]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-mq.c
blk-mq: improve layout of blk_mq_hw_ctx
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
23#include <linux/delay.h>
aedcd72f 24#include <linux/crash_dump.h>
320ae51f
JA
25
26#include <trace/events/block.h>
27
28#include <linux/blk-mq.h>
29#include "blk.h"
30#include "blk-mq.h"
31#include "blk-mq-tag.h"
32
33static DEFINE_MUTEX(all_q_mutex);
34static LIST_HEAD(all_q_list);
35
36static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
37
320ae51f
JA
38/*
39 * Check if any of the ctx's have pending work in this hardware queue
40 */
41static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42{
43 unsigned int i;
44
569fd0ce 45 for (i = 0; i < hctx->ctx_map.size; i++)
1429d7c9 46 if (hctx->ctx_map.map[i].word)
320ae51f
JA
47 return true;
48
49 return false;
50}
51
1429d7c9
JA
52static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 struct blk_mq_ctx *ctx)
54{
55 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56}
57
58#define CTX_TO_BIT(hctx, ctx) \
59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60
320ae51f
JA
61/*
62 * Mark this ctx as having pending work in this hardware queue
63 */
64static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 struct blk_mq_ctx *ctx)
66{
1429d7c9
JA
67 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68
69 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71}
72
73static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75{
76 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77
78 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
79}
80
b4c6a028 81void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 82{
4ecd4fef 83 int freeze_depth;
cddd5d17 84
4ecd4fef
CH
85 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
86 if (freeze_depth == 1) {
3ef28e83 87 percpu_ref_kill(&q->q_usage_counter);
b94ec296 88 blk_mq_run_hw_queues(q, false);
cddd5d17 89 }
f3af020b 90}
b4c6a028 91EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
f3af020b
TH
92
93static void blk_mq_freeze_queue_wait(struct request_queue *q)
94{
3ef28e83 95 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2
ML
96}
97
f3af020b
TH
98/*
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
101 */
3ef28e83 102void blk_freeze_queue(struct request_queue *q)
f3af020b 103{
3ef28e83
DW
104 /*
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
110 */
f3af020b
TH
111 blk_mq_freeze_queue_start(q);
112 blk_mq_freeze_queue_wait(q);
113}
3ef28e83
DW
114
115void blk_mq_freeze_queue(struct request_queue *q)
116{
117 /*
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
120 */
121 blk_freeze_queue(q);
122}
c761d96b 123EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 124
b4c6a028 125void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 126{
4ecd4fef 127 int freeze_depth;
320ae51f 128
4ecd4fef
CH
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
131 if (!freeze_depth) {
3ef28e83 132 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 133 wake_up_all(&q->mq_freeze_wq);
add703fd 134 }
320ae51f 135}
b4c6a028 136EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 137
aed3ea94
JA
138void blk_mq_wake_waiters(struct request_queue *q)
139{
140 struct blk_mq_hw_ctx *hctx;
141 unsigned int i;
142
143 queue_for_each_hw_ctx(q, hctx, i)
144 if (blk_mq_hw_queue_mapped(hctx))
145 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
146
147 /*
148 * If we are called because the queue has now been marked as
149 * dying, we need to ensure that processes currently waiting on
150 * the queue are notified as well.
151 */
152 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
153}
154
320ae51f
JA
155bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
156{
157 return blk_mq_has_free_tags(hctx->tags);
158}
159EXPORT_SYMBOL(blk_mq_can_queue);
160
94eddfbe 161static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
cc6e3b10
MC
162 struct request *rq, int op,
163 unsigned int op_flags)
320ae51f 164{
94eddfbe 165 if (blk_queue_io_stat(q))
cc6e3b10 166 op_flags |= REQ_IO_STAT;
94eddfbe 167
af76e555
CH
168 INIT_LIST_HEAD(&rq->queuelist);
169 /* csd/requeue_work/fifo_time is initialized before use */
170 rq->q = q;
320ae51f 171 rq->mq_ctx = ctx;
cc6e3b10 172 req_set_op_attrs(rq, op, op_flags);
af76e555
CH
173 /* do not touch atomic flags, it needs atomic ops against the timer */
174 rq->cpu = -1;
af76e555
CH
175 INIT_HLIST_NODE(&rq->hash);
176 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
177 rq->rq_disk = NULL;
178 rq->part = NULL;
3ee32372 179 rq->start_time = jiffies;
af76e555
CH
180#ifdef CONFIG_BLK_CGROUP
181 rq->rl = NULL;
0fec08b4 182 set_start_time_ns(rq);
af76e555
CH
183 rq->io_start_time_ns = 0;
184#endif
185 rq->nr_phys_segments = 0;
186#if defined(CONFIG_BLK_DEV_INTEGRITY)
187 rq->nr_integrity_segments = 0;
188#endif
af76e555
CH
189 rq->special = NULL;
190 /* tag was already set */
191 rq->errors = 0;
af76e555 192
6f4a1626
TB
193 rq->cmd = rq->__cmd;
194
af76e555
CH
195 rq->extra_len = 0;
196 rq->sense_len = 0;
197 rq->resid_len = 0;
198 rq->sense = NULL;
199
af76e555 200 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
201 rq->timeout = 0;
202
af76e555
CH
203 rq->end_io = NULL;
204 rq->end_io_data = NULL;
205 rq->next_rq = NULL;
206
d9d8c5c4 207 ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
320ae51f
JA
208}
209
5dee8577 210static struct request *
cc6e3b10 211__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
5dee8577
CH
212{
213 struct request *rq;
214 unsigned int tag;
215
cb96a42c 216 tag = blk_mq_get_tag(data);
5dee8577 217 if (tag != BLK_MQ_TAG_FAIL) {
cb96a42c 218 rq = data->hctx->tags->rqs[tag];
5dee8577 219
cb96a42c 220 if (blk_mq_tag_busy(data->hctx)) {
5dee8577 221 rq->cmd_flags = REQ_MQ_INFLIGHT;
cb96a42c 222 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
223 }
224
225 rq->tag = tag;
cc6e3b10 226 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
5dee8577
CH
227 return rq;
228 }
229
230 return NULL;
231}
232
6f3b0e8b
CH
233struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
234 unsigned int flags)
320ae51f 235{
d852564f
CH
236 struct blk_mq_ctx *ctx;
237 struct blk_mq_hw_ctx *hctx;
320ae51f 238 struct request *rq;
cb96a42c 239 struct blk_mq_alloc_data alloc_data;
a492f075 240 int ret;
320ae51f 241
6f3b0e8b 242 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
243 if (ret)
244 return ERR_PTR(ret);
320ae51f 245
d852564f
CH
246 ctx = blk_mq_get_ctx(q);
247 hctx = q->mq_ops->map_queue(q, ctx->cpu);
6f3b0e8b 248 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
d852564f 249
cc6e3b10 250 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
6f3b0e8b 251 if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
d852564f
CH
252 __blk_mq_run_hw_queue(hctx);
253 blk_mq_put_ctx(ctx);
254
255 ctx = blk_mq_get_ctx(q);
256 hctx = q->mq_ops->map_queue(q, ctx->cpu);
6f3b0e8b 257 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
cc6e3b10 258 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
cb96a42c 259 ctx = alloc_data.ctx;
d852564f
CH
260 }
261 blk_mq_put_ctx(ctx);
c76541a9 262 if (!rq) {
3ef28e83 263 blk_queue_exit(q);
a492f075 264 return ERR_PTR(-EWOULDBLOCK);
c76541a9 265 }
0c4de0f3
CH
266
267 rq->__data_len = 0;
268 rq->__sector = (sector_t) -1;
269 rq->bio = rq->biotail = NULL;
320ae51f
JA
270 return rq;
271}
4bb659b1 272EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 273
1f5bd336
ML
274struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
275 unsigned int flags, unsigned int hctx_idx)
276{
277 struct blk_mq_hw_ctx *hctx;
278 struct blk_mq_ctx *ctx;
279 struct request *rq;
280 struct blk_mq_alloc_data alloc_data;
281 int ret;
282
283 /*
284 * If the tag allocator sleeps we could get an allocation for a
285 * different hardware context. No need to complicate the low level
286 * allocator for this for the rare use case of a command tied to
287 * a specific queue.
288 */
289 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
290 return ERR_PTR(-EINVAL);
291
292 if (hctx_idx >= q->nr_hw_queues)
293 return ERR_PTR(-EIO);
294
295 ret = blk_queue_enter(q, true);
296 if (ret)
297 return ERR_PTR(ret);
298
299 hctx = q->queue_hw_ctx[hctx_idx];
300 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
301
302 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
303 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
304 if (!rq) {
305 blk_queue_exit(q);
306 return ERR_PTR(-EWOULDBLOCK);
307 }
308
309 return rq;
310}
311EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
312
320ae51f
JA
313static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
314 struct blk_mq_ctx *ctx, struct request *rq)
315{
316 const int tag = rq->tag;
317 struct request_queue *q = rq->q;
318
0d2602ca
JA
319 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
320 atomic_dec(&hctx->nr_active);
683d0e12 321 rq->cmd_flags = 0;
0d2602ca 322
af76e555 323 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 324 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
3ef28e83 325 blk_queue_exit(q);
320ae51f
JA
326}
327
7c7f2f2b 328void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
320ae51f
JA
329{
330 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
331
332 ctx->rq_completed[rq_is_sync(rq)]++;
320ae51f 333 __blk_mq_free_request(hctx, ctx, rq);
7c7f2f2b
JA
334
335}
336EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
337
338void blk_mq_free_request(struct request *rq)
339{
340 struct blk_mq_hw_ctx *hctx;
341 struct request_queue *q = rq->q;
342
343 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
344 blk_mq_free_hctx_request(hctx, rq);
320ae51f 345}
1a3b595a 346EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 347
c8a446ad 348inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 349{
0d11e6ac
ML
350 blk_account_io_done(rq);
351
91b63639 352 if (rq->end_io) {
320ae51f 353 rq->end_io(rq, error);
91b63639
CH
354 } else {
355 if (unlikely(blk_bidi_rq(rq)))
356 blk_mq_free_request(rq->next_rq);
320ae51f 357 blk_mq_free_request(rq);
91b63639 358 }
320ae51f 359}
c8a446ad 360EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 361
c8a446ad 362void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
363{
364 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
365 BUG();
c8a446ad 366 __blk_mq_end_request(rq, error);
63151a44 367}
c8a446ad 368EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 369
30a91cb4 370static void __blk_mq_complete_request_remote(void *data)
320ae51f 371{
3d6efbf6 372 struct request *rq = data;
320ae51f 373
30a91cb4 374 rq->q->softirq_done_fn(rq);
320ae51f 375}
320ae51f 376
ed851860 377static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
378{
379 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 380 bool shared = false;
320ae51f
JA
381 int cpu;
382
38535201 383 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
384 rq->q->softirq_done_fn(rq);
385 return;
386 }
320ae51f
JA
387
388 cpu = get_cpu();
38535201
CH
389 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
390 shared = cpus_share_cache(cpu, ctx->cpu);
391
392 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 393 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
394 rq->csd.info = rq;
395 rq->csd.flags = 0;
c46fff2a 396 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 397 } else {
30a91cb4 398 rq->q->softirq_done_fn(rq);
3d6efbf6 399 }
320ae51f
JA
400 put_cpu();
401}
30a91cb4 402
1fa8cc52 403static void __blk_mq_complete_request(struct request *rq)
ed851860
JA
404{
405 struct request_queue *q = rq->q;
406
407 if (!q->softirq_done_fn)
c8a446ad 408 blk_mq_end_request(rq, rq->errors);
ed851860
JA
409 else
410 blk_mq_ipi_complete_request(rq);
411}
412
30a91cb4
CH
413/**
414 * blk_mq_complete_request - end I/O on a request
415 * @rq: the request being processed
416 *
417 * Description:
418 * Ends all I/O on a request. It does not handle partial completions.
419 * The actual completion happens out-of-order, through a IPI handler.
420 **/
f4829a9b 421void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 422{
95f09684
JA
423 struct request_queue *q = rq->q;
424
425 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 426 return;
f4829a9b
CH
427 if (!blk_mark_rq_complete(rq)) {
428 rq->errors = error;
ed851860 429 __blk_mq_complete_request(rq);
f4829a9b 430 }
30a91cb4
CH
431}
432EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 433
973c0191
KB
434int blk_mq_request_started(struct request *rq)
435{
436 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
437}
438EXPORT_SYMBOL_GPL(blk_mq_request_started);
439
e2490073 440void blk_mq_start_request(struct request *rq)
320ae51f
JA
441{
442 struct request_queue *q = rq->q;
443
444 trace_block_rq_issue(q, rq);
445
742ee69b 446 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
447 if (unlikely(blk_bidi_rq(rq)))
448 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 449
2b8393b4 450 blk_add_timer(rq);
87ee7b11 451
538b7534
JA
452 /*
453 * Ensure that ->deadline is visible before set the started
454 * flag and clear the completed flag.
455 */
456 smp_mb__before_atomic();
457
87ee7b11
JA
458 /*
459 * Mark us as started and clear complete. Complete might have been
460 * set if requeue raced with timeout, which then marked it as
461 * complete. So be sure to clear complete again when we start
462 * the request, otherwise we'll ignore the completion event.
463 */
4b570521
JA
464 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
465 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
466 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
467 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
468
469 if (q->dma_drain_size && blk_rq_bytes(rq)) {
470 /*
471 * Make sure space for the drain appears. We know we can do
472 * this because max_hw_segments has been adjusted to be one
473 * fewer than the device can handle.
474 */
475 rq->nr_phys_segments++;
476 }
320ae51f 477}
e2490073 478EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 479
ed0791b2 480static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
481{
482 struct request_queue *q = rq->q;
483
484 trace_block_rq_requeue(q, rq);
49f5baa5 485
e2490073
CH
486 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
487 if (q->dma_drain_size && blk_rq_bytes(rq))
488 rq->nr_phys_segments--;
489 }
320ae51f
JA
490}
491
ed0791b2
CH
492void blk_mq_requeue_request(struct request *rq)
493{
ed0791b2 494 __blk_mq_requeue_request(rq);
ed0791b2 495
ed0791b2 496 BUG_ON(blk_queued_rq(rq));
6fca6a61 497 blk_mq_add_to_requeue_list(rq, true);
ed0791b2
CH
498}
499EXPORT_SYMBOL(blk_mq_requeue_request);
500
6fca6a61
CH
501static void blk_mq_requeue_work(struct work_struct *work)
502{
503 struct request_queue *q =
504 container_of(work, struct request_queue, requeue_work);
505 LIST_HEAD(rq_list);
506 struct request *rq, *next;
507 unsigned long flags;
508
509 spin_lock_irqsave(&q->requeue_lock, flags);
510 list_splice_init(&q->requeue_list, &rq_list);
511 spin_unlock_irqrestore(&q->requeue_lock, flags);
512
513 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
514 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
515 continue;
516
517 rq->cmd_flags &= ~REQ_SOFTBARRIER;
518 list_del_init(&rq->queuelist);
519 blk_mq_insert_request(rq, true, false, false);
520 }
521
522 while (!list_empty(&rq_list)) {
523 rq = list_entry(rq_list.next, struct request, queuelist);
524 list_del_init(&rq->queuelist);
525 blk_mq_insert_request(rq, false, false, false);
526 }
527
8b957415
JA
528 /*
529 * Use the start variant of queue running here, so that running
530 * the requeue work will kick stopped queues.
531 */
532 blk_mq_start_hw_queues(q);
6fca6a61
CH
533}
534
535void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
536{
537 struct request_queue *q = rq->q;
538 unsigned long flags;
539
540 /*
541 * We abuse this flag that is otherwise used by the I/O scheduler to
542 * request head insertation from the workqueue.
543 */
544 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
545
546 spin_lock_irqsave(&q->requeue_lock, flags);
547 if (at_head) {
548 rq->cmd_flags |= REQ_SOFTBARRIER;
549 list_add(&rq->queuelist, &q->requeue_list);
550 } else {
551 list_add_tail(&rq->queuelist, &q->requeue_list);
552 }
553 spin_unlock_irqrestore(&q->requeue_lock, flags);
554}
555EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
556
c68ed59f
KB
557void blk_mq_cancel_requeue_work(struct request_queue *q)
558{
559 cancel_work_sync(&q->requeue_work);
560}
561EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
562
6fca6a61
CH
563void blk_mq_kick_requeue_list(struct request_queue *q)
564{
565 kblockd_schedule_work(&q->requeue_work);
566}
567EXPORT_SYMBOL(blk_mq_kick_requeue_list);
568
1885b24d
JA
569void blk_mq_abort_requeue_list(struct request_queue *q)
570{
571 unsigned long flags;
572 LIST_HEAD(rq_list);
573
574 spin_lock_irqsave(&q->requeue_lock, flags);
575 list_splice_init(&q->requeue_list, &rq_list);
576 spin_unlock_irqrestore(&q->requeue_lock, flags);
577
578 while (!list_empty(&rq_list)) {
579 struct request *rq;
580
581 rq = list_first_entry(&rq_list, struct request, queuelist);
582 list_del_init(&rq->queuelist);
583 rq->errors = -EIO;
584 blk_mq_end_request(rq, rq->errors);
585 }
586}
587EXPORT_SYMBOL(blk_mq_abort_requeue_list);
588
0e62f51f
JA
589struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
590{
4ee86bab
HR
591 if (tag < tags->nr_tags)
592 return tags->rqs[tag];
593
594 return NULL;
24d2f903
CH
595}
596EXPORT_SYMBOL(blk_mq_tag_to_rq);
597
320ae51f 598struct blk_mq_timeout_data {
46f92d42
CH
599 unsigned long next;
600 unsigned int next_set;
320ae51f
JA
601};
602
90415837 603void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 604{
46f92d42
CH
605 struct blk_mq_ops *ops = req->q->mq_ops;
606 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
607
608 /*
609 * We know that complete is set at this point. If STARTED isn't set
610 * anymore, then the request isn't active and the "timeout" should
611 * just be ignored. This can happen due to the bitflag ordering.
612 * Timeout first checks if STARTED is set, and if it is, assumes
613 * the request is active. But if we race with completion, then
614 * we both flags will get cleared. So check here again, and ignore
615 * a timeout event with a request that isn't active.
616 */
46f92d42
CH
617 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
618 return;
87ee7b11 619
46f92d42 620 if (ops->timeout)
0152fb6b 621 ret = ops->timeout(req, reserved);
46f92d42
CH
622
623 switch (ret) {
624 case BLK_EH_HANDLED:
625 __blk_mq_complete_request(req);
626 break;
627 case BLK_EH_RESET_TIMER:
628 blk_add_timer(req);
629 blk_clear_rq_complete(req);
630 break;
631 case BLK_EH_NOT_HANDLED:
632 break;
633 default:
634 printk(KERN_ERR "block: bad eh return: %d\n", ret);
635 break;
636 }
87ee7b11 637}
5b3f25fc 638
81481eb4
CH
639static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
640 struct request *rq, void *priv, bool reserved)
641{
642 struct blk_mq_timeout_data *data = priv;
87ee7b11 643
eb130dbf
KB
644 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
645 /*
646 * If a request wasn't started before the queue was
647 * marked dying, kill it here or it'll go unnoticed.
648 */
a59e0f57
KB
649 if (unlikely(blk_queue_dying(rq->q))) {
650 rq->errors = -EIO;
651 blk_mq_end_request(rq, rq->errors);
652 }
46f92d42 653 return;
eb130dbf 654 }
87ee7b11 655
46f92d42
CH
656 if (time_after_eq(jiffies, rq->deadline)) {
657 if (!blk_mark_rq_complete(rq))
0152fb6b 658 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
659 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
660 data->next = rq->deadline;
661 data->next_set = 1;
662 }
87ee7b11
JA
663}
664
287922eb 665static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 666{
287922eb
CH
667 struct request_queue *q =
668 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
669 struct blk_mq_timeout_data data = {
670 .next = 0,
671 .next_set = 0,
672 };
81481eb4 673 int i;
320ae51f 674
71f79fb3
GKB
675 /* A deadlock might occur if a request is stuck requiring a
676 * timeout at the same time a queue freeze is waiting
677 * completion, since the timeout code would not be able to
678 * acquire the queue reference here.
679 *
680 * That's why we don't use blk_queue_enter here; instead, we use
681 * percpu_ref_tryget directly, because we need to be able to
682 * obtain a reference even in the short window between the queue
683 * starting to freeze, by dropping the first reference in
684 * blk_mq_freeze_queue_start, and the moment the last request is
685 * consumed, marked by the instant q_usage_counter reaches
686 * zero.
687 */
688 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
689 return;
690
0bf6cd5b 691 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 692
81481eb4
CH
693 if (data.next_set) {
694 data.next = blk_rq_timeout(round_jiffies_up(data.next));
695 mod_timer(&q->timeout, data.next);
0d2602ca 696 } else {
0bf6cd5b
CH
697 struct blk_mq_hw_ctx *hctx;
698
f054b56c
ML
699 queue_for_each_hw_ctx(q, hctx, i) {
700 /* the hctx may be unmapped, so check it here */
701 if (blk_mq_hw_queue_mapped(hctx))
702 blk_mq_tag_idle(hctx);
703 }
0d2602ca 704 }
287922eb 705 blk_queue_exit(q);
320ae51f
JA
706}
707
708/*
709 * Reverse check our software queue for entries that we could potentially
710 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
711 * too much time checking for merges.
712 */
713static bool blk_mq_attempt_merge(struct request_queue *q,
714 struct blk_mq_ctx *ctx, struct bio *bio)
715{
716 struct request *rq;
717 int checked = 8;
718
719 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
720 int el_ret;
721
722 if (!checked--)
723 break;
724
725 if (!blk_rq_merge_ok(rq, bio))
726 continue;
727
728 el_ret = blk_try_merge(rq, bio);
729 if (el_ret == ELEVATOR_BACK_MERGE) {
730 if (bio_attempt_back_merge(q, rq, bio)) {
731 ctx->rq_merged++;
732 return true;
733 }
734 break;
735 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
736 if (bio_attempt_front_merge(q, rq, bio)) {
737 ctx->rq_merged++;
738 return true;
739 }
740 break;
741 }
742 }
743
744 return false;
745}
746
1429d7c9
JA
747/*
748 * Process software queues that have been marked busy, splicing them
749 * to the for-dispatch
750 */
751static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
752{
753 struct blk_mq_ctx *ctx;
754 int i;
755
569fd0ce 756 for (i = 0; i < hctx->ctx_map.size; i++) {
1429d7c9
JA
757 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
758 unsigned int off, bit;
759
760 if (!bm->word)
761 continue;
762
763 bit = 0;
764 off = i * hctx->ctx_map.bits_per_word;
765 do {
766 bit = find_next_bit(&bm->word, bm->depth, bit);
767 if (bit >= bm->depth)
768 break;
769
770 ctx = hctx->ctxs[bit + off];
771 clear_bit(bit, &bm->word);
772 spin_lock(&ctx->lock);
773 list_splice_tail_init(&ctx->rq_list, list);
774 spin_unlock(&ctx->lock);
775
776 bit++;
777 } while (1);
778 }
779}
780
320ae51f
JA
781/*
782 * Run this hardware queue, pulling any software queues mapped to it in.
783 * Note that this function currently has various problems around ordering
784 * of IO. In particular, we'd like FIFO behaviour on handling existing
785 * items on the hctx->dispatch list. Ignore that for now.
786 */
787static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
788{
789 struct request_queue *q = hctx->queue;
320ae51f
JA
790 struct request *rq;
791 LIST_HEAD(rq_list);
74c45052
JA
792 LIST_HEAD(driver_list);
793 struct list_head *dptr;
1429d7c9 794 int queued;
320ae51f 795
5d12f905 796 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
797 return;
798
0e87e58b
JA
799 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
800 cpu_online(hctx->next_cpu));
801
320ae51f
JA
802 hctx->run++;
803
804 /*
805 * Touch any software queue that has pending entries.
806 */
1429d7c9 807 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
808
809 /*
810 * If we have previous entries on our dispatch list, grab them
811 * and stuff them at the front for more fair dispatch.
812 */
813 if (!list_empty_careful(&hctx->dispatch)) {
814 spin_lock(&hctx->lock);
815 if (!list_empty(&hctx->dispatch))
816 list_splice_init(&hctx->dispatch, &rq_list);
817 spin_unlock(&hctx->lock);
818 }
819
74c45052
JA
820 /*
821 * Start off with dptr being NULL, so we start the first request
822 * immediately, even if we have more pending.
823 */
824 dptr = NULL;
825
320ae51f
JA
826 /*
827 * Now process all the entries, sending them to the driver.
828 */
1429d7c9 829 queued = 0;
320ae51f 830 while (!list_empty(&rq_list)) {
74c45052 831 struct blk_mq_queue_data bd;
320ae51f
JA
832 int ret;
833
834 rq = list_first_entry(&rq_list, struct request, queuelist);
835 list_del_init(&rq->queuelist);
320ae51f 836
74c45052
JA
837 bd.rq = rq;
838 bd.list = dptr;
839 bd.last = list_empty(&rq_list);
840
841 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
842 switch (ret) {
843 case BLK_MQ_RQ_QUEUE_OK:
844 queued++;
52b9c330 845 break;
320ae51f 846 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 847 list_add(&rq->queuelist, &rq_list);
ed0791b2 848 __blk_mq_requeue_request(rq);
320ae51f
JA
849 break;
850 default:
851 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 852 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 853 rq->errors = -EIO;
c8a446ad 854 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
855 break;
856 }
857
858 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
859 break;
74c45052
JA
860
861 /*
862 * We've done the first request. If we have more than 1
863 * left in the list, set dptr to defer issue.
864 */
865 if (!dptr && rq_list.next != rq_list.prev)
866 dptr = &driver_list;
320ae51f
JA
867 }
868
869 if (!queued)
870 hctx->dispatched[0]++;
871 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
872 hctx->dispatched[ilog2(queued) + 1]++;
873
874 /*
875 * Any items that need requeuing? Stuff them into hctx->dispatch,
876 * that is where we will continue on next queue run.
877 */
878 if (!list_empty(&rq_list)) {
879 spin_lock(&hctx->lock);
880 list_splice(&rq_list, &hctx->dispatch);
881 spin_unlock(&hctx->lock);
9ba52e58
SL
882 /*
883 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
884 * it's possible the queue is stopped and restarted again
885 * before this. Queue restart will dispatch requests. And since
886 * requests in rq_list aren't added into hctx->dispatch yet,
887 * the requests in rq_list might get lost.
888 *
889 * blk_mq_run_hw_queue() already checks the STOPPED bit
890 **/
891 blk_mq_run_hw_queue(hctx, true);
320ae51f
JA
892 }
893}
894
506e931f
JA
895/*
896 * It'd be great if the workqueue API had a way to pass
897 * in a mask and had some smarts for more clever placement.
898 * For now we just round-robin here, switching for every
899 * BLK_MQ_CPU_WORK_BATCH queued items.
