]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-mq.c
blk-mq: remove REQ_END
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/mm.h>
13#include <linux/init.h>
14#include <linux/slab.h>
15#include <linux/workqueue.h>
16#include <linux/smp.h>
17#include <linux/llist.h>
18#include <linux/list_sort.h>
19#include <linux/cpu.h>
20#include <linux/cache.h>
21#include <linux/sched/sysctl.h>
22#include <linux/delay.h>
23
24#include <trace/events/block.h>
25
26#include <linux/blk-mq.h>
27#include "blk.h"
28#include "blk-mq.h"
29#include "blk-mq-tag.h"
30
31static DEFINE_MUTEX(all_q_mutex);
32static LIST_HEAD(all_q_list);
33
34static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35
320ae51f
JA
36/*
37 * Check if any of the ctx's have pending work in this hardware queue
38 */
39static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
40{
41 unsigned int i;
42
1429d7c9
JA
43 for (i = 0; i < hctx->ctx_map.map_size; i++)
44 if (hctx->ctx_map.map[i].word)
320ae51f
JA
45 return true;
46
47 return false;
48}
49
1429d7c9
JA
50static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52{
53 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
54}
55
56#define CTX_TO_BIT(hctx, ctx) \
57 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
58
320ae51f
JA
59/*
60 * Mark this ctx as having pending work in this hardware queue
61 */
62static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64{
1429d7c9
JA
65 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
66
67 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
68 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
69}
70
71static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
72 struct blk_mq_ctx *ctx)
73{
74 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
75
76 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
77}
78
320ae51f
JA
79static int blk_mq_queue_enter(struct request_queue *q)
80{
add703fd
TH
81 while (true) {
82 int ret;
320ae51f 83
add703fd
TH
84 if (percpu_ref_tryget_live(&q->mq_usage_counter))
85 return 0;
320ae51f 86
add703fd
TH
87 ret = wait_event_interruptible(q->mq_freeze_wq,
88 !q->mq_freeze_depth || blk_queue_dying(q));
89 if (blk_queue_dying(q))
90 return -ENODEV;
91 if (ret)
92 return ret;
93 }
320ae51f
JA
94}
95
96static void blk_mq_queue_exit(struct request_queue *q)
97{
add703fd
TH
98 percpu_ref_put(&q->mq_usage_counter);
99}
100
101static void blk_mq_usage_counter_release(struct percpu_ref *ref)
102{
103 struct request_queue *q =
104 container_of(ref, struct request_queue, mq_usage_counter);
105
106 wake_up_all(&q->mq_freeze_wq);
320ae51f
JA
107}
108
72d6f02a
TH
109/*
110 * Guarantee no request is in use, so we can change any data structure of
111 * the queue afterward.
112 */
113void blk_mq_freeze_queue(struct request_queue *q)
43a5e4e2 114{
cddd5d17
TH
115 bool freeze;
116
72d6f02a 117 spin_lock_irq(q->queue_lock);
cddd5d17 118 freeze = !q->mq_freeze_depth++;
72d6f02a
TH
119 spin_unlock_irq(q->queue_lock);
120
cddd5d17
TH
121 if (freeze) {
122 percpu_ref_kill(&q->mq_usage_counter);
123 blk_mq_run_queues(q, false);
124 }
add703fd 125 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
43a5e4e2
ML
126}
127
320ae51f
JA
128static void blk_mq_unfreeze_queue(struct request_queue *q)
129{
cddd5d17 130 bool wake;
320ae51f
JA
131
132 spin_lock_irq(q->queue_lock);
780db207
TH
133 wake = !--q->mq_freeze_depth;
134 WARN_ON_ONCE(q->mq_freeze_depth < 0);
320ae51f 135 spin_unlock_irq(q->queue_lock);
add703fd
TH
136 if (wake) {
137 percpu_ref_reinit(&q->mq_usage_counter);
320ae51f 138 wake_up_all(&q->mq_freeze_wq);
add703fd 139 }
320ae51f
JA
140}
141
142bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
143{
144 return blk_mq_has_free_tags(hctx->tags);
145}
146EXPORT_SYMBOL(blk_mq_can_queue);
147
94eddfbe
JA
148static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
149 struct request *rq, unsigned int rw_flags)
320ae51f 150{
94eddfbe
JA
151 if (blk_queue_io_stat(q))
152 rw_flags |= REQ_IO_STAT;
153
af76e555
CH
154 INIT_LIST_HEAD(&rq->queuelist);
155 /* csd/requeue_work/fifo_time is initialized before use */
156 rq->q = q;
320ae51f 157 rq->mq_ctx = ctx;
0d2602ca 158 rq->cmd_flags |= rw_flags;
af76e555
CH
159 /* do not touch atomic flags, it needs atomic ops against the timer */
160 rq->cpu = -1;
af76e555
CH
161 INIT_HLIST_NODE(&rq->hash);
162 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
163 rq->rq_disk = NULL;
164 rq->part = NULL;
3ee32372 165 rq->start_time = jiffies;
af76e555
CH
166#ifdef CONFIG_BLK_CGROUP
167 rq->rl = NULL;
0fec08b4 168 set_start_time_ns(rq);
af76e555
CH
169 rq->io_start_time_ns = 0;
170#endif
171 rq->nr_phys_segments = 0;
172#if defined(CONFIG_BLK_DEV_INTEGRITY)
173 rq->nr_integrity_segments = 0;
174#endif
af76e555
CH
175 rq->special = NULL;
176 /* tag was already set */
177 rq->errors = 0;
af76e555 178
6f4a1626
TB
179 rq->cmd = rq->__cmd;
180
af76e555
CH
181 rq->extra_len = 0;
182 rq->sense_len = 0;
183 rq->resid_len = 0;
184 rq->sense = NULL;
185
af76e555 186 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
187 rq->timeout = 0;
188
af76e555
CH
189 rq->end_io = NULL;
190 rq->end_io_data = NULL;
191 rq->next_rq = NULL;
192
320ae51f
JA
193 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
194}
195
5dee8577 196static struct request *
cb96a42c 197__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
5dee8577
CH
198{
199 struct request *rq;
200 unsigned int tag;
201
cb96a42c 202 tag = blk_mq_get_tag(data);
5dee8577 203 if (tag != BLK_MQ_TAG_FAIL) {
cