]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - block/blk-mq.c
blk-mq: remove dead check from blk_mq_dispatch_rq_list
[mirror_ubuntu-jammy-kernel.git] / block / blk-mq.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
75bb4625
JA
2/*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
320ae51f
JA
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/backing-dev.h>
11#include <linux/bio.h>
12#include <linux/blkdev.h>
f75782e4 13#include <linux/kmemleak.h>
320ae51f
JA
14#include <linux/mm.h>
15#include <linux/init.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18#include <linux/smp.h>
19#include <linux/llist.h>
20#include <linux/list_sort.h>
21#include <linux/cpu.h>
22#include <linux/cache.h>
23#include <linux/sched/sysctl.h>
105ab3d8 24#include <linux/sched/topology.h>
174cd4b1 25#include <linux/sched/signal.h>
320ae51f 26#include <linux/delay.h>
aedcd72f 27#include <linux/crash_dump.h>
88c7b2b7 28#include <linux/prefetch.h>
a892c8d5 29#include <linux/blk-crypto.h>
320ae51f
JA
30
31#include <trace/events/block.h>
32
33#include <linux/blk-mq.h>
54d4e6ab 34#include <linux/t10-pi.h>
320ae51f
JA
35#include "blk.h"
36#include "blk-mq.h"
9c1051aa 37#include "blk-mq-debugfs.h"
320ae51f 38#include "blk-mq-tag.h"
986d413b 39#include "blk-pm.h"
cf43e6be 40#include "blk-stat.h"
bd166ef1 41#include "blk-mq-sched.h"
c1c80384 42#include "blk-rq-qos.h"
320ae51f 43
c3077b5d
CH
44static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45
34dbad5d
OS
46static void blk_mq_poll_stats_start(struct request_queue *q);
47static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
720b8ccc
SB
49static int blk_mq_poll_stats_bkt(const struct request *rq)
50{
3d244306 51 int ddir, sectors, bucket;
720b8ccc 52
99c749a4 53 ddir = rq_data_dir(rq);
3d244306 54 sectors = blk_rq_stats_sectors(rq);
720b8ccc 55
3d244306 56 bucket = ddir + 2 * ilog2(sectors);
720b8ccc
SB
57
58 if (bucket < 0)
59 return -1;
60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63 return bucket;
64}
65
320ae51f 66/*
85fae294
YY
67 * Check if any of the ctx, dispatch list or elevator
68 * have pending work in this hardware queue.
320ae51f 69 */
79f720a7 70static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 71{
79f720a7
JA
72 return !list_empty_careful(&hctx->dispatch) ||
73 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 74 blk_mq_sched_has_work(hctx);
1429d7c9
JA
75}
76
320ae51f
JA
77/*
78 * Mark this ctx as having pending work in this hardware queue
79 */
80static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82{
f31967f0
JA
83 const int bit = ctx->index_hw[hctx->type];
84
85 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 sbitmap_set_bit(&hctx->ctx_map, bit);
1429d7c9
JA
87}
88
89static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 struct blk_mq_ctx *ctx)
91{
f31967f0
JA
92 const int bit = ctx->index_hw[hctx->type];
93
94 sbitmap_clear_bit(&hctx->ctx_map, bit);
320ae51f
JA
95}
96
f299b7c7
JA
97struct mq_inflight {
98 struct hd_struct *part;
a2e80f6f 99 unsigned int inflight[2];
f299b7c7
JA
100};
101
7baa8572 102static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
f299b7c7
JA
103 struct request *rq, void *priv,
104 bool reserved)
105{
106 struct mq_inflight *mi = priv;
107
6131837b 108 if (rq->part == mi->part)
bb4e6b14 109 mi->inflight[rq_data_dir(rq)]++;
7baa8572
JA
110
111 return true;
f299b7c7
JA
112}
113
e016b782 114unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
f299b7c7 115{
a2e80f6f 116 struct mq_inflight mi = { .part = part };
f299b7c7 117
f299b7c7 118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
e016b782 119
a2e80f6f 120 return mi.inflight[0] + mi.inflight[1];
bf0ddaba
OS
121}
122
123void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
124 unsigned int inflight[2])
125{
a2e80f6f 126 struct mq_inflight mi = { .part = part };
bf0ddaba 127
bb4e6b14 128 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
a2e80f6f
PB
129 inflight[0] = mi.inflight[0];
130 inflight[1] = mi.inflight[1];
bf0ddaba
OS
131}
132
1671d522 133void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 134{
7996a8b5
BL
135 mutex_lock(&q->mq_freeze_lock);
136 if (++q->mq_freeze_depth == 1) {
3ef28e83 137 percpu_ref_kill(&q->q_usage_counter);
7996a8b5 138 mutex_unlock(&q->mq_freeze_lock);
344e9ffc 139 if (queue_is_mq(q))
055f6e18 140 blk_mq_run_hw_queues(q, false);
7996a8b5
BL
141 } else {
142 mutex_unlock(&q->mq_freeze_lock);
cddd5d17 143 }
f3af020b 144}
1671d522 145EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 146
6bae363e 147void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 148{
3ef28e83 149 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 150}
6bae363e 151EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 152
f91328c4
KB
153int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
154 unsigned long timeout)
155{
156 return wait_event_timeout(q->mq_freeze_wq,
157 percpu_ref_is_zero(&q->q_usage_counter),
158 timeout);
159}
160EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 161
f3af020b
TH
162/*
163 * Guarantee no request is in use, so we can change any data structure of
164 * the queue afterward.
165 */
3ef28e83 166void blk_freeze_queue(struct request_queue *q)
f3af020b 167{
3ef28e83
DW
168 /*
169 * In the !blk_mq case we are only calling this to kill the
170 * q_usage_counter, otherwise this increases the freeze depth
171 * and waits for it to return to zero. For this reason there is
172 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
173 * exported to drivers as the only user for unfreeze is blk_mq.
174 */
1671d522 175 blk_freeze_queue_start(q);
f3af020b
TH
176 blk_mq_freeze_queue_wait(q);
177}
3ef28e83
DW
178
179void blk_mq_freeze_queue(struct request_queue *q)
180{
181 /*
182 * ...just an alias to keep freeze and unfreeze actions balanced
183 * in the blk_mq_* namespace
184 */
185 blk_freeze_queue(q);
186}
c761d96b 187EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 188
b4c6a028 189void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 190{
7996a8b5
BL
191 mutex_lock(&q->mq_freeze_lock);
192 q->mq_freeze_depth--;
193 WARN_ON_ONCE(q->mq_freeze_depth < 0);
194 if (!q->mq_freeze_depth) {
bdd63160 195 percpu_ref_resurrect(&q->q_usage_counter);
320ae51f 196 wake_up_all(&q->mq_freeze_wq);
add703fd 197 }
7996a8b5 198 mutex_unlock(&q->mq_freeze_lock);
320ae51f 199}
b4c6a028 200EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 201
852ec809
BVA
202/*
203 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
204 * mpt3sas driver such that this function can be removed.
205 */
206void blk_mq_quiesce_queue_nowait(struct request_queue *q)
207{
8814ce8a 208 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
852ec809
BVA
209}
210EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
211
6a83e74d 212/**
69e07c4a 213 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
214 * @q: request queue.
215 *
216 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
217 * callback function is invoked. Once this function is returned, we make
218 * sure no dispatch can happen until the queue is unquiesced via
219 * blk_mq_unquiesce_queue().
6a83e74d
BVA
220 */
221void blk_mq_quiesce_queue(struct request_queue *q)
222{
223 struct blk_mq_hw_ctx *hctx;
224 unsigned int i;
225 bool rcu = false;
226
1d9e9bc6 227 blk_mq_quiesce_queue_nowait(q);
f4560ffe 228
6a83e74d
BVA
229 queue_for_each_hw_ctx(q, hctx, i) {
230 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 231 synchronize_srcu(hctx->srcu);
6a83e74d
BVA
232 else
233 rcu = true;
234 }
235 if (rcu)
236 synchronize_rcu();
237}
238EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
239
e4e73913
ML
240/*
241 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
242 * @q: request queue.
243 *
244 * This function recovers queue into the state before quiescing
245 * which is done by blk_mq_quiesce_queue.
246 */
247void blk_mq_unquiesce_queue(struct request_queue *q)
248{
8814ce8a 249 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
f4560ffe 250
1d9e9bc6
ML
251 /* dispatch requests which are inserted during quiescing */
252 blk_mq_run_hw_queues(q, true);
e4e73913
ML
253}
254EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
255
aed3ea94
JA
256void blk_mq_wake_waiters(struct request_queue *q)
257{
258 struct blk_mq_hw_ctx *hctx;
259 unsigned int i;
260
261 queue_for_each_hw_ctx(q, hctx, i)
262 if (blk_mq_hw_queue_mapped(hctx))
263 blk_mq_tag_wakeup_all(hctx->tags, true);
264}
265
fe1f4526 266/*
9a91b05b
HT
267 * Only need start/end time stamping if we have iostat or
268 * blk stats enabled, or using an IO scheduler.
fe1f4526
JA
269 */
270static inline bool blk_mq_need_time_stamp(struct request *rq)
271{
9a91b05b 272 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
fe1f4526
JA
273}
274
e4cdf1a1 275static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
7ea4d8a4 276 unsigned int tag, u64 alloc_time_ns)
320ae51f 277{
e4cdf1a1
CH
278 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
279 struct request *rq = tags->static_rqs[tag];
bf9ae8c5 280 req_flags_t rq_flags = 0;
c3a148d2 281
42fdc5e4 282 if (data->q->elevator) {
76647368 283 rq->tag = BLK_MQ_NO_TAG;
e4cdf1a1
CH
284 rq->internal_tag = tag;
285 } else {
d263ed99 286 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
bf9ae8c5 287 rq_flags = RQF_MQ_INFLIGHT;
e4cdf1a1
CH
288 atomic_inc(&data->hctx->nr_active);
289 }
290 rq->tag = tag;
76647368 291 rq->internal_tag = BLK_MQ_NO_TAG;
e4cdf1a1
CH
292 data->hctx->tags->rqs[rq->tag] = rq;
293 }
294
af76e555 295 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
296 rq->q = data->q;
297 rq->mq_ctx = data->ctx;
ea4f995e 298 rq->mq_hctx = data->hctx;
bf9ae8c5 299 rq->rq_flags = rq_flags;
7ea4d8a4 300 rq->cmd_flags = data->cmd_flags;
1b6d65a0
BVA
301 if (data->flags & BLK_MQ_REQ_PREEMPT)
302 rq->rq_flags |= RQF_PREEMPT;
e4cdf1a1 303 if (blk_queue_io_stat(data->q))
e8064021 304 rq->rq_flags |= RQF_IO_STAT;
7c3fb70f 305 INIT_LIST_HEAD(&rq->queuelist);
af76e555
CH
306 INIT_HLIST_NODE(&rq->hash);
307 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
308 rq->rq_disk = NULL;
309 rq->part = NULL;
6f816b4b
TH
310#ifdef CONFIG_BLK_RQ_ALLOC_TIME
311 rq->alloc_time_ns = alloc_time_ns;
312#endif
fe1f4526
JA
313 if (blk_mq_need_time_stamp(rq))
314 rq->start_time_ns = ktime_get_ns();
315 else
316 rq->start_time_ns = 0;
544ccc8d 317 rq->io_start_time_ns = 0;
3d244306 318 rq->stats_sectors = 0;
af76e555
CH
319 rq->nr_phys_segments = 0;
320#if defined(CONFIG_BLK_DEV_INTEGRITY)
321 rq->nr_integrity_segments = 0;
322#endif
a892c8d5 323 blk_crypto_rq_set_defaults(rq);
af76e555 324 /* tag was already set */
079076b3 325 WRITE_ONCE(rq->deadline, 0);
af76e555 326
f6be4fb4
JA
327 rq->timeout = 0;
328
af76e555
CH
329 rq->end_io = NULL;
330 rq->end_io_data = NULL;
af76e555 331
7ea4d8a4 332 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
12f5b931 333 refcount_set(&rq->ref, 1);
7ea4d8a4
CH
334
335 if (!op_is_flush(data->cmd_flags)) {
336 struct elevator_queue *e = data->q->elevator;
337
338 rq->elv.icq = NULL;
339 if (e && e->type->ops.prepare_request) {
340 if (e->type->icq_cache)
341 blk_mq_sched_assign_ioc(rq);
342
343 e->type->ops.prepare_request(rq);
344 rq->rq_flags |= RQF_ELVPRIV;
345 }
346 }
347
348 data->hctx->queued++;
e4cdf1a1 349 return rq;
5dee8577
CH
350}
351
e6e7abff 352static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
d2c0d383 353{
e6e7abff 354 struct request_queue *q = data->q;
d2c0d383 355 struct elevator_queue *e = q->elevator;
6f816b4b 356 u64 alloc_time_ns = 0;
600c3b0c 357 unsigned int tag;
d2c0d383 358
6f816b4b
TH
359 /* alloc_time includes depth and tag waits */
360 if (blk_queue_rq_alloc_time(q))
361 alloc_time_ns = ktime_get_ns();
362
f9afca4d 363 if (data->cmd_flags & REQ_NOWAIT)
03a07c92 364 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
365
366 if (e) {
d2c0d383
CH
367 /*
368 * Flush requests are special and go directly to the
17a51199
JA
369 * dispatch list. Don't include reserved tags in the
370 * limiting, as it isn't useful.
d2c0d383 371 */
f9afca4d
JA
372 if (!op_is_flush(data->cmd_flags) &&
373 e->type->ops.limit_depth &&
17a51199 374 !(data->flags & BLK_MQ_REQ_RESERVED))
f9afca4d 375 e->type->ops.limit_depth(data->cmd_flags, data);
d2c0d383
CH
376 }
377
bf0beec0 378retry:
600c3b0c
CH
379 data->ctx = blk_mq_get_ctx(q);
380 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
42fdc5e4 381 if (!e)
600c3b0c
CH
382 blk_mq_tag_busy(data->hctx);
383
bf0beec0
ML
384 /*
385 * Waiting allocations only fail because of an inactive hctx. In that
386 * case just retry the hctx assignment and tag allocation as CPU hotplug
387 * should have migrated us to an online CPU by now.
388 */
e4cdf1a1 389 tag = blk_mq_get_tag(data);
bf0beec0
ML
390 if (tag == BLK_MQ_NO_TAG) {
391 if (data->flags & BLK_MQ_REQ_NOWAIT)
392 return NULL;
393
394 /*
395 * Give up the CPU and sleep for a random short time to ensure
396 * that thread using a realtime scheduling class are migrated
397 * off the the CPU, and thus off the hctx that is going away.
398 */
399 msleep(3);
400 goto retry;
401 }
7ea4d8a4 402 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
d2c0d383
CH
403}
404
cd6ce148 405struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 406 blk_mq_req_flags_t flags)
320ae51f 407{
e6e7abff
CH
408 struct blk_mq_alloc_data data = {
409 .q = q,
410 .flags = flags,
411 .cmd_flags = op,
412 };
bd166ef1 413 struct request *rq;
a492f075 414 int ret;
320ae51f 415
3a0a5299 416 ret = blk_queue_enter(q, flags);
a492f075
JL
417 if (ret)
418 return ERR_PTR(ret);
320ae51f 419
e6e7abff 420 rq = __blk_mq_alloc_request(&data);
bd166ef1 421 if (!rq)
a5ea5811 422 goto out_queue_exit;
0c4de0f3
CH
423 rq->__data_len = 0;
424 rq->__sector = (sector_t) -1;
425 rq->bio = rq->biotail = NULL;
320ae51f 426 return rq;
a5ea5811
CH
427out_queue_exit:
428 blk_queue_exit(q);
429 return ERR_PTR(-EWOULDBLOCK);
320ae51f 430}
4bb659b1 431EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 432
cd6ce148 433struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 434 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 435{
e6e7abff
CH
436 struct blk_mq_alloc_data data = {
437 .q = q,
438 .flags = flags,
439 .cmd_flags = op,
440 };
600c3b0c 441 u64 alloc_time_ns = 0;
6d2809d5 442 unsigned int cpu;
600c3b0c 443 unsigned int tag;
1f5bd336
ML
444 int ret;
445
600c3b0c
CH
446 /* alloc_time includes depth and tag waits */
447 if (blk_queue_rq_alloc_time(q))
448 alloc_time_ns = ktime_get_ns();
449
1f5bd336
ML
450 /*
451 * If the tag allocator sleeps we could get an allocation for a
452 * different hardware context. No need to complicate the low level
453 * allocator for this for the rare use case of a command tied to
454 * a specific queue.
455 */
600c3b0c 456 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
1f5bd336
ML
457 return ERR_PTR(-EINVAL);
458
459 if (hctx_idx >= q->nr_hw_queues)
460 return ERR_PTR(-EIO);
461
3a0a5299 462 ret = blk_queue_enter(q, flags);
1f5bd336
ML
463 if (ret)
464 return ERR_PTR(ret);
465
c8712c6a
CH
466 /*
467 * Check if the hardware context is actually mapped to anything.
468 * If not tell the caller that it should skip this queue.
469 */
a5ea5811 470 ret = -EXDEV;
e6e7abff
CH
471 data.hctx = q->queue_hw_ctx[hctx_idx];
472 if (!blk_mq_hw_queue_mapped(data.hctx))
a5ea5811 473 goto out_queue_exit;
e6e7abff
CH
474 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
475 data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 476
42fdc5e4 477 if (!q->elevator)
600c3b0c
CH
478 blk_mq_tag_busy(data.hctx);
479
a5ea5811 480 ret = -EWOULDBLOCK;
600c3b0c
CH
481 tag = blk_mq_get_tag(&data);
482 if (tag == BLK_MQ_NO_TAG)
a5ea5811 483 goto out_queue_exit;
600c3b0c
CH
484 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
485
a5ea5811
CH
486out_queue_exit:
487 blk_queue_exit(q);
488 return ERR_PTR(ret);
1f5bd336
ML
489}
490EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
491
12f5b931
KB
492static void __blk_mq_free_request(struct request *rq)
493{
494 struct request_queue *q = rq->q;
495 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 496 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
12f5b931
KB
497 const int sched_tag = rq->internal_tag;
498
a892c8d5 499 blk_crypto_free_request(rq);
986d413b 500 blk_pm_mark_last_busy(rq);
ea4f995e 501 rq->mq_hctx = NULL;
76647368 502 if (rq->tag != BLK_MQ_NO_TAG)
cae740a0 503 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
76647368 504 if (sched_tag != BLK_MQ_NO_TAG)
cae740a0 505 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
12f5b931
KB
506 blk_mq_sched_restart(hctx);
507 blk_queue_exit(q);
508}
509
6af54051 510void blk_mq_free_request(struct request *rq)
320ae51f 511{
320ae51f 512 struct request_queue *q = rq->q;
6af54051
CH
513 struct elevator_queue *e = q->elevator;
514 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 515 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
6af54051 516
5bbf4e5a 517 if (rq->rq_flags & RQF_ELVPRIV) {
f9cd4bfe
JA
518 if (e && e->type->ops.finish_request)
519 e->type->ops.finish_request(rq);
6af54051
CH
520 if (rq->elv.icq) {
521 put_io_context(rq->elv.icq->ioc);
522 rq->elv.icq = NULL;
523 }
524 }
320ae51f 525
6af54051 526 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 527 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 528 atomic_dec(&hctx->nr_active);
87760e5e 529
7beb2f84
JA
530 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
531 laptop_io_completion(q->backing_dev_info);
532
a7905043 533 rq_qos_done(q, rq);
0d2602ca 534
12f5b931
KB
535 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
536 if (refcount_dec_and_test(&rq->ref))
537 __blk_mq_free_request(rq);
320ae51f 538}
1a3b595a 539EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 540
2a842aca 541inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 542{
fe1f4526
JA
543 u64 now = 0;
544
545 if (blk_mq_need_time_stamp(rq))
546 now = ktime_get_ns();
522a7775 547
4bc6339a
OS
548 if (rq->rq_flags & RQF_STATS) {
549 blk_mq_poll_stats_start(rq->q);
522a7775 550 blk_stat_add(rq, now);
4bc6339a
OS
551 }
552
76647368 553 if (rq->internal_tag != BLK_MQ_NO_TAG)
ed88660a
OS
554 blk_mq_sched_completed_request(rq, now);
555
522a7775 556 blk_account_io_done(rq, now);
0d11e6ac 557
91b63639 558 if (rq->end_io) {
a7905043 559 rq_qos_done(rq->q, rq);
320ae51f 560 rq->end_io(rq, error);
91b63639 561 } else {
320ae51f 562 blk_mq_free_request(rq);
91b63639 563 }
320ae51f 564}
c8a446ad 565EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 566
2a842aca 567void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
568{
569 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
570 BUG();
c8a446ad 571 __blk_mq_end_request(rq, error);
63151a44 572}
c8a446ad 573EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 574
c3077b5d
CH
575/*
576 * Softirq action handler - move entries to local list and loop over them
577 * while passing them to the queue registered handler.
578 */
579static __latent_entropy void blk_done_softirq(struct softirq_action *h)
580{
581 struct list_head *cpu_list, local_list;
582
583 local_irq_disable();
584 cpu_list = this_cpu_ptr(&blk_cpu_done);
585 list_replace_init(cpu_list, &local_list);
586 local_irq_enable();
587
588 while (!list_empty(&local_list)) {
589 struct request *rq;
590
591 rq = list_entry(local_list.next, struct request, ipi_list);
592 list_del_init(&rq->ipi_list);
593 rq->q->mq_ops->complete(rq);
594 }
595}
596
115243f5 597static void blk_mq_trigger_softirq(struct request *rq)
c3077b5d 598{
d391a7a3
CH
599 struct list_head *list;
600 unsigned long flags;
c3077b5d 601
d391a7a3
CH
602 local_irq_save(flags);
603 list = this_cpu_ptr(&blk_cpu_done);
c3077b5d
CH
604 list_add_tail(&rq->ipi_list, list);
605
115243f5
CH
606 /*
607 * If the list only contains our just added request, signal a raise of
608 * the softirq. If there are already entries there, someone already
609 * raised the irq but it hasn't run yet.
610 */
c3077b5d
CH
611 if (list->next == &rq->ipi_list)
612 raise_softirq_irqoff(BLOCK_SOFTIRQ);
d391a7a3 613 local_irq_restore(flags);
115243f5
CH
614}
615
c3077b5d
CH
616static int blk_softirq_cpu_dead(unsigned int cpu)
617{
618 /*
619 * If a CPU goes away, splice its entries to the current CPU
620 * and trigger a run of the softirq
621 */
622 local_irq_disable();
623 list_splice_init(&per_cpu(blk_cpu_done, cpu),
624 this_cpu_ptr(&blk_cpu_done));
625 raise_softirq_irqoff(BLOCK_SOFTIRQ);
626 local_irq_enable();
627
628 return 0;
629}
630
40d09b53
CH
631
632static void __blk_mq_complete_request_remote(void *data)
c3077b5d 633{
40d09b53
CH
634 struct request *rq = data;
635
c3077b5d 636 /*
d391a7a3
CH
637 * For most of single queue controllers, there is only one irq vector
638 * for handling I/O completion, and the only irq's affinity is set
639 * to all possible CPUs. On most of ARCHs, this affinity means the irq
640 * is handled on one specific CPU.
641 *
642 * So complete I/O requests in softirq context in case of single queue
643 * devices to avoid degrading I/O performance due to irqsoff latency.
c3077b5d 644 */
d391a7a3
CH
645 if (rq->q->nr_hw_queues == 1)
646 blk_mq_trigger_softirq(rq);
647 else
648 rq->q->mq_ops->complete(rq);
c3077b5d
CH
649}
650
96339526
CH
651static inline bool blk_mq_complete_need_ipi(struct request *rq)
652{
653 int cpu = raw_smp_processor_id();
654
655 if (!IS_ENABLED(CONFIG_SMP) ||
656 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
657 return false;
658
659 /* same CPU or cache domain? Complete locally */
660 if (cpu == rq->mq_ctx->cpu ||
661 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
662 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
663 return false;
664
665 /* don't try to IPI to an offline CPU */
666 return cpu_online(rq->mq_ctx->cpu);
667}
668
40d09b53 669bool blk_mq_complete_request_remote(struct request *rq)
320ae51f 670{
af78ff7c 671 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
6aab1da6 672
36a3df5a
ML
673 blk_mq_put_driver_tag(rq);
674
6aab1da6
CH
675 /*
676 * For a polled request, always complete locallly, it's pointless
677 * to redirect the completion.
678 */
40d09b53
CH
679 if (rq->cmd_flags & REQ_HIPRI)
680 return false;
320ae51f 681
96339526 682 if (blk_mq_complete_need_ipi(rq)) {
30a91cb4 683 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
684 rq->csd.info = rq;
685 rq->csd.flags = 0;
96339526 686 smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
3d6efbf6 687 } else {
40d09b53
CH
688 if (rq->q->nr_hw_queues > 1)
689 return false;
690 blk_mq_trigger_softirq(rq);
3d6efbf6 691 }
40d09b53
CH
692
693 return true;
694}
695EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
696
697/**
698 * blk_mq_complete_request - end I/O on a request
699 * @rq: the request being processed
700 *
701 * Description:
702 * Complete a request by scheduling the ->complete_rq operation.
703 **/
704void blk_mq_complete_request(struct request *rq)
705{
706 if (!blk_mq_complete_request_remote(rq))
707 rq->q->mq_ops->complete(rq);
320ae51f 708}
15f73f5b 709EXPORT_SYMBOL(blk_mq_complete_request);
30a91cb4 710
04ced159 711static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
b7435db8 712 __releases(hctx->srcu)
04ced159
JA
713{
714 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
715 rcu_read_unlock();
716 else
05707b64 717 srcu_read_unlock(hctx->srcu, srcu_idx);
04ced159
JA
718}
719
720static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
b7435db8 721 __acquires(hctx->srcu)
04ced159 722{
08b5a6e2
JA
723 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
724 /* shut up gcc false positive */
725 *srcu_idx = 0;
04ced159 726 rcu_read_lock();
08b5a6e2 727 } else
05707b64 728 *srcu_idx = srcu_read_lock(hctx->srcu);
04ced159
JA
729}
730
105663f7
AA
731/**
732 * blk_mq_start_request - Start processing a request
733 * @rq: Pointer to request to be started
734 *
735 * Function used by device drivers to notify the block layer that a request
736 * is going to be processed now, so blk layer can do proper initializations
737 * such as starting the timeout timer.
738 */
e2490073 739void blk_mq_start_request(struct request *rq)
320ae51f
JA
740{
741 struct request_queue *q = rq->q;
742
743 trace_block_rq_issue(q, rq);
744
cf43e6be 745 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
544ccc8d 746 rq->io_start_time_ns = ktime_get_ns();
3d244306 747 rq->stats_sectors = blk_rq_sectors(rq);
cf43e6be 748 rq->rq_flags |= RQF_STATS;
a7905043 749 rq_qos_issue(q, rq);
cf43e6be
JA
750 }
751
1d9bd516 752 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
538b7534 753
1d9bd516 754 blk_add_timer(rq);
12f5b931 755 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
49f5baa5 756
54d4e6ab
MG
757#ifdef CONFIG_BLK_DEV_INTEGRITY
758 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
759 q->integrity.profile->prepare_fn(rq);
760#endif
320ae51f 761}
e2490073 762EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 763
ed0791b2 764static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
765{
766 struct request_queue *q = rq->q;
767
923218f6
ML
768 blk_mq_put_driver_tag(rq);
769
320ae51f 770 trace_block_rq_requeue(q, rq);
a7905043 771 rq_qos_requeue(q, rq);
49f5baa5 772
12f5b931
KB
773 if (blk_mq_request_started(rq)) {
774 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
da661267 775 rq->rq_flags &= ~RQF_TIMED_OUT;
e2490073 776 }
320ae51f
JA
777}
778
2b053aca 779void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 780{
ed0791b2 781 __blk_mq_requeue_request(rq);
ed0791b2 782
105976f5
ML
783 /* this request will be re-inserted to io scheduler queue */
784 blk_mq_sched_requeue_request(rq);
785
7d692330 786 BUG_ON(!list_empty(&rq->queuelist));
2b053aca 787 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
788}
789EXPORT_SYMBOL(blk_mq_requeue_request);
790
6fca6a61
CH
791static void blk_mq_requeue_work(struct work_struct *work)
792{
793 struct request_queue *q =
2849450a 794 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
795 LIST_HEAD(rq_list);
796 struct request *rq, *next;
6fca6a61 797
18e9781d 798 spin_lock_irq(&q->requeue_lock);
6fca6a61 799 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 800 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
801
802 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
aef1897c 803 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
6fca6a61
CH
804 continue;
805
e8064021 806 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 807 list_del_init(&rq->queuelist);
aef1897c
JW
808 /*
809 * If RQF_DONTPREP, rq has contained some driver specific
810 * data, so insert it to hctx dispatch list to avoid any
811 * merge.
812 */
813 if (rq->rq_flags & RQF_DONTPREP)
01e99aec 814 blk_mq_request_bypass_insert(rq, false, false);
aef1897c
JW
815 else
816 blk_mq_sched_insert_request(rq, true, false, false);
6fca6a61
CH
817 }
818
819 while (!list_empty(&rq_list)) {
820 rq = list_entry(rq_list.next, struct request, queuelist);
821 list_del_init(&rq->queuelist);
9e97d295 822 blk_mq_sched_insert_request(rq, false, false, false);
6fca6a61
CH
823 }
824
52d7f1b5 825 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
826}
827
2b053aca
BVA
828void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
829 bool kick_requeue_list)
6fca6a61
CH
830{
831 struct request_queue *q = rq->q;
832 unsigned long flags;
833
834 /*
835 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 836 * request head insertion from the workqueue.
6fca6a61 837 */
e8064021 838 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
839
840 spin_lock_irqsave(&q->requeue_lock, flags);
841 if (at_head) {
e8064021 842 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
843 list_add(&rq->queuelist, &q->requeue_list);
844 } else {
845 list_add_tail(&rq->queuelist, &q->requeue_list);
846 }
847 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
848
849 if (kick_requeue_list)
850 blk_mq_kick_requeue_list(q);
6fca6a61 851}
6fca6a61
CH
852
853void blk_mq_kick_requeue_list(struct request_queue *q)
854{
ae943d20 855 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
6fca6a61
CH
856}
857EXPORT_SYMBOL(blk_mq_kick_requeue_list);
858
2849450a
MS
859void blk_mq_delay_kick_requeue_list(struct request_queue *q,
860 unsigned long msecs)
861{
d4acf365
BVA
862 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
863 msecs_to_jiffies(msecs));
2849450a
MS
864}
865EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
866
0e62f51f
JA
867struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
868{
88c7b2b7
JA
869 if (tag < tags->nr_tags) {
870 prefetch(tags->rqs[tag]);
4ee86bab 871 return tags->rqs[tag];
88c7b2b7 872 }
4ee86bab
HR
873
874 return NULL;
24d2f903
CH
875}
876EXPORT_SYMBOL(blk_mq_tag_to_rq);
877
3c94d83c
JA
878static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
879 void *priv, bool reserved)
ae879912
JA
880{
881 /*
3c94d83c
JA
882 * If we find a request that is inflight and the queue matches,
883 * we know the queue is busy. Return false to stop the iteration.
ae879912 884 */
3c94d83c 885 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
ae879912
JA
886 bool *busy = priv;
887
888 *busy = true;
889 return false;
890 }
891
892 return true;
893}
894
3c94d83c 895bool blk_mq_queue_inflight(struct request_queue *q)
ae879912
JA
896{
897 bool busy = false;
898
3c94d83c 899 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
ae879912
JA
900 return busy;
901}
3c94d83c 902EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
ae879912 903
358f70da 904static void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 905{
da661267 906 req->rq_flags |= RQF_TIMED_OUT;
d1210d5a
CH
907 if (req->q->mq_ops->timeout) {
908 enum blk_eh_timer_return ret;
909
910 ret = req->q->mq_ops->timeout(req, reserved);
911 if (ret == BLK_EH_DONE)
912 return;
913 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
46f92d42 914 }
d1210d5a
CH
915
916 blk_add_timer(req);
87ee7b11 917}
5b3f25fc 918
12f5b931 919static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
81481eb4 920{
12f5b931 921 unsigned long deadline;
87ee7b11 922
12f5b931
KB
923 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
924 return false;
da661267
CH
925 if (rq->rq_flags & RQF_TIMED_OUT)
926 return false;
a7af0af3 927
079076b3 928 deadline = READ_ONCE(rq->deadline);
12f5b931
KB
929 if (time_after_eq(jiffies, deadline))
930 return true;
a7af0af3 931
12f5b931
KB
932 if (*next == 0)
933 *next = deadline;
934 else if (time_after(*next, deadline))
935 *next = deadline;
936 return false;
87ee7b11
JA
937}
938
7baa8572 939static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1d9bd516
TH
940 struct request *rq, void *priv, bool reserved)
941{
12f5b931
KB
942 unsigned long *next = priv;
943
944 /*
945 * Just do a quick check if it is expired before locking the request in
946 * so we're not unnecessarilly synchronizing across CPUs.
947 */
948 if (!blk_mq_req_expired(rq, next))
7baa8572 949 return true;
12f5b931
KB
950
951 /*
952 * We have reason to believe the request may be expired. Take a
953 * reference on the request to lock this request lifetime into its
954 * currently allocated context to prevent it from being reallocated in
955 * the event the completion by-passes this timeout handler.
956 *
957 * If the reference was already released, then the driver beat the
958 * timeout handler to posting a natural completion.
959 */
960 if (!refcount_inc_not_zero(&rq->ref))
7baa8572 961 return true;
12f5b931 962
1d9bd516 963 /*
12f5b931
KB
964 * The request is now locked and cannot be reallocated underneath the
965 * timeout handler's processing. Re-verify this exact request is truly
966 * expired; if it is not expired, then the request was completed and
967 * reallocated as a new request.
1d9bd516 968 */
12f5b931 969 if (blk_mq_req_expired(rq, next))
1d9bd516 970 blk_mq_rq_timed_out(rq, reserved);
8d699663
YY
971
972 if (is_flush_rq(rq, hctx))
973 rq->end_io(rq, 0);
974 else if (refcount_dec_and_test(&rq->ref))
12f5b931 975 __blk_mq_free_request(rq);
7baa8572
JA
976
977 return true;
1d9bd516
TH
978}
979
287922eb 980static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 981{
287922eb
CH
982 struct request_queue *q =
983 container_of(work, struct request_queue, timeout_work);
12f5b931 984 unsigned long next = 0;
1d9bd516 985 struct blk_mq_hw_ctx *hctx;
81481eb4 986 int i;
320ae51f 987
71f79fb3
GKB
988 /* A deadlock might occur if a request is stuck requiring a
989 * timeout at the same time a queue freeze is waiting
990 * completion, since the timeout code would not be able to
991 * acquire the queue reference here.
992 *
993 * That's why we don't use blk_queue_enter here; instead, we use
994 * percpu_ref_tryget directly, because we need to be able to
995 * obtain a reference even in the short window between the queue
996 * starting to freeze, by dropping the first reference in
1671d522 997 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
998 * consumed, marked by the instant q_usage_counter reaches
999 * zero.
1000 */
1001 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
1002 return;
1003
12f5b931 1004 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
320ae51f 1005
12f5b931
KB
1006 if (next != 0) {
1007 mod_timer(&q->timeout, next);
0d2602ca 1008 } else {
fcd36c36
BVA
1009 /*
1010 * Request timeouts are handled as a forward rolling timer. If
1011 * we end up here it means that no requests are pending and
1012 * also that no request has been pending for a while. Mark
1013 * each hctx as idle.
1014 */
f054b56c
ML
1015 queue_for_each_hw_ctx(q, hctx, i) {
1016 /* the hctx may be unmapped, so check it here */
1017 if (blk_mq_hw_queue_mapped(hctx))
1018 blk_mq_tag_idle(hctx);
1019 }
0d2602ca 1020 }
287922eb 1021 blk_queue_exit(q);
320ae51f
JA
1022}
1023
88459642
OS
1024struct flush_busy_ctx_data {
1025 struct blk_mq_hw_ctx *hctx;
1026 struct list_head *list;
1027};
1028
1029static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1030{
1031 struct flush_busy_ctx_data *flush_data = data;
1032 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1033 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 1034 enum hctx_type type = hctx->type;
88459642 1035
88459642 1036 spin_lock(&ctx->lock);
c16d6b5a 1037 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
e9a99a63 1038 sbitmap_clear_bit(sb, bitnr);
88459642
OS
1039 spin_unlock(&ctx->lock);
1040 return true;
1041}
1042
1429d7c9
JA
1043/*
1044 * Process software queues that have been marked busy, splicing them
1045 * to the for-dispatch
1046 */
2c3ad667 1047void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 1048{
88459642
OS
1049 struct flush_busy_ctx_data data = {
1050 .hctx = hctx,
1051 .list = list,
1052 };
1429d7c9 1053
88459642 1054 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 1055}
2c3ad667 1056EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 1057
b347689f
ML
1058struct dispatch_rq_data {
1059 struct blk_mq_hw_ctx *hctx;
1060 struct request *rq;
1061};
1062
1063static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1064 void *data)
1065{
1066 struct dispatch_rq_data *dispatch_data = data;
1067 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1068 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 1069 enum hctx_type type = hctx->type;
b347689f
ML
1070
1071 spin_lock(&ctx->lock);
c16d6b5a
ML
1072 if (!list_empty(&ctx->rq_lists[type])) {
1073 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
b347689f 1074 list_del_init(&dispatch_data->rq->queuelist);
c16d6b5a 1075 if (list_empty(&ctx->rq_lists[type]))
b347689f
ML
1076 sbitmap_clear_bit(sb, bitnr);
1077 }
1078 spin_unlock(&ctx->lock);
1079
1080 return !dispatch_data->rq;
1081}
1082
1083struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1084 struct blk_mq_ctx *start)
1085{
f31967f0 1086 unsigned off = start ? start->index_hw[hctx->type] : 0;
b347689f
ML
1087 struct dispatch_rq_data data = {
1088 .hctx = hctx,
1089 .rq = NULL,
1090 };
1091
1092 __sbitmap_for_each_set(&hctx->ctx_map, off,
1093 dispatch_rq_from_ctx, &data);
1094
1095 return data.rq;
1096}
1097
703fd1c0
JA
1098static inline unsigned int queued_to_index(unsigned int queued)
1099{
1100 if (!queued)
1101 return 0;
1429d7c9 1102
703fd1c0 1103 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
1104}
1105
eb619fdb
JA
1106static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1107 int flags, void *key)
da55f2cc
OS
1108{
1109 struct blk_mq_hw_ctx *hctx;
1110
1111 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1112
5815839b 1113 spin_lock(&hctx->dispatch_wait_lock);
e8618575
JA
1114 if (!list_empty(&wait->entry)) {
1115 struct sbitmap_queue *sbq;
1116
1117 list_del_init(&wait->entry);
1118 sbq = &hctx->tags->bitmap_tags;
1119 atomic_dec(&sbq->ws_active);
1120 }
5815839b
ML
1121 spin_unlock(&hctx->dispatch_wait_lock);
1122
da55f2cc
OS
1123 blk_mq_run_hw_queue(hctx, true);
1124 return 1;
1125}
1126
f906a6a0
JA
1127/*
1128 * Mark us waiting for a tag. For shared tags, this involves hooking us into
ee3e4de5
BVA
1129 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1130 * restart. For both cases, take care to check the condition again after
f906a6a0
JA
1131 * marking us as waiting.
1132 */
2278d69f 1133static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
f906a6a0 1134 struct request *rq)
da55f2cc 1135{
e8618575 1136 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
5815839b 1137 struct wait_queue_head *wq;
f906a6a0
JA
1138 wait_queue_entry_t *wait;
1139 bool ret;
da55f2cc 1140
2278d69f 1141 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
684b7324 1142 blk_mq_sched_mark_restart_hctx(hctx);
f906a6a0 1143
c27d53fb
BVA
1144 /*
1145 * It's possible that a tag was freed in the window between the
1146 * allocation failure and adding the hardware queue to the wait
1147 * queue.
1148 *
1149 * Don't clear RESTART here, someone else could have set it.
1150 * At most this will cost an extra queue run.
1151 */
8ab6bb9e 1152 return blk_mq_get_driver_tag(rq);
eb619fdb 1153 }
eb619fdb 1154
2278d69f 1155 wait = &hctx->dispatch_wait;
c27d53fb
BVA
1156 if (!list_empty_careful(&wait->entry))
1157 return false;
1158
e8618575 1159 wq = &bt_wait_ptr(sbq, hctx)->wait;
5815839b
ML
1160
1161 spin_lock_irq(&wq->lock);
1162 spin_lock(&hctx->dispatch_wait_lock);
c27d53fb 1163 if (!list_empty(&wait->entry)) {
5815839b
ML
1164 spin_unlock(&hctx->dispatch_wait_lock);
1165 spin_unlock_irq(&wq->lock);
c27d53fb 1166 return false;
eb619fdb
JA
1167 }
1168
e8618575 1169 atomic_inc(&sbq->ws_active);
5815839b
ML
1170 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1171 __add_wait_queue(wq, wait);
c27d53fb 1172
da55f2cc 1173 /*
eb619fdb
JA
1174 * It's possible that a tag was freed in the window between the
1175 * allocation failure and adding the hardware queue to the wait
1176 * queue.
da55f2cc 1177 */
8ab6bb9e 1178 ret = blk_mq_get_driver_tag(rq);
c27d53fb 1179 if (!ret) {
5815839b
ML
1180 spin_unlock(&hctx->dispatch_wait_lock);
1181 spin_unlock_irq(&wq->lock);
c27d53fb 1182 return false;
eb619fdb 1183 }
c27d53fb
BVA
1184
1185 /*
1186 * We got a tag, remove ourselves from the wait queue to ensure
1187 * someone else gets the wakeup.
1188 */
c27d53fb 1189 list_del_init(&wait->entry);
e8618575 1190 atomic_dec(&sbq->ws_active);
5815839b
ML
1191 spin_unlock(&hctx->dispatch_wait_lock);
1192 spin_unlock_irq(&wq->lock);
c27d53fb
BVA
1193
1194 return true;
da55f2cc
OS
1195}
1196
6e768717
ML
1197#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1198#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1199/*
1200 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1201 * - EWMA is one simple way to compute running average value
1202 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1203 * - take 4 as factor for avoiding to get too small(0) result, and this
1204 * factor doesn't matter because EWMA decreases exponentially
1205 */
1206static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1207{
1208 unsigned int ewma;
1209
1210 if (hctx->queue->elevator)
1211 return;
1212
1213 ewma = hctx->dispatch_busy;
1214
1215 if (!ewma && !busy)
1216 return;
1217
1218 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1219 if (busy)
1220 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1221 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1222
1223 hctx->dispatch_busy = ewma;
1224}
1225
86ff7c2a
ML
1226#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1227
c92a4103
JT
1228static void blk_mq_handle_dev_resource(struct request *rq,
1229 struct list_head *list)
1230{
1231 struct request *next =
1232 list_first_entry_or_null(list, struct request, queuelist);
1233
1234 /*
1235 * If an I/O scheduler has been configured and we got a driver tag for
1236 * the next request already, free it.
1237 */
1238 if (next)
1239 blk_mq_put_driver_tag(next);
1240
1241 list_add(&rq->queuelist, list);
1242 __blk_mq_requeue_request(rq);
1243}
1244
0512a75b
KB
1245static void blk_mq_handle_zone_resource(struct request *rq,
1246 struct list_head *zone_list)
1247{
1248 /*
1249 * If we end up here it is because we cannot dispatch a request to a
1250 * specific zone due to LLD level zone-write locking or other zone
1251 * related resource not being available. In this case, set the request
1252 * aside in zone_list for retrying it later.
1253 */
1254 list_add(&rq->queuelist, zone_list);
1255 __blk_mq_requeue_request(rq);
1256}
1257
75383524
ML
1258enum prep_dispatch {
1259 PREP_DISPATCH_OK,
1260 PREP_DISPATCH_NO_TAG,
1261 PREP_DISPATCH_NO_BUDGET,
1262};
1263
1264static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1265 bool need_budget)
1266{
1267 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1268
1269 if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1270 blk_mq_put_driver_tag(rq);
1271 return PREP_DISPATCH_NO_BUDGET;
1272 }
1273
1274 if (!blk_mq_get_driver_tag(rq)) {
1275 /*
1276 * The initial allocation attempt failed, so we need to
1277 * rerun the hardware queue when a tag is freed. The
1278 * waitqueue takes care of that. If the queue is run
1279 * before we add this entry back on the dispatch list,
1280 * we'll re-run it below.
1281 */
1282 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1283 blk_mq_put_dispatch_budget(rq->q);
1284 return PREP_DISPATCH_NO_TAG;
1285 }
1286 }
1287
1288 return PREP_DISPATCH_OK;
1289}
1290
1f57f8d4
JA
1291/*
1292 * Returns true if we did some work AND can potentially do more.
1293 */
445874e8 1294bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
eb619fdb 1295 bool got_budget)
320ae51f 1296{
75383524 1297 enum prep_dispatch prep;
445874e8 1298 struct request_queue *q = hctx->queue;
6d6f167c 1299 struct request *rq, *nxt;
fc17b653 1300 int errors, queued;
86ff7c2a 1301 blk_status_t ret = BLK_STS_OK;
0512a75b 1302 LIST_HEAD(zone_list);
320ae51f 1303
81380ca1
OS
1304 if (list_empty(list))
1305 return false;
1306
de148297
ML
1307 WARN_ON(!list_is_singular(list) && got_budget);
1308
320ae51f
JA
1309 /*
1310 * Now process all the entries, sending them to the driver.
1311 */
93efe981 1312 errors = queued = 0;
81380ca1 1313 do {
74c45052 1314 struct blk_mq_queue_data bd;
320ae51f 1315
f04c3df3 1316 rq = list_first_entry(list, struct request, queuelist);
0bca799b 1317
445874e8 1318 WARN_ON_ONCE(hctx != rq->mq_hctx);
75383524
ML
1319 prep = blk_mq_prep_dispatch_rq(rq, !got_budget);
1320 if (prep != PREP_DISPATCH_OK)
0bca799b 1321 break;
de148297 1322
320ae51f 1323 list_del_init(&rq->queuelist);
320ae51f 1324
74c45052 1325 bd.rq = rq;
113285b4
JA
1326
1327 /*
1328 * Flag last if we have no more requests, or if we have more
1329 * but can't assign a driver tag to it.
1330 */
1331 if (list_empty(list))
1332 bd.last = true;
1333 else {
113285b4 1334 nxt = list_first_entry(list, struct request, queuelist);
8ab6bb9e 1335 bd.last = !blk_mq_get_driver_tag(nxt);
113285b4 1336 }
74c45052
JA
1337
1338 ret = q->mq_ops->queue_rq(hctx, &bd);
86ff7c2a 1339 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
c92a4103 1340 blk_mq_handle_dev_resource(rq, list);
320ae51f 1341 break;
0512a75b
KB
1342 } else if (ret == BLK_STS_ZONE_RESOURCE) {
1343 /*
1344 * Move the request to zone_list and keep going through
1345 * the dispatch list to find more requests the drive can
1346 * accept.
1347 */
1348 blk_mq_handle_zone_resource(rq, &zone_list);
1349 if (list_empty(list))
1350 break;
1351 continue;
fc17b653
CH
1352 }
1353
1354 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1355 errors++;
2a842aca 1356 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1357 continue;
320ae51f
JA
1358 }
1359
fc17b653 1360 queued++;
81380ca1 1361 } while (!list_empty(list));
320ae51f 1362
0512a75b
KB
1363 if (!list_empty(&zone_list))
1364 list_splice_tail_init(&zone_list, list);
1365
703fd1c0 1366 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1367
1368 /*
1369 * Any items that need requeuing? Stuff them into hctx->dispatch,
1370 * that is where we will continue on next queue run.
1371 */
f04c3df3 1372 if (!list_empty(list)) {
86ff7c2a 1373 bool needs_restart;
75383524
ML
1374 /* For non-shared tags, the RESTART check will suffice */
1375 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1376 (hctx->flags & BLK_MQ_F_TAG_SHARED);
1377 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
86ff7c2a 1378
d666ba98
JA
1379 /*
1380 * If we didn't flush the entire list, we could have told
1381 * the driver there was more coming, but that turned out to
1382 * be a lie.
1383 */
536167d4 1384 if (q->mq_ops->commit_rqs && queued)
d666ba98
JA
1385 q->mq_ops->commit_rqs(hctx);
1386
320ae51f 1387 spin_lock(&hctx->lock);
01e99aec 1388 list_splice_tail_init(list, &hctx->dispatch);
320ae51f 1389 spin_unlock(&hctx->lock);
f04c3df3 1390
9ba52e58 1391 /*
710c785f
BVA
1392 * If SCHED_RESTART was set by the caller of this function and
1393 * it is no longer set that means that it was cleared by another
1394 * thread and hence that a queue rerun is needed.
9ba52e58 1395 *
eb619fdb
JA
1396 * If 'no_tag' is set, that means that we failed getting
1397 * a driver tag with an I/O scheduler attached. If our dispatch
1398 * waitqueue is no longer active, ensure that we run the queue
1399 * AFTER adding our entries back to the list.
bd166ef1 1400 *
710c785f
BVA
1401 * If no I/O scheduler has been configured it is possible that
1402 * the hardware queue got stopped and restarted before requests
1403 * were pushed back onto the dispatch list. Rerun the queue to
1404 * avoid starvation. Notes:
1405 * - blk_mq_run_hw_queue() checks whether or not a queue has
1406 * been stopped before rerunning a queue.
1407 * - Some but not all block drivers stop a queue before
fc17b653 1408 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1409 * and dm-rq.
86ff7c2a
ML
1410 *
1411 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1412 * bit is set, run queue after a delay to avoid IO stalls
ab3cee37
DA
1413 * that could otherwise occur if the queue is idle. We'll do
1414 * similar if we couldn't get budget and SCHED_RESTART is set.
bd166ef1 1415 */
86ff7c2a
ML
1416 needs_restart = blk_mq_sched_needs_restart(hctx);
1417 if (!needs_restart ||
eb619fdb 1418 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1419 blk_mq_run_hw_queue(hctx, true);
ab3cee37
DA
1420 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1421 no_budget_avail))
86ff7c2a 1422 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1f57f8d4 1423
6e768717 1424 blk_mq_update_dispatch_busy(hctx, true);
1f57f8d4 1425 return false;
6e768717
ML
1426 } else
1427 blk_mq_update_dispatch_busy(hctx, false);
f04c3df3 1428
93efe981 1429 return (queued + errors) != 0;
f04c3df3
JA
1430}
1431
105663f7
AA
1432/**
1433 * __blk_mq_run_hw_queue - Run a hardware queue.
1434 * @hctx: Pointer to the hardware queue to run.
1435 *
1436 * Send pending requests to the hardware.
1437 */
6a83e74d
BVA
1438static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1439{
1440 int srcu_idx;
1441
b7a71e66
JA
1442 /*
1443 * We should be running this queue from one of the CPUs that
1444 * are mapped to it.
7df938fb
ML
1445 *
1446 * There are at least two related races now between setting
1447 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1448 * __blk_mq_run_hw_queue():
1449 *
1450 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1451 * but later it becomes online, then this warning is harmless
1452 * at all
1453 *
1454 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1455 * but later it becomes offline, then the warning can't be
1456 * triggered, and we depend on blk-mq timeout handler to
1457 * handle dispatched requests to this hctx
b7a71e66 1458 */
7df938fb
ML
1459 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1460 cpu_online(hctx->next_cpu)) {
1461 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1462 raw_smp_processor_id(),
1463 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1464 dump_stack();
1465 }
6a83e74d 1466
b7a71e66
JA
1467 /*
1468 * We can't run the queue inline with ints disabled. Ensure that
1469 * we catch bad users of this early.
1470 */
1471 WARN_ON_ONCE(in_interrupt());
1472
04ced159 1473 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1474
04ced159
JA
1475 hctx_lock(hctx, &srcu_idx);
1476 blk_mq_sched_dispatch_requests(hctx);
1477 hctx_unlock(hctx, srcu_idx);
6a83e74d
BVA
1478}
1479
f82ddf19
ML
1480static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1481{
1482 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1483
1484 if (cpu >= nr_cpu_ids)
1485 cpu = cpumask_first(hctx->cpumask);
1486 return cpu;
1487}
1488
506e931f
JA
1489/*
1490 * It'd be great if the workqueue API had a way to pass
1491 * in a mask and had some smarts for more clever placement.
1492 * For now we just round-robin here, switching for every
1493 * BLK_MQ_CPU_WORK_BATCH queued items.
1494 */
1495static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1496{
7bed4595 1497 bool tried = false;
476f8c98 1498 int next_cpu = hctx->next_cpu;
7bed4595 1499
b657d7e6
CH
1500 if (hctx->queue->nr_hw_queues == 1)
1501 return WORK_CPU_UNBOUND;
506e931f
JA
1502
1503 if (--hctx->next_cpu_batch <= 0) {
7bed4595 1504select_cpu:
476f8c98 1505 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
20e4d813 1506 cpu_online_mask);
506e931f 1507 if (next_cpu >= nr_cpu_ids)
f82ddf19 1508 next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
1509 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1510 }
1511
7bed4595
ML
1512 /*
1513 * Do unbound schedule if we can't find a online CPU for this hctx,
1514 * and it should only happen in the path of handling CPU DEAD.
1515 */
476f8c98 1516 if (!cpu_online(next_cpu)) {
7bed4595
ML
1517 if (!tried) {
1518 tried = true;
1519 goto select_cpu;
1520 }
1521
1522 /*
1523 * Make sure to re-select CPU next time once after CPUs
1524 * in hctx->cpumask become online again.
1525 */
476f8c98 1526 hctx->next_cpu = next_cpu;
7bed4595
ML
1527 hctx->next_cpu_batch = 1;
1528 return WORK_CPU_UNBOUND;
1529 }
476f8c98
ML
1530
1531 hctx->next_cpu = next_cpu;
1532 return next_cpu;
506e931f
JA
1533}
1534
105663f7
AA
1535/**
1536 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1537 * @hctx: Pointer to the hardware queue to run.
1538 * @async: If we want to run the queue asynchronously.
1539 * @msecs: Microseconds of delay to wait before running the queue.
1540 *
1541 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1542 * with a delay of @msecs.
1543 */
7587a5ae
BVA
1544static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1545 unsigned long msecs)
320ae51f 1546{
5435c023 1547 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1548 return;
1549
1b792f2f 1550 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1551 int cpu = get_cpu();
1552 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1553 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1554 put_cpu();
398205b8
PB
1555 return;
1556 }
e4043dcf 1557
2a90d4aa 1558 put_cpu();
e4043dcf 1559 }
398205b8 1560
ae943d20
BVA
1561 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1562 msecs_to_jiffies(msecs));
7587a5ae
BVA
1563}
1564
105663f7
AA
1565/**
1566 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1567 * @hctx: Pointer to the hardware queue to run.
1568 * @msecs: Microseconds of delay to wait before running the queue.
1569 *
1570 * Run a hardware queue asynchronously with a delay of @msecs.
1571 */
7587a5ae
BVA
1572void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1573{
1574 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1575}
1576EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1577
105663f7
AA
1578/**
1579 * blk_mq_run_hw_queue - Start to run a hardware queue.
1580 * @hctx: Pointer to the hardware queue to run.
1581 * @async: If we want to run the queue asynchronously.
1582 *
1583 * Check if the request queue is not in a quiesced state and if there are
1584 * pending requests to be sent. If this is true, run the queue to send requests
1585 * to hardware.
1586 */
626fb735 1587void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 1588{
24f5a90f
ML
1589 int srcu_idx;
1590 bool need_run;
1591
1592 /*
1593 * When queue is quiesced, we may be switching io scheduler, or
1594 * updating nr_hw_queues, or other things, and we can't run queue
1595 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1596 *
1597 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1598 * quiesced.
1599 */
04ced159
JA
1600 hctx_lock(hctx, &srcu_idx);
1601 need_run = !blk_queue_quiesced(hctx->queue) &&
1602 blk_mq_hctx_has_pending(hctx);
1603 hctx_unlock(hctx, srcu_idx);
24f5a90f 1604
626fb735 1605 if (need_run)
79f720a7 1606 __blk_mq_delay_run_hw_queue(hctx, async, 0);
320ae51f 1607}
5b727272 1608EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1609
105663f7
AA
1610/**
1611 * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
1612 * @q: Pointer to the request queue to run.
1613 * @async: If we want to run the queue asynchronously.
1614 */
b94ec296 1615void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1616{
1617 struct blk_mq_hw_ctx *hctx;
1618 int i;
1619
1620 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 1621 if (blk_mq_hctx_stopped(hctx))
320ae51f
JA
1622 continue;
1623
b94ec296 1624 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1625 }
1626}
b94ec296 1627EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1628
b9151e7b
DA
1629/**
1630 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1631 * @q: Pointer to the request queue to run.
1632 * @msecs: Microseconds of delay to wait before running the queues.
1633 */
1634void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1635{
1636 struct blk_mq_hw_ctx *hctx;
1637 int i;
1638
1639 queue_for_each_hw_ctx(q, hctx, i) {
1640 if (blk_mq_hctx_stopped(hctx))
1641 continue;
1642
1643 blk_mq_delay_run_hw_queue(hctx, msecs);
1644 }
1645}
1646EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1647
fd001443
BVA
1648/**
1649 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1650 * @q: request queue.
1651 *
1652 * The caller is responsible for serializing this function against
1653 * blk_mq_{start,stop}_hw_queue().
1654 */
1655bool blk_mq_queue_stopped(struct request_queue *q)
1656{
1657 struct blk_mq_hw_ctx *hctx;
1658 int i;
1659
1660 queue_for_each_hw_ctx(q, hctx, i)
1661 if (blk_mq_hctx_stopped(hctx))
1662 return true;
1663
1664 return false;
1665}
1666EXPORT_SYMBOL(blk_mq_queue_stopped);
1667
39a70c76
ML
1668/*
1669 * This function is often used for pausing .queue_rq() by driver when
1670 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1671 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1672 *
1673 * We do not guarantee that dispatch can be drained or blocked
1674 * after blk_mq_stop_hw_queue() returns. Please use
1675 * blk_mq_quiesce_queue() for that requirement.
1676 */
2719aa21
JA
1677void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1678{
641a9ed6 1679 cancel_delayed_work(&hctx->run_work);
280d45f6 1680
641a9ed6 1681 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1682}
641a9ed6 1683EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1684
39a70c76
ML
1685/*
1686 * This function is often used for pausing .queue_rq() by driver when
1687 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1688 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1689 *
1690 * We do not guarantee that dispatch can be drained or blocked
1691 * after blk_mq_stop_hw_queues() returns. Please use
1692 * blk_mq_quiesce_queue() for that requirement.
1693 */
2719aa21
JA
1694void blk_mq_stop_hw_queues(struct request_queue *q)
1695{
641a9ed6
ML
1696 struct blk_mq_hw_ctx *hctx;
1697 int i;
1698
1699 queue_for_each_hw_ctx(q, hctx, i)
1700 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1701}
1702EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1703
320ae51f
JA
1704void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1705{
1706 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1707
0ffbce80 1708 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1709}
1710EXPORT_SYMBOL(blk_mq_start_hw_queue);
1711
2f268556
CH
1712void blk_mq_start_hw_queues(struct request_queue *q)
1713{
1714 struct blk_mq_hw_ctx *hctx;
1715 int i;
1716
1717 queue_for_each_hw_ctx(q, hctx, i)
1718 blk_mq_start_hw_queue(hctx);
1719}
1720EXPORT_SYMBOL(blk_mq_start_hw_queues);
1721
ae911c5e
JA
1722void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1723{
1724 if (!blk_mq_hctx_stopped(hctx))
1725 return;
1726
1727 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1728 blk_mq_run_hw_queue(hctx, async);
1729}
1730EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1731
1b4a3258 1732void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1733{
1734 struct blk_mq_hw_ctx *hctx;
1735 int i;
1736
ae911c5e
JA
1737 queue_for_each_hw_ctx(q, hctx, i)
1738 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1739}
1740EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1741
70f4db63 1742static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1743{
1744 struct blk_mq_hw_ctx *hctx;
1745
9f993737 1746 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1747
21c6e939 1748 /*
15fe8a90 1749 * If we are stopped, don't run the queue.
21c6e939 1750 */
15fe8a90 1751 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
0196d6b4 1752 return;
7587a5ae
BVA
1753
1754 __blk_mq_run_hw_queue(hctx);
1755}
1756
cfd0c552 1757static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1758 struct request *rq,
1759 bool at_head)
320ae51f 1760{
e57690fe 1761 struct blk_mq_ctx *ctx = rq->mq_ctx;
c16d6b5a 1762 enum hctx_type type = hctx->type;
e57690fe 1763
7b607814
BVA
1764 lockdep_assert_held(&ctx->lock);
1765
01b983c9
JA
1766 trace_block_rq_insert(hctx->queue, rq);
1767
72a0a36e 1768 if (at_head)
c16d6b5a 1769 list_add(&rq->queuelist, &ctx->rq_lists[type]);
72a0a36e 1770 else
c16d6b5a 1771 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
cfd0c552 1772}
4bb659b1 1773
2c3ad667
JA
1774void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1775 bool at_head)
cfd0c552
ML
1776{
1777 struct blk_mq_ctx *ctx = rq->mq_ctx;
1778
7b607814
BVA
1779 lockdep_assert_held(&ctx->lock);
1780
e57690fe 1781 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1782 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1783}
1784
105663f7
AA
1785/**
1786 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1787 * @rq: Pointer to request to be inserted.
1788 * @run_queue: If we should run the hardware queue after inserting the request.
1789 *
157f377b
JA
1790 * Should only be used carefully, when the caller knows we want to
1791 * bypass a potential IO scheduler on the target device.
1792 */
01e99aec
ML
1793void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1794 bool run_queue)
157f377b 1795{
ea4f995e 1796 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
157f377b
JA
1797
1798 spin_lock(&hctx->lock);
01e99aec
ML
1799 if (at_head)
1800 list_add(&rq->queuelist, &hctx->dispatch);
1801 else
1802 list_add_tail(&rq->queuelist, &hctx->dispatch);
157f377b
JA
1803 spin_unlock(&hctx->lock);
1804
b0850297
ML
1805 if (run_queue)
1806 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1807}
1808
bd166ef1
JA
1809void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1810 struct list_head *list)
320ae51f
JA
1811
1812{
3f0cedc7 1813 struct request *rq;
c16d6b5a 1814 enum hctx_type type = hctx->type;
3f0cedc7 1815
320ae51f
JA
1816 /*
1817 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1818 * offline now
1819 */
3f0cedc7 1820 list_for_each_entry(rq, list, queuelist) {
e57690fe 1821 BUG_ON(rq->mq_ctx != ctx);
3f0cedc7 1822 trace_block_rq_insert(hctx->queue, rq);
320ae51f 1823 }
3f0cedc7
ML
1824
1825 spin_lock(&ctx->lock);
c16d6b5a 1826 list_splice_tail_init(list, &ctx->rq_lists[type]);
cfd0c552 1827 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1828 spin_unlock(&ctx->lock);
320ae51f
JA
1829}
1830
3110fc79 1831static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
320ae51f
JA
1832{
1833 struct request *rqa = container_of(a, struct request, queuelist);
1834 struct request *rqb = container_of(b, struct request, queuelist);
1835
7d30a621
PB
1836 if (rqa->mq_ctx != rqb->mq_ctx)
1837 return rqa->mq_ctx > rqb->mq_ctx;
1838 if (rqa->mq_hctx != rqb->mq_hctx)
1839 return rqa->mq_hctx > rqb->mq_hctx;
3110fc79
JA
1840
1841 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
320ae51f
JA
1842}
1843
1844void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1845{
320ae51f 1846 LIST_HEAD(list);
320ae51f 1847
95ed0c5b
PB
1848 if (list_empty(&plug->mq_list))
1849 return;
320ae51f
JA
1850 list_splice_init(&plug->mq_list, &list);
1851
ce5b009c
JA
1852 if (plug->rq_count > 2 && plug->multiple_queues)
1853 list_sort(NULL, &list, plug_rq_cmp);
320ae51f 1854
bcc816df
DZ
1855 plug->rq_count = 0;
1856
95ed0c5b
PB
1857 do {
1858 struct list_head rq_list;
1859 struct request *rq, *head_rq = list_entry_rq(list.next);
1860 struct list_head *pos = &head_rq->queuelist; /* skip first */
1861 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1862 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1863 unsigned int depth = 1;
1864
1865 list_for_each_continue(pos, &list) {
1866 rq = list_entry_rq(pos);
1867 BUG_ON(!rq->q);
1868 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1869 break;
1870 depth++;
320ae51f
JA
1871 }
1872
95ed0c5b
PB
1873 list_cut_before(&rq_list, &list, pos);
1874 trace_block_unplug(head_rq->q, depth, !from_schedule);
67cae4c9 1875 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
bd166ef1 1876 from_schedule);
95ed0c5b 1877 } while(!list_empty(&list));
320ae51f
JA
1878}
1879
14ccb66b
CH
1880static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1881 unsigned int nr_segs)
320ae51f 1882{
f924cdde
CH
1883 if (bio->bi_opf & REQ_RAHEAD)
1884 rq->cmd_flags |= REQ_FAILFAST_MASK;
1885
1886 rq->__sector = bio->bi_iter.bi_sector;
1887 rq->write_hint = bio->bi_write_hint;
14ccb66b 1888 blk_rq_bio_prep(rq, bio, nr_segs);
a892c8d5 1889 blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
4b570521 1890
b5af37ab 1891 blk_account_io_start(rq);
320ae51f
JA
1892}
1893
0f95549c
MS
1894static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1895 struct request *rq,
be94f058 1896 blk_qc_t *cookie, bool last)
f984df1f 1897{
f984df1f 1898 struct request_queue *q = rq->q;
f984df1f
SL
1899 struct blk_mq_queue_data bd = {
1900 .rq = rq,
be94f058 1901 .last = last,
f984df1f 1902 };
bd166ef1 1903 blk_qc_t new_cookie;
f06345ad 1904 blk_status_t ret;
0f95549c
MS
1905
1906 new_cookie = request_to_qc_t(hctx, rq);
1907
1908 /*
1909 * For OK queue, we are done. For error, caller may kill it.
1910 * Any other error (busy), just add it to our list as we
1911 * previously would have done.
1912 */
1913 ret = q->mq_ops->queue_rq(hctx, &bd);
1914 switch (ret) {
1915 case BLK_STS_OK:
6ce3dd6e 1916 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1917 *cookie = new_cookie;
1918 break;
1919 case BLK_STS_RESOURCE:
86ff7c2a 1920 case BLK_STS_DEV_RESOURCE:
6ce3dd6e 1921 blk_mq_update_dispatch_busy(hctx, true);
0f95549c
MS
1922 __blk_mq_requeue_request(rq);
1923 break;
1924 default:
6ce3dd6e 1925 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1926 *cookie = BLK_QC_T_NONE;
1927 break;
1928 }
1929
1930 return ret;
1931}
1932
fd9c40f6 1933static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
0f95549c 1934 struct request *rq,
396eaf21 1935 blk_qc_t *cookie,
fd9c40f6 1936 bool bypass_insert, bool last)
0f95549c
MS
1937{
1938 struct request_queue *q = rq->q;
d964f04a
ML
1939 bool run_queue = true;
1940
23d4ee19 1941 /*
fd9c40f6 1942 * RCU or SRCU read lock is needed before checking quiesced flag.
23d4ee19 1943 *
fd9c40f6
BVA
1944 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1945 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1946 * and avoid driver to try to dispatch again.
23d4ee19 1947 */
fd9c40f6 1948 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a 1949 run_queue = false;
fd9c40f6
BVA
1950 bypass_insert = false;
1951 goto insert;
d964f04a 1952 }
f984df1f 1953
fd9c40f6
BVA
1954 if (q->elevator && !bypass_insert)
1955 goto insert;
2253efc8 1956
65c76369 1957 if (!blk_mq_get_dispatch_budget(q))
fd9c40f6 1958 goto insert;
bd166ef1 1959
8ab6bb9e 1960 if (!blk_mq_get_driver_tag(rq)) {
65c76369 1961 blk_mq_put_dispatch_budget(q);
fd9c40f6 1962 goto insert;
88022d72 1963 }
de148297 1964
fd9c40f6
BVA
1965 return __blk_mq_issue_directly(hctx, rq, cookie, last);
1966insert:
1967 if (bypass_insert)
1968 return BLK_STS_RESOURCE;
1969
01e99aec 1970 blk_mq_request_bypass_insert(rq, false, run_queue);
fd9c40f6
BVA
1971 return BLK_STS_OK;
1972}
1973
105663f7
AA
1974/**
1975 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
1976 * @hctx: Pointer of the associated hardware queue.
1977 * @rq: Pointer to request to be sent.
1978 * @cookie: Request queue cookie.
1979 *
1980 * If the device has enough resources to accept a new request now, send the
1981 * request directly to device driver. Else, insert at hctx->dispatch queue, so
1982 * we can try send it another time in the future. Requests inserted at this
1983 * queue have higher priority.
1984 */
fd9c40f6
BVA
1985static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1986 struct request *rq, blk_qc_t *cookie)
1987{
1988 blk_status_t ret;
1989 int srcu_idx;
1990
1991 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1992
1993 hctx_lock(hctx, &srcu_idx);
1994
1995 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1996 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
01e99aec 1997 blk_mq_request_bypass_insert(rq, false, true);
fd9c40f6
BVA
1998 else if (ret != BLK_STS_OK)
1999 blk_mq_end_request(rq, ret);
2000
2001 hctx_unlock(hctx, srcu_idx);
2002}
2003
2004blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2005{
2006 blk_status_t ret;
2007 int srcu_idx;
2008 blk_qc_t unused_cookie;
2009 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2010
2011 hctx_lock(hctx, &srcu_idx);
2012 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
04ced159 2013 hctx_unlock(hctx, srcu_idx);
7f556a44
JW
2014
2015 return ret;
5eb6126e
CH
2016}
2017
6ce3dd6e
ML
2018void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2019 struct list_head *list)
2020{
536167d4
KB
2021 int queued = 0;
2022
6ce3dd6e 2023 while (!list_empty(list)) {
fd9c40f6 2024 blk_status_t ret;
6ce3dd6e
ML
2025 struct request *rq = list_first_entry(list, struct request,
2026 queuelist);
2027
2028 list_del_init(&rq->queuelist);
fd9c40f6
BVA
2029 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2030 if (ret != BLK_STS_OK) {
2031 if (ret == BLK_STS_RESOURCE ||
2032 ret == BLK_STS_DEV_RESOURCE) {
01e99aec 2033 blk_mq_request_bypass_insert(rq, false,
c616cbee 2034 list_empty(list));
fd9c40f6
BVA
2035 break;
2036 }
2037 blk_mq_end_request(rq, ret);
536167d4
KB
2038 } else
2039 queued++;
6ce3dd6e 2040 }
d666ba98
JA
2041
2042 /*
2043 * If we didn't flush the entire list, we could have told
2044 * the driver there was more coming, but that turned out to
2045 * be a lie.
2046 */
536167d4 2047 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued)
d666ba98 2048 hctx->queue->mq_ops->commit_rqs(hctx);
6ce3dd6e
ML
2049}
2050
ce5b009c
JA
2051static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2052{
2053 list_add_tail(&rq->queuelist, &plug->mq_list);
2054 plug->rq_count++;
2055 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2056 struct request *tmp;
2057
2058 tmp = list_first_entry(&plug->mq_list, struct request,
2059 queuelist);
2060 if (tmp->q != rq->q)
2061 plug->multiple_queues = true;
2062 }
2063}
2064
105663f7
AA
2065/**
2066 * blk_mq_make_request - Create and send a request to block device.
2067 * @q: Request queue pointer.
2068 * @bio: Bio pointer.
2069 *
2070 * Builds up a request structure from @q and @bio and send to the device. The
2071 * request may not be queued directly to hardware if:
2072 * * This request can be merged with another one
2073 * * We want to place request at plug queue for possible future merging
2074 * * There is an IO scheduler active at this queue
2075 *
2076 * It will not queue the request if there is an error with the bio, or at the
2077 * request creation.
2078 *
2079 * Returns: Request queue cookie.
2080 */
8cf7961d 2081blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 2082{
ef295ecf 2083 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 2084 const int is_flush_fua = op_is_flush(bio->bi_opf);
e6e7abff
CH
2085 struct blk_mq_alloc_data data = {
2086 .q = q,
2087 };
07068d5b 2088 struct request *rq;
f984df1f 2089 struct blk_plug *plug;
5b3f341f 2090 struct request *same_queue_rq = NULL;
14ccb66b 2091 unsigned int nr_segs;
7b371636 2092 blk_qc_t cookie;
a892c8d5 2093 blk_status_t ret;
07068d5b
JA
2094
2095 blk_queue_bounce(q, &bio);
14ccb66b 2096 __blk_queue_split(q, &bio, &nr_segs);
f36ea50c 2097
e23947bd 2098 if (!bio_integrity_prep(bio))
ac7c5675 2099 goto queue_exit;
07068d5b 2100
87c279e6 2101 if (!is_flush_fua && !blk_queue_nomerges(q) &&
14ccb66b 2102 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
ac7c5675 2103 goto queue_exit;
f984df1f 2104
14ccb66b 2105 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
ac7c5675 2106 goto queue_exit;
bd166ef1 2107
d5337560 2108 rq_qos_throttle(q, bio);
87760e5e 2109
7809167d 2110 data.cmd_flags = bio->bi_opf;
e6e7abff 2111 rq = __blk_mq_alloc_request(&data);
87760e5e 2112 if (unlikely(!rq)) {
c1c80384 2113 rq_qos_cleanup(q, bio);
7b6620d7 2114 if (bio->bi_opf & REQ_NOWAIT)
03a07c92 2115 bio_wouldblock_error(bio);
ac7c5675 2116 goto queue_exit;
87760e5e
JA
2117 }
2118
d6f1dda2
XW
2119 trace_block_getrq(q, bio, bio->bi_opf);
2120
c1c80384 2121 rq_qos_track(q, rq, bio);
07068d5b 2122
fd2d3326 2123 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 2124
970d168d
BVA
2125 blk_mq_bio_to_request(rq, bio, nr_segs);
2126
a892c8d5
ST
2127 ret = blk_crypto_init_request(rq);
2128 if (ret != BLK_STS_OK) {
2129 bio->bi_status = ret;
2130 bio_endio(bio);
2131 blk_mq_free_request(rq);
2132 return BLK_QC_T_NONE;
2133 }
2134
b49773e7 2135 plug = blk_mq_plug(q, bio);
07068d5b 2136 if (unlikely(is_flush_fua)) {
105663f7 2137 /* Bypass scheduler for flush requests */
923218f6
ML
2138 blk_insert_flush(rq);
2139 blk_mq_run_hw_queue(data.hctx, true);
3154df26
ML
2140 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2141 !blk_queue_nonrot(q))) {
b2c5d16b
JA
2142 /*
2143 * Use plugging if we have a ->commit_rqs() hook as well, as
2144 * we know the driver uses bd->last in a smart fashion.
3154df26
ML
2145 *
2146 * Use normal plugging if this disk is slow HDD, as sequential
2147 * IO may benefit a lot from plug merging.
b2c5d16b 2148 */
5f0ed774 2149 unsigned int request_count = plug->rq_count;
600271d9
SL
2150 struct request *last = NULL;
2151
676d0607 2152 if (!request_count)
e6c4438b 2153 trace_block_plug(q);
600271d9
SL
2154 else
2155 last = list_entry_rq(plug->mq_list.prev);
b094f89c 2156
600271d9
SL
2157 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2158 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
2159 blk_flush_plug_list(plug, false);
2160 trace_block_plug(q);
320ae51f 2161 }
b094f89c 2162
ce5b009c 2163 blk_add_rq_to_plug(plug, rq);
a12de1d4 2164 } else if (q->elevator) {
105663f7 2165 /* Insert the request at the IO scheduler queue */
a12de1d4 2166 blk_mq_sched_insert_request(rq, false, true, true);
2299722c 2167 } else if (plug && !blk_queue_nomerges(q)) {
07068d5b 2168 /*
6a83e74d 2169 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
2170 * Otherwise the existing request in the plug list will be
2171 * issued. So the plug list will have one request at most
2299722c
CH
2172 * The plug list might get flushed before this. If that happens,
2173 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 2174 */
2299722c
CH
2175 if (list_empty(&plug->mq_list))
2176 same_queue_rq = NULL;
4711b573 2177 if (same_queue_rq) {
2299722c 2178 list_del_init(&same_queue_rq->queuelist);
4711b573
JA
2179 plug->rq_count--;
2180 }
ce5b009c 2181 blk_add_rq_to_plug(plug, rq);
ff3b74b8 2182 trace_block_plug(q);
2299722c 2183
dad7a3be 2184 if (same_queue_rq) {
ea4f995e 2185 data.hctx = same_queue_rq->mq_hctx;
ff3b74b8 2186 trace_block_unplug(q, 1, true);
2299722c 2187 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
fd9c40f6 2188 &cookie);
dad7a3be 2189 }
a12de1d4
ML
2190 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2191 !data.hctx->dispatch_busy) {
105663f7
AA
2192 /*
2193 * There is no scheduler and we can try to send directly
2194 * to the hardware.
2195 */
fd9c40f6 2196 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
ab42f35d 2197 } else {
105663f7 2198 /* Default case. */
8fa9f556 2199 blk_mq_sched_insert_request(rq, false, true, true);
ab42f35d 2200 }
320ae51f 2201
7b371636 2202 return cookie;
ac7c5675
CH
2203queue_exit:
2204 blk_queue_exit(q);
2205 return BLK_QC_T_NONE;
320ae51f 2206}
8cf7961d 2207EXPORT_SYMBOL_GPL(blk_mq_make_request); /* only for request based dm */
320ae51f 2208
cc71a6f4
JA
2209void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2210 unsigned int hctx_idx)
95363efd 2211{
e9b267d9 2212 struct page *page;
320ae51f 2213
24d2f903 2214 if (tags->rqs && set->ops->exit_request) {
e9b267d9 2215 int i;
320ae51f 2216
24d2f903 2217 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
2218 struct request *rq = tags->static_rqs[i];
2219
2220 if (!rq)
e9b267d9 2221 continue;
d6296d39 2222 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 2223 tags->static_rqs[i] = NULL;
e9b267d9 2224 }
320ae51f 2225 }
320ae51f 2226
24d2f903
CH
2227 while (!list_empty(&tags->page_list)) {
2228 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 2229 list_del_init(&page->lru);
f75782e4
CM
2230 /*
2231 * Remove kmemleak object previously allocated in
273938bf 2232 * blk_mq_alloc_rqs().
f75782e4
CM
2233 */
2234 kmemleak_free(page_address(page));
320ae51f
JA
2235 __free_pages(page, page->private);
2236 }
cc71a6f4 2237}
320ae51f 2238
cc71a6f4
JA
2239void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2240{
24d2f903 2241 kfree(tags->rqs);
cc71a6f4 2242 tags->rqs = NULL;
2af8cbe3
JA
2243 kfree(tags->static_rqs);
2244 tags->static_rqs = NULL;
320ae51f 2245
24d2f903 2246 blk_mq_free_tags(tags);
320ae51f
JA
2247}
2248
cc71a6f4
JA
2249struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2250 unsigned int hctx_idx,
2251 unsigned int nr_tags,
2252 unsigned int reserved_tags)
320ae51f 2253{
24d2f903 2254 struct blk_mq_tags *tags;
59f082e4 2255 int node;
320ae51f 2256
7d76f856 2257 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
59f082e4
SL
2258 if (node == NUMA_NO_NODE)
2259 node = set->numa_node;
2260
2261 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 2262 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
2263 if (!tags)
2264 return NULL;
320ae51f 2265
590b5b7d 2266 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
36e1f3d1 2267 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 2268 node);
24d2f903
CH
2269 if (!tags->rqs) {
2270 blk_mq_free_tags(tags);
2271 return NULL;
2272 }
320ae51f 2273
590b5b7d
KC
2274 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2275 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2276 node);
2af8cbe3
JA
2277 if (!tags->static_rqs) {
2278 kfree(tags->rqs);
2279 blk_mq_free_tags(tags);
2280 return NULL;
2281 }
2282
cc71a6f4
JA
2283 return tags;
2284}
2285
2286static size_t order_to_size(unsigned int order)
2287{
2288 return (size_t)PAGE_SIZE << order;
2289}
2290
1d9bd516
TH
2291static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2292 unsigned int hctx_idx, int node)
2293{
2294 int ret;
2295
2296 if (set->ops->init_request) {
2297 ret = set->ops->init_request(set, rq, hctx_idx, node);
2298 if (ret)
2299 return ret;
2300 }
2301
12f5b931 2302 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1d9bd516
TH
2303 return 0;
2304}
2305
cc71a6f4
JA
2306int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2307 unsigned int hctx_idx, unsigned int depth)
2308{
2309 unsigned int i, j, entries_per_page, max_order = 4;
2310 size_t rq_size, left;
59f082e4
SL
2311 int node;
2312
7d76f856 2313 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
59f082e4
SL
2314 if (node == NUMA_NO_NODE)
2315 node = set->numa_node;
cc71a6f4
JA
2316
2317 INIT_LIST_HEAD(&tags->page_list);
2318
320ae51f
JA
2319 /*
2320 * rq_size is the size of the request plus driver payload, rounded
2321 * to the cacheline size
2322 */
24d2f903 2323 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 2324 cache_line_size());
cc71a6f4 2325 left = rq_size * depth;
320ae51f 2326
cc71a6f4 2327 for (i = 0; i < depth; ) {
320ae51f
JA
2328 int this_order = max_order;
2329 struct page *page;
2330 int to_do;
2331 void *p;
2332
b3a834b1 2333 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
2334 this_order--;
2335
2336 do {
59f082e4 2337 page = alloc_pages_node(node,
36e1f3d1 2338 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 2339 this_order);
320ae51f
JA
2340 if (page)
2341 break;
2342 if (!this_order--)
2343 break;
2344 if (order_to_size(this_order) < rq_size)
2345 break;
2346 } while (1);
2347
2348 if (!page)
24d2f903 2349 goto fail;
320ae51f
JA
2350
2351 page->private = this_order;
24d2f903 2352 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
2353
2354 p = page_address(page);
f75782e4
CM
2355 /*
2356 * Allow kmemleak to scan these pages as they contain pointers
2357 * to additional allocations like via ops->init_request().
2358 */
36e1f3d1 2359 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 2360 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 2361 to_do = min(entries_per_page, depth - i);
320ae51f
JA
2362 left -= to_do * rq_size;
2363 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
2364 struct request *rq = p;
2365
2366 tags->static_rqs[i] = rq;
1d9bd516
TH
2367 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2368 tags->static_rqs[i] = NULL;
2369 goto fail;
e9b267d9
CH
2370 }
2371
320ae51f
JA
2372 p += rq_size;
2373 i++;
2374 }
2375 }
cc71a6f4 2376 return 0;
320ae51f 2377
24d2f903 2378fail:
cc71a6f4
JA
2379 blk_mq_free_rqs(set, tags, hctx_idx);
2380 return -ENOMEM;
320ae51f
JA
2381}
2382
bf0beec0
ML
2383struct rq_iter_data {
2384 struct blk_mq_hw_ctx *hctx;
2385 bool has_rq;
2386};
2387
2388static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2389{
2390 struct rq_iter_data *iter_data = data;
2391
2392 if (rq->mq_hctx != iter_data->hctx)
2393 return true;
2394 iter_data->has_rq = true;
2395 return false;
2396}
2397
2398static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2399{
2400 struct blk_mq_tags *tags = hctx->sched_tags ?
2401 hctx->sched_tags : hctx->tags;
2402 struct rq_iter_data data = {
2403 .hctx = hctx,
2404 };
2405
2406 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2407 return data.has_rq;
2408}
2409
2410static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2411 struct blk_mq_hw_ctx *hctx)
2412{
2413 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2414 return false;
2415 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2416 return false;
2417 return true;
2418}
2419
2420static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2421{
2422 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2423 struct blk_mq_hw_ctx, cpuhp_online);
2424
2425 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2426 !blk_mq_last_cpu_in_hctx(cpu, hctx))
2427 return 0;
2428
2429 /*
2430 * Prevent new request from being allocated on the current hctx.
2431 *
2432 * The smp_mb__after_atomic() Pairs with the implied barrier in
2433 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
2434 * seen once we return from the tag allocator.
2435 */
2436 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2437 smp_mb__after_atomic();
2438
2439 /*
2440 * Try to grab a reference to the queue and wait for any outstanding
2441 * requests. If we could not grab a reference the queue has been
2442 * frozen and there are no requests.
2443 */
2444 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2445 while (blk_mq_hctx_has_requests(hctx))
2446 msleep(5);
2447 percpu_ref_put(&hctx->queue->q_usage_counter);
2448 }
2449
2450 return 0;
2451}
2452
2453static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2454{
2455 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2456 struct blk_mq_hw_ctx, cpuhp_online);
2457
2458 if (cpumask_test_cpu(cpu, hctx->cpumask))
2459 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2460 return 0;
2461}
2462
e57690fe
JA
2463/*
2464 * 'cpu' is going away. splice any existing rq_list entries from this
2465 * software queue to the hw queue dispatch list, and ensure that it
2466 * gets run.
2467 */
9467f859 2468static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 2469{
9467f859 2470 struct blk_mq_hw_ctx *hctx;
484b4061
JA
2471 struct blk_mq_ctx *ctx;
2472 LIST_HEAD(tmp);
c16d6b5a 2473 enum hctx_type type;
484b4061 2474
9467f859 2475 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
bf0beec0
ML
2476 if (!cpumask_test_cpu(cpu, hctx->cpumask))
2477 return 0;
2478
e57690fe 2479 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
c16d6b5a 2480 type = hctx->type;
484b4061
JA
2481
2482 spin_lock(&ctx->lock);
c16d6b5a
ML
2483 if (!list_empty(&ctx->rq_lists[type])) {
2484 list_splice_init(&ctx->rq_lists[type], &tmp);
484b4061
JA
2485 blk_mq_hctx_clear_pending(hctx, ctx);
2486 }
2487 spin_unlock(&ctx->lock);
2488
2489 if (list_empty(&tmp))
9467f859 2490 return 0;
484b4061 2491
e57690fe
JA
2492 spin_lock(&hctx->lock);
2493 list_splice_tail_init(&tmp, &hctx->dispatch);
2494 spin_unlock(&hctx->lock);
484b4061
JA
2495
2496 blk_mq_run_hw_queue(hctx, true);
9467f859 2497 return 0;
484b4061
JA
2498}
2499
9467f859 2500static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 2501{
bf0beec0
ML
2502 if (!(hctx->flags & BLK_MQ_F_STACKING))
2503 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2504 &hctx->cpuhp_online);
9467f859
TG
2505 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2506 &hctx->cpuhp_dead);
484b4061
JA
2507}
2508
c3b4afca 2509/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
2510static void blk_mq_exit_hctx(struct request_queue *q,
2511 struct blk_mq_tag_set *set,
2512 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2513{
8ab0b7dc
ML
2514 if (blk_mq_hw_queue_mapped(hctx))
2515 blk_mq_tag_idle(hctx);
08e98fc6 2516
f70ced09 2517 if (set->ops->exit_request)
d6296d39 2518 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 2519
08e98fc6
ML
2520 if (set->ops->exit_hctx)
2521 set->ops->exit_hctx(hctx, hctx_idx);
2522
9467f859 2523 blk_mq_remove_cpuhp(hctx);
2f8f1336
ML
2524
2525 spin_lock(&q->unused_hctx_lock);
2526 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2527 spin_unlock(&q->unused_hctx_lock);
08e98fc6
ML
2528}
2529
624dbe47
ML
2530static void blk_mq_exit_hw_queues(struct request_queue *q,
2531 struct blk_mq_tag_set *set, int nr_queue)
2532{
2533 struct blk_mq_hw_ctx *hctx;
2534 unsigned int i;
2535
2536 queue_for_each_hw_ctx(q, hctx, i) {
2537 if (i == nr_queue)
2538 break;
477e19de 2539 blk_mq_debugfs_unregister_hctx(hctx);
08e98fc6 2540 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 2541 }
624dbe47
ML
2542}
2543
7c6c5b7c
ML
2544static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2545{
2546 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2547
2548 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2549 __alignof__(struct blk_mq_hw_ctx)) !=
2550 sizeof(struct blk_mq_hw_ctx));
2551
2552 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2553 hw_ctx_size += sizeof(struct srcu_struct);
2554
2555 return hw_ctx_size;
2556}
2557
08e98fc6
ML
2558static int blk_mq_init_hctx(struct request_queue *q,
2559 struct blk_mq_tag_set *set,
2560 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 2561{
7c6c5b7c
ML
2562 hctx->queue_num = hctx_idx;
2563
bf0beec0
ML
2564 if (!(hctx->flags & BLK_MQ_F_STACKING))
2565 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2566 &hctx->cpuhp_online);
7c6c5b7c
ML
2567 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2568
2569 hctx->tags = set->tags[hctx_idx];
2570
2571 if (set->ops->init_hctx &&
2572 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2573 goto unregister_cpu_notifier;
08e98fc6 2574
7c6c5b7c
ML
2575 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2576 hctx->numa_node))
2577 goto exit_hctx;
2578 return 0;
2579
2580 exit_hctx:
2581 if (set->ops->exit_hctx)
2582 set->ops->exit_hctx(hctx, hctx_idx);
2583 unregister_cpu_notifier:
2584 blk_mq_remove_cpuhp(hctx);
2585 return -1;
2586}
2587
2588static struct blk_mq_hw_ctx *
2589blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2590 int node)
2591{
2592 struct blk_mq_hw_ctx *hctx;
2593 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2594
2595 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2596 if (!hctx)
2597 goto fail_alloc_hctx;
2598
2599 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2600 goto free_hctx;
2601
2602 atomic_set(&hctx->nr_active, 0);
08e98fc6 2603 if (node == NUMA_NO_NODE)
7c6c5b7c
ML
2604 node = set->numa_node;
2605 hctx->numa_node = node;
08e98fc6 2606
9f993737 2607 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2608 spin_lock_init(&hctx->lock);
2609 INIT_LIST_HEAD(&hctx->dispatch);
2610 hctx->queue = q;
2404e607 2611 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2612
2f8f1336
ML
2613 INIT_LIST_HEAD(&hctx->hctx_list);
2614
320ae51f 2615 /*
08e98fc6
ML
2616 * Allocate space for all possible cpus to avoid allocation at
2617 * runtime
320ae51f 2618 */
d904bfa7 2619 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
7c6c5b7c 2620 gfp, node);
08e98fc6 2621 if (!hctx->ctxs)
7c6c5b7c 2622 goto free_cpumask;
320ae51f 2623
5b202853 2624 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
7c6c5b7c 2625 gfp, node))
08e98fc6 2626 goto free_ctxs;
08e98fc6 2627 hctx->nr_ctx = 0;
320ae51f 2628
5815839b 2629 spin_lock_init(&hctx->dispatch_wait_lock);
eb619fdb
JA
2630 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2631 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2632
754a1572 2633 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
f70ced09 2634 if (!hctx->fq)
7c6c5b7c 2635 goto free_bitmap;
320ae51f 2636
6a83e74d 2637 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2638 init_srcu_struct(hctx->srcu);
7c6c5b7c 2639 blk_mq_hctx_kobj_init(hctx);
6a83e74d 2640
7c6c5b7c 2641 return hctx;
320ae51f 2642
08e98fc6 2643 free_bitmap:
88459642 2644 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2645 free_ctxs:
2646 kfree(hctx->ctxs);
7c6c5b7c
ML
2647 free_cpumask:
2648 free_cpumask_var(hctx->cpumask);
2649 free_hctx:
2650 kfree(hctx);
2651 fail_alloc_hctx:
2652 return NULL;
08e98fc6 2653}
320ae51f 2654
320ae51f
JA
2655static void blk_mq_init_cpu_queues(struct request_queue *q,
2656 unsigned int nr_hw_queues)
2657{
b3c661b1
JA
2658 struct blk_mq_tag_set *set = q->tag_set;
2659 unsigned int i, j;
320ae51f
JA
2660
2661 for_each_possible_cpu(i) {
2662 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2663 struct blk_mq_hw_ctx *hctx;
c16d6b5a 2664 int k;
320ae51f 2665
320ae51f
JA
2666 __ctx->cpu = i;
2667 spin_lock_init(&__ctx->lock);
c16d6b5a
ML
2668 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2669 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2670
320ae51f
JA
2671 __ctx->queue = q;
2672
320ae51f
JA
2673 /*
2674 * Set local node, IFF we have more than one hw queue. If
2675 * not, we remain on the home node of the device
2676 */
b3c661b1
JA
2677 for (j = 0; j < set->nr_maps; j++) {
2678 hctx = blk_mq_map_queue_type(q, j, i);
2679 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2680 hctx->numa_node = local_memory_node(cpu_to_node(i));
2681 }
320ae51f
JA
2682 }
2683}
2684
03b63b02
WZ
2685static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2686 int hctx_idx)
cc71a6f4
JA
2687{
2688 int ret = 0;
2689
2690 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2691 set->queue_depth, set->reserved_tags);
2692 if (!set->tags[hctx_idx])
2693 return false;
2694
2695 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2696 set->queue_depth);
2697 if (!ret)
2698 return true;
2699
2700 blk_mq_free_rq_map(set->tags[hctx_idx]);
2701 set->tags[hctx_idx] = NULL;
2702 return false;
2703}
2704
2705static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2706 unsigned int hctx_idx)
2707{
4e6db0f2 2708 if (set->tags && set->tags[hctx_idx]) {
bd166ef1
JA
2709 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2710 blk_mq_free_rq_map(set->tags[hctx_idx]);
2711 set->tags[hctx_idx] = NULL;
2712 }
cc71a6f4
JA
2713}
2714
4b855ad3 2715static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2716{
b3c661b1 2717 unsigned int i, j, hctx_idx;
320ae51f
JA
2718 struct blk_mq_hw_ctx *hctx;
2719 struct blk_mq_ctx *ctx;
2a34c087 2720 struct blk_mq_tag_set *set = q->tag_set;
320ae51f
JA
2721
2722 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2723 cpumask_clear(hctx->cpumask);
320ae51f 2724 hctx->nr_ctx = 0;
d416c92c 2725 hctx->dispatch_from = NULL;
320ae51f
JA
2726 }
2727
2728 /*
4b855ad3 2729 * Map software to hardware queues.
4412efec
ML
2730 *
2731 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2732 */
20e4d813 2733 for_each_possible_cpu(i) {
4412efec 2734
897bb0c7 2735 ctx = per_cpu_ptr(q->queue_ctx, i);
b3c661b1 2736 for (j = 0; j < set->nr_maps; j++) {
bb94aea1
JW
2737 if (!set->map[j].nr_queues) {
2738 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2739 HCTX_TYPE_DEFAULT, i);
e5edd5f2 2740 continue;
bb94aea1 2741 }
fd689871
ML
2742 hctx_idx = set->map[j].mq_map[i];
2743 /* unmapped hw queue can be remapped after CPU topo changed */
2744 if (!set->tags[hctx_idx] &&
03b63b02 2745 !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
fd689871
ML
2746 /*
2747 * If tags initialization fail for some hctx,
2748 * that hctx won't be brought online. In this
2749 * case, remap the current ctx to hctx[0] which
2750 * is guaranteed to always have tags allocated
2751 */
2752 set->map[j].mq_map[i] = 0;
2753 }
e5edd5f2 2754
b3c661b1 2755 hctx = blk_mq_map_queue_type(q, j, i);
8ccdf4a3 2756 ctx->hctxs[j] = hctx;
b3c661b1
JA
2757 /*
2758 * If the CPU is already set in the mask, then we've
2759 * mapped this one already. This can happen if
2760 * devices share queues across queue maps.
2761 */
2762 if (cpumask_test_cpu(i, hctx->cpumask))
2763 continue;
2764
2765 cpumask_set_cpu(i, hctx->cpumask);
2766 hctx->type = j;
2767 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2768 hctx->ctxs[hctx->nr_ctx++] = ctx;
2769
2770 /*
2771 * If the nr_ctx type overflows, we have exceeded the
2772 * amount of sw queues we can support.
2773 */
2774 BUG_ON(!hctx->nr_ctx);
2775 }
bb94aea1
JW
2776
2777 for (; j < HCTX_MAX_TYPES; j++)
2778 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2779 HCTX_TYPE_DEFAULT, i);
320ae51f 2780 }
506e931f
JA
2781
2782 queue_for_each_hw_ctx(q, hctx, i) {
4412efec
ML
2783 /*
2784 * If no software queues are mapped to this hardware queue,
2785 * disable it and free the request entries.
2786 */
2787 if (!hctx->nr_ctx) {
2788 /* Never unmap queue 0. We need it as a
2789 * fallback in case of a new remap fails
2790 * allocation
2791 */
2792 if (i && set->tags[i])
2793 blk_mq_free_map_and_requests(set, i);
2794
2795 hctx->tags = NULL;
2796 continue;
2797 }
484b4061 2798
2a34c087
ML
2799 hctx->tags = set->tags[i];
2800 WARN_ON(!hctx->tags);
2801
889fa31f
CY
2802 /*
2803 * Set the map size to the number of mapped software queues.
2804 * This is more accurate and more efficient than looping
2805 * over all possibly mapped software queues.
2806 */
88459642 2807 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2808
484b4061
JA
2809 /*
2810 * Initialize batch roundrobin counts
2811 */
f82ddf19 2812 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
2813 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2814 }
320ae51f
JA
2815}
2816
8e8320c9
JA
2817/*
2818 * Caller needs to ensure that we're either frozen/quiesced, or that
2819 * the queue isn't live yet.
2820 */
2404e607 2821static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2822{
2823 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2824 int i;
2825
2404e607 2826 queue_for_each_hw_ctx(q, hctx, i) {
97889f9a 2827 if (shared)
2404e607 2828 hctx->flags |= BLK_MQ_F_TAG_SHARED;
97889f9a 2829 else
2404e607
JM
2830 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2831 }
2832}
2833
8e8320c9
JA
2834static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2835 bool shared)
2404e607
JM
2836{
2837 struct request_queue *q;
0d2602ca 2838
705cda97
BVA
2839 lockdep_assert_held(&set->tag_list_lock);
2840
0d2602ca
JA
2841 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2842 blk_mq_freeze_queue(q);
2404e607 2843 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2844 blk_mq_unfreeze_queue(q);
2845 }
2846}
2847
2848static void blk_mq_del_queue_tag_set(struct request_queue *q)
2849{
2850 struct blk_mq_tag_set *set = q->tag_set;
2851
0d2602ca 2852 mutex_lock(&set->tag_list_lock);
705cda97 2853 list_del_rcu(&q->tag_set_list);
2404e607
JM
2854 if (list_is_singular(&set->tag_list)) {
2855 /* just transitioned to unshared */
2856 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2857 /* update existing queue */
2858 blk_mq_update_tag_set_depth(set, false);
2859 }
0d2602ca 2860 mutex_unlock(&set->tag_list_lock);
a347c7ad 2861 INIT_LIST_HEAD(&q->tag_set_list);
0d2602ca
JA
2862}
2863
2864static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2865 struct request_queue *q)
2866{
0d2602ca 2867 mutex_lock(&set->tag_list_lock);
2404e607 2868
ff821d27
JA
2869 /*
2870 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2871 */
2872 if (!list_empty(&set->tag_list) &&
2873 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2404e607
JM
2874 set->flags |= BLK_MQ_F_TAG_SHARED;
2875 /* update existing queue */
2876 blk_mq_update_tag_set_depth(set, true);
2877 }
2878 if (set->flags & BLK_MQ_F_TAG_SHARED)
2879 queue_set_hctx_shared(q, true);
705cda97 2880 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2881
0d2602ca
JA
2882 mutex_unlock(&set->tag_list_lock);
2883}
2884
1db4909e
ML
2885/* All allocations will be freed in release handler of q->mq_kobj */
2886static int blk_mq_alloc_ctxs(struct request_queue *q)
2887{
2888 struct blk_mq_ctxs *ctxs;
2889 int cpu;
2890
2891 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2892 if (!ctxs)
2893 return -ENOMEM;
2894
2895 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2896 if (!ctxs->queue_ctx)
2897 goto fail;
2898
2899 for_each_possible_cpu(cpu) {
2900 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2901 ctx->ctxs = ctxs;
2902 }
2903
2904 q->mq_kobj = &ctxs->kobj;
2905 q->queue_ctx = ctxs->queue_ctx;
2906
2907 return 0;
2908 fail:
2909 kfree(ctxs);
2910 return -ENOMEM;
2911}
2912
e09aae7e
ML
2913/*
2914 * It is the actual release handler for mq, but we do it from
2915 * request queue's release handler for avoiding use-after-free
2916 * and headache because q->mq_kobj shouldn't have been introduced,
2917 * but we can't group ctx/kctx kobj without it.
