{
1055 struct blk_mq_hw_ctx *hctx;
1056 unsigned int i;
1057
1058 queue_for_each_hw_ctx(q, hctx, i)
95363efd 1059 blk_mq_free_hw_commands(hctx, free, data);
320ae51f 1060}
95363efd 1061EXPORT_SYMBOL(blk_mq_free_commands);
320ae51f
JA
1062
1063static void blk_mq_free_rq_map(struct blk_mq_hw_ctx *hctx)
1064{
1065 struct page *page;
1066
1067 while (!list_empty(&hctx->page_list)) {
6753471c
DH
1068 page = list_first_entry(&hctx->page_list, struct page, lru);
1069 list_del_init(&page->lru);
320ae51f
JA
1070 __free_pages(page, page->private);
1071 }
1072
1073 kfree(hctx->rqs);
1074
1075 if (hctx->tags)
1076 blk_mq_free_tags(hctx->tags);
1077}
1078
1079static size_t order_to_size(unsigned int order)
1080{
1081 size_t ret = PAGE_SIZE;
1082
1083 while (order--)
1084 ret *= 2;
1085
1086 return ret;
1087}
1088
1089static int blk_mq_init_rq_map(struct blk_mq_hw_ctx *hctx,
1090 unsigned int reserved_tags, int node)
1091{
1092 unsigned int i, j, entries_per_page, max_order = 4;
1093 size_t rq_size, left;
1094
1095 INIT_LIST_HEAD(&hctx->page_list);
1096
1097 hctx->rqs = kmalloc_node(hctx->queue_depth * sizeof(struct request *),
1098 GFP_KERNEL, node);
1099 if (!hctx->rqs)
1100 return -ENOMEM;
1101
1102 /*
1103 * rq_size is the size of the request plus driver payload, rounded
1104 * to the cacheline size
1105 */
1106 rq_size = round_up(sizeof(struct request) + hctx->cmd_size,
1107 cache_line_size());
1108 left = rq_size * hctx->queue_depth;
1109
1110 for (i = 0; i < hctx->queue_depth;) {
1111 int this_order = max_order;
1112 struct page *page;
1113 int to_do;
1114 void *p;
1115
1116 while (left < order_to_size(this_order - 1) && this_order)
1117 this_order--;
1118
1119 do {
1120 page = alloc_pages_node(node, GFP_KERNEL, this_order);
1121 if (page)
1122 break;
1123 if (!this_order--)
1124 break;
1125 if (order_to_size(this_order) < rq_size)
1126 break;
1127 } while (1);
1128
1129 if (!page)
1130 break;
1131
1132 page->private = this_order;
6753471c 1133 list_add_tail(&page->lru, &hctx->page_list);
320ae51f
JA
1134
1135 p = page_address(page);
1136 entries_per_page = order_to_size(this_order) / rq_size;
1137 to_do = min(entries_per_page, hctx->queue_depth - i);
1138 left -= to_do * rq_size;
1139 for (j = 0; j < to_do; j++) {
1140 hctx->rqs[i] = p;
1141 blk_mq_rq_init(hctx, hctx->rqs[i]);
1142 p += rq_size;
1143 i++;
1144 }
1145 }
1146
1147 if (i < (reserved_tags + BLK_MQ_TAG_MIN))
1148 goto err_rq_map;
1149 else if (i != hctx->queue_depth) {
1150 hctx->queue_depth = i;
1151 pr_warn("%s: queue depth set to %u because of low memory\n",
1152 __func__, i);
1153 }
1154
1155 hctx->tags = blk_mq_init_tags(hctx->queue_depth, reserved_tags, node);
1156 if (!hctx->tags) {
1157err_rq_map:
1158 blk_mq_free_rq_map(hctx);
1159 return -ENOMEM;
1160 }
1161
1162 return 0;
1163}
1164
1165static int blk_mq_init_hw_queues(struct request_queue *q,
1166 struct blk_mq_reg *reg, void *driver_data)
1167{
1168 struct blk_mq_hw_ctx *hctx;
1169 unsigned int i, j;
1170
1171 /*
1172 * Initialize hardware queues
1173 */
1174 queue_for_each_hw_ctx(q, hctx, i) {
1175 unsigned int num_maps;
1176 int node;
1177
1178 node = hctx->numa_node;
1179 if (node == NUMA_NO_NODE)
1180 node = hctx->numa_node = reg->numa_node;
1181
1182 INIT_DELAYED_WORK(&hctx->delayed_work, blk_mq_work_fn);
1183 spin_lock_init(&hctx->lock);
1184 INIT_LIST_HEAD(&hctx->dispatch);
1185 hctx->queue = q;
1186 hctx->queue_num = i;
1187 hctx->flags = reg->flags;
1188 hctx->queue_depth = reg->queue_depth;
1189 hctx->cmd_size = reg->cmd_size;
1190
1191 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1192 blk_mq_hctx_notify, hctx);
1193 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1194
1195 if (blk_mq_init_rq_map(hctx, reg->reserved_tags, node))
1196 break;
1197
1198 /*
1199 * Allocate space for all possible cpus to avoid allocation in
1200 * runtime
1201 */