900 */
901static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
902{
b657d7e6
CH
903 if (hctx->queue->nr_hw_queues == 1)
904 return WORK_CPU_UNBOUND;
506e931f
JA
905
906 if (--hctx->next_cpu_batch <= 0) {
b657d7e6 907 int cpu = hctx->next_cpu, next_cpu;
506e931f
JA
908
909 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
910 if (next_cpu >= nr_cpu_ids)
911 next_cpu = cpumask_first(hctx->cpumask);
912
913 hctx->next_cpu = next_cpu;
914 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
b657d7e6
CH
915
916 return cpu;
506e931f
JA
917 }
918
b657d7e6 919 return hctx->next_cpu;
506e931f
JA
920}
921
320ae51f
JA
922void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
923{
19c66e59
ML
924 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
925 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
926 return;
927
398205b8 928 if (!async) {
2a90d4aa
PB
929 int cpu = get_cpu();
930 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 931 __blk_mq_run_hw_queue(hctx);
2a90d4aa 932 put_cpu();
398205b8
PB
933 return;
934 }
e4043dcf 935
2a90d4aa 936 put_cpu();
e4043dcf 937 }
398205b8 938
27489a3c 939 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
320ae51f
JA
940}
941
b94ec296 942void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
943{
944 struct blk_mq_hw_ctx *hctx;
945 int i;
946
947 queue_for_each_hw_ctx(q, hctx, i) {
948 if ((!blk_mq_hctx_has_pending(hctx) &&
949 list_empty_careful(&hctx->dispatch)) ||
5d12f905 950 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
951 continue;
952
b94ec296 953 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
954 }
955}
b94ec296 956EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f
JA
957
958void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
959{
27489a3c 960 cancel_work(&hctx->run_work);
70f4db63 961 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
962 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
963}
964EXPORT_SYMBOL(blk_mq_stop_hw_queue);
965
280d45f6
CH
966void blk_mq_stop_hw_queues(struct request_queue *q)
967{
968 struct blk_mq_hw_ctx *hctx;
969 int i;
970
971 queue_for_each_hw_ctx(q, hctx, i)
972 blk_mq_stop_hw_queue(hctx);
973}
974EXPORT_SYMBOL(blk_mq_stop_hw_queues);
975
320ae51f
JA
976void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
977{
978 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 979
0ffbce80 980 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
981}
982EXPORT_SYMBOL(blk_mq_start_hw_queue);
983
2f268556
CH
984void blk_mq_start_hw_queues(struct request_queue *q)
985{
986 struct blk_mq_hw_ctx *hctx;
987 int i;
988
989 queue_for_each_hw_ctx(q, hctx, i)
990 blk_mq_start_hw_queue(hctx);
991}
992EXPORT_SYMBOL(blk_mq_start_hw_queues);
993
1b4a3258 994void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
995{
996 struct blk_mq_hw_ctx *hctx;
997 int i;
998
999 queue_for_each_hw_ctx(q, hctx, i) {
1000 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1001 continue;
1002
1003 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1b4a3258 1004 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1005 }
1006}
1007EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1008
70f4db63 1009static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1010{
1011 struct blk_mq_hw_ctx *hctx;
1012
27489a3c 1013 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
e4043dcf 1014
320ae51f
JA
1015 __blk_mq_run_hw_queue(hctx);
1016}
1017
70f4db63
CH
1018static void blk_mq_delay_work_fn(struct work_struct *work)
1019{
1020 struct blk_mq_hw_ctx *hctx;
1021
1022 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1023
1024 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1025 __blk_mq_run_hw_queue(hctx);
1026}
1027
1028void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1029{
19c66e59
ML
1030 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1031 return;
70f4db63 1032
b657d7e6
CH
1033 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1034 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
1035}
1036EXPORT_SYMBOL(blk_mq_delay_queue);
1037
cfd0c552 1038static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1039 struct request *rq,
1040 bool at_head)
320ae51f 1041{
e57690fe
JA
1042 struct blk_mq_ctx *ctx = rq->mq_ctx;
1043
01b983c9
JA
1044 trace_block_rq_insert(hctx->queue, rq);
1045
72a0a36e
CH
1046 if (at_head)
1047 list_add(&rq->queuelist, &ctx->rq_list);
1048 else
1049 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1050}
4bb659b1 1051
cfd0c552
ML
1052static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1053 struct request *rq, bool at_head)
1054{
1055 struct blk_mq_ctx *ctx = rq->mq_ctx;
1056
e57690fe 1057 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1058 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1059}
1060
eeabc850 1061void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
e57690fe 1062 bool async)
320ae51f 1063{
e57690fe 1064 struct blk_mq_ctx *ctx = rq->mq_ctx;
eeabc850 1065 struct request_queue *q = rq->q;
320ae51f 1066 struct blk_mq_hw_ctx *hctx;
320ae51f 1067
320ae51f
JA
1068 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1069
a57a178a
CH
1070 spin_lock(&ctx->lock);
1071 __blk_mq_insert_request(hctx, rq, at_head);
1072 spin_unlock(&ctx->lock);
320ae51f 1073
320ae51f
JA
1074 if (run_queue)
1075 blk_mq_run_hw_queue(hctx, async);
1076}
1077
1078static void blk_mq_insert_requests(struct request_queue *q,
1079 struct blk_mq_ctx *ctx,
1080 struct list_head *list,
1081 int depth,
1082 bool from_schedule)
1083
1084{
1085 struct blk_mq_hw_ctx *hctx;
320ae51f
JA
1086
1087 trace_block_unplug(q, depth, !from_schedule);
1088
320ae51f
JA
1089 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1090
1091 /*
1092 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1093 * offline now
1094 */
1095 spin_lock(&ctx->lock);
1096 while (!list_empty(list)) {
1097 struct request *rq;
1098
1099 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1100 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1101 list_del_init(&rq->queuelist);
e57690fe 1102 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1103 }
cfd0c552 1104 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1105 spin_unlock(&ctx->lock);
1106
320ae51f
JA
1107 blk_mq_run_hw_queue(hctx, from_schedule);
1108}
1109
1110static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1111{
1112 struct request *rqa = container_of(a, struct request, queuelist);
1113 struct request *rqb = container_of(b, struct request, queuelist);
1114
1115 return !(rqa->mq_ctx < rqb->mq_ctx ||
1116 (rqa->mq_ctx == rqb->mq_ctx &&
1117 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1118}
1119
1120void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1121{
1122 struct blk_mq_ctx *this_ctx;
1123 struct request_queue *this_q;
1124 struct request *rq;
1125 LIST_HEAD(list);
1126 LIST_HEAD(ctx_list);
1127 unsigned int depth;
1128
1129 list_splice_init(&plug->mq_list, &list);
1130
1131 list_sort(NULL, &list, plug_ctx_cmp);
1132
1133 this_q = NULL;
1134 this_ctx = NULL;
1135 depth = 0;
1136
1137 while (!list_empty(&list)) {
1138 rq = list_entry_rq(list.next);
1139 list_del_init(&rq->queuelist);
1140 BUG_ON(!rq->q);
1141 if (rq->mq_ctx != this_ctx) {
1142 if (this_ctx) {
1143 blk_mq_insert_requests(this_q, this_ctx,
1144 &ctx_list, depth,
1145 from_schedule);
1146 }
1147
1148 this_ctx = rq->mq_ctx;
1149 this_q = rq->q;
1150 depth = 0;
1151 }
1152
1153 depth++;
1154 list_add_tail(&rq->queuelist, &ctx_list);
1155 }
1156
1157 /*
1158 * If 'this_ctx' is set, we know we have entries to complete
1159 * on 'ctx_list'. Do those.
1160 */
1161 if (this_ctx) {
1162 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1163 from_schedule);
1164 }
1165}
1166
1167static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1168{
1169 init_request_from_bio(rq, bio);
4b570521 1170
a21f2a3e 1171 blk_account_io_start(rq, 1);
320ae51f
JA
1172}
1173
274a5843
JA
1174static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1175{
1176 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1177 !blk_queue_nomerges(hctx->queue);
1178}
1179
07068d5b
JA
1180static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1181 struct blk_mq_ctx *ctx,
1182 struct request *rq, struct bio *bio)
320ae51f 1183{
e18378a6 1184 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1185 blk_mq_bio_to_request(rq, bio);
1186 spin_lock(&ctx->lock);
1187insert_rq:
1188 __blk_mq_insert_request(hctx, rq, false);
1189 spin_unlock(&ctx->lock);
1190 return false;
1191 } else {
274a5843
JA
1192 struct request_queue *q = hctx->queue;
1193
07068d5b
JA
1194 spin_lock(&ctx->lock);
1195 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1196 blk_mq_bio_to_request(rq, bio);
1197 goto insert_rq;
1198 }
320ae51f 1199
07068d5b
JA
1200 spin_unlock(&ctx->lock);
1201 __blk_mq_free_request(hctx, ctx, rq);
1202 return true;
14ec77f3 1203 }
07068d5b 1204}
14ec77f3 1205
07068d5b
JA
1206struct blk_map_ctx {
1207 struct blk_mq_hw_ctx *hctx;
1208 struct blk_mq_ctx *ctx;
1209};
1210
1211static struct request *blk_mq_map_request(struct request_queue *q,
1212 struct bio *bio,
1213 struct blk_map_ctx *data)
1214{
1215 struct blk_mq_hw_ctx *hctx;
1216 struct blk_mq_ctx *ctx;
1217 struct request *rq;
cc6e3b10
MC
1218 int op = bio_data_dir(bio);
1219 int op_flags = 0;
cb96a42c 1220 struct blk_mq_alloc_data alloc_data;
320ae51f 1221
3ef28e83 1222 blk_queue_enter_live(q);
320ae51f
JA
1223 ctx = blk_mq_get_ctx(q);
1224 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1225
1eff9d32 1226 if (rw_is_sync(bio_op(bio), bio->bi_opf))
cc6e3b10 1227 op_flags |= REQ_SYNC;
07068d5b 1228
cc6e3b10 1229 trace_block_getrq(q, bio, op);
6f3b0e8b 1230 blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
cc6e3b10 1231 rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
5dee8577 1232 if (unlikely(!rq)) {
793597a6 1233 __blk_mq_run_hw_queue(hctx);
320ae51f 1234 blk_mq_put_ctx(ctx);
cc6e3b10 1235 trace_block_sleeprq(q, bio, op);
793597a6
CH
1236
1237 ctx = blk_mq_get_ctx(q);
320ae51f 1238 hctx = q->mq_ops->map_queue(q, ctx->cpu);
6f3b0e8b 1239 blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
cc6e3b10 1240 rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
cb96a42c
ML
1241 ctx = alloc_data.ctx;
1242 hctx = alloc_data.hctx;
320ae51f
JA
1243 }
1244
1245 hctx->queued++;
07068d5b
JA
1246 data->hctx = hctx;
1247 data->ctx = ctx;
1248 return rq;
1249}
1250
7b371636 1251static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
f984df1f
SL
1252{
1253 int ret;
1254 struct request_queue *q = rq->q;
1255 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1256 rq->mq_ctx->cpu);
1257 struct blk_mq_queue_data bd = {
1258 .rq = rq,
1259 .list = NULL,
1260 .last = 1
1261 };
7b371636 1262 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
f984df1f
SL
1263
1264 /*
1265 * For OK queue, we are done. For error, kill it. Any other
1266 * error (busy), just add it to our list as we previously
1267 * would have done
1268 */
1269 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1270 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1271 *cookie = new_cookie;
f984df1f 1272 return 0;
7b371636 1273 }
f984df1f 1274
7b371636
JA
1275 __blk_mq_requeue_request(rq);
1276
1277 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1278 *cookie = BLK_QC_T_NONE;
1279 rq->errors = -EIO;
1280 blk_mq_end_request(rq, rq->errors);
1281 return 0;
f984df1f 1282 }
7b371636
JA
1283
1284 return -1;
f984df1f
SL
1285}
1286
07068d5b
JA
1287/*
1288 * Multiple hardware queue variant. This will not use per-process plugs,
1289 * but will attempt to bypass the hctx queueing if we can go straight to
1290 * hardware for SYNC IO.
