]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-mq.c
blk-mq: fix schedule-under-preempt for blocking drivers
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
34#include "blk-mq-tag.h"
cf43e6be 35#include "blk-stat.h"
87760e5e 36#include "blk-wbt.h"
bd166ef1 37#include "blk-mq-sched.h"
320ae51f
JA
38
39static DEFINE_MUTEX(all_q_mutex);
40static LIST_HEAD(all_q_list);
41
34dbad5d
OS
42static void blk_mq_poll_stats_start(struct request_queue *q);
43static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
320ae51f
JA
45/*
46 * Check if any of the ctx's have pending work in this hardware queue
47 */
50e1dab8 48bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 49{
bd166ef1
JA
50 return sbitmap_any_bit_set(&hctx->ctx_map) ||
51 !list_empty_careful(&hctx->dispatch) ||
52 blk_mq_sched_has_work(hctx);
1429d7c9
JA
53}
54
320ae51f
JA
55/*
56 * Mark this ctx as having pending work in this hardware queue
57 */
58static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
59 struct blk_mq_ctx *ctx)
60{
88459642
OS
61 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
62 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
63}
64
65static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
66 struct blk_mq_ctx *ctx)
67{
88459642 68 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
69}
70
1671d522 71void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 72{
4ecd4fef 73 int freeze_depth;
cddd5d17 74
4ecd4fef
CH
75 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
76 if (freeze_depth == 1) {
3ef28e83 77 percpu_ref_kill(&q->q_usage_counter);
b94ec296 78 blk_mq_run_hw_queues(q, false);
cddd5d17 79 }
f3af020b 80}
1671d522 81EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 82
6bae363e 83void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 84{
3ef28e83 85 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 86}
6bae363e 87EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 88
f91328c4
KB
89int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
90 unsigned long timeout)
91{
92 return wait_event_timeout(q->mq_freeze_wq,
93 percpu_ref_is_zero(&q->q_usage_counter),
94 timeout);
95}
96EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 97
f3af020b
TH
98/*
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
101 */
3ef28e83 102void blk_freeze_queue(struct request_queue *q)
f3af020b 103{
3ef28e83
DW
104 /*
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
110 */
1671d522 111 blk_freeze_queue_start(q);
f3af020b
TH
112 blk_mq_freeze_queue_wait(q);
113}
3ef28e83
DW
114
115void blk_mq_freeze_queue(struct request_queue *q)
116{
117 /*
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
120 */
121 blk_freeze_queue(q);
122}
c761d96b 123EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 124
b4c6a028 125void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 126{
4ecd4fef 127 int freeze_depth;
320ae51f 128
4ecd4fef
CH
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
131 if (!freeze_depth) {
3ef28e83 132 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 133 wake_up_all(&q->mq_freeze_wq);
add703fd 134 }
320ae51f 135}
b4c6a028 136EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 137
6a83e74d
BVA
138/**
139 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
140 * @q: request queue.
141 *
142 * Note: this function does not prevent that the struct request end_io()
143 * callback function is invoked. Additionally, it is not prevented that
144 * new queue_rq() calls occur unless the queue has been stopped first.
145 */
146void blk_mq_quiesce_queue(struct request_queue *q)
147{
148 struct blk_mq_hw_ctx *hctx;
149 unsigned int i;
150 bool rcu = false;
151
152 blk_mq_stop_hw_queues(q);
153
154 queue_for_each_hw_ctx(q, hctx, i) {
155 if (hctx->flags & BLK_MQ_F_BLOCKING)
156 synchronize_srcu(&hctx->queue_rq_srcu);
157 else
158 rcu = true;
159 }
160 if (rcu)
161 synchronize_rcu();
162}
163EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
164
aed3ea94
JA
165void blk_mq_wake_waiters(struct request_queue *q)
166{
167 struct blk_mq_hw_ctx *hctx;
168 unsigned int i;
169
170 queue_for_each_hw_ctx(q, hctx, i)
171 if (blk_mq_hw_queue_mapped(hctx))
172 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
173
174 /*
175 * If we are called because the queue has now been marked as
176 * dying, we need to ensure that processes currently waiting on
177 * the queue are notified as well.
178 */
179 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
180}
181
320ae51f
JA
182bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
183{
184 return blk_mq_has_free_tags(hctx->tags);
185}
186EXPORT_SYMBOL(blk_mq_can_queue);
187
2c3ad667
JA
188void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
189 struct request *rq, unsigned int op)
320ae51f 190{
af76e555
CH
191 INIT_LIST_HEAD(&rq->queuelist);
192 /* csd/requeue_work/fifo_time is initialized before use */
193 rq->q = q;
320ae51f 194 rq->mq_ctx = ctx;
ef295ecf 195 rq->cmd_flags = op;
e8064021
CH
196 if (blk_queue_io_stat(q))
197 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
198 /* do not touch atomic flags, it needs atomic ops against the timer */
199 rq->cpu = -1;
af76e555
CH
200 INIT_HLIST_NODE(&rq->hash);
201 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
202 rq->rq_disk = NULL;
203 rq->part = NULL;
3ee32372 204 rq->start_time = jiffies;
af76e555
CH
205#ifdef CONFIG_BLK_CGROUP
206 rq->rl = NULL;
0fec08b4 207 set_start_time_ns(rq);
af76e555
CH
208 rq->io_start_time_ns = 0;
209#endif
210 rq->nr_phys_segments = 0;
211#if defined(CONFIG_BLK_DEV_INTEGRITY)
212 rq->nr_integrity_segments = 0;
213#endif
af76e555
CH
214 rq->special = NULL;
215 /* tag was already set */
216 rq->errors = 0;
af76e555 217 rq->extra_len = 0;
af76e555 218
af76e555 219 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
220 rq->timeout = 0;
221
af76e555
CH
222 rq->end_io = NULL;
223 rq->end_io_data = NULL;
224 rq->next_rq = NULL;
225
ef295ecf 226 ctx->rq_dispatched[op_is_sync(op)]++;
320ae51f 227}
2c3ad667 228EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
320ae51f 229
2c3ad667
JA
230struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
231 unsigned int op)
5dee8577
CH
232{
233 struct request *rq;
234 unsigned int tag;
235
cb96a42c 236 tag = blk_mq_get_tag(data);
5dee8577 237 if (tag != BLK_MQ_TAG_FAIL) {
bd166ef1
JA
238 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
239
240 rq = tags->static_rqs[tag];
5dee8577 241
bd166ef1
JA
242 if (data->flags & BLK_MQ_REQ_INTERNAL) {
243 rq->tag = -1;
244 rq->internal_tag = tag;
245 } else {
200e86b3
JA
246 if (blk_mq_tag_busy(data->hctx)) {
247 rq->rq_flags = RQF_MQ_INFLIGHT;
248 atomic_inc(&data->hctx->nr_active);
249 }
bd166ef1
JA
250 rq->tag = tag;
251 rq->internal_tag = -1;
562bef42 252 data->hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
253 }
254
ef295ecf 255 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
5dee8577
CH
256 return rq;
257 }
258
259 return NULL;
260}
2c3ad667 261EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
5dee8577 262
6f3b0e8b
CH
263struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
264 unsigned int flags)
320ae51f 265{
5a797e00 266 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 267 struct request *rq;
a492f075 268 int ret;
320ae51f 269
6f3b0e8b 270 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
271 if (ret)
272 return ERR_PTR(ret);
320ae51f 273
bd166ef1 274 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
841bac2c 275
bd166ef1
JA
276 blk_mq_put_ctx(alloc_data.ctx);
277 blk_queue_exit(q);
278
279 if (!rq)
a492f075 280 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
281
282 rq->__data_len = 0;
283 rq->__sector = (sector_t) -1;
284 rq->bio = rq->biotail = NULL;
320ae51f
JA
285 return rq;
286}
4bb659b1 287EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 288
1f5bd336
ML
289struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
290 unsigned int flags, unsigned int hctx_idx)
291{
6d2809d5 292 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 293 struct request *rq;
6d2809d5 294 unsigned int cpu;
1f5bd336
ML
295 int ret;
296
297 /*
298 * If the tag allocator sleeps we could get an allocation for a
299 * different hardware context. No need to complicate the low level
300 * allocator for this for the rare use case of a command tied to
301 * a specific queue.
302 */
303 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
304 return ERR_PTR(-EINVAL);
305
306 if (hctx_idx >= q->nr_hw_queues)
307 return ERR_PTR(-EIO);
308
309 ret = blk_queue_enter(q, true);
310 if (ret)
311 return ERR_PTR(ret);
312
c8712c6a
CH
313 /*
314 * Check if the hardware context is actually mapped to anything.
315 * If not tell the caller that it should skip this queue.
316 */
6d2809d5
OS
317 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
318 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
319 blk_queue_exit(q);
320 return ERR_PTR(-EXDEV);
c8712c6a 321 }
6d2809d5
OS
322 cpu = cpumask_first(alloc_data.hctx->cpumask);
323 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 324
6d2809d5 325 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
c8712c6a 326
c8712c6a 327 blk_queue_exit(q);
6d2809d5
OS
328
329 if (!rq)
330 return ERR_PTR(-EWOULDBLOCK);
331
332 return rq;
1f5bd336
ML
333}
334EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
335
bd166ef1
JA
336void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
337 struct request *rq)
320ae51f 338{
bd166ef1 339 const int sched_tag = rq->internal_tag;
320ae51f
JA
340 struct request_queue *q = rq->q;
341
e8064021 342 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 343 atomic_dec(&hctx->nr_active);
87760e5e
JA
344
345 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 346 rq->rq_flags = 0;
0d2602ca 347
af76e555 348 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 349 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
350 if (rq->tag != -1)
351 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
352 if (sched_tag != -1)
353 blk_mq_sched_completed_request(hctx, rq);
50e1dab8 354 blk_mq_sched_restart_queues(hctx);
3ef28e83 355 blk_queue_exit(q);
320ae51f
JA
356}
357
bd166ef1 358static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
16a3c2a7 359 struct request *rq)
320ae51f
JA
360{
361 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
362
363 ctx->rq_completed[rq_is_sync(rq)]++;
bd166ef1
JA
364 __blk_mq_finish_request(hctx, ctx, rq);
365}
366
367void blk_mq_finish_request(struct request *rq)
368{
369 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
7c7f2f2b 370}
7c7f2f2b
JA
371
372void blk_mq_free_request(struct request *rq)
373{
bd166ef1 374 blk_mq_sched_put_request(rq);
320ae51f 375}
1a3b595a 376EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 377
c8a446ad 378inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 379{
0d11e6ac
ML
380 blk_account_io_done(rq);
381
91b63639 382 if (rq->end_io) {
87760e5e 383 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 384 rq->end_io(rq, error);
91b63639
CH
385 } else {
386 if (unlikely(blk_bidi_rq(rq)))
387 blk_mq_free_request(rq->next_rq);
320ae51f 388 blk_mq_free_request(rq);
91b63639 389 }
320ae51f 390}
c8a446ad 391EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 392
c8a446ad 393void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
394{
395 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
396 BUG();
c8a446ad 397 __blk_mq_end_request(rq, error);
63151a44 398}
c8a446ad 399EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 400
30a91cb4 401static void __blk_mq_complete_request_remote(void *data)
320ae51f 402{
3d6efbf6 403 struct request *rq = data;
320ae51f 404
30a91cb4 405 rq->q->softirq_done_fn(rq);
320ae51f 406}
320ae51f 407
ed851860 408static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
409{
410 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 411 bool shared = false;
320ae51f
JA
412 int cpu;
413
38535201 414 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
415 rq->q->softirq_done_fn(rq);
416 return;
417 }
320ae51f
JA
418
419 cpu = get_cpu();
38535201
CH
420 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
421 shared = cpus_share_cache(cpu, ctx->cpu);
422
423 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 424 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
425 rq->csd.info = rq;
426 rq->csd.flags = 0;
c46fff2a 427 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 428 } else {
30a91cb4 429 rq->q->softirq_done_fn(rq);
3d6efbf6 430 }
320ae51f
JA
431 put_cpu();
432}
30a91cb4 433
cf43e6be
JA
434static void blk_mq_stat_add(struct request *rq)
435{
436 if (rq->rq_flags & RQF_STATS) {
34dbad5d
OS
437 blk_mq_poll_stats_start(rq->q);
438 blk_stat_add(rq);
cf43e6be
JA
439 }
440}
441
1fa8cc52 442static void __blk_mq_complete_request(struct request *rq)
ed851860
JA
443{
444 struct request_queue *q = rq->q;
445
cf43e6be
JA
446 blk_mq_stat_add(rq);
447
ed851860 448 if (!q->softirq_done_fn)
c8a446ad 449 blk_mq_end_request(rq, rq->errors);
ed851860
JA
450 else
451 blk_mq_ipi_complete_request(rq);
452}
453
30a91cb4
CH
454/**
455 * blk_mq_complete_request - end I/O on a request
456 * @rq: the request being processed
457 *
458 * Description:
459 * Ends all I/O on a request. It does not handle partial completions.
460 * The actual completion happens out-of-order, through a IPI handler.
461 **/
f4829a9b 462void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 463{
95f09684
JA
464 struct request_queue *q = rq->q;
465
466 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 467 return;
f4829a9b
CH
468 if (!blk_mark_rq_complete(rq)) {
469 rq->errors = error;
ed851860 470 __blk_mq_complete_request(rq);
f4829a9b 471 }
30a91cb4
CH
472}
473EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 474
973c0191
KB
475int blk_mq_request_started(struct request *rq)
476{
477 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
478}
479EXPORT_SYMBOL_GPL(blk_mq_request_started);
480
e2490073 481void blk_mq_start_request(struct request *rq)
320ae51f
JA
482{
483 struct request_queue *q = rq->q;
484
bd166ef1
JA
485 blk_mq_sched_started_request(rq);
486
320ae51f
JA
487 trace_block_rq_issue(q, rq);
488
cf43e6be 489 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 490 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 491 rq->rq_flags |= RQF_STATS;
87760e5e 492 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
493 }
494
2b8393b4 495 blk_add_timer(rq);
87ee7b11 496
538b7534
JA
497 /*
498 * Ensure that ->deadline is visible before set the started
499 * flag and clear the completed flag.
500 */
501 smp_mb__before_atomic();
502
87ee7b11
JA
503 /*
504 * Mark us as started and clear complete. Complete might have been
505 * set if requeue raced with timeout, which then marked it as
506 * complete. So be sure to clear complete again when we start
507 * the request, otherwise we'll ignore the completion event.
508 */
4b570521
JA
509 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
510 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
511 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
512 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
513
514 if (q->dma_drain_size && blk_rq_bytes(rq)) {
515 /*
516 * Make sure space for the drain appears. We know we can do
517 * this because max_hw_segments has been adjusted to be one
518 * fewer than the device can handle.
519 */
520 rq->nr_phys_segments++;
521 }
320ae51f 522}
e2490073 523EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 524
d9d149a3
ML
525/*
526 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
48b99c9d 527 * flag isn't set yet, so there may be race with timeout handler,
d9d149a3
ML
528 * but given rq->deadline is just set in .queue_rq() under
529 * this situation, the race won't be possible in reality because
530 * rq->timeout should be set as big enough to cover the window
531 * between blk_mq_start_request() called from .queue_rq() and
532 * clearing REQ_ATOM_STARTED here.
533 */
ed0791b2 534static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
535{
536 struct request_queue *q = rq->q;
537
538 trace_block_rq_requeue(q, rq);
87760e5e 539 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 540 blk_mq_sched_requeue_request(rq);
49f5baa5 541
e2490073
CH
542 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
543 if (q->dma_drain_size && blk_rq_bytes(rq))
544 rq->nr_phys_segments--;
545 }
320ae51f
JA
546}
547
2b053aca 548void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 549{
ed0791b2 550 __blk_mq_requeue_request(rq);
ed0791b2 551
ed0791b2 552 BUG_ON(blk_queued_rq(rq));
2b053aca 553 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
554}
555EXPORT_SYMBOL(blk_mq_requeue_request);
556
6fca6a61
CH
557static void blk_mq_requeue_work(struct work_struct *work)
558{
559 struct request_queue *q =
2849450a 560 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
561 LIST_HEAD(rq_list);
562 struct request *rq, *next;
563 unsigned long flags;
564
565 spin_lock_irqsave(&q->requeue_lock, flags);
566 list_splice_init(&q->requeue_list, &rq_list);
567 spin_unlock_irqrestore(&q->requeue_lock, flags);
568
569 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 570 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
571 continue;
572
e8064021 573 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 574 list_del_init(&rq->queuelist);
bd6737f1 575 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
576 }
577
578 while (!list_empty(&rq_list)) {
579 rq = list_entry(rq_list.next, struct request, queuelist);
580 list_del_init(&rq->queuelist);
bd6737f1 581 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
582 }
583
52d7f1b5 584 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
585}
586
2b053aca
BVA
587void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
588 bool kick_requeue_list)
6fca6a61
CH
589{
590 struct request_queue *q = rq->q;
591 unsigned long flags;
592
593 /*
594 * We abuse this flag that is otherwise used by the I/O scheduler to
595 * request head insertation from the workqueue.
596 */
e8064021 597 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
598
599 spin_lock_irqsave(&q->requeue_lock, flags);
600 if (at_head) {
e8064021 601 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
602 list_add(&rq->queuelist, &q->requeue_list);
603 } else {
604 list_add_tail(&rq->queuelist, &q->requeue_list);
605 }
606 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
607
608 if (kick_requeue_list)
609 blk_mq_kick_requeue_list(q);
6fca6a61
CH
610}
611EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
612
613void blk_mq_kick_requeue_list(struct request_queue *q)
614{
2849450a 615 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
616}
617EXPORT_SYMBOL(blk_mq_kick_requeue_list);
618
2849450a
MS
619void blk_mq_delay_kick_requeue_list(struct request_queue *q,
620 unsigned long msecs)
621{
622 kblockd_schedule_delayed_work(&q->requeue_work,
623 msecs_to_jiffies(msecs));
624}
625EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
626
1885b24d
JA
627void blk_mq_abort_requeue_list(struct request_queue *q)
628{
629 unsigned long flags;
630 LIST_HEAD(rq_list);
631
632 spin_lock_irqsave(&q->requeue_lock, flags);
633 list_splice_init(&q->requeue_list, &rq_list);
634 spin_unlock_irqrestore(&q->requeue_lock, flags);
635
636 while (!list_empty(&rq_list)) {
637 struct request *rq;
638
639 rq = list_first_entry(&rq_list, struct request, queuelist);
640 list_del_init(&rq->queuelist);
641 rq->errors = -EIO;
642 blk_mq_end_request(rq, rq->errors);
643 }
644}
645EXPORT_SYMBOL(blk_mq_abort_requeue_list);
646
0e62f51f
JA
647struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
648{
88c7b2b7
JA
649 if (tag < tags->nr_tags) {
650 prefetch(tags->rqs[tag]);
4ee86bab 651 return tags->rqs[tag];
88c7b2b7 652 }
4ee86bab
HR
653
654 return NULL;
24d2f903
CH
655}
656EXPORT_SYMBOL(blk_mq_tag_to_rq);
657
320ae51f 658struct blk_mq_timeout_data {
46f92d42
CH
659 unsigned long next;
660 unsigned int next_set;
320ae51f
JA
661};
662
90415837 663void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 664{
f8a5b122 665 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 666 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
667
668 /*
669 * We know that complete is set at this point. If STARTED isn't set
670 * anymore, then the request isn't active and the "timeout" should
671 * just be ignored. This can happen due to the bitflag ordering.
672 * Timeout first checks if STARTED is set, and if it is, assumes
673 * the request is active. But if we race with completion, then
48b99c9d 674 * both flags will get cleared. So check here again, and ignore
87ee7b11
JA
675 * a timeout event with a request that isn't active.
676 */
46f92d42
CH
677 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
678 return;
87ee7b11 679
46f92d42 680 if (ops->timeout)
0152fb6b 681 ret = ops->timeout(req, reserved);
46f92d42
CH
682
683 switch (ret) {
684 case BLK_EH_HANDLED:
685 __blk_mq_complete_request(req);
686 break;
687 case BLK_EH_RESET_TIMER:
688 blk_add_timer(req);
689 blk_clear_rq_complete(req);
690 break;
691 case BLK_EH_NOT_HANDLED:
692 break;
693 default:
694 printk(KERN_ERR "block: bad eh return: %d\n", ret);
695 break;
696 }
87ee7b11 697}
5b3f25fc 698
81481eb4
CH
699static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
700 struct request *rq, void *priv, bool reserved)
701{
702 struct blk_mq_timeout_data *data = priv;
87ee7b11 703
a4ef8e56 704 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 705 return;
87ee7b11 706
d9d149a3
ML
707 /*
708 * The rq being checked may have been freed and reallocated
709 * out already here, we avoid this race by checking rq->deadline
710 * and REQ_ATOM_COMPLETE flag together:
711 *
712 * - if rq->deadline is observed as new value because of
713 * reusing, the rq won't be timed out because of timing.
714 * - if rq->deadline is observed as previous value,
715 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
716 * because we put a barrier between setting rq->deadline
717 * and clearing the flag in blk_mq_start_request(), so
718 * this rq won't be timed out too.
719 */
46f92d42
CH
720 if (time_after_eq(jiffies, rq->deadline)) {
721 if (!blk_mark_rq_complete(rq))
0152fb6b 722 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
723 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
724 data->next = rq->deadline;
725 data->next_set = 1;
726 }
87ee7b11
JA
727}
728
287922eb 729static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 730{
287922eb
CH
731 struct request_queue *q =
732 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
733 struct blk_mq_timeout_data data = {
734 .next = 0,
735 .next_set = 0,
736 };
81481eb4 737 int i;
320ae51f 738
71f79fb3
GKB
739 /* A deadlock might occur if a request is stuck requiring a
740 * timeout at the same time a queue freeze is waiting
741 * completion, since the timeout code would not be able to
742 * acquire the queue reference here.
743 *
744 * That's why we don't use blk_queue_enter here; instead, we use
745 * percpu_ref_tryget directly, because we need to be able to
746 * obtain a reference even in the short window between the queue
747 * starting to freeze, by dropping the first reference in
1671d522 748 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
749 * consumed, marked by the instant q_usage_counter reaches
750 * zero.
751 */
752 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
753 return;
754
0bf6cd5b 755 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 756
81481eb4
CH
757 if (data.next_set) {
758 data.next = blk_rq_timeout(round_jiffies_up(data.next));
759 mod_timer(&q->timeout, data.next);
0d2602ca 760 } else {
0bf6cd5b
CH
761 struct blk_mq_hw_ctx *hctx;
762
f054b56c
ML
763 queue_for_each_hw_ctx(q, hctx, i) {
764 /* the hctx may be unmapped, so check it here */
765 if (blk_mq_hw_queue_mapped(hctx))
766 blk_mq_tag_idle(hctx);
767 }
0d2602ca 768 }
287922eb 769 blk_queue_exit(q);
320ae51f
JA
770}
771
772/*
773 * Reverse check our software queue for entries that we could potentially
774 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
775 * too much time checking for merges.
776 */
777static bool blk_mq_attempt_merge(struct request_queue *q,
778 struct blk_mq_ctx *ctx, struct bio *bio)
779{
780 struct request *rq;
781 int checked = 8;
782
783 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
34fe7c05 784 bool merged = false;
320ae51f
JA
785
786 if (!checked--)
787 break;
788
789 if (!blk_rq_merge_ok(rq, bio))
790 continue;
791
34fe7c05
CH
792 switch (blk_try_merge(rq, bio)) {
793 case ELEVATOR_BACK_MERGE:
794 if (blk_mq_sched_allow_merge(q, rq, bio))
795 merged = bio_attempt_back_merge(q, rq, bio);
bd166ef1 796 break;
34fe7c05
CH
797 case ELEVATOR_FRONT_MERGE:
798 if (blk_mq_sched_allow_merge(q, rq, bio))
799 merged = bio_attempt_front_merge(q, rq, bio);
320ae51f 800 break;
1e739730
CH
801 case ELEVATOR_DISCARD_MERGE:
802 merged = bio_attempt_discard_merge(q, rq, bio);
320ae51f 803 break;
34fe7c05
CH
804 default:
805 continue;
320ae51f 806 }
34fe7c05
CH
807
808 if (merged)
809 ctx->rq_merged++;
810 return merged;
320ae51f
JA
811 }
812
813 return false;
814}
815
88459642
OS
816struct flush_busy_ctx_data {
817 struct blk_mq_hw_ctx *hctx;
818 struct list_head *list;
819};
820
821static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
822{
823 struct flush_busy_ctx_data *flush_data = data;
824 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
825 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
826
827 sbitmap_clear_bit(sb, bitnr);
828 spin_lock(&ctx->lock);
829 list_splice_tail_init(&ctx->rq_list, flush_data->list);
830 spin_unlock(&ctx->lock);
831 return true;
832}
833
1429d7c9
JA
834/*
835 * Process software queues that have been marked busy, splicing them
836 * to the for-dispatch
837 */
2c3ad667 838void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 839{
88459642
OS
840 struct flush_busy_ctx_data data = {
841 .hctx = hctx,
842 .list = list,
843 };
1429d7c9 844
88459642 845 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 846}
2c3ad667 847EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 848
703fd1c0
JA
849static inline unsigned int queued_to_index(unsigned int queued)
850{
851 if (!queued)
852 return 0;
1429d7c9 853
703fd1c0 854 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
855}
856
bd6737f1
JA
857bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
858 bool wait)
bd166ef1
JA
859{
860 struct blk_mq_alloc_data data = {
861 .q = rq->q,
bd166ef1
JA
862 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
863 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
864 };
865
bd166ef1
JA
866 if (rq->tag != -1) {
867done:
868 if (hctx)
869 *hctx = data.hctx;
870 return true;
871 }
872
415b806d
SG
873 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
874 data.flags |= BLK_MQ_REQ_RESERVED;
875
bd166ef1
JA
876 rq->tag = blk_mq_get_tag(&data);
877 if (rq->tag >= 0) {
200e86b3
JA
878 if (blk_mq_tag_busy(data.hctx)) {
879 rq->rq_flags |= RQF_MQ_INFLIGHT;
880 atomic_inc(&data.hctx->nr_active);
881 }
bd166ef1
JA
882 data.hctx->tags->rqs[rq->tag] = rq;
883 goto done;
884 }
885
886 return false;
887}
888
113285b4
JA
889static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
890 struct request *rq)
99cf1dc5 891{
99cf1dc5
JA
892 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
893 rq->tag = -1;
894
895 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
896 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
897 atomic_dec(&hctx->nr_active);
898 }
899}
900
113285b4
JA
901static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
902 struct request *rq)
903{
904 if (rq->tag == -1 || rq->internal_tag == -1)
905 return;
906
907 __blk_mq_put_driver_tag(hctx, rq);
908}
909
910static void blk_mq_put_driver_tag(struct request *rq)
911{
912 struct blk_mq_hw_ctx *hctx;
913
914 if (rq->tag == -1 || rq->internal_tag == -1)
915 return;
916
917 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
918 __blk_mq_put_driver_tag(hctx, rq);
919}
920
bd166ef1
JA
921/*
922 * If we fail getting a driver tag because all the driver tags are already
923 * assigned and on the dispatch list, BUT the first entry does not have a
924 * tag, then we could deadlock. For that case, move entries with assigned
925 * driver tags to the front, leaving the set of tagged requests in the
926 * same order, and the untagged set in the same order.
927 */
928static bool reorder_tags_to_front(struct list_head *list)
929{
930 struct request *rq, *tmp, *first = NULL;
931
932 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
933 if (rq == first)
934 break;
935 if (rq->tag != -1) {
936 list_move(&rq->queuelist, list);
937 if (!first)
938 first = rq;
939 }
940 }
941
942 return first != NULL;
943}
944
da55f2cc
OS
945static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
946 void *key)
947{
948 struct blk_mq_hw_ctx *hctx;
949
950 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
951
952 list_del(&wait->task_list);
953 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
954 blk_mq_run_hw_queue(hctx, true);
955 return 1;
956}
957
958static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
959{
960 struct sbq_wait_state *ws;
961
962 /*
963 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
964 * The thread which wins the race to grab this bit adds the hardware
965 * queue to the wait queue.
966 */
967 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
968 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
969 return false;
970
971 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
972 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
973
974 /*
975 * As soon as this returns, it's no longer safe to fiddle with
976 * hctx->dispatch_wait, since a completion can wake up the wait queue
977 * and unlock the bit.
978 */
979 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
980 return true;
981}
982
f04c3df3 983bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
320ae51f
JA
984{
985 struct request_queue *q = hctx->queue;
320ae51f 986 struct request *rq;
74c45052
JA
987 LIST_HEAD(driver_list);
988 struct list_head *dptr;
3e8a7069 989 int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
320ae51f 990
74c45052
JA
991 /*
992 * Start off with dptr being NULL, so we start the first request
993 * immediately, even if we have more pending.
994 */
995 dptr = NULL;
996
320ae51f
JA
997 /*
998 * Now process all the entries, sending them to the driver.
999 */
3e8a7069 1000 errors = queued = 0;
f04c3df3 1001 while (!list_empty(list)) {
74c45052 1002 struct blk_mq_queue_data bd;
320ae51f 1003
f04c3df3 1004 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
1005 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1006 if (!queued && reorder_tags_to_front(list))
1007 continue;
3c782d67
JA
1008
1009 /*
da55f2cc
OS
1010 * The initial allocation attempt failed, so we need to
1011 * rerun the hardware queue when a tag is freed.
3c782d67 1012 */
da55f2cc
OS
1013 if (blk_mq_dispatch_wait_add(hctx)) {
1014 /*
1015 * It's possible that a tag was freed in the
1016 * window between the allocation failure and
1017 * adding the hardware queue to the wait queue.
1018 */
1019 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1020 break;
1021 } else {
3c782d67 1022 break;
da55f2cc 1023 }
bd166ef1 1024 }
da55f2cc 1025
320ae51f 1026 list_del_init(&rq->queuelist);
320ae51f 1027
74c45052
JA
1028 bd.rq = rq;
1029 bd.list = dptr;
113285b4
JA
1030
1031 /*
1032 * Flag last if we have no more requests, or if we have more
1033 * but can't assign a driver tag to it.
1034 */
1035 if (list_empty(list))
1036 bd.last = true;
1037 else {
1038 struct request *nxt;
1039
1040 nxt = list_first_entry(list, struct request, queuelist);
1041 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1042 }
74c45052
JA
1043
1044 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
1045 switch (ret) {
1046 case BLK_MQ_RQ_QUEUE_OK:
1047 queued++;
52b9c330 1048 break;
320ae51f 1049 case BLK_MQ_RQ_QUEUE_BUSY:
113285b4 1050 blk_mq_put_driver_tag_hctx(hctx, rq);
f04c3df3 1051 list_add(&rq->queuelist, list);
ed0791b2 1052 __blk_mq_requeue_request(rq);
320ae51f
JA
1053 break;
1054 default:
1055 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 1056 case BLK_MQ_RQ_QUEUE_ERROR:
3e8a7069 1057 errors++;
1e93b8c2 1058 rq->errors = -EIO;
c8a446ad 1059 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
1060 break;
1061 }
1062
1063 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1064 break;
74c45052
JA
1065
1066 /*
1067 * We've done the first request. If we have more than 1
1068 * left in the list, set dptr to defer issue.
1069 */
f04c3df3 1070 if (!dptr && list->next != list->prev)
74c45052 1071 dptr = &driver_list;
320ae51f
JA
1072 }
1073
703fd1c0 1074 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1075
1076 /*
1077 * Any items that need requeuing? Stuff them into hctx->dispatch,
1078 * that is where we will continue on next queue run.
1079 */
f04c3df3 1080 if (!list_empty(list)) {
113285b4
JA
1081 /*
1082 * If we got a driver tag for the next request already,
1083 * free it again.
1084 */
1085 rq = list_first_entry(list, struct request, queuelist);
1086 blk_mq_put_driver_tag(rq);
1087
320ae51f 1088 spin_lock(&hctx->lock);
c13660a0 1089 list_splice_init(list, &hctx->dispatch);
320ae51f 1090 spin_unlock(&hctx->lock);
f04c3df3 1091
9ba52e58
SL
1092 /*
1093 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1094 * it's possible the queue is stopped and restarted again
1095 * before this. Queue restart will dispatch requests. And since
1096 * requests in rq_list aren't added into hctx->dispatch yet,
1097 * the requests in rq_list might get lost.