2918 */
2919void blk_mq_release(struct request_queue *q)
2920{
2f8f1336
ML
2921 struct blk_mq_hw_ctx *hctx, *next;
2922 int i;
e09aae7e 2923
2f8f1336
ML
2924 queue_for_each_hw_ctx(q, hctx, i)
2925 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2926
2927 /* all hctx are in .unused_hctx_list now */
2928 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2929 list_del_init(&hctx->hctx_list);
6c8b232e 2930 kobject_put(&hctx->kobj);
c3b4afca 2931 }
e09aae7e
ML
2932
2933 kfree(q->queue_hw_ctx);
2934
7ea5fe31
ML
2935 /*
2936 * release .mq_kobj and sw queue's kobject now because
2937 * both share lifetime with request queue.
2938 */
2939 blk_mq_sysfs_deinit(q);
e09aae7e
ML
2940}
2941
2f227bb9
CH
2942struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
2943 void *queuedata)
b62c21b7
MS
2944{
2945 struct request_queue *uninit_q, *q;
2946
3d745ea5 2947 uninit_q = __blk_alloc_queue(set->numa_node);
b62c21b7
MS
2948 if (!uninit_q)
2949 return ERR_PTR(-ENOMEM);
2f227bb9 2950 uninit_q->queuedata = queuedata;
b62c21b7 2951
737eb78e
DLM
2952 /*
2953 * Initialize the queue without an elevator. device_add_disk() will do
2954 * the initialization.
2955 */
2956 q = blk_mq_init_allocated_queue(set, uninit_q, false);
b62c21b7
MS
2957 if (IS_ERR(q))
2958 blk_cleanup_queue(uninit_q);
2959
2960 return q;
2961}
2f227bb9
CH
2962EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
2963
2964struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2965{
2966 return blk_mq_init_queue_data(set, NULL);
2967}
b62c21b7
MS
2968EXPORT_SYMBOL(blk_mq_init_queue);
2969
9316a9ed
JA
2970/*
2971 * Helper for setting up a queue with mq ops, given queue depth, and
2972 * the passed in mq ops flags.
2973 */
2974struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2975 const struct blk_mq_ops *ops,
2976 unsigned int queue_depth,
2977 unsigned int set_flags)
2978{
2979 struct request_queue *q;
2980 int ret;
2981
2982 memset(set, 0, sizeof(*set));
2983 set->ops = ops;
2984 set->nr_hw_queues = 1;
b3c661b1 2985 set->nr_maps = 1;
9316a9ed
JA
2986 set->queue_depth = queue_depth;
2987 set->numa_node = NUMA_NO_NODE;
2988 set->flags = set_flags;
2989
2990 ret = blk_mq_alloc_tag_set(set);
2991 if (ret)
2992 return ERR_PTR(ret);
2993
2994 q = blk_mq_init_queue(set);
2995 if (IS_ERR(q)) {
2996 blk_mq_free_tag_set(set);
2997 return q;
2998 }
2999
3000 return q;
3001}
3002EXPORT_SYMBOL(blk_mq_init_sq_queue);
3003
34d11ffa
JW
3004static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3005 struct blk_mq_tag_set *set, struct request_queue *q,
3006 int hctx_idx, int node)
3007{
2f8f1336 3008 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
34d11ffa 3009
2f8f1336
ML
3010 /* reuse dead hctx first */
3011 spin_lock(&q->unused_hctx_lock);
3012 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3013 if (tmp->numa_node == node) {
3014 hctx = tmp;
3015 break;
3016 }
3017 }
3018 if (hctx)
3019 list_del_init(&hctx->hctx_list);
3020 spin_unlock(&q->unused_hctx_lock);
3021
3022 if (!hctx)
3023 hctx = blk_mq_alloc_hctx(q, set, node);
34d11ffa 3024 if (!hctx)
7c6c5b7c 3025 goto fail;
34d11ffa 3026
7c6c5b7c
ML
3027 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3028 goto free_hctx;
34d11ffa
JW
3029
3030 return hctx;
7c6c5b7c
ML
3031
3032 free_hctx:
3033 kobject_put(&hctx->kobj);
3034 fail:
3035 return NULL;
34d11ffa
JW
3036}
3037
868f2f0b
KB
3038static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3039 struct request_queue *q)
320ae51f 3040{
e01ad46d 3041 int i, j, end;
868f2f0b 3042 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 3043
ac0d6b92
BVA
3044 if (q->nr_hw_queues < set->nr_hw_queues) {
3045 struct blk_mq_hw_ctx **new_hctxs;
3046
3047 new_hctxs = kcalloc_node(set->nr_hw_queues,
3048 sizeof(*new_hctxs), GFP_KERNEL,
3049 set->numa_node);
3050 if (!new_hctxs)
3051 return;
3052 if (hctxs)
3053 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3054 sizeof(*hctxs));
3055 q->queue_hw_ctx = new_hctxs;
ac0d6b92
BVA
3056 kfree(hctxs);
3057 hctxs = new_hctxs;
3058 }
3059
fb350e0a
ML
3060 /* protect against switching io scheduler */
3061 mutex_lock(&q->sysfs_lock);
24d2f903 3062 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 3063 int node;
34d11ffa 3064 struct blk_mq_hw_ctx *hctx;
868f2f0b 3065
7d76f856 3066 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
34d11ffa
JW
3067 /*
3068 * If the hw queue has been mapped to another numa node,
3069 * we need to realloc the hctx. If allocation fails, fallback
3070 * to use the previous one.
3071 */
3072 if (hctxs[i] && (hctxs[i]->numa_node == node))
3073 continue;
868f2f0b 3074
34d11ffa
JW
3075 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3076 if (hctx) {
2f8f1336 3077 if (hctxs[i])
34d11ffa 3078 blk_mq_exit_hctx(q, set, hctxs[i], i);
34d11ffa
JW
3079 hctxs[i] = hctx;
3080 } else {
3081 if (hctxs[i])
3082 pr_warn("Allocate new hctx on node %d fails,\
3083 fallback to previous one on node %d\n",
3084 node, hctxs[i]->numa_node);
3085 else
3086 break;
868f2f0b 3087 }
320ae51f 3088 }
e01ad46d
JW
3089 /*
3090 * Increasing nr_hw_queues fails. Free the newly allocated
3091 * hctxs and keep the previous q->nr_hw_queues.
3092 */
3093 if (i != set->nr_hw_queues) {
3094 j = q->nr_hw_queues;
3095 end = i;
3096 } else {
3097 j = i;
3098 end = q->nr_hw_queues;
3099 q->nr_hw_queues = set->nr_hw_queues;
3100 }
34d11ffa 3101
e01ad46d 3102 for (; j < end; j++) {
868f2f0b
KB
3103 struct blk_mq_hw_ctx *hctx = hctxs[j];
3104
3105 if (hctx) {
cc71a6f4
JA
3106 if (hctx->tags)
3107 blk_mq_free_map_and_requests(set, j);
868f2f0b 3108 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 3109 hctxs[j] = NULL;
868f2f0b
KB
3110 }
3111 }
fb350e0a 3112 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
3113}
3114
3115struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
737eb78e
DLM
3116 struct request_queue *q,
3117 bool elevator_init)
868f2f0b 3118{
66841672
ML
3119 /* mark the queue as mq asap */
3120 q->mq_ops = set->ops;
3121
34dbad5d 3122 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
3123 blk_mq_poll_stats_bkt,
3124 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
3125 if (!q->poll_cb)
3126 goto err_exit;
3127
1db4909e 3128 if (blk_mq_alloc_ctxs(q))
41de54c6 3129 goto err_poll;
868f2f0b 3130
737f98cf
ML
3131 /* init q->mq_kobj and sw queues' kobjects */
3132 blk_mq_sysfs_init(q);
3133
2f8f1336
ML
3134 INIT_LIST_HEAD(&q->unused_hctx_list);
3135 spin_lock_init(&q->unused_hctx_lock);
3136
868f2f0b
KB
3137 blk_mq_realloc_hw_ctxs(set, q);
3138 if (!q->nr_hw_queues)
3139 goto err_hctxs;
320ae51f 3140
287922eb 3141 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 3142 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f 3143
a8908939 3144 q->tag_set = set;
320ae51f 3145
94eddfbe 3146 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
cd19181b
ML
3147 if (set->nr_maps > HCTX_TYPE_POLL &&
3148 set->map[HCTX_TYPE_POLL].nr_queues)
6544d229 3149 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
320ae51f 3150
1be036e9
CH
3151 q->sg_reserved_size = INT_MAX;
3152
2849450a 3153 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
3154 INIT_LIST_HEAD(&q->requeue_list);
3155 spin_lock_init(&q->requeue_lock);
3156
eba71768
JA
3157 q->nr_requests = set->queue_depth;
3158
64f1c21e
JA
3159 /*
3160 * Default to classic polling
3161 */
29ece8b4 3162 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
64f1c21e 3163
24d2f903 3164 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 3165 blk_mq_add_queue_tag_set(set, q);
4b855ad3 3166 blk_mq_map_swqueue(q);
4593fdbe 3167
737eb78e
DLM
3168 if (elevator_init)
3169 elevator_init_mq(q);
d3484991 3170
320ae51f 3171 return q;
18741986 3172
320ae51f 3173err_hctxs:
868f2f0b 3174 kfree(q->queue_hw_ctx);
73d9c8d4 3175 q->nr_hw_queues = 0;
1db4909e 3176 blk_mq_sysfs_deinit(q);
41de54c6
JS
3177err_poll:
3178 blk_stat_free_callback(q->poll_cb);
3179 q->poll_cb = NULL;
c7de5726
ML
3180err_exit:
3181 q->mq_ops = NULL;
320ae51f
JA
3182 return ERR_PTR(-ENOMEM);
3183}
b62c21b7 3184EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f 3185
c7e2d94b
ML
3186/* tags can _not_ be used after returning from blk_mq_exit_queue */
3187void blk_mq_exit_queue(struct request_queue *q)
320ae51f 3188{
624dbe47 3189 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 3190
0d2602ca 3191 blk_mq_del_queue_tag_set(q);
624dbe47 3192 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 3193}
320ae51f 3194
a5164405
JA
3195static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3196{
3197 int i;
3198
cc71a6f4 3199 for (i = 0; i < set->nr_hw_queues; i++)
03b63b02 3200 if (!__blk_mq_alloc_map_and_request(set, i))
a5164405 3201 goto out_unwind;
a5164405
JA
3202
3203 return 0;
3204
3205out_unwind:
3206 while (--i >= 0)
2e194422 3207 blk_mq_free_map_and_requests(set, i);
a5164405 3208
a5164405
JA
3209 return -ENOMEM;
3210}
3211
3212/*
3213 * Allocate the request maps associated with this tag_set. Note that this
3214 * may reduce the depth asked for, if memory is tight. set->queue_depth
3215 * will be updated to reflect the allocated depth.
3216 */
79fab528 3217static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
a5164405
JA
3218{
3219 unsigned int depth;
3220 int err;
3221
3222 depth = set->queue_depth;
3223 do {
3224 err = __blk_mq_alloc_rq_maps(set);
3225 if (!err)
3226 break;
3227
3228 set->queue_depth >>= 1;
3229 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3230 err = -ENOMEM;
3231 break;
3232 }
3233 } while (set->queue_depth);
3234
3235 if (!set->queue_depth || err) {
3236 pr_err("blk-mq: failed to allocate request map\n");
3237 return -ENOMEM;
3238 }
3239
3240 if (depth != set->queue_depth)
3241 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3242 depth, set->queue_depth);
3243
3244 return 0;
3245}
3246
ebe8bddb
OS
3247static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3248{
6e66b493
BVA
3249 /*
3250 * blk_mq_map_queues() and multiple .map_queues() implementations
3251 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3252 * number of hardware queues.
3253 */
3254 if (set->nr_maps == 1)
3255 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3256
59388702 3257 if (set->ops->map_queues && !is_kdump_kernel()) {
b3c661b1
JA
3258 int i;
3259
7d4901a9
ML
3260 /*
3261 * transport .map_queues is usually done in the following
3262 * way:
3263 *
3264 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3265 * mask = get_cpu_mask(queue)
3266 * for_each_cpu(cpu, mask)
b3c661b1 3267 * set->map[x].mq_map[cpu] = queue;
7d4901a9
ML
3268 * }
3269 *
3270 * When we need to remap, the table has to be cleared for
3271 * killing stale mapping since one CPU may not be mapped
3272 * to any hw queue.
3273 */
b3c661b1
JA
3274 for (i = 0; i < set->nr_maps; i++)
3275 blk_mq_clear_mq_map(&set->map[i]);
7d4901a9 3276
ebe8bddb 3277 return set->ops->map_queues(set);
b3c661b1
JA
3278 } else {
3279 BUG_ON(set->nr_maps > 1);
7d76f856 3280 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
b3c661b1 3281 }
ebe8bddb
OS
3282}
3283
f7e76dbc
BVA
3284static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3285 int cur_nr_hw_queues, int new_nr_hw_queues)
3286{
3287 struct blk_mq_tags **new_tags;
3288
3289 if (cur_nr_hw_queues >= new_nr_hw_queues)
3290 return 0;
3291
3292 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3293 GFP_KERNEL, set->numa_node);
3294 if (!new_tags)
3295 return -ENOMEM;
3296
3297 if (set->tags)
3298 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3299 sizeof(*set->tags));
3300 kfree(set->tags);
3301 set->tags = new_tags;
3302 set->nr_hw_queues = new_nr_hw_queues;
3303
3304 return 0;
3305}
3306
a4391c64
JA
3307/*
3308 * Alloc a tag set to be associated with one or more request queues.
3309 * May fail with EINVAL for various error conditions. May adjust the
c018c84f 3310 * requested depth down, if it's too large. In that case, the set
a4391c64
JA
3311 * value will be stored in set->queue_depth.
3312 */
24d2f903
CH
3313int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3314{
b3c661b1 3315 int i, ret;
da695ba2 3316
205fb5f5
BVA
3317 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3318
24d2f903
CH
3319 if (!set->nr_hw_queues)
3320 return -EINVAL;
a4391c64 3321 if (!set->queue_depth)
24d2f903
CH
3322 return -EINVAL;
3323 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3324 return -EINVAL;
3325
7d7e0f90 3326 if (!set->ops->queue_rq)
24d2f903
CH
3327 return -EINVAL;
3328
de148297
ML
3329 if (!set->ops->get_budget ^ !set->ops->put_budget)
3330 return -EINVAL;
3331
a4391c64
JA
3332 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3333 pr_info("blk-mq: reduced tag depth to %u\n",
3334 BLK_MQ_MAX_DEPTH);
3335 set->queue_depth = BLK_MQ_MAX_DEPTH;
3336 }
24d2f903 3337
b3c661b1
JA
3338 if (!set->nr_maps)
3339 set->nr_maps = 1;
3340 else if (set->nr_maps > HCTX_MAX_TYPES)
3341 return -EINVAL;
3342
6637fadf
SL
3343 /*
3344 * If a crashdump is active, then we are potentially in a very
3345 * memory constrained environment. Limit us to 1 queue and
3346 * 64 tags to prevent using too much memory.