1291 */
dece1635 1292static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1293{
1eff9d32
JA
1294 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1295 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
07068d5b
JA
1296 struct blk_map_ctx data;
1297 struct request *rq;
f984df1f
SL
1298 unsigned int request_count = 0;
1299 struct blk_plug *plug;
5b3f341f 1300 struct request *same_queue_rq = NULL;
7b371636 1301 blk_qc_t cookie;
07068d5b
JA
1302
1303 blk_queue_bounce(q, &bio);
1304
1305 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1306 bio_io_error(bio);
dece1635 1307 return BLK_QC_T_NONE;
07068d5b
JA
1308 }
1309
54efd50b
KO
1310 blk_queue_split(q, &bio, q->bio_split);
1311
87c279e6
OS
1312 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1313 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1314 return BLK_QC_T_NONE;
f984df1f 1315
07068d5b
JA
1316 rq = blk_mq_map_request(q, bio, &data);
1317 if (unlikely(!rq))
dece1635 1318 return BLK_QC_T_NONE;
07068d5b 1319
7b371636 1320 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
07068d5b
JA
1321
1322 if (unlikely(is_flush_fua)) {
1323 blk_mq_bio_to_request(rq, bio);
1324 blk_insert_flush(rq);
1325 goto run_queue;
1326 }
1327
f984df1f 1328 plug = current->plug;
e167dfb5
JA
1329 /*
1330 * If the driver supports defer issued based on 'last', then
1331 * queue it up like normal since we can potentially save some
1332 * CPU this way.
1333 */
f984df1f
SL
1334 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1335 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1336 struct request *old_rq = NULL;
07068d5b
JA
1337
1338 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1339
1340 /*
b094f89c 1341 * We do limited pluging. If the bio can be merged, do that.
f984df1f
SL
1342 * Otherwise the existing request in the plug list will be
1343 * issued. So the plug list will have one request at most
07068d5b 1344 */
f984df1f 1345 if (plug) {
5b3f341f
SL
1346 /*
1347 * The plug list might get flushed before this. If that
b094f89c
JA
1348 * happens, same_queue_rq is invalid and plug list is
1349 * empty
1350 */
5b3f341f
SL
1351 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1352 old_rq = same_queue_rq;
f984df1f 1353 list_del_init(&old_rq->queuelist);
07068d5b 1354 }
f984df1f
SL
1355 list_add_tail(&rq->queuelist, &plug->mq_list);
1356 } else /* is_sync */
1357 old_rq = rq;
1358 blk_mq_put_ctx(data.ctx);
1359 if (!old_rq)
7b371636
JA
1360 goto done;
1361 if (!blk_mq_direct_issue_request(old_rq, &cookie))
1362 goto done;
f984df1f 1363 blk_mq_insert_request(old_rq, false, true, true);
7b371636 1364 goto done;
07068d5b
JA
1365 }
1366
1367 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1368 /*
1369 * For a SYNC request, send it to the hardware immediately. For
1370 * an ASYNC request, just ensure that we run it later on. The
1371 * latter allows for merging opportunities and more efficient
1372 * dispatching.
1373 */
1374run_queue:
1375 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1376 }
07068d5b 1377 blk_mq_put_ctx(data.ctx);
7b371636
JA
1378done:
1379 return cookie;
07068d5b
JA
1380}
1381
1382/*
1383 * Single hardware queue variant. This will attempt to use any per-process
1384 * plug for merging and IO deferral.
1385 */
dece1635 1386static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1387{
1eff9d32
JA
1388 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1389 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
e6c4438b
JM
1390 struct blk_plug *plug;
1391 unsigned int request_count = 0;
07068d5b
JA
1392 struct blk_map_ctx data;
1393 struct request *rq;
7b371636 1394 blk_qc_t cookie;
07068d5b 1395
07068d5b
JA
1396 blk_queue_bounce(q, &bio);
1397
1398 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1399 bio_io_error(bio);
dece1635 1400 return BLK_QC_T_NONE;
07068d5b
JA
1401 }
1402
54efd50b
KO
1403 blk_queue_split(q, &bio, q->bio_split);
1404
87c279e6
OS
1405 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1406 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1407 return BLK_QC_T_NONE;
1408 } else
1409 request_count = blk_plug_queued_count(q);
07068d5b
JA
1410
1411 rq = blk_mq_map_request(q, bio, &data);
ff87bcec 1412 if (unlikely(!rq))
dece1635 1413 return BLK_QC_T_NONE;
320ae51f 1414
7b371636 1415 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
320ae51f
JA
1416
1417 if (unlikely(is_flush_fua)) {
1418 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1419 blk_insert_flush(rq);
1420 goto run_queue;
1421 }
1422
1423 /*
1424 * A task plug currently exists. Since this is completely lockless,
1425 * utilize that to temporarily store requests until the task is
1426 * either done or scheduled away.
1427 */
e6c4438b
JM
1428 plug = current->plug;
1429 if (plug) {
1430 blk_mq_bio_to_request(rq, bio);
676d0607 1431 if (!request_count)
e6c4438b 1432 trace_block_plug(q);
b094f89c
JA
1433
1434 blk_mq_put_ctx(data.ctx);
1435
1436 if (request_count >= BLK_MAX_REQUEST_COUNT) {
e6c4438b
JM
1437 blk_flush_plug_list(plug, false);
1438 trace_block_plug(q);
320ae51f 1439 }
b094f89c 1440
e6c4438b 1441 list_add_tail(&rq->queuelist, &plug->mq_list);
7b371636 1442 return cookie;
320ae51f
JA
1443 }
1444
07068d5b
JA
1445 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1446 /*
1447 * For a SYNC request, send it to the hardware immediately. For
1448 * an ASYNC request, just ensure that we run it later on. The
1449 * latter allows for merging opportunities and more efficient
1450 * dispatching.
1451 */
1452run_queue:
1453 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1454 }
1455
07068d5b 1456 blk_mq_put_ctx(data.ctx);
7b371636 1457 return cookie;
320ae51f
JA
1458}
1459
1460/*
1461 * Default mapping to a software queue, since we use one per CPU.
1462 */
1463struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1464{
1465 return q->queue_hw_ctx[q->mq_map[cpu]];
1466}
1467EXPORT_SYMBOL(blk_mq_map_queue);
1468
24d2f903
CH
1469static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1470 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1471{
e9b267d9 1472 struct page *page;
320ae51f 1473
24d2f903 1474 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1475 int i;
320ae51f 1476
24d2f903
CH
1477 for (i = 0; i < tags->nr_tags; i++) {
1478 if (!tags->rqs[i])
e9b267d9 1479 continue;
24d2f903
CH
1480 set->ops->exit_request(set->driver_data, tags->rqs[i],
1481 hctx_idx, i);
a5164405 1482 tags->rqs[i] = NULL;
e9b267d9 1483 }
320ae51f 1484 }
320ae51f 1485
24d2f903
CH
1486 while (!list_empty(&tags->page_list)) {
1487 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1488 list_del_init(&page->lru);
f75782e4
CM
1489 /*
1490 * Remove kmemleak object previously allocated in
1491 * blk_mq_init_rq_map().
1492 */
1493 kmemleak_free(page_address(page));
320ae51f
JA
1494 __free_pages(page, page->private);
1495 }
1496
24d2f903 1497 kfree(tags->rqs);
320ae51f 1498
24d2f903 1499 blk_mq_free_tags(tags);
320ae51f
JA
1500}
1501
1502static size_t order_to_size(unsigned int order)
1503{
4ca08500 1504 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1505}
1506
24d2f903
CH
1507static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1508 unsigned int hctx_idx)
320ae51f 1509{
24d2f903 1510 struct blk_mq_tags *tags;
320ae51f
JA
1511 unsigned int i, j, entries_per_page, max_order = 4;
1512 size_t rq_size, left;
1513
24d2f903 1514 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
24391c0d
SL
1515 set->numa_node,
1516 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1517 if (!tags)
1518 return NULL;
320ae51f 1519
24d2f903
CH
1520 INIT_LIST_HEAD(&tags->page_list);
1521
a5164405
JA
1522 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1523 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1524 set->numa_node);
24d2f903
CH
1525 if (!tags->rqs) {
1526 blk_mq_free_tags(tags);
1527 return NULL;
1528 }
320ae51f
JA
1529
1530 /*
1531 * rq_size is the size of the request plus driver payload, rounded
1532 * to the cacheline size
1533 */
24d2f903 1534 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1535 cache_line_size());
24d2f903 1536 left = rq_size * set->queue_depth;
320ae51f 1537
24d2f903 1538 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1539 int this_order = max_order;
1540 struct page *page;
1541 int to_do;
1542 void *p;
1543
b3a834b1 1544 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1545 this_order--;
1546
1547 do {
a5164405 1548 page = alloc_pages_node(set->numa_node,
ac211175 1549 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1550 this_order);
320ae51f
JA
1551 if (page)
1552 break;
1553 if (!this_order--)
1554 break;
1555 if (order_to_size(this_order) < rq_size)
1556 break;
1557 } while (1);
1558
1559 if (!page)
24d2f903 1560 goto fail;
320ae51f
JA
1561
1562 page->private = this_order;
24d2f903 1563 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1564
1565 p = page_address(page);
f75782e4
CM
1566 /*
1567 * Allow kmemleak to scan these pages as they contain pointers
1568 * to additional allocations like via ops->init_request().