1098 *
1099 * blk_mq_run_hw_queue() already checks the STOPPED bit
bd166ef1 1100 *
da55f2cc
OS
1101 * If RESTART or TAG_WAITING is set, then let completion restart
1102 * the queue instead of potentially looping here.
bd166ef1 1103 */
da55f2cc
OS
1104 if (!blk_mq_sched_needs_restart(hctx) &&
1105 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
bd166ef1 1106 blk_mq_run_hw_queue(hctx, true);
320ae51f 1107 }
f04c3df3 1108
3e8a7069 1109 return (queued + errors) != 0;
f04c3df3
JA
1110}
1111
6a83e74d
BVA
1112static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1113{
1114 int srcu_idx;
1115
1116 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1117 cpu_online(hctx->next_cpu));
1118
1119 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1120 rcu_read_lock();
bd166ef1 1121 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1122 rcu_read_unlock();
1123 } else {
bf4907c0
JA
1124 might_sleep();
1125
6a83e74d 1126 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
bd166ef1 1127 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1128 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1129 }
1130}
1131
506e931f
JA
1132/*
1133 * It'd be great if the workqueue API had a way to pass
1134 * in a mask and had some smarts for more clever placement.
1135 * For now we just round-robin here, switching for every
1136 * BLK_MQ_CPU_WORK_BATCH queued items.
1137 */
1138static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1139{
b657d7e6
CH
1140 if (hctx->queue->nr_hw_queues == 1)
1141 return WORK_CPU_UNBOUND;
506e931f
JA
1142
1143 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1144 int next_cpu;
506e931f
JA
1145
1146 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1147 if (next_cpu >= nr_cpu_ids)
1148 next_cpu = cpumask_first(hctx->cpumask);
1149
1150 hctx->next_cpu = next_cpu;
1151 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1152 }
1153
b657d7e6 1154 return hctx->next_cpu;
506e931f
JA
1155}
1156
320ae51f
JA
1157void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1158{
5d1b25c1
BVA
1159 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1160 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
1161 return;
1162
1b792f2f 1163 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1164 int cpu = get_cpu();
1165 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1166 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1167 put_cpu();
398205b8
PB
1168 return;
1169 }
e4043dcf 1170
2a90d4aa 1171 put_cpu();
e4043dcf 1172 }
398205b8 1173
27489a3c 1174 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
320ae51f
JA
1175}
1176
b94ec296 1177void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1178{
1179 struct blk_mq_hw_ctx *hctx;
1180 int i;
1181
1182 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1183 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1184 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1185 continue;
1186
b94ec296 1187 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1188 }
1189}
b94ec296 1190EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1191
fd001443
BVA
1192/**
1193 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1194 * @q: request queue.
1195 *
1196 * The caller is responsible for serializing this function against
1197 * blk_mq_{start,stop}_hw_queue().
1198 */
1199bool blk_mq_queue_stopped(struct request_queue *q)
1200{
1201 struct blk_mq_hw_ctx *hctx;
1202 int i;
1203
1204 queue_for_each_hw_ctx(q, hctx, i)
1205 if (blk_mq_hctx_stopped(hctx))
1206 return true;
1207
1208 return false;
1209}
1210EXPORT_SYMBOL(blk_mq_queue_stopped);
1211
320ae51f
JA
1212void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1213{
27489a3c 1214 cancel_work(&hctx->run_work);
70f4db63 1215 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
1216 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1217}
1218EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1219
280d45f6
CH
1220void blk_mq_stop_hw_queues(struct request_queue *q)
1221{
1222 struct blk_mq_hw_ctx *hctx;
1223 int i;
1224
1225 queue_for_each_hw_ctx(q, hctx, i)
1226 blk_mq_stop_hw_queue(hctx);
1227}
1228EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1229
320ae51f
JA
1230void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1231{
1232 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1233
0ffbce80 1234 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1235}
1236EXPORT_SYMBOL(blk_mq_start_hw_queue);
1237
2f268556
CH
1238void blk_mq_start_hw_queues(struct request_queue *q)
1239{
1240 struct blk_mq_hw_ctx *hctx;
1241 int i;
1242
1243 queue_for_each_hw_ctx(q, hctx, i)
1244 blk_mq_start_hw_queue(hctx);
1245}
1246EXPORT_SYMBOL(blk_mq_start_hw_queues);
1247
ae911c5e
JA
1248void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1249{
1250 if (!blk_mq_hctx_stopped(hctx))
1251 return;
1252
1253 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1254 blk_mq_run_hw_queue(hctx, async);
1255}
1256EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1257
1b4a3258 1258void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1259{
1260 struct blk_mq_hw_ctx *hctx;
1261 int i;
1262
ae911c5e
JA
1263 queue_for_each_hw_ctx(q, hctx, i)
1264 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1265}
1266EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1267
70f4db63 1268static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1269{
1270 struct blk_mq_hw_ctx *hctx;
1271
27489a3c 1272 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
e4043dcf 1273
320ae51f
JA
1274 __blk_mq_run_hw_queue(hctx);
1275}
1276
70f4db63
CH
1277static void blk_mq_delay_work_fn(struct work_struct *work)
1278{
1279 struct blk_mq_hw_ctx *hctx;
1280
1281 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1282
1283 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1284 __blk_mq_run_hw_queue(hctx);
1285}
1286
1287void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1288{
19c66e59
ML
1289 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1290 return;
70f4db63 1291
7e79dadc 1292 blk_mq_stop_hw_queue(hctx);
b657d7e6
CH
1293 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1294 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
1295}
1296EXPORT_SYMBOL(blk_mq_delay_queue);
1297
cfd0c552 1298static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1299 struct request *rq,
1300 bool at_head)
320ae51f 1301{
e57690fe
JA
1302 struct blk_mq_ctx *ctx = rq->mq_ctx;
1303
01b983c9
JA
1304 trace_block_rq_insert(hctx->queue, rq);
1305
72a0a36e
CH
1306 if (at_head)
1307 list_add(&rq->queuelist, &ctx->rq_list);
1308 else
1309 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1310}
4bb659b1 1311
2c3ad667
JA
1312void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1313 bool at_head)
cfd0c552
ML
1314{
1315 struct blk_mq_ctx *ctx = rq->mq_ctx;
1316
e57690fe 1317 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1318 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1319}
1320
bd166ef1
JA
1321void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1322 struct list_head *list)
320ae51f
JA
1323
1324{
320ae51f
JA
1325 /*
1326 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1327 * offline now
1328 */
1329 spin_lock(&ctx->lock);
1330 while (!list_empty(list)) {
1331 struct request *rq;
1332
1333 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1334 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1335 list_del_init(&rq->queuelist);
e57690fe 1336 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1337 }
cfd0c552 1338 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1339 spin_unlock(&ctx->lock);
320ae51f
JA
1340}
1341
1342static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1343{
1344 struct request *rqa = container_of(a, struct request, queuelist);
1345 struct request *rqb = container_of(b, struct request, queuelist);
1346
1347 return !(rqa->mq_ctx < rqb->mq_ctx ||
1348 (rqa->mq_ctx == rqb->mq_ctx &&
1349 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1350}
1351
1352void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1353{
1354 struct blk_mq_ctx *this_ctx;
1355 struct request_queue *this_q;
1356 struct request *rq;
1357 LIST_HEAD(list);
1358 LIST_HEAD(ctx_list);
1359 unsigned int depth;
1360
1361 list_splice_init(&plug->mq_list, &list);
1362
1363 list_sort(NULL, &list, plug_ctx_cmp);
1364
1365 this_q = NULL;
1366 this_ctx = NULL;
1367 depth = 0;
1368
1369 while (!list_empty(&list)) {
1370 rq = list_entry_rq(list.next);
1371 list_del_init(&rq->queuelist);
1372 BUG_ON(!rq->q);
1373 if (rq->mq_ctx != this_ctx) {
1374 if (this_ctx) {
bd166ef1
JA
1375 trace_block_unplug(this_q, depth, from_schedule);
1376 blk_mq_sched_insert_requests(this_q, this_ctx,
1377 &ctx_list,
1378 from_schedule);
320ae51f
JA
1379 }
1380
1381 this_ctx = rq->mq_ctx;
1382 this_q = rq->q;
1383 depth = 0;
1384 }
1385
1386 depth++;
1387 list_add_tail(&rq->queuelist, &ctx_list);
1388 }
1389
1390 /*
1391 * If 'this_ctx' is set, we know we have entries to complete
1392 * on 'ctx_list'. Do those.