1202 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1203 GFP_KERNEL, node);
1204 if (!hctx->ctxs)
1205 break;
1206
1207 num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1208 hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1209 GFP_KERNEL, node);
1210 if (!hctx->ctx_map)
1211 break;
1212
1213 hctx->nr_ctx_map = num_maps;
1214 hctx->nr_ctx = 0;
1215
1216 if (reg->ops->init_hctx &&
1217 reg->ops->init_hctx(hctx, driver_data, i))
1218 break;
1219 }
1220
1221 if (i == q->nr_hw_queues)
1222 return 0;
1223
1224 /*
1225 * Init failed
1226 */
1227 queue_for_each_hw_ctx(q, hctx, j) {
1228 if (i == j)
1229 break;
1230
1231 if (reg->ops->exit_hctx)
1232 reg->ops->exit_hctx(hctx, j);
1233
1234 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1235 blk_mq_free_rq_map(hctx);
1236 kfree(hctx->ctxs);
1237 }
1238
1239 return 1;
1240}
1241
1242static void blk_mq_init_cpu_queues(struct request_queue *q,
1243 unsigned int nr_hw_queues)
1244{
1245 unsigned int i;
1246
1247 for_each_possible_cpu(i) {
1248 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1249 struct blk_mq_hw_ctx *hctx;
1250
1251 memset(__ctx, 0, sizeof(*__ctx));
1252 __ctx->cpu = i;
1253 spin_lock_init(&__ctx->lock);
1254 INIT_LIST_HEAD(&__ctx->rq_list);
1255 __ctx->queue = q;
1256
1257 /* If the cpu isn't online, the cpu is mapped to first hctx */
1258 hctx = q->mq_ops->map_queue(q, i);
1259 hctx->nr_ctx++;
1260
1261 if (!cpu_online(i))
1262 continue;
1263
1264 /*
1265 * Set local node, IFF we have more than one hw queue. If
1266 * not, we remain on the home node of the device
1267 */
1268 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1269 hctx->numa_node = cpu_to_node(i);
1270 }
1271}
1272
1273static void blk_mq_map_swqueue(struct request_queue *q)
1274{
1275 unsigned int i;
1276 struct blk_mq_hw_ctx *hctx;
1277 struct blk_mq_ctx *ctx;
1278
1279 queue_for_each_hw_ctx(q, hctx, i) {
1280 hctx->nr_ctx = 0;
1281 }
1282
1283 /*
1284 * Map software to hardware queues
1285 */
1286 queue_for_each_ctx(q, ctx, i) {
1287 /* If the cpu isn't online, the cpu is mapped to first hctx */
1288 hctx = q->mq_ops->map_queue(q, i);
1289 ctx->index_hw = hctx->nr_ctx;
1290 hctx->ctxs[hctx->nr_ctx++] = ctx;
1291 }
1292}
1293
1294struct request_queue *blk_mq_init_queue(struct blk_mq_reg *reg,
1295 void *driver_data)
1296{
1297 struct blk_mq_hw_ctx **hctxs;
1298 struct blk_mq_ctx *ctx;
1299 struct request_queue *q;
1300 int i;
1301
1302 if (!reg->nr_hw_queues ||
1303 !reg->ops->queue_rq || !reg->ops->map_queue ||
1304 !reg->ops->alloc_hctx || !reg->ops->free_hctx)
1305 return ERR_PTR(-EINVAL);
1306
1307 if (!reg->queue_depth)
1308 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1309 else if (reg->queue_depth > BLK_MQ_MAX_DEPTH) {
1310 pr_err("blk-mq: queuedepth too large (%u)\n", reg->queue_depth);
1311 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1312 }
1313
1314 if (reg->queue_depth < (reg->reserved_tags + BLK_MQ_TAG_MIN))
1315 return ERR_PTR(-EINVAL);
1316
1317 ctx = alloc_percpu(struct blk_mq_ctx);
1318 if (!ctx)
1319 return ERR_PTR(-ENOMEM);
1320
1321 hctxs = kmalloc_node(reg->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1322 reg->numa_node);
1323
1324 if (!hctxs)
1325 goto err_percpu;
1326
1327 for (i = 0; i < reg->nr_hw_queues; i++) {
1328 hctxs[i] = reg->ops->alloc_hctx(reg, i);
1329 if (!hctxs[i])
1330 goto err_hctxs;
1331
1332 hctxs[i]->numa_node = NUMA_NO_NODE;
1333 hctxs[i]->queue_num = i;
1334 }
1335
1336 q = blk_alloc_queue_node(GFP_KERNEL, reg->numa_node);
1337 if (!q)
1338 goto err_hctxs;
1339
1340 q->mq_map = blk_mq_make_queue_map(reg);
1341 if (!q->mq_map)
1342 goto err_map;
1343
1344 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1345 blk_queue_rq_timeout(q, 30000);
1346
1347 q->nr_queues = nr_cpu_ids;
1348 q->nr_hw_queues = reg->nr_hw_queues;
1349
1350 q->queue_ctx = ctx;
1351 q->queue_hw_ctx = hctxs;