1569 */
1570 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
320ae51f 1571 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1572 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1573 left -= to_do * rq_size;
1574 for (j = 0; j < to_do; j++) {
24d2f903
CH
1575 tags->rqs[i] = p;
1576 if (set->ops->init_request) {
1577 if (set->ops->init_request(set->driver_data,
1578 tags->rqs[i], hctx_idx, i,
a5164405
JA
1579 set->numa_node)) {
1580 tags->rqs[i] = NULL;
24d2f903 1581 goto fail;
a5164405 1582 }
e9b267d9
CH
1583 }
1584
320ae51f
JA
1585 p += rq_size;
1586 i++;
1587 }
1588 }
24d2f903 1589 return tags;
320ae51f 1590
24d2f903 1591fail:
24d2f903
CH
1592 blk_mq_free_rq_map(set, tags, hctx_idx);
1593 return NULL;
320ae51f
JA
1594}
1595
1429d7c9
JA
1596static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1597{
1598 kfree(bitmap->map);
1599}
1600
1601static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1602{
1603 unsigned int bpw = 8, total, num_maps, i;
1604
1605 bitmap->bits_per_word = bpw;
1606
1607 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1608 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1609 GFP_KERNEL, node);
1610 if (!bitmap->map)
1611 return -ENOMEM;
1612
1429d7c9
JA
1613 total = nr_cpu_ids;
1614 for (i = 0; i < num_maps; i++) {
1615 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1616 total -= bitmap->map[i].depth;
1617 }
1618
1619 return 0;
1620}
1621
e57690fe
JA
1622/*
1623 * 'cpu' is going away. splice any existing rq_list entries from this
1624 * software queue to the hw queue dispatch list, and ensure that it
1625 * gets run.
1626 */
484b4061
JA
1627static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1628{
484b4061
JA
1629 struct blk_mq_ctx *ctx;
1630 LIST_HEAD(tmp);
1631
e57690fe 1632 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1633
1634 spin_lock(&ctx->lock);
1635 if (!list_empty(&ctx->rq_list)) {
1636 list_splice_init(&ctx->rq_list, &tmp);
1637 blk_mq_hctx_clear_pending(hctx, ctx);
1638 }
1639 spin_unlock(&ctx->lock);
1640
1641 if (list_empty(&tmp))
1642 return NOTIFY_OK;
1643
e57690fe
JA
1644 spin_lock(&hctx->lock);
1645 list_splice_tail_init(&tmp, &hctx->dispatch);
1646 spin_unlock(&hctx->lock);
484b4061
JA
1647
1648 blk_mq_run_hw_queue(hctx, true);
484b4061
JA
1649 return NOTIFY_OK;
1650}
1651
484b4061
JA
1652static int blk_mq_hctx_notify(void *data, unsigned long action,
1653 unsigned int cpu)
1654{
1655 struct blk_mq_hw_ctx *hctx = data;
1656
1657 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1658 return blk_mq_hctx_cpu_offline(hctx, cpu);
2a34c087
ML
1659
1660 /*
1661 * In case of CPU online, tags may be reallocated
1662 * in blk_mq_map_swqueue() after mapping is updated.
1663 */
484b4061
JA
1664
1665 return NOTIFY_OK;
1666}
1667
c3b4afca 1668/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1669static void blk_mq_exit_hctx(struct request_queue *q,
1670 struct blk_mq_tag_set *set,
1671 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1672{
f70ced09
ML
1673 unsigned flush_start_tag = set->queue_depth;
1674
08e98fc6
ML
1675 blk_mq_tag_idle(hctx);
1676
f70ced09
ML
1677 if (set->ops->exit_request)
1678 set->ops->exit_request(set->driver_data,
1679 hctx->fq->flush_rq, hctx_idx,
1680 flush_start_tag + hctx_idx);
1681
08e98fc6
ML
1682 if (set->ops->exit_hctx)
1683 set->ops->exit_hctx(hctx, hctx_idx);
1684
1685 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
f70ced09 1686 blk_free_flush_queue(hctx->fq);
08e98fc6
ML
1687 blk_mq_free_bitmap(&hctx->ctx_map);
1688}
1689
624dbe47
ML
1690static void blk_mq_exit_hw_queues(struct request_queue *q,
1691 struct blk_mq_tag_set *set, int nr_queue)
1692{
1693 struct blk_mq_hw_ctx *hctx;
1694 unsigned int i;
1695
1696 queue_for_each_hw_ctx(q, hctx, i) {
1697 if (i == nr_queue)
1698 break;
08e98fc6 1699 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1700 }
624dbe47
ML
1701}
1702
1703static void blk_mq_free_hw_queues(struct request_queue *q,
1704 struct blk_mq_tag_set *set)
1705{
1706 struct blk_mq_hw_ctx *hctx;
1707 unsigned int i;
1708
e09aae7e 1709 queue_for_each_hw_ctx(q, hctx, i)
624dbe47 1710 free_cpumask_var(hctx->cpumask);
624dbe47
ML
1711}
1712
08e98fc6
ML
1713static int blk_mq_init_hctx(struct request_queue *q,
1714 struct blk_mq_tag_set *set,
1715 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1716{
08e98fc6 1717 int node;
f70ced09 1718 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1719
1720 node = hctx->numa_node;
1721 if (node == NUMA_NO_NODE)
1722 node = hctx->numa_node = set->numa_node;
1723
27489a3c 1724 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1725 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1726 spin_lock_init(&hctx->lock);
1727 INIT_LIST_HEAD(&hctx->dispatch);
1728 hctx->queue = q;
1729 hctx->queue_num = hctx_idx;
2404e607 1730 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6
ML
1731
1732 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1733 blk_mq_hctx_notify, hctx);
1734 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1735
1736 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1737
1738 /*
08e98fc6
ML
1739 * Allocate space for all possible cpus to avoid allocation at
1740 * runtime
320ae51f 1741 */
08e98fc6
ML
1742 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1743 GFP_KERNEL, node);
1744 if (!hctx->ctxs)
1745 goto unregister_cpu_notifier;
320ae51f 1746
08e98fc6
ML
1747 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1748 goto free_ctxs;
320ae51f 1749
08e98fc6 1750 hctx->nr_ctx = 0;
320ae51f 1751
08e98fc6
ML
1752 if (set->ops->init_hctx &&
1753 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1754 goto free_bitmap;
320ae51f 1755
f70ced09
ML
1756 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1757 if (!hctx->fq)
1758 goto exit_hctx;
320ae51f 1759
f70ced09
ML
1760 if (set->ops->init_request &&
1761 set->ops->init_request(set->driver_data,
1762 hctx->fq->flush_rq, hctx_idx,
1763 flush_start_tag + hctx_idx, node))
1764 goto free_fq;
320ae51f 1765
08e98fc6 1766 return 0;
320ae51f 1767
f70ced09
ML
1768 free_fq:
1769 kfree(hctx->fq);
1770 exit_hctx:
1771 if (set->ops->exit_hctx)
1772 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6
ML
1773 free_bitmap:
1774 blk_mq_free_bitmap(&hctx->ctx_map);
1775 free_ctxs:
1776 kfree(hctx->ctxs);
1777 unregister_cpu_notifier:
1778 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
320ae51f 1779
08e98fc6
ML
1780 return -1;
1781}
320ae51f 1782
320ae51f
JA
1783static void blk_mq_init_cpu_queues(struct request_queue *q,
1784 unsigned int nr_hw_queues)
1785{
1786 unsigned int i;
1787
1788 for_each_possible_cpu(i) {
1789 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1790 struct blk_mq_hw_ctx *hctx;
1791
1792 memset(__ctx, 0, sizeof(*__ctx));
1793 __ctx->cpu = i;
1794 spin_lock_init(&__ctx->lock);
1795 INIT_LIST_HEAD(&__ctx->rq_list);
1796 __ctx->queue = q;
1797
1798 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1799 if (!cpu_online(i))
1800 continue;
1801
e4043dcf 1802 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1803
320ae51f
JA
1804 /*
1805 * Set local node, IFF we have more than one hw queue. If
1806 * not, we remain on the home node of the device
1807 */
1808 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1809 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
1810 }
1811}
1812
5778322e
AM
1813static void blk_mq_map_swqueue(struct request_queue *q,
1814 const struct cpumask *online_mask)
320ae51f
JA
1815{
1816 unsigned int i;
1817 struct blk_mq_hw_ctx *hctx;
1818 struct blk_mq_ctx *ctx;
2a34c087 1819 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1820
60de074b
AM
1821 /*
1822 * Avoid others reading imcomplete hctx->cpumask through sysfs
1823 */
1824 mutex_lock(&q->sysfs_lock);
1825
320ae51f 1826 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1827 cpumask_clear(hctx->cpumask);
320ae51f
JA
1828 hctx->nr_ctx = 0;
1829 }
1830
1831 /*
1832 * Map software to hardware queues
1833 */
897bb0c7 1834 for_each_possible_cpu(i) {
320ae51f 1835 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 1836 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
1837 continue;
1838
897bb0c7 1839 ctx = per_cpu_ptr(q->queue_ctx, i);
320ae51f 1840 hctx = q->mq_ops->map_queue(q, i);
868f2f0b 1841
e4043dcf 1842 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1843 ctx->index_hw = hctx->nr_ctx;
1844 hctx->ctxs[hctx->nr_ctx++] = ctx;
1845 }
506e931f 1846
60de074b
AM
1847 mutex_unlock(&q->sysfs_lock);
1848
506e931f 1849 queue_for_each_hw_ctx(q, hctx, i) {
889fa31f
CY
1850 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1851
484b4061 1852 /*
a68aafa5
JA
1853 * If no software queues are mapped to this hardware queue,
1854 * disable it and free the request entries.