1393 */
1394 if (this_ctx) {
bd166ef1
JA
1395 trace_block_unplug(this_q, depth, from_schedule);
1396 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1397 from_schedule);
320ae51f
JA
1398 }
1399}
1400
1401static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1402{
1403 init_request_from_bio(rq, bio);
4b570521 1404
6e85eaf3 1405 blk_account_io_start(rq, true);
320ae51f
JA
1406}
1407
274a5843
JA
1408static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1409{
1410 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1411 !blk_queue_nomerges(hctx->queue);
1412}
1413
07068d5b
JA
1414static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1415 struct blk_mq_ctx *ctx,
1416 struct request *rq, struct bio *bio)
320ae51f 1417{
e18378a6 1418 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1419 blk_mq_bio_to_request(rq, bio);
1420 spin_lock(&ctx->lock);
1421insert_rq:
1422 __blk_mq_insert_request(hctx, rq, false);
1423 spin_unlock(&ctx->lock);
1424 return false;
1425 } else {
274a5843
JA
1426 struct request_queue *q = hctx->queue;
1427
07068d5b
JA
1428 spin_lock(&ctx->lock);
1429 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1430 blk_mq_bio_to_request(rq, bio);
1431 goto insert_rq;
1432 }
320ae51f 1433
07068d5b 1434 spin_unlock(&ctx->lock);
bd166ef1 1435 __blk_mq_finish_request(hctx, ctx, rq);
07068d5b 1436 return true;
14ec77f3 1437 }
07068d5b 1438}
14ec77f3 1439
fd2d3326
JA
1440static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1441{
bd166ef1
JA
1442 if (rq->tag != -1)
1443 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1444
1445 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1446}
1447
5eb6126e 1448static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
9c621104 1449 bool may_sleep)
f984df1f 1450{
f984df1f 1451 struct request_queue *q = rq->q;
f984df1f
SL
1452 struct blk_mq_queue_data bd = {
1453 .rq = rq,
1454 .list = NULL,
1455 .last = 1
1456 };
bd166ef1
JA
1457 struct blk_mq_hw_ctx *hctx;
1458 blk_qc_t new_cookie;
1459 int ret;
f984df1f 1460
bd166ef1 1461 if (q->elevator)
2253efc8
BVA
1462 goto insert;
1463
bd166ef1
JA
1464 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1465 goto insert;
1466
1467 new_cookie = request_to_qc_t(hctx, rq);
1468
f984df1f
SL
1469 /*
1470 * For OK queue, we are done. For error, kill it. Any other
1471 * error (busy), just add it to our list as we previously
1472 * would have done
1473 */
1474 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1475 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1476 *cookie = new_cookie;
2253efc8 1477 return;
7b371636 1478 }
f984df1f 1479
7b371636
JA
1480 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1481 *cookie = BLK_QC_T_NONE;
1482 rq->errors = -EIO;
1483 blk_mq_end_request(rq, rq->errors);
2253efc8 1484 return;
f984df1f 1485 }
7b371636 1486
b58e1769 1487 __blk_mq_requeue_request(rq);
2253efc8 1488insert:
9c621104 1489 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
f984df1f
SL
1490}
1491
5eb6126e
CH
1492static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1493 struct request *rq, blk_qc_t *cookie)
1494{
1495 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1496 rcu_read_lock();
1497 __blk_mq_try_issue_directly(rq, cookie, false);
1498 rcu_read_unlock();
1499 } else {
bf4907c0
JA
1500 unsigned int srcu_idx;
1501
1502 might_sleep();
1503
1504 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
5eb6126e
CH
1505 __blk_mq_try_issue_directly(rq, cookie, true);
1506 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1507 }
1508}
1509
dece1635 1510static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1511{
ef295ecf 1512 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1513 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1514 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1515 struct request *rq;
5eb6126e 1516 unsigned int request_count = 0;
f984df1f 1517 struct blk_plug *plug;
5b3f341f 1518 struct request *same_queue_rq = NULL;
7b371636 1519 blk_qc_t cookie;
87760e5e 1520 unsigned int wb_acct;
07068d5b
JA
1521
1522 blk_queue_bounce(q, &bio);
1523
1524 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1525 bio_io_error(bio);
dece1635 1526 return BLK_QC_T_NONE;
07068d5b
JA
1527 }
1528
54efd50b
KO
1529 blk_queue_split(q, &bio, q->bio_split);
1530
87c279e6
OS
1531 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1532 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1533 return BLK_QC_T_NONE;
f984df1f 1534
bd166ef1
JA
1535 if (blk_mq_sched_bio_merge(q, bio))
1536 return BLK_QC_T_NONE;
1537
87760e5e
JA
1538 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1539
bd166ef1
JA
1540 trace_block_getrq(q, bio, bio->bi_opf);
1541
1542 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1543 if (unlikely(!rq)) {
1544 __wbt_done(q->rq_wb, wb_acct);
dece1635 1545 return BLK_QC_T_NONE;
87760e5e
JA
1546 }
1547
1548 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1549
fd2d3326 1550 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1551
a4d907b6 1552 plug = current->plug;
07068d5b
JA
1553 if (unlikely(is_flush_fua)) {
1554 blk_mq_bio_to_request(rq, bio);
a4d907b6
CH
1555 if (q->elevator) {
1556 blk_mq_sched_insert_request(rq, false, true, true,
1557 true);
1558 } else {
1559 blk_insert_flush(rq);
1560 blk_mq_run_hw_queue(data.hctx, true);
1561 }
1562 } else if (plug && q->nr_hw_queues == 1) {
254d259d
CH
1563 struct request *last = NULL;
1564
1565 blk_mq_bio_to_request(rq, bio);
1566
1567 /*
1568 * @request_count may become stale because of schedule
1569 * out, so check the list again.
1570 */
1571 if (list_empty(&plug->mq_list))
1572 request_count = 0;
1573 else if (blk_queue_nomerges(q))
1574 request_count = blk_plug_queued_count(q);
1575
1576 if (!request_count)
1577 trace_block_plug(q);
1578 else
1579 last = list_entry_rq(plug->mq_list.prev);
1580
254d259d
CH
1581 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1582 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1583 blk_flush_plug_list(plug, false);
1584 trace_block_plug(q);
1585 }
1586
1587 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1588 } else if (plug && !blk_queue_nomerges(q)) {
07068d5b 1589 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1590
1591 /*
6a83e74d 1592 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1593 * Otherwise the existing request in the plug list will be
1594 * issued. So the plug list will have one request at most
2299722c
CH
1595 * The plug list might get flushed before this. If that happens,
1596 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1597 */
2299722c
CH
1598 if (list_empty(&plug->mq_list))
1599 same_queue_rq = NULL;
1600 if (same_queue_rq)
1601 list_del_init(&same_queue_rq->queuelist);
1602 list_add_tail(&rq->queuelist, &plug->mq_list);
1603
bf4907c0
JA
1604 blk_mq_put_ctx(data.ctx);
1605
2299722c
CH
1606 if (same_queue_rq)
1607 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1608 &cookie);
bf4907c0
JA
1609
1610 return cookie;
a4d907b6 1611 } else if (q->nr_hw_queues > 1 && is_sync) {
bf4907c0 1612 blk_mq_put_ctx(data.ctx);
2299722c 1613 blk_mq_bio_to_request(rq, bio);
2299722c 1614 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
bf4907c0 1615 return cookie;
a4d907b6 1616 } else if (q->elevator) {
bd166ef1 1617 blk_mq_bio_to_request(rq, bio);
a4d907b6 1618 blk_mq_sched_insert_request(rq, false, true, true, true);
bf4907c0 1619 } else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio))
a4d907b6 1620 blk_mq_run_hw_queue(data.hctx, true);
a4d907b6 1621
07068d5b 1622 blk_mq_put_ctx(data.ctx);
7b371636 1623 return cookie;
07068d5b
JA
1624}
1625
cc71a6f4
JA
1626void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1627 unsigned int hctx_idx)
95363efd 1628{
e9b267d9 1629 struct page *page;
320ae51f 1630
24d2f903 1631 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1632 int i;
320ae51f 1633
24d2f903 1634 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1635 struct request *rq = tags->static_rqs[i];
1636
1637 if (!rq)
e9b267d9 1638 continue;
2af8cbe3 1639 set->ops->exit_request(set->driver_data, rq,
24d2f903 1640 hctx_idx, i);
2af8cbe3 1641 tags->static_rqs[i] = NULL;
e9b267d9 1642 }
320ae51f 1643 }
320ae51f 1644
24d2f903
CH
1645 while (!list_empty(&tags->page_list)) {
1646 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1647 list_del_init(&page->lru);
f75782e4
CM
1648 /*
1649 * Remove kmemleak object previously allocated in
1650 * blk_mq_init_rq_map().
1651 */
1652 kmemleak_free(page_address(page));
320ae51f
JA
1653 __free_pages(page, page->private);
1654 }
cc71a6f4 1655}
320ae51f 1656
cc71a6f4
JA
1657void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1658{
24d2f903 1659 kfree(tags->rqs);
cc71a6f4 1660 tags->rqs = NULL;
2af8cbe3
JA
1661 kfree(tags->static_rqs);
1662 tags->static_rqs = NULL;
320ae51f 1663
24d2f903 1664 blk_mq_free_tags(tags);
320ae51f
JA
1665}
1666
cc71a6f4
JA
1667struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1668 unsigned int hctx_idx,
1669 unsigned int nr_tags,
1670 unsigned int reserved_tags)
320ae51f 1671{
24d2f903 1672 struct blk_mq_tags *tags;
59f082e4 1673 int node;
320ae51f 1674
59f082e4
SL
1675 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1676 if (node == NUMA_NO_NODE)
1677 node = set->numa_node;
1678
1679 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1680 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1681 if (!tags)
1682 return NULL;
320ae51f 1683
cc71a6f4 1684 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1685 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1686 node);
24d2f903
CH
1687 if (!tags->rqs) {
1688 blk_mq_free_tags(tags);
1689 return NULL;
1690 }
320ae51f 1691
2af8cbe3
JA
1692 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1693 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1694 node);
2af8cbe3
JA
1695 if (!tags->static_rqs) {
1696 kfree(tags->rqs);
1697 blk_mq_free_tags(tags);
1698 return NULL;
1699 }
1700
cc71a6f4
JA
1701 return tags;
1702}
1703
1704static size_t order_to_size(unsigned int order)
1705{
1706 return (size_t)PAGE_SIZE << order;
1707}
1708
1709int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1710 unsigned int hctx_idx, unsigned int depth)
1711{
1712 unsigned int i, j, entries_per_page, max_order = 4;
1713 size_t rq_size, left;
59f082e4
SL
1714 int node;
1715
1716 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1717 if (node == NUMA_NO_NODE)
1718 node = set->numa_node;
cc71a6f4
JA
1719
1720 INIT_LIST_HEAD(&tags->page_list);
1721
320ae51f
JA
1722 /*
1723 * rq_size is the size of the request plus driver payload, rounded
1724 * to the cacheline size
1725 */
24d2f903 1726 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1727 cache_line_size());
cc71a6f4 1728 left = rq_size * depth;
320ae51f 1729
cc71a6f4 1730 for (i = 0; i < depth; ) {
320ae51f
JA
1731 int this_order = max_order;
1732 struct page *page;
1733 int to_do;
1734 void *p;
1735
b3a834b1 1736 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1737 this_order--;
1738
1739 do {
59f082e4 1740 page = alloc_pages_node(node,
36e1f3d1 1741 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1742 this_order);
320ae51f
JA
1743 if (page)
1744 break;
1745 if (!this_order--)
1746 break;
1747 if (order_to_size(this_order) < rq_size)
1748 break;
1749 } while (1);
1750
1751 if (!page)
24d2f903 1752 goto fail;
320ae51f
JA
1753
1754 page->private = this_order;
24d2f903 1755 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1756
1757 p = page_address(page);
f75782e4
CM
1758 /*
1759 * Allow kmemleak to scan these pages as they contain pointers
1760 * to additional allocations like via ops->init_request().
1761 */
36e1f3d1 1762 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1763 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1764 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1765 left -= to_do * rq_size;
1766 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1767 struct request *rq = p;
1768
1769 tags->static_rqs[i] = rq;
24d2f903
CH
1770 if (set->ops->init_request) {
1771 if (set->ops->init_request(set->driver_data,
2af8cbe3 1772 rq, hctx_idx, i,
59f082e4 1773 node)) {
2af8cbe3 1774 tags->static_rqs[i] = NULL;
24d2f903 1775 goto fail;
a5164405 1776 }
e9b267d9
CH
1777 }
1778
320ae51f
JA
1779 p += rq_size;
1780 i++;
1781 }
1782 }
cc71a6f4 1783 return 0;
320ae51f 1784
24d2f903 1785fail:
cc71a6f4
JA
1786 blk_mq_free_rqs(set, tags, hctx_idx);
1787 return -ENOMEM;
320ae51f
JA
1788}
1789
e57690fe
JA
1790/*
1791 * 'cpu' is going away. splice any existing rq_list entries from this
1792 * software queue to the hw queue dispatch list, and ensure that it
1793 * gets run.