3347 */
3348 if (is_kdump_kernel()) {
3349 set->nr_hw_queues = 1;
59388702 3350 set->nr_maps = 1;
6637fadf
SL
3351 set->queue_depth = min(64U, set->queue_depth);
3352 }
868f2f0b 3353 /*
392546ae
JA
3354 * There is no use for more h/w queues than cpus if we just have
3355 * a single map
868f2f0b 3356 */
392546ae 3357 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
868f2f0b 3358 set->nr_hw_queues = nr_cpu_ids;
6637fadf 3359
f7e76dbc 3360 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
a5164405 3361 return -ENOMEM;
24d2f903 3362
da695ba2 3363 ret = -ENOMEM;
b3c661b1
JA
3364 for (i = 0; i < set->nr_maps; i++) {
3365 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
07b35eb5 3366 sizeof(set->map[i].mq_map[0]),
b3c661b1
JA
3367 GFP_KERNEL, set->numa_node);
3368 if (!set->map[i].mq_map)
3369 goto out_free_mq_map;
59388702 3370 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
b3c661b1 3371 }
bdd17e75 3372
ebe8bddb 3373 ret = blk_mq_update_queue_map(set);
da695ba2
CH
3374 if (ret)
3375 goto out_free_mq_map;
3376
79fab528 3377 ret = blk_mq_alloc_map_and_requests(set);
da695ba2 3378 if (ret)
bdd17e75 3379 goto out_free_mq_map;
24d2f903 3380
0d2602ca
JA
3381 mutex_init(&set->tag_list_lock);
3382 INIT_LIST_HEAD(&set->tag_list);
3383
24d2f903 3384 return 0;
bdd17e75
CH
3385
3386out_free_mq_map:
b3c661b1
JA
3387 for (i = 0; i < set->nr_maps; i++) {
3388 kfree(set->map[i].mq_map);
3389 set->map[i].mq_map = NULL;
3390 }
5676e7b6
RE
3391 kfree(set->tags);
3392 set->tags = NULL;
da695ba2 3393 return ret;
24d2f903
CH
3394}
3395EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3396
3397void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3398{
b3c661b1 3399 int i, j;
24d2f903 3400
f7e76dbc 3401 for (i = 0; i < set->nr_hw_queues; i++)
cc71a6f4 3402 blk_mq_free_map_and_requests(set, i);
484b4061 3403
b3c661b1
JA
3404 for (j = 0; j < set->nr_maps; j++) {
3405 kfree(set->map[j].mq_map);
3406 set->map[j].mq_map = NULL;
3407 }
bdd17e75 3408
981bd189 3409 kfree(set->tags);
5676e7b6 3410 set->tags = NULL;
24d2f903
CH
3411}
3412EXPORT_SYMBOL(blk_mq_free_tag_set);
3413
e3a2b3f9
JA
3414int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3415{
3416 struct blk_mq_tag_set *set = q->tag_set;
3417 struct blk_mq_hw_ctx *hctx;
3418 int i, ret;
3419
bd166ef1 3420 if (!set)
e3a2b3f9
JA
3421 return -EINVAL;
3422
e5fa8140
AZ
3423 if (q->nr_requests == nr)
3424 return 0;
3425
70f36b60 3426 blk_mq_freeze_queue(q);
24f5a90f 3427 blk_mq_quiesce_queue(q);
70f36b60 3428
e3a2b3f9
JA
3429 ret = 0;
3430 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
3431 if (!hctx->tags)
3432 continue;
bd166ef1
JA
3433 /*
3434 * If we're using an MQ scheduler, just update the scheduler
3435 * queue depth. This is similar to what the old code would do.
3436 */
70f36b60 3437 if (!hctx->sched_tags) {
c2e82a23 3438 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
3439 false);
3440 } else {
3441 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3442 nr, true);
3443 }
e3a2b3f9
JA
3444 if (ret)
3445 break;
77f1e0a5
JA
3446 if (q->elevator && q->elevator->type->ops.depth_updated)
3447 q->elevator->type->ops.depth_updated(hctx);
e3a2b3f9
JA
3448 }
3449
3450 if (!ret)
3451 q->nr_requests = nr;
3452
24f5a90f 3453 blk_mq_unquiesce_queue(q);
70f36b60 3454 blk_mq_unfreeze_queue(q);
70f36b60 3455
e3a2b3f9
JA
3456 return ret;
3457}
3458
d48ece20
JW
3459/*
3460 * request_queue and elevator_type pair.
3461 * It is just used by __blk_mq_update_nr_hw_queues to cache
3462 * the elevator_type associated with a request_queue.
3463 */
3464struct blk_mq_qe_pair {
3465 struct list_head node;
3466 struct request_queue *q;
3467 struct elevator_type *type;
3468};
3469
3470/*
3471 * Cache the elevator_type in qe pair list and switch the
3472 * io scheduler to 'none'
3473 */
3474static bool blk_mq_elv_switch_none(struct list_head *head,
3475 struct request_queue *q)
3476{
3477 struct blk_mq_qe_pair *qe;
3478
3479 if (!q->elevator)
3480 return true;
3481
3482 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3483 if (!qe)
3484 return false;
3485
3486 INIT_LIST_HEAD(&qe->node);
3487 qe->q = q;
3488 qe->type = q->elevator->type;
3489 list_add(&qe->node, head);
3490
3491 mutex_lock(&q->sysfs_lock);
3492 /*
3493 * After elevator_switch_mq, the previous elevator_queue will be
3494 * released by elevator_release. The reference of the io scheduler
3495 * module get by elevator_get will also be put. So we need to get
3496 * a reference of the io scheduler module here to prevent it to be
3497 * removed.
3498 */
3499 __module_get(qe->type->elevator_owner);
3500 elevator_switch_mq(q, NULL);
3501 mutex_unlock(&q->sysfs_lock);
3502
3503 return true;
3504}
3505
3506static void blk_mq_elv_switch_back(struct list_head *head,
3507 struct request_queue *q)
3508{
3509 struct blk_mq_qe_pair *qe;
3510 struct elevator_type *t = NULL;
3511
3512 list_for_each_entry(qe, head, node)
3513 if (qe->q == q) {
3514 t = qe->type;
3515 break;
3516 }
3517
3518 if (!t)
3519 return;
3520
3521 list_del(&qe->node);
3522 kfree(qe);
3523
3524 mutex_lock(&q->sysfs_lock);
3525 elevator_switch_mq(q, t);
3526 mutex_unlock(&q->sysfs_lock);
3527}
3528
e4dc2b32
KB
3529static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3530 int nr_hw_queues)
868f2f0b
KB
3531{
3532 struct request_queue *q;
d48ece20 3533 LIST_HEAD(head);
e01ad46d 3534 int prev_nr_hw_queues;
868f2f0b 3535
705cda97
BVA
3536 lockdep_assert_held(&set->tag_list_lock);
3537
392546ae 3538 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
868f2f0b 3539 nr_hw_queues = nr_cpu_ids;
fe35ec58
WZ
3540 if (nr_hw_queues < 1)
3541 return;
3542 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
868f2f0b
KB
3543 return;
3544
3545 list_for_each_entry(q, &set->tag_list, tag_set_list)
3546 blk_mq_freeze_queue(q);
d48ece20
JW
3547 /*
3548 * Switch IO scheduler to 'none', cleaning up the data associated
3549 * with the previous scheduler. We will switch back once we are done
3550 * updating the new sw to hw queue mappings.
3551 */
3552 list_for_each_entry(q, &set->tag_list, tag_set_list)
3553 if (!blk_mq_elv_switch_none(&head, q))
3554 goto switch_back;
868f2f0b 3555
477e19de
JW
3556 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3557 blk_mq_debugfs_unregister_hctxs(q);
3558 blk_mq_sysfs_unregister(q);
3559 }
3560
a2584e43 3561 prev_nr_hw_queues = set->nr_hw_queues;
f7e76dbc
BVA
3562 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3563 0)
3564 goto reregister;
3565
868f2f0b 3566 set->nr_hw_queues = nr_hw_queues;
e01ad46d 3567fallback:
aa880ad6 3568 blk_mq_update_queue_map(set);
868f2f0b
KB
3569 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3570 blk_mq_realloc_hw_ctxs(set, q);
e01ad46d
JW
3571 if (q->nr_hw_queues != set->nr_hw_queues) {
3572 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3573 nr_hw_queues, prev_nr_hw_queues);
3574 set->nr_hw_queues = prev_nr_hw_queues;
7d76f856 3575 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
e01ad46d
JW
3576 goto fallback;
3577 }
477e19de
JW
3578 blk_mq_map_swqueue(q);
3579 }
3580
f7e76dbc 3581reregister:
477e19de
JW
3582 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3583 blk_mq_sysfs_register(q);
3584 blk_mq_debugfs_register_hctxs(q);
868f2f0b
KB
3585 }
3586
d48ece20
JW
3587switch_back:
3588 list_for_each_entry(q, &set->tag_list, tag_set_list)
3589 blk_mq_elv_switch_back(&head, q);
3590
868f2f0b
KB
3591 list_for_each_entry(q, &set->tag_list, tag_set_list)
3592 blk_mq_unfreeze_queue(q);
3593}
e4dc2b32
KB
3594
3595void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3596{
3597 mutex_lock(&set->tag_list_lock);
3598 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3599 mutex_unlock(&set->tag_list_lock);
3600}
868f2f0b
KB
3601EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3602
34dbad5d
OS
3603/* Enable polling stats and return whether they were already enabled. */
3604static bool blk_poll_stats_enable(struct request_queue *q)
3605{
3606 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
7dfdbc73 3607 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
34dbad5d
OS
3608 return true;
3609 blk_stat_add_callback(q, q->poll_cb);
3610 return false;
3611}
3612
3613static void blk_mq_poll_stats_start(struct request_queue *q)
3614{
3615 /*
3616 * We don't arm the callback if polling stats are not enabled or the
3617 * callback is already active.
3618 */
3619 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3620 blk_stat_is_active(q->poll_cb))
3621 return;
3622
3623 blk_stat_activate_msecs(q->poll_cb, 100);
3624}
3625
3626static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3627{
3628 struct request_queue *q = cb->data;
720b8ccc 3629 int bucket;
34dbad5d 3630
720b8ccc
SB
3631 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3632 if (cb->stat[bucket].nr_samples)
3633 q->poll_stat[bucket] = cb->stat[bucket];
3634 }
34dbad5d
OS
3635}
3636
64f1c21e 3637static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
64f1c21e
JA
3638 struct request *rq)
3639{
64f1c21e 3640 unsigned long ret = 0;
720b8ccc 3641 int bucket;
64f1c21e
JA
3642
3643 /*
3644 * If stats collection isn't on, don't sleep but turn it on for
3645 * future users
3646 */
34dbad5d 3647 if (!blk_poll_stats_enable(q))
64f1c21e
JA
3648 return 0;
3649
64f1c21e
JA
3650 /*
3651 * As an optimistic guess, use half of the mean service time
3652 * for this type of request. We can (and should) make this smarter.
3653 * For instance, if the completion latencies are tight, we can
3654 * get closer than just half the mean. This is especially
3655 * important on devices where the completion latencies are longer
720b8ccc
SB
3656 * than ~10 usec. We do use the stats for the relevant IO size
3657 * if available which does lead to better estimates.
64f1c21e 3658 */
720b8ccc
SB
3659 bucket = blk_mq_poll_stats_bkt(rq);
3660 if (bucket < 0)
3661 return ret;
3662
3663 if (q->poll_stat[bucket].nr_samples)
3664 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
3665
3666 return ret;
3667}
3668
06426adf
JA
3669static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3670 struct request *rq)
3671{
3672 struct hrtimer_sleeper hs;
3673 enum hrtimer_mode mode;
64f1c21e 3674 unsigned int nsecs;
06426adf
JA
3675 ktime_t kt;
3676
76a86f9d 3677 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
64f1c21e
JA
3678 return false;
3679
3680 /*
1052b8ac 3681 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
64f1c21e 3682 *
64f1c21e
JA
3683 * 0: use half of prev avg
3684 * >0: use this specific value
3685 */
1052b8ac 3686 if (q->poll_nsec > 0)
64f1c21e
JA
3687 nsecs = q->poll_nsec;
3688 else
cae740a0 3689 nsecs = blk_mq_poll_nsecs(q, rq);
64f1c21e
JA
3690
3691 if (!nsecs)
06426adf
JA
3692 return false;
3693
76a86f9d 3694 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
06426adf
JA
3695
3696 /*
3697 * This will be replaced with the stats tracking code, using
3698 * 'avg_completion_time / 2' as the pre-sleep target.
3699 */
8b0e1953 3700 kt = nsecs;
06426adf
JA
3701
3702 mode = HRTIMER_MODE_REL;
dbc1625f 3703 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
06426adf
JA
3704 hrtimer_set_expires(&hs.timer, kt);
3705
06426adf 3706 do {
5a61c363 3707 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
06426adf
JA
3708 break;
3709 set_current_state(TASK_UNINTERRUPTIBLE);
9dd8813e 3710 hrtimer_sleeper_start_expires(&hs, mode);
06426adf
JA
3711 if (hs.task)
3712 io_schedule();
3713 hrtimer_cancel(&hs.timer);
3714 mode = HRTIMER_MODE_ABS;
3715 } while (hs.task && !signal_pending(current));
3716
3717 __set_current_state(TASK_RUNNING);
3718 destroy_hrtimer_on_stack(&hs.timer);
3719 return true;
3720}
3721
1052b8ac
JA
3722static bool blk_mq_poll_hybrid(struct request_queue *q,
3723 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
bbd7bb70 3724{
1052b8ac
JA
3725 struct request *rq;
3726
29ece8b4 3727 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
1052b8ac
JA
3728 return false;
3729
3730 if (!blk_qc_t_is_internal(cookie))
3731 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3732 else {
3733 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3734 /*
3735 * With scheduling, if the request has completed, we'll
3736 * get a NULL return here, as we clear the sched tag when
3737 * that happens. The request still remains valid, like always,
3738 * so we should be safe with just the NULL check.
3739 */
3740 if (!rq)
3741 return false;
3742 }
3743
cae740a0 3744 return blk_mq_poll_hybrid_sleep(q, rq);
1052b8ac
JA
3745}
3746
529262d5
CH
3747/**
3748 * blk_poll - poll for IO completions
3749 * @q: the queue
3750 * @cookie: cookie passed back at IO submission time
3751 * @spin: whether to spin for completions
3752 *
3753 * Description:
3754 * Poll for completions on the passed in queue. Returns number of
3755 * completed entries found. If @spin is true, then blk_poll will continue
3756 * looping until at least one completion is found, unless the task is
3757 * otherwise marked running (or we need to reschedule).
3758 */
3759int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
1052b8ac
JA
3760{
3761 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
3762 long state;
3763
529262d5
CH
3764 if (!blk_qc_t_valid(cookie) ||
3765 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
1052b8ac
JA
3766 return 0;
3767
529262d5
CH
3768 if (current->plug)
3769 blk_flush_plug_list(current->plug, false);
3770
1052b8ac
JA
3771 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3772
06426adf
JA
3773 /*
3774 * If we sleep, have the caller restart the poll loop to reset
3775 * the state. Like for the other success return cases, the
3776 * caller is responsible for checking if the IO completed. If
3777 * the IO isn't complete, we'll get called again and will go
3778 * straight to the busy poll loop.
3779 */
1052b8ac 3780 if (blk_mq_poll_hybrid(q, hctx, cookie))
85f4d4b6 3781 return 1;
06426adf 3782
bbd7bb70
JA
3783 hctx->poll_considered++;
3784
3785 state = current->state;
aa61bec3 3786 do {
bbd7bb70
JA
3787 int ret;
3788
3789 hctx->poll_invoked++;
3790
9743139c 3791 ret = q->mq_ops->poll(hctx);
bbd7bb70
JA
3792 if (ret > 0) {
3793 hctx->poll_success++;
849a3700 3794 __set_current_state(TASK_RUNNING);
85f4d4b6 3795 return ret;
bbd7bb70
JA
3796 }
3797
3798 if (signal_pending_state(state, current))
849a3700 3799 __set_current_state(TASK_RUNNING);
bbd7bb70
JA
3800
3801 if (current->state == TASK_RUNNING)
85f4d4b6 3802 return 1;
0a1b8b87 3803 if (ret < 0 || !spin)
bbd7bb70
JA
3804 break;
3805 cpu_relax();
aa61bec3 3806 } while (!need_resched());
bbd7bb70 3807
67b4110f 3808 __set_current_state(TASK_RUNNING);
85f4d4b6 3809 return 0;
bbd7bb70 3810}
529262d5 3811EXPORT_SYMBOL_GPL(blk_poll);
bbd7bb70 3812
9cf2bab6
JA
3813unsigned int blk_mq_rq_cpu(struct request *rq)
3814{
3815 return rq->mq_ctx->cpu;
3816}
3817EXPORT_SYMBOL(blk_mq_rq_cpu);
3818
320ae51f
JA
3819static int __init blk_mq_init(void)
3820{
c3077b5d
CH
3821 int i;
3822
3823 for_each_possible_cpu(i)
3824 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3825 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3826
3827 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3828 "block/softirq:dead", NULL,
3829 blk_softirq_cpu_dead);
9467f859
TG
3830 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3831 blk_mq_hctx_notify_dead);
bf0beec0
ML
3832 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3833 blk_mq_hctx_notify_online,
3834 blk_mq_hctx_notify_offline);
320ae51f
JA
3835 return 0;
3836}
3837subsys_initcall(blk_mq_init);