1352
1353 q->mq_ops = reg->ops;
94eddfbe 1354 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1355
1be036e9
CH
1356 q->sg_reserved_size = INT_MAX;
1357
320ae51f
JA
1358 blk_queue_make_request(q, blk_mq_make_request);
1359 blk_queue_rq_timed_out(q, reg->ops->timeout);
1360 if (reg->timeout)
1361 blk_queue_rq_timeout(q, reg->timeout);
1362
30a91cb4
CH
1363 if (reg->ops->complete)
1364 blk_queue_softirq_done(q, reg->ops->complete);
1365
320ae51f
JA
1366 blk_mq_init_flush(q);
1367 blk_mq_init_cpu_queues(q, reg->nr_hw_queues);
1368
18741986
CH
1369 q->flush_rq = kzalloc(round_up(sizeof(struct request) + reg->cmd_size,
1370 cache_line_size()), GFP_KERNEL);
1371 if (!q->flush_rq)
320ae51f
JA
1372 goto err_hw;
1373
18741986
CH
1374 if (blk_mq_init_hw_queues(q, reg, driver_data))
1375 goto err_flush_rq;
1376
320ae51f
JA
1377 blk_mq_map_swqueue(q);
1378
1379 mutex_lock(&all_q_mutex);
1380 list_add_tail(&q->all_q_node, &all_q_list);
1381 mutex_unlock(&all_q_mutex);
1382
1383 return q;
18741986
CH
1384
1385err_flush_rq:
1386 kfree(q->flush_rq);
320ae51f
JA
1387err_hw:
1388 kfree(q->mq_map);
1389err_map:
1390 blk_cleanup_queue(q);
1391err_hctxs:
1392 for (i = 0; i < reg->nr_hw_queues; i++) {
1393 if (!hctxs[i])
1394 break;
1395 reg->ops->free_hctx(hctxs[i], i);
1396 }
1397 kfree(hctxs);
1398err_percpu:
1399 free_percpu(ctx);
1400 return ERR_PTR(-ENOMEM);
1401}
1402EXPORT_SYMBOL(blk_mq_init_queue);
1403
1404void blk_mq_free_queue(struct request_queue *q)
1405{
1406 struct blk_mq_hw_ctx *hctx;
1407 int i;
1408
1409 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f
JA
1410 kfree(hctx->ctx_map);
1411 kfree(hctx->ctxs);
1412 blk_mq_free_rq_map(hctx);
1413 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1414 if (q->mq_ops->exit_hctx)
1415 q->mq_ops->exit_hctx(hctx, i);
1416 q->mq_ops->free_hctx(hctx, i);
1417 }
1418
1419 free_percpu(q->queue_ctx);
1420 kfree(q->queue_hw_ctx);
1421 kfree(q->mq_map);
1422
1423 q->queue_ctx = NULL;
1424 q->queue_hw_ctx = NULL;
1425 q->mq_map = NULL;
1426
1427 mutex_lock(&all_q_mutex);
1428 list_del_init(&q->all_q_node);
1429 mutex_unlock(&all_q_mutex);
1430}
320ae51f
JA
1431
1432/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1433static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1434{
1435 blk_mq_freeze_queue(q);
1436
1437 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1438
1439 /*
1440 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1441 * we should change hctx numa_node according to new topology (this
1442 * involves free and re-allocate memory, worthy doing?)
1443 */
1444
1445 blk_mq_map_swqueue(q);
1446
1447 blk_mq_unfreeze_queue(q);
1448}
1449
f618ef7c
PG
1450static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1451 unsigned long action, void *hcpu)
320ae51f
JA
1452{
1453 struct request_queue *q;
1454
1455 /*
1456 * Before new mapping is established, hotadded cpu might already start
1457 * handling requests. This doesn't break anything as we map offline
1458 * CPUs to first hardware queue. We will re-init queue below to get
1459 * optimal settings.
1460 */
1461 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1462 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1463 return NOTIFY_OK;
1464
1465 mutex_lock(&all_q_mutex);
1466 list_for_each_entry(q, &all_q_list, all_q_node)
1467 blk_mq_queue_reinit(q);
1468 mutex_unlock(&all_q_mutex);
1469 return NOTIFY_OK;
1470}
1471
676141e4
JA
1472void blk_mq_disable_hotplug(void)
1473{
1474 mutex_lock(&all_q_mutex);
1475}
1476
1477void blk_mq_enable_hotplug(void)
1478{
1479 mutex_unlock(&all_q_mutex);
1480}
1481
320ae51f
JA
1482static int __init blk_mq_init(void)
1483{
320ae51f
JA
1484 blk_mq_cpu_init();
1485
1486 /* Must be called after percpu_counter_hotcpu_callback() */
1487 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1488
1489 return 0;
1490}
1491subsys_initcall(blk_mq_init);