1794 */
9467f859 1795static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1796{
9467f859 1797 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1798 struct blk_mq_ctx *ctx;
1799 LIST_HEAD(tmp);
1800
9467f859 1801 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1802 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1803
1804 spin_lock(&ctx->lock);
1805 if (!list_empty(&ctx->rq_list)) {
1806 list_splice_init(&ctx->rq_list, &tmp);
1807 blk_mq_hctx_clear_pending(hctx, ctx);
1808 }
1809 spin_unlock(&ctx->lock);
1810
1811 if (list_empty(&tmp))
9467f859 1812 return 0;
484b4061 1813
e57690fe
JA
1814 spin_lock(&hctx->lock);
1815 list_splice_tail_init(&tmp, &hctx->dispatch);
1816 spin_unlock(&hctx->lock);
484b4061
JA
1817
1818 blk_mq_run_hw_queue(hctx, true);
9467f859 1819 return 0;
484b4061
JA
1820}
1821
9467f859 1822static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1823{
9467f859
TG
1824 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1825 &hctx->cpuhp_dead);
484b4061
JA
1826}
1827
c3b4afca 1828/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1829static void blk_mq_exit_hctx(struct request_queue *q,
1830 struct blk_mq_tag_set *set,
1831 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1832{
f70ced09
ML
1833 unsigned flush_start_tag = set->queue_depth;
1834
08e98fc6
ML
1835 blk_mq_tag_idle(hctx);
1836
f70ced09
ML
1837 if (set->ops->exit_request)
1838 set->ops->exit_request(set->driver_data,
1839 hctx->fq->flush_rq, hctx_idx,
1840 flush_start_tag + hctx_idx);
1841
08e98fc6
ML
1842 if (set->ops->exit_hctx)
1843 set->ops->exit_hctx(hctx, hctx_idx);
1844
6a83e74d
BVA
1845 if (hctx->flags & BLK_MQ_F_BLOCKING)
1846 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1847
9467f859 1848 blk_mq_remove_cpuhp(hctx);
f70ced09 1849 blk_free_flush_queue(hctx->fq);
88459642 1850 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1851}
1852
624dbe47
ML
1853static void blk_mq_exit_hw_queues(struct request_queue *q,
1854 struct blk_mq_tag_set *set, int nr_queue)
1855{
1856 struct blk_mq_hw_ctx *hctx;
1857 unsigned int i;
1858
1859 queue_for_each_hw_ctx(q, hctx, i) {
1860 if (i == nr_queue)
1861 break;
08e98fc6 1862 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1863 }
624dbe47
ML
1864}
1865
08e98fc6
ML
1866static int blk_mq_init_hctx(struct request_queue *q,
1867 struct blk_mq_tag_set *set,
1868 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1869{
08e98fc6 1870 int node;
f70ced09 1871 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1872
1873 node = hctx->numa_node;
1874 if (node == NUMA_NO_NODE)
1875 node = hctx->numa_node = set->numa_node;
1876
27489a3c 1877 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1878 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1879 spin_lock_init(&hctx->lock);
1880 INIT_LIST_HEAD(&hctx->dispatch);
1881 hctx->queue = q;
1882 hctx->queue_num = hctx_idx;
2404e607 1883 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1884
9467f859 1885 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1886
1887 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1888
1889 /*
08e98fc6
ML
1890 * Allocate space for all possible cpus to avoid allocation at
1891 * runtime
320ae51f 1892 */
08e98fc6
ML
1893 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1894 GFP_KERNEL, node);
1895 if (!hctx->ctxs)
1896 goto unregister_cpu_notifier;
320ae51f 1897
88459642
OS
1898 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1899 node))
08e98fc6 1900 goto free_ctxs;
320ae51f 1901
08e98fc6 1902 hctx->nr_ctx = 0;
320ae51f 1903
08e98fc6
ML
1904 if (set->ops->init_hctx &&
1905 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1906 goto free_bitmap;
320ae51f 1907
f70ced09
ML
1908 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1909 if (!hctx->fq)
1910 goto exit_hctx;
320ae51f 1911
f70ced09
ML
1912 if (set->ops->init_request &&
1913 set->ops->init_request(set->driver_data,
1914 hctx->fq->flush_rq, hctx_idx,
1915 flush_start_tag + hctx_idx, node))
1916 goto free_fq;
320ae51f 1917
6a83e74d
BVA
1918 if (hctx->flags & BLK_MQ_F_BLOCKING)
1919 init_srcu_struct(&hctx->queue_rq_srcu);
1920
08e98fc6 1921 return 0;
320ae51f 1922
f70ced09
ML
1923 free_fq:
1924 kfree(hctx->fq);
1925 exit_hctx:
1926 if (set->ops->exit_hctx)
1927 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1928 free_bitmap:
88459642 1929 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1930 free_ctxs:
1931 kfree(hctx->ctxs);
1932 unregister_cpu_notifier:
9467f859 1933 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
1934 return -1;
1935}
320ae51f 1936
320ae51f
JA
1937static void blk_mq_init_cpu_queues(struct request_queue *q,
1938 unsigned int nr_hw_queues)
1939{
1940 unsigned int i;
1941
1942 for_each_possible_cpu(i) {
1943 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1944 struct blk_mq_hw_ctx *hctx;
1945
320ae51f
JA
1946 __ctx->cpu = i;
1947 spin_lock_init(&__ctx->lock);
1948 INIT_LIST_HEAD(&__ctx->rq_list);
1949 __ctx->queue = q;
1950
1951 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1952 if (!cpu_online(i))
1953 continue;
1954
7d7e0f90 1955 hctx = blk_mq_map_queue(q, i);
e4043dcf 1956
320ae51f
JA
1957 /*
1958 * Set local node, IFF we have more than one hw queue. If
1959 * not, we remain on the home node of the device
1960 */
1961 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1962 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
1963 }
1964}
1965
cc71a6f4
JA
1966static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1967{
1968 int ret = 0;
1969
1970 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1971 set->queue_depth, set->reserved_tags);
1972 if (!set->tags[hctx_idx])
1973 return false;
1974
1975 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1976 set->queue_depth);
1977 if (!ret)
1978 return true;
1979
1980 blk_mq_free_rq_map(set->tags[hctx_idx]);
1981 set->tags[hctx_idx] = NULL;
1982 return false;
1983}
1984
1985static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1986 unsigned int hctx_idx)
1987{
bd166ef1
JA
1988 if (set->tags[hctx_idx]) {
1989 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1990 blk_mq_free_rq_map(set->tags[hctx_idx]);
1991 set->tags[hctx_idx] = NULL;
1992 }
cc71a6f4
JA
1993}
1994
5778322e
AM
1995static void blk_mq_map_swqueue(struct request_queue *q,
1996 const struct cpumask *online_mask)
320ae51f 1997{
d1b1cea1 1998 unsigned int i, hctx_idx;
320ae51f
JA
1999 struct blk_mq_hw_ctx *hctx;
2000 struct blk_mq_ctx *ctx;
2a34c087 2001 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2002
60de074b
AM
2003 /*
2004 * Avoid others reading imcomplete hctx->cpumask through sysfs
2005 */
2006 mutex_lock(&q->sysfs_lock);
2007
320ae51f 2008 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2009 cpumask_clear(hctx->cpumask);
320ae51f
JA
2010 hctx->nr_ctx = 0;
2011 }
2012
2013 /*
2014 * Map software to hardware queues
2015 */
897bb0c7 2016 for_each_possible_cpu(i) {
320ae51f 2017 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 2018 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
2019 continue;
2020
d1b1cea1
GKB
2021 hctx_idx = q->mq_map[i];
2022 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2023 if (!set->tags[hctx_idx] &&
2024 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2025 /*
2026 * If tags initialization fail for some hctx,
2027 * that hctx won't be brought online. In this
2028 * case, remap the current ctx to hctx[0] which
2029 * is guaranteed to always have tags allocated
2030 */
cc71a6f4 2031 q->mq_map[i] = 0;
d1b1cea1
GKB
2032 }
2033
897bb0c7 2034 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2035 hctx = blk_mq_map_queue(q, i);
868f2f0b 2036
e4043dcf 2037 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2038 ctx->index_hw = hctx->nr_ctx;
2039 hctx->ctxs[hctx->nr_ctx++] = ctx;
2040 }
506e931f 2041
60de074b
AM
2042 mutex_unlock(&q->sysfs_lock);
2043
506e931f 2044 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2045 /*
a68aafa5
JA
2046 * If no software queues are mapped to this hardware queue,
2047 * disable it and free the request entries.
484b4061
JA
2048 */
2049 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2050 /* Never unmap queue 0. We need it as a
2051 * fallback in case of a new remap fails
2052 * allocation
2053 */
cc71a6f4
JA
2054 if (i && set->tags[i])
2055 blk_mq_free_map_and_requests(set, i);
2056
2a34c087 2057 hctx->tags = NULL;
484b4061
JA
2058 continue;
2059 }
2060
2a34c087
ML
2061 hctx->tags = set->tags[i];
2062 WARN_ON(!hctx->tags);
2063
889fa31f
CY
2064 /*
2065 * Set the map size to the number of mapped software queues.
2066 * This is more accurate and more efficient than looping
2067 * over all possibly mapped software queues.
2068 */
88459642 2069 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2070
484b4061
JA
2071 /*
2072 * Initialize batch roundrobin counts
2073 */
506e931f
JA
2074 hctx->next_cpu = cpumask_first(hctx->cpumask);
2075 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2076 }
320ae51f
JA
2077}
2078
2404e607 2079static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2080{
2081 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2082 int i;
2083
2404e607
JM
2084 queue_for_each_hw_ctx(q, hctx, i) {
2085 if (shared)
2086 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2087 else
2088 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2089 }
2090}
2091
2092static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2093{
2094 struct request_queue *q;
0d2602ca
JA
2095
2096 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2097 blk_mq_freeze_queue(q);
2404e607 2098 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2099 blk_mq_unfreeze_queue(q);
2100 }
2101}
2102
2103static void blk_mq_del_queue_tag_set(struct request_queue *q)
2104{
2105 struct blk_mq_tag_set *set = q->tag_set;
2106
0d2602ca
JA
2107 mutex_lock(&set->tag_list_lock);
2108 list_del_init(&q->tag_set_list);
2404e607
JM
2109 if (list_is_singular(&set->tag_list)) {
2110 /* just transitioned to unshared */
2111 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2112 /* update existing queue */
2113 blk_mq_update_tag_set_depth(set, false);
2114 }
0d2602ca 2115 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
2116}
2117
2118static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2119 struct request_queue *q)
2120{
2121 q->tag_set = set;
2122
2123 mutex_lock(&set->tag_list_lock);
2404e607
JM
2124
2125 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2126 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2127 set->flags |= BLK_MQ_F_TAG_SHARED;
2128 /* update existing queue */
2129 blk_mq_update_tag_set_depth(set, true);
2130 }
2131 if (set->flags & BLK_MQ_F_TAG_SHARED)
2132 queue_set_hctx_shared(q, true);
0d2602ca 2133 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 2134
0d2602ca
JA
2135 mutex_unlock(&set->tag_list_lock);
2136}
2137
e09aae7e
ML
2138/*
2139 * It is the actual release handler for mq, but we do it from
2140 * request queue's release handler for avoiding use-after-free
2141 * and headache because q->mq_kobj shouldn't have been introduced,
2142 * but we can't group ctx/kctx kobj without it.