484b4061
JA
1855 */
1856 if (!hctx->nr_ctx) {
484b4061
JA
1857 if (set->tags[i]) {
1858 blk_mq_free_rq_map(set, set->tags[i], i);
1859 set->tags[i] = NULL;
484b4061 1860 }
2a34c087 1861 hctx->tags = NULL;
484b4061
JA
1862 continue;
1863 }
1864
2a34c087
ML
1865 /* unmapped hw queue can be remapped after CPU topo changed */
1866 if (!set->tags[i])
1867 set->tags[i] = blk_mq_init_rq_map(set, i);
1868 hctx->tags = set->tags[i];
1869 WARN_ON(!hctx->tags);
1870
e0e827b9 1871 cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
889fa31f
CY
1872 /*
1873 * Set the map size to the number of mapped software queues.
1874 * This is more accurate and more efficient than looping
1875 * over all possibly mapped software queues.
1876 */
569fd0ce 1877 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
889fa31f 1878
484b4061
JA
1879 /*
1880 * Initialize batch roundrobin counts
1881 */
506e931f
JA
1882 hctx->next_cpu = cpumask_first(hctx->cpumask);
1883 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1884 }
320ae51f
JA
1885}
1886
2404e607 1887static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
1888{
1889 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
1890 int i;
1891
2404e607
JM
1892 queue_for_each_hw_ctx(q, hctx, i) {
1893 if (shared)
1894 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1895 else
1896 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1897 }
1898}
1899
1900static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1901{
1902 struct request_queue *q;
0d2602ca
JA
1903
1904 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1905 blk_mq_freeze_queue(q);
2404e607 1906 queue_set_hctx_shared(q, shared);
0d2602ca
JA
1907 blk_mq_unfreeze_queue(q);
1908 }
1909}
1910
1911static void blk_mq_del_queue_tag_set(struct request_queue *q)
1912{
1913 struct blk_mq_tag_set *set = q->tag_set;
1914
0d2602ca
JA
1915 mutex_lock(&set->tag_list_lock);
1916 list_del_init(&q->tag_set_list);
2404e607
JM
1917 if (list_is_singular(&set->tag_list)) {
1918 /* just transitioned to unshared */
1919 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1920 /* update existing queue */
1921 blk_mq_update_tag_set_depth(set, false);
1922 }
0d2602ca 1923 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
1924}
1925
1926static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1927 struct request_queue *q)
1928{
1929 q->tag_set = set;
1930
1931 mutex_lock(&set->tag_list_lock);
2404e607
JM
1932
1933 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1934 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1935 set->flags |= BLK_MQ_F_TAG_SHARED;
1936 /* update existing queue */
1937 blk_mq_update_tag_set_depth(set, true);
1938 }
1939 if (set->flags & BLK_MQ_F_TAG_SHARED)
1940 queue_set_hctx_shared(q, true);
0d2602ca 1941 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 1942
0d2602ca
JA
1943 mutex_unlock(&set->tag_list_lock);
1944}
1945
e09aae7e
ML
1946/*
1947 * It is the actual release handler for mq, but we do it from
1948 * request queue's release handler for avoiding use-after-free
1949 * and headache because q->mq_kobj shouldn't have been introduced,
1950 * but we can't group ctx/kctx kobj without it.
1951 */
1952void blk_mq_release(struct request_queue *q)
1953{
1954 struct blk_mq_hw_ctx *hctx;
1955 unsigned int i;
1956
1957 /* hctx kobj stays in hctx */
c3b4afca
ML
1958 queue_for_each_hw_ctx(q, hctx, i) {
1959 if (!hctx)
1960 continue;
1961 kfree(hctx->ctxs);
e09aae7e 1962 kfree(hctx);
c3b4afca 1963 }
e09aae7e 1964
a723bab3
AM
1965 kfree(q->mq_map);
1966 q->mq_map = NULL;
1967
e09aae7e
ML
1968 kfree(q->queue_hw_ctx);
1969
1970 /* ctx kobj stays in queue_ctx */
1971 free_percpu(q->queue_ctx);
1972}
1973
24d2f903 1974struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
1975{
1976 struct request_queue *uninit_q, *q;
1977
1978 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1979 if (!uninit_q)
1980 return ERR_PTR(-ENOMEM);
1981
1982 q = blk_mq_init_allocated_queue(set, uninit_q);
1983 if (IS_ERR(q))
1984 blk_cleanup_queue(uninit_q);
1985
1986 return q;
1987}
1988EXPORT_SYMBOL(blk_mq_init_queue);
1989
868f2f0b
KB
1990static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
1991 struct request_queue *q)
320ae51f 1992{
868f2f0b
KB
1993 int i, j;
1994 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 1995
868f2f0b 1996 blk_mq_sysfs_unregister(q);
24d2f903 1997 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 1998 int node;
f14bbe77 1999
868f2f0b
KB
2000 if (hctxs[i])
2001 continue;
2002
2003 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2004 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2005 GFP_KERNEL, node);
320ae51f 2006 if (!hctxs[i])
868f2f0b 2007 break;
320ae51f 2008
a86073e4 2009 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2010 node)) {
2011 kfree(hctxs[i]);
2012 hctxs[i] = NULL;
2013 break;
2014 }
e4043dcf 2015
0d2602ca 2016 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2017 hctxs[i]->numa_node = node;
320ae51f 2018 hctxs[i]->queue_num = i;
868f2f0b
KB
2019
2020 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2021 free_cpumask_var(hctxs[i]->cpumask);
2022 kfree(hctxs[i]);
2023 hctxs[i] = NULL;
2024 break;
2025 }
2026 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2027 }
868f2f0b
KB
2028 for (j = i; j < q->nr_hw_queues; j++) {
2029 struct blk_mq_hw_ctx *hctx = hctxs[j];
2030
2031 if (hctx) {
2032 if (hctx->tags) {
2033 blk_mq_free_rq_map(set, hctx->tags, j);
2034 set->tags[j] = NULL;
2035 }
2036 blk_mq_exit_hctx(q, set, hctx, j);
2037 free_cpumask_var(hctx->cpumask);
2038 kobject_put(&hctx->kobj);
2039 kfree(hctx->ctxs);
2040 kfree(hctx);
2041 hctxs[j] = NULL;
2042
2043 }
2044 }
2045 q->nr_hw_queues = i;
2046 blk_mq_sysfs_register(q);
2047}
2048
2049struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2050 struct request_queue *q)
2051{
66841672
ML
2052 /* mark the queue as mq asap */
2053 q->mq_ops = set->ops;
2054
868f2f0b
KB
2055 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2056 if (!q->queue_ctx)
c7de5726 2057 goto err_exit;
868f2f0b
KB
2058
2059 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2060 GFP_KERNEL, set->numa_node);
2061 if (!q->queue_hw_ctx)
2062 goto err_percpu;
2063
2064 q->mq_map = blk_mq_make_queue_map(set);
2065 if (!q->mq_map)
2066 goto err_map;
2067
2068 blk_mq_realloc_hw_ctxs(set, q);
2069 if (!q->nr_hw_queues)
2070 goto err_hctxs;
320ae51f 2071
287922eb 2072 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2073 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2074
2075 q->nr_queues = nr_cpu_ids;
320ae51f 2076
94eddfbe 2077 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2078
05f1dd53
JA
2079 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2080 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2081
1be036e9
CH
2082 q->sg_reserved_size = INT_MAX;
2083
6fca6a61
CH
2084 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2085 INIT_LIST_HEAD(&q->requeue_list);
2086 spin_lock_init(&q->requeue_lock);
2087
07068d5b
JA
2088 if (q->nr_hw_queues > 1)
2089 blk_queue_make_request(q, blk_mq_make_request);
2090 else
2091 blk_queue_make_request(q, blk_sq_make_request);
2092
eba71768
JA
2093 /*
2094 * Do this after blk_queue_make_request() overrides it...
2095 */
2096 q->nr_requests = set->queue_depth;
2097
24d2f903
CH
2098 if (set->ops->complete)
2099 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2100
24d2f903 2101 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2102
5778322e 2103 get_online_cpus();
320ae51f 2104 mutex_lock(&all_q_mutex);
320ae51f 2105
4593fdbe 2106 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2107 blk_mq_add_queue_tag_set(set, q);
5778322e 2108 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2109
4593fdbe 2110 mutex_unlock(&all_q_mutex);
5778322e 2111 put_online_cpus();
4593fdbe 2112
320ae51f 2113 return q;
18741986 2114
320ae51f 2115err_hctxs:
868f2f0b 2116 kfree(q->mq_map);
f14bbe77 2117err_map:
868f2f0b 2118 kfree(q->queue_hw_ctx);
320ae51f 2119err_percpu:
868f2f0b 2120 free_percpu(q->queue_ctx);
c7de5726
ML
2121err_exit:
2122 q->mq_ops = NULL;
320ae51f
JA
2123 return ERR_PTR(-ENOMEM);
2124}
b62c21b7 2125EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2126
2127void blk_mq_free_queue(struct request_queue *q)
2128{
624dbe47 2129 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2130
0e626368
AM
2131 mutex_lock(&all_q_mutex);
2132 list_del_init(&q->all_q_node);
2133 mutex_unlock(&all_q_mutex);
2134
0d2602ca
JA
2135 blk_mq_del_queue_tag_set(q);
2136
624dbe47
ML
2137 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2138 blk_mq_free_hw_queues(q, set);
320ae51f 2139}
320ae51f
JA
2140
2141/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2142static void blk_mq_queue_reinit(struct request_queue *q,
2143 const struct cpumask *online_mask)
320ae51f 2144{
4ecd4fef 2145 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2146
67aec14c
JA
2147 blk_mq_sysfs_unregister(q);
2148
5778322e 2149 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
320ae51f
JA
2150
2151 /*
2152 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2153 * we should change hctx numa_node according to new topology (this
2154 * involves free and re-allocate memory, worthy doing?)