2143 */
2144void blk_mq_release(struct request_queue *q)
2145{
2146 struct blk_mq_hw_ctx *hctx;
2147 unsigned int i;
2148
bd166ef1
JA
2149 blk_mq_sched_teardown(q);
2150
e09aae7e 2151 /* hctx kobj stays in hctx */
c3b4afca
ML
2152 queue_for_each_hw_ctx(q, hctx, i) {
2153 if (!hctx)
2154 continue;
6c8b232e 2155 kobject_put(&hctx->kobj);
c3b4afca 2156 }
e09aae7e 2157
a723bab3
AM
2158 q->mq_map = NULL;
2159
e09aae7e
ML
2160 kfree(q->queue_hw_ctx);
2161
7ea5fe31
ML
2162 /*
2163 * release .mq_kobj and sw queue's kobject now because
2164 * both share lifetime with request queue.
2165 */
2166 blk_mq_sysfs_deinit(q);
2167
e09aae7e
ML
2168 free_percpu(q->queue_ctx);
2169}
2170
24d2f903 2171struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2172{
2173 struct request_queue *uninit_q, *q;
2174
2175 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2176 if (!uninit_q)
2177 return ERR_PTR(-ENOMEM);
2178
2179 q = blk_mq_init_allocated_queue(set, uninit_q);
2180 if (IS_ERR(q))
2181 blk_cleanup_queue(uninit_q);
2182
2183 return q;
2184}
2185EXPORT_SYMBOL(blk_mq_init_queue);
2186
868f2f0b
KB
2187static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2188 struct request_queue *q)
320ae51f 2189{
868f2f0b
KB
2190 int i, j;
2191 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2192
868f2f0b 2193 blk_mq_sysfs_unregister(q);
24d2f903 2194 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2195 int node;
f14bbe77 2196
868f2f0b
KB
2197 if (hctxs[i])
2198 continue;
2199
2200 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2201 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2202 GFP_KERNEL, node);
320ae51f 2203 if (!hctxs[i])
868f2f0b 2204 break;
320ae51f 2205
a86073e4 2206 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2207 node)) {
2208 kfree(hctxs[i]);
2209 hctxs[i] = NULL;
2210 break;
2211 }
e4043dcf 2212
0d2602ca 2213 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2214 hctxs[i]->numa_node = node;
320ae51f 2215 hctxs[i]->queue_num = i;
868f2f0b
KB
2216
2217 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2218 free_cpumask_var(hctxs[i]->cpumask);
2219 kfree(hctxs[i]);
2220 hctxs[i] = NULL;
2221 break;
2222 }
2223 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2224 }
868f2f0b
KB
2225 for (j = i; j < q->nr_hw_queues; j++) {
2226 struct blk_mq_hw_ctx *hctx = hctxs[j];
2227
2228 if (hctx) {
cc71a6f4
JA
2229 if (hctx->tags)
2230 blk_mq_free_map_and_requests(set, j);
868f2f0b 2231 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2232 kobject_put(&hctx->kobj);
868f2f0b
KB
2233 hctxs[j] = NULL;
2234
2235 }
2236 }
2237 q->nr_hw_queues = i;
2238 blk_mq_sysfs_register(q);
2239}
2240
2241struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2242 struct request_queue *q)
2243{
66841672
ML
2244 /* mark the queue as mq asap */
2245 q->mq_ops = set->ops;
2246
34dbad5d
OS
2247 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2248 blk_stat_rq_ddir, 2, q);
2249 if (!q->poll_cb)
2250 goto err_exit;
2251
868f2f0b
KB
2252 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2253 if (!q->queue_ctx)
c7de5726 2254 goto err_exit;
868f2f0b 2255
737f98cf
ML
2256 /* init q->mq_kobj and sw queues' kobjects */
2257 blk_mq_sysfs_init(q);
2258
868f2f0b
KB
2259 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2260 GFP_KERNEL, set->numa_node);
2261 if (!q->queue_hw_ctx)
2262 goto err_percpu;
2263
bdd17e75 2264 q->mq_map = set->mq_map;
868f2f0b
KB
2265
2266 blk_mq_realloc_hw_ctxs(set, q);
2267 if (!q->nr_hw_queues)
2268 goto err_hctxs;
320ae51f 2269
287922eb 2270 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2271 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2272
2273 q->nr_queues = nr_cpu_ids;
320ae51f 2274
94eddfbe 2275 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2276
05f1dd53
JA
2277 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2278 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2279
1be036e9
CH
2280 q->sg_reserved_size = INT_MAX;
2281
2849450a 2282 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2283 INIT_LIST_HEAD(&q->requeue_list);
2284 spin_lock_init(&q->requeue_lock);
2285
254d259d 2286 blk_queue_make_request(q, blk_mq_make_request);
07068d5b 2287
eba71768
JA
2288 /*
2289 * Do this after blk_queue_make_request() overrides it...
2290 */
2291 q->nr_requests = set->queue_depth;
2292
64f1c21e
JA
2293 /*
2294 * Default to classic polling
2295 */
2296 q->poll_nsec = -1;
2297
24d2f903
CH
2298 if (set->ops->complete)
2299 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2300
24d2f903 2301 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2302
5778322e 2303 get_online_cpus();
320ae51f 2304 mutex_lock(&all_q_mutex);
320ae51f 2305
4593fdbe 2306 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2307 blk_mq_add_queue_tag_set(set, q);
5778322e 2308 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2309
4593fdbe 2310 mutex_unlock(&all_q_mutex);
5778322e 2311 put_online_cpus();
4593fdbe 2312
d3484991
JA
2313 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2314 int ret;
2315
2316 ret = blk_mq_sched_init(q);
2317 if (ret)
2318 return ERR_PTR(ret);
2319 }
2320
320ae51f 2321 return q;
18741986 2322
320ae51f 2323err_hctxs:
868f2f0b 2324 kfree(q->queue_hw_ctx);
320ae51f 2325err_percpu:
868f2f0b 2326 free_percpu(q->queue_ctx);
c7de5726
ML
2327err_exit:
2328 q->mq_ops = NULL;
320ae51f
JA
2329 return ERR_PTR(-ENOMEM);
2330}
b62c21b7 2331EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2332
2333void blk_mq_free_queue(struct request_queue *q)
2334{
624dbe47 2335 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2336
0e626368
AM
2337 mutex_lock(&all_q_mutex);
2338 list_del_init(&q->all_q_node);
2339 mutex_unlock(&all_q_mutex);
2340
0d2602ca
JA
2341 blk_mq_del_queue_tag_set(q);
2342
624dbe47 2343 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2344}
320ae51f
JA
2345
2346/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2347static void blk_mq_queue_reinit(struct request_queue *q,
2348 const struct cpumask *online_mask)
320ae51f 2349{
4ecd4fef 2350 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2351
67aec14c
JA
2352 blk_mq_sysfs_unregister(q);
2353
320ae51f
JA
2354 /*
2355 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2356 * we should change hctx numa_node according to new topology (this
2357 * involves free and re-allocate memory, worthy doing?)
2358 */
2359
5778322e 2360 blk_mq_map_swqueue(q, online_mask);
320ae51f 2361
67aec14c 2362 blk_mq_sysfs_register(q);
320ae51f
JA
2363}
2364
65d5291e
SAS
2365/*
2366 * New online cpumask which is going to be set in this hotplug event.
2367 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2368 * one-by-one and dynamically allocating this could result in a failure.
2369 */
2370static struct cpumask cpuhp_online_new;
2371
2372static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2373{
2374 struct request_queue *q;
320ae51f
JA
2375
2376 mutex_lock(&all_q_mutex);
f3af020b
TH
2377 /*
2378 * We need to freeze and reinit all existing queues. Freezing
2379 * involves synchronous wait for an RCU grace period and doing it
2380 * one by one may take a long time. Start freezing all queues in
2381 * one swoop and then wait for the completions so that freezing can
2382 * take place in parallel.
2383 */
2384 list_for_each_entry(q, &all_q_list, all_q_node)
1671d522 2385 blk_freeze_queue_start(q);
415d3dab 2386 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2387 blk_mq_freeze_queue_wait(q);
2388
320ae51f 2389 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2390 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2391
2392 list_for_each_entry(q, &all_q_list, all_q_node)
2393 blk_mq_unfreeze_queue(q);
2394
320ae51f 2395 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2396}
2397
2398static int blk_mq_queue_reinit_dead(unsigned int cpu)
2399{
97a32864 2400 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2401 blk_mq_queue_reinit_work();
2402 return 0;
2403}
2404
2405/*
2406 * Before hotadded cpu starts handling requests, new mappings must be
2407 * established. Otherwise, these requests in hw queue might never be
2408 * dispatched.
2409 *
2410 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2411 * for CPU0, and ctx1 for CPU1).
2412 *
2413 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2414 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2415 *
2c3ad667
JA
2416 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2417 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2418 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2419 * ignored.
65d5291e
SAS
2420 */
2421static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2422{
2423 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2424 cpumask_set_cpu(cpu, &cpuhp_online_new);
2425 blk_mq_queue_reinit_work();
2426 return 0;
320ae51f
JA
2427}
2428
a5164405
JA
2429static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2430{
2431 int i;
2432
cc71a6f4
JA
2433 for (i = 0; i < set->nr_hw_queues; i++)
2434 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2435 goto out_unwind;
a5164405
JA
2436
2437 return 0;
2438
2439out_unwind:
2440 while (--i >= 0)
cc71a6f4 2441 blk_mq_free_rq_map(set->tags[i]);
a5164405 2442
a5164405
JA
2443 return -ENOMEM;
2444}
2445
2446/*
2447 * Allocate the request maps associated with this tag_set. Note that this
2448 * may reduce the depth asked for, if memory is tight. set->queue_depth
2449 * will be updated to reflect the allocated depth.
2450 */
2451static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2452{
2453 unsigned int depth;
2454 int err;
2455
2456 depth = set->queue_depth;
2457 do {
2458 err = __blk_mq_alloc_rq_maps(set);
2459 if (!err)
2460 break;
2461
2462 set->queue_depth >>= 1;
2463 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2464 err = -ENOMEM;
2465 break;
2466 }
2467 } while (set->queue_depth);
2468
2469 if (!set->queue_depth || err) {
2470 pr_err("blk-mq: failed to allocate request map\n");
2471 return -ENOMEM;
2472 }
2473
2474 if (depth != set->queue_depth)
2475 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2476 depth, set->queue_depth);
2477
2478 return 0;
2479}
2480
a4391c64
JA
2481/*
2482 * Alloc a tag set to be associated with one or more request queues.
2483 * May fail with EINVAL for various error conditions. May adjust the
2484 * requested depth down, if if it too large. In that case, the set
2485 * value will be stored in set->queue_depth.
2486 */
24d2f903
CH
2487int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2488{
da695ba2
CH
2489 int ret;
2490
205fb5f5
BVA
2491 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2492
24d2f903
CH
2493 if (!set->nr_hw_queues)
2494 return -EINVAL;
a4391c64 2495 if (!set->queue_depth)
24d2f903
CH
2496 return -EINVAL;
2497 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2498 return -EINVAL;
2499
7d7e0f90 2500 if (!set->ops->queue_rq)
24d2f903
CH
2501 return -EINVAL;
2502
a4391c64
JA
2503 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2504 pr_info("blk-mq: reduced tag depth to %u\n",
2505 BLK_MQ_MAX_DEPTH);
2506 set->queue_depth = BLK_MQ_MAX_DEPTH;
2507 }
24d2f903 2508
6637fadf
SL
2509 /*
2510 * If a crashdump is active, then we are potentially in a very
2511 * memory constrained environment. Limit us to 1 queue and
2512 * 64 tags to prevent using too much memory.
2513 */
2514 if (is_kdump_kernel()) {
2515 set->nr_hw_queues = 1;
2516 set->queue_depth = min(64U, set->queue_depth);
2517 }
868f2f0b
KB
2518 /*
2519 * There is no use for more h/w queues than cpus.
2520 */
2521 if (set->nr_hw_queues > nr_cpu_ids)
2522 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2523
868f2f0b 2524 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2525 GFP_KERNEL, set->numa_node);
2526 if (!set->tags)
a5164405 2527 return -ENOMEM;
24d2f903 2528
da695ba2
CH
2529 ret = -ENOMEM;
2530 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2531 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2532 if (!set->mq_map)
2533 goto out_free_tags;
2534
da695ba2
CH
2535 if (set->ops->map_queues)
2536 ret = set->ops->map_queues(set);
2537 else
2538 ret = blk_mq_map_queues(set);
2539 if (ret)
2540 goto out_free_mq_map;
2541
2542 ret = blk_mq_alloc_rq_maps(set);
2543 if (ret)
bdd17e75 2544 goto out_free_mq_map;
24d2f903 2545
0d2602ca
JA
2546 mutex_init(&set->tag_list_lock);
2547 INIT_LIST_HEAD(&set->tag_list);
2548
24d2f903 2549 return 0;
bdd17e75
CH
2550
2551out_free_mq_map:
2552 kfree(set->mq_map);
2553 set->mq_map = NULL;
2554out_free_tags:
5676e7b6
RE
2555 kfree(set->tags);
2556 set->tags = NULL;
da695ba2 2557 return ret;
24d2f903
CH
2558}
2559EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2560
2561void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2562{
2563 int i;
2564
cc71a6f4
JA
2565 for (i = 0; i < nr_cpu_ids; i++)
2566 blk_mq_free_map_and_requests(set, i);
484b4061 2567
bdd17e75
CH
2568 kfree(set->mq_map);
2569 set->mq_map = NULL;
2570
981bd189 2571 kfree(set->tags);
5676e7b6 2572 set->tags = NULL;
24d2f903
CH
2573}
2574EXPORT_SYMBOL(blk_mq_free_tag_set);
2575
e3a2b3f9
JA
2576int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2577{
2578 struct blk_mq_tag_set *set = q->tag_set;
2579 struct blk_mq_hw_ctx *hctx;
2580 int i, ret;
2581
bd166ef1 2582 if (!set)
e3a2b3f9
JA
2583 return -EINVAL;
2584
70f36b60
JA
2585 blk_mq_freeze_queue(q);
2586 blk_mq_quiesce_queue(q);
2587
e3a2b3f9
JA
2588 ret = 0;
2589 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2590 if (!hctx->tags)
2591 continue;
bd166ef1
JA
2592 /*
2593 * If we're using an MQ scheduler, just update the scheduler
2594 * queue depth. This is similar to what the old code would do.
2595 */
70f36b60
JA
2596 if (!hctx->sched_tags) {
2597 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2598 min(nr, set->queue_depth),
2599 false);
2600 } else {
2601 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2602 nr, true);
2603 }
e3a2b3f9
JA
2604 if (ret)
2605 break;
2606 }
2607
2608 if (!ret)
2609 q->nr_requests = nr;
2610
70f36b60
JA
2611 blk_mq_unfreeze_queue(q);
2612 blk_mq_start_stopped_hw_queues(q, true);
2613
e3a2b3f9
JA
2614 return ret;
2615}
2616
868f2f0b
KB
2617void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2618{
2619 struct request_queue *q;
2620
2621 if (nr_hw_queues > nr_cpu_ids)
2622 nr_hw_queues = nr_cpu_ids;
2623 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2624 return;
2625
2626 list_for_each_entry(q, &set->tag_list, tag_set_list)
2627 blk_mq_freeze_queue(q);
2628
2629 set->nr_hw_queues = nr_hw_queues;
2630 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2631 blk_mq_realloc_hw_ctxs(set, q);
868f2f0b
KB
2632 blk_mq_queue_reinit(q, cpu_online_mask);
2633 }
2634
2635 list_for_each_entry(q, &set->tag_list, tag_set_list)
2636 blk_mq_unfreeze_queue(q);
2637}
2638EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2639
34dbad5d
OS
2640/* Enable polling stats and return whether they were already enabled. */
2641static bool blk_poll_stats_enable(struct request_queue *q)
2642{
2643 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2644 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2645 return true;
2646 blk_stat_add_callback(q, q->poll_cb);
2647 return false;
2648}
2649
2650static void blk_mq_poll_stats_start(struct request_queue *q)
2651{
2652 /*
2653 * We don't arm the callback if polling stats are not enabled or the
2654 * callback is already active.
2655 */
2656 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2657 blk_stat_is_active(q->poll_cb))
2658 return;
2659
2660 blk_stat_activate_msecs(q->poll_cb, 100);
2661}
2662
2663static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2664{
2665 struct request_queue *q = cb->data;
2666
2667 if (cb->stat[READ].nr_samples)
2668 q->poll_stat[READ] = cb->stat[READ];
2669 if (cb->stat[WRITE].nr_samples)
2670 q->poll_stat[WRITE] = cb->stat[WRITE];
2671}
2672
64f1c21e
JA
2673static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2674 struct blk_mq_hw_ctx *hctx,
2675 struct request *rq)
2676{
64f1c21e
JA
2677 unsigned long ret = 0;
2678
2679 /*
2680 * If stats collection isn't on, don't sleep but turn it on for
2681 * future users
2682 */
34dbad5d 2683 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2684 return 0;
2685
64f1c21e
JA
2686 /*
2687 * As an optimistic guess, use half of the mean service time
2688 * for this type of request. We can (and should) make this smarter.
2689 * For instance, if the completion latencies are tight, we can
2690 * get closer than just half the mean. This is especially
2691 * important on devices where the completion latencies are longer
2692 * than ~10 usec.
2693 */
34dbad5d
OS
2694 if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
2695 ret = (q->poll_stat[READ].mean + 1) / 2;
2696 else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
2697 ret = (q->poll_stat[WRITE].mean + 1) / 2;
64f1c21e
JA
2698
2699 return ret;
2700}
2701
06426adf 2702static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2703 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2704 struct request *rq)
2705{
2706 struct hrtimer_sleeper hs;
2707 enum hrtimer_mode mode;
64f1c21e 2708 unsigned int nsecs;
06426adf
JA
2709 ktime_t kt;
2710
64f1c21e
JA
2711 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2712 return false;
2713
2714 /*
2715 * poll_nsec can be:
2716 *
2717 * -1: don't ever hybrid sleep
2718 * 0: use half of prev avg
2719 * >0: use this specific value
2720 */
2721 if (q->poll_nsec == -1)
2722 return false;
2723 else if (q->poll_nsec > 0)
2724 nsecs = q->poll_nsec;
2725 else
2726 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2727
2728 if (!nsecs)
06426adf
JA
2729 return false;
2730
2731 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2732
2733 /*
2734 * This will be replaced with the stats tracking code, using
2735 * 'avg_completion_time / 2' as the pre-sleep target.
2736 */
8b0e1953 2737 kt = nsecs;
06426adf
JA
2738
2739 mode = HRTIMER_MODE_REL;
2740 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2741 hrtimer_set_expires(&hs.timer, kt);
2742
2743 hrtimer_init_sleeper(&hs, current);
2744 do {
2745 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2746 break;
2747 set_current_state(TASK_UNINTERRUPTIBLE);
2748 hrtimer_start_expires(&hs.timer, mode);
2749 if (hs.task)
2750 io_schedule();
2751 hrtimer_cancel(&hs.timer);
2752 mode = HRTIMER_MODE_ABS;
2753 } while (hs.task && !signal_pending(current));
2754
2755 __set_current_state(TASK_RUNNING);
2756 destroy_hrtimer_on_stack(&hs.timer);
2757 return true;
2758}
2759
bbd7bb70
JA
2760static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2761{
2762 struct request_queue *q = hctx->queue;
2763 long state;
2764
06426adf
JA
2765 /*
2766 * If we sleep, have the caller restart the poll loop to reset
2767 * the state. Like for the other success return cases, the
2768 * caller is responsible for checking if the IO completed. If
2769 * the IO isn't complete, we'll get called again and will go
2770 * straight to the busy poll loop.
2771 */
64f1c21e 2772 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2773 return true;
2774
bbd7bb70
JA
2775 hctx->poll_considered++;
2776
2777 state = current->state;
2778 while (!need_resched()) {
2779 int ret;
2780
2781 hctx->poll_invoked++;
2782
2783 ret = q->mq_ops->poll(hctx, rq->tag);
2784 if (ret > 0) {
2785 hctx->poll_success++;
2786 set_current_state(TASK_RUNNING);
2787 return true;
2788 }
2789
2790 if (signal_pending_state(state, current))
2791 set_current_state(TASK_RUNNING);
2792
2793 if (current->state == TASK_RUNNING)
2794 return true;
2795 if (ret < 0)
2796 break;
2797 cpu_relax();
2798 }
2799
2800 return false;
2801}
2802
2803bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2804{
2805 struct blk_mq_hw_ctx *hctx;
2806 struct blk_plug *plug;
2807 struct request *rq;
2808
2809 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2810 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2811 return false;
2812
2813 plug = current->plug;
2814 if (plug)
2815 blk_flush_plug_list(plug, false);
2816
2817 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2818 if (!blk_qc_t_is_internal(cookie))
2819 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2820 else
2821 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
bbd7bb70
JA
2822
2823 return __blk_mq_poll(hctx, rq);
2824}
2825EXPORT_SYMBOL_GPL(blk_mq_poll);
2826
676141e4
JA
2827void blk_mq_disable_hotplug(void)
2828{
2829 mutex_lock(&all_q_mutex);
2830}
2831
2832void blk_mq_enable_hotplug(void)
2833{
2834 mutex_unlock(&all_q_mutex);
2835}
2836
320ae51f
JA
2837static int __init blk_mq_init(void)
2838{
9467f859
TG
2839 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2840 blk_mq_hctx_notify_dead);
320ae51f 2841
65d5291e
SAS
2842 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2843 blk_mq_queue_reinit_prepare,
2844 blk_mq_queue_reinit_dead);
320ae51f
JA
2845 return 0;
2846}
2847subsys_initcall(blk_mq_init);