2155 */
2156
5778322e 2157 blk_mq_map_swqueue(q, online_mask);
320ae51f 2158
67aec14c 2159 blk_mq_sysfs_register(q);
320ae51f
JA
2160}
2161
f618ef7c
PG
2162static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2163 unsigned long action, void *hcpu)
320ae51f
JA
2164{
2165 struct request_queue *q;
5778322e
AM
2166 int cpu = (unsigned long)hcpu;
2167 /*
2168 * New online cpumask which is going to be set in this hotplug event.
2169 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2170 * one-by-one and dynamically allocating this could result in a failure.
2171 */
2172 static struct cpumask online_new;
320ae51f
JA
2173
2174 /*
5778322e
AM
2175 * Before hotadded cpu starts handling requests, new mappings must
2176 * be established. Otherwise, these requests in hw queue might
2177 * never be dispatched.
2178 *
2179 * For example, there is a single hw queue (hctx) and two CPU queues
2180 * (ctx0 for CPU0, and ctx1 for CPU1).
2181 *
2182 * Now CPU1 is just onlined and a request is inserted into
2183 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2184 * still zero.
2185 *
2186 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2187 * set in pending bitmap and tries to retrieve requests in
2188 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2189 * so the request in ctx1->rq_list is ignored.
320ae51f 2190 */
5778322e
AM
2191 switch (action & ~CPU_TASKS_FROZEN) {
2192 case CPU_DEAD:
2193 case CPU_UP_CANCELED:
2194 cpumask_copy(&online_new, cpu_online_mask);
2195 break;
2196 case CPU_UP_PREPARE:
2197 cpumask_copy(&online_new, cpu_online_mask);
2198 cpumask_set_cpu(cpu, &online_new);
2199 break;
2200 default:
320ae51f 2201 return NOTIFY_OK;
5778322e 2202 }
320ae51f
JA
2203
2204 mutex_lock(&all_q_mutex);
f3af020b
TH
2205
2206 /*
2207 * We need to freeze and reinit all existing queues. Freezing
2208 * involves synchronous wait for an RCU grace period and doing it
2209 * one by one may take a long time. Start freezing all queues in
2210 * one swoop and then wait for the completions so that freezing can
2211 * take place in parallel.
2212 */
2213 list_for_each_entry(q, &all_q_list, all_q_node)
2214 blk_mq_freeze_queue_start(q);
f054b56c 2215 list_for_each_entry(q, &all_q_list, all_q_node) {
f3af020b
TH
2216 blk_mq_freeze_queue_wait(q);
2217
f054b56c
ML
2218 /*
2219 * timeout handler can't touch hw queue during the
2220 * reinitialization
2221 */
2222 del_timer_sync(&q->timeout);
2223 }
2224
320ae51f 2225 list_for_each_entry(q, &all_q_list, all_q_node)
5778322e 2226 blk_mq_queue_reinit(q, &online_new);
f3af020b
TH
2227
2228 list_for_each_entry(q, &all_q_list, all_q_node)
2229 blk_mq_unfreeze_queue(q);
2230
320ae51f
JA
2231 mutex_unlock(&all_q_mutex);
2232 return NOTIFY_OK;
2233}
2234
a5164405
JA
2235static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2236{
2237 int i;
2238
2239 for (i = 0; i < set->nr_hw_queues; i++) {
2240 set->tags[i] = blk_mq_init_rq_map(set, i);
2241 if (!set->tags[i])
2242 goto out_unwind;
2243 }
2244
2245 return 0;
2246
2247out_unwind:
2248 while (--i >= 0)
2249 blk_mq_free_rq_map(set, set->tags[i], i);
2250
a5164405
JA
2251 return -ENOMEM;
2252}
2253
2254/*
2255 * Allocate the request maps associated with this tag_set. Note that this
2256 * may reduce the depth asked for, if memory is tight. set->queue_depth
2257 * will be updated to reflect the allocated depth.
2258 */
2259static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2260{
2261 unsigned int depth;
2262 int err;
2263
2264 depth = set->queue_depth;
2265 do {
2266 err = __blk_mq_alloc_rq_maps(set);
2267 if (!err)
2268 break;
2269
2270 set->queue_depth >>= 1;
2271 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2272 err = -ENOMEM;
2273 break;
2274 }
2275 } while (set->queue_depth);
2276
2277 if (!set->queue_depth || err) {
2278 pr_err("blk-mq: failed to allocate request map\n");
2279 return -ENOMEM;
2280 }
2281
2282 if (depth != set->queue_depth)
2283 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2284 depth, set->queue_depth);
2285
2286 return 0;
2287}
2288
f26cdc85
KB
2289struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2290{
2291 return tags->cpumask;
2292}
2293EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2294
a4391c64
JA
2295/*
2296 * Alloc a tag set to be associated with one or more request queues.
2297 * May fail with EINVAL for various error conditions. May adjust the
2298 * requested depth down, if if it too large. In that case, the set
2299 * value will be stored in set->queue_depth.
2300 */
24d2f903
CH
2301int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2302{
205fb5f5
BVA
2303 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2304
24d2f903
CH
2305 if (!set->nr_hw_queues)
2306 return -EINVAL;
a4391c64 2307 if (!set->queue_depth)
24d2f903
CH
2308 return -EINVAL;
2309 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2310 return -EINVAL;
2311
f9018ac9 2312 if (!set->ops->queue_rq || !set->ops->map_queue)
24d2f903
CH
2313 return -EINVAL;
2314
a4391c64
JA
2315 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2316 pr_info("blk-mq: reduced tag depth to %u\n",
2317 BLK_MQ_MAX_DEPTH);
2318 set->queue_depth = BLK_MQ_MAX_DEPTH;
2319 }
24d2f903 2320
6637fadf
SL
2321 /*
2322 * If a crashdump is active, then we are potentially in a very
2323 * memory constrained environment. Limit us to 1 queue and
2324 * 64 tags to prevent using too much memory.
2325 */
2326 if (is_kdump_kernel()) {
2327 set->nr_hw_queues = 1;
2328 set->queue_depth = min(64U, set->queue_depth);
2329 }
868f2f0b
KB
2330 /*
2331 * There is no use for more h/w queues than cpus.
2332 */
2333 if (set->nr_hw_queues > nr_cpu_ids)
2334 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2335
868f2f0b 2336 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2337 GFP_KERNEL, set->numa_node);
2338 if (!set->tags)
a5164405 2339 return -ENOMEM;
24d2f903 2340
a5164405
JA
2341 if (blk_mq_alloc_rq_maps(set))
2342 goto enomem;
24d2f903 2343
0d2602ca
JA
2344 mutex_init(&set->tag_list_lock);
2345 INIT_LIST_HEAD(&set->tag_list);
2346
24d2f903 2347 return 0;
a5164405 2348enomem:
5676e7b6
RE
2349 kfree(set->tags);
2350 set->tags = NULL;
24d2f903
CH
2351 return -ENOMEM;
2352}
2353EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2354
2355void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2356{
2357 int i;
2358
868f2f0b 2359 for (i = 0; i < nr_cpu_ids; i++) {
f42d79ab 2360 if (set->tags[i])
484b4061
JA
2361 blk_mq_free_rq_map(set, set->tags[i], i);
2362 }
2363
981bd189 2364 kfree(set->tags);
5676e7b6 2365 set->tags = NULL;
24d2f903
CH
2366}
2367EXPORT_SYMBOL(blk_mq_free_tag_set);
2368
e3a2b3f9
JA
2369int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2370{
2371 struct blk_mq_tag_set *set = q->tag_set;
2372 struct blk_mq_hw_ctx *hctx;
2373 int i, ret;
2374
2375 if (!set || nr > set->queue_depth)
2376 return -EINVAL;
2377
2378 ret = 0;
2379 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2380 if (!hctx->tags)
2381 continue;
e3a2b3f9
JA
2382 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2383 if (ret)
2384 break;
2385 }
2386
2387 if (!ret)
2388 q->nr_requests = nr;
2389
2390 return ret;
2391}
2392
868f2f0b
KB
2393void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2394{
2395 struct request_queue *q;
2396
2397 if (nr_hw_queues > nr_cpu_ids)
2398 nr_hw_queues = nr_cpu_ids;
2399 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2400 return;
2401
2402 list_for_each_entry(q, &set->tag_list, tag_set_list)
2403 blk_mq_freeze_queue(q);
2404
2405 set->nr_hw_queues = nr_hw_queues;
2406 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2407 blk_mq_realloc_hw_ctxs(set, q);
2408
2409 if (q->nr_hw_queues > 1)
2410 blk_queue_make_request(q, blk_mq_make_request);
2411 else
2412 blk_queue_make_request(q, blk_sq_make_request);
2413
2414 blk_mq_queue_reinit(q, cpu_online_mask);
2415 }
2416
2417 list_for_each_entry(q, &set->tag_list, tag_set_list)
2418 blk_mq_unfreeze_queue(q);
2419}
2420EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2421
676141e4
JA
2422void blk_mq_disable_hotplug(void)
2423{
2424 mutex_lock(&all_q_mutex);
2425}
2426
2427void blk_mq_enable_hotplug(void)
2428{
2429 mutex_unlock(&all_q_mutex);
2430}
2431
320ae51f
JA
2432static int __init blk_mq_init(void)
2433{
320ae51f
JA
2434 blk_mq_cpu_init();
2435
add703fd 2436 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
320ae51f
JA
2437
2438 return 0;
2439}
2440subsys_initcall(blk_mq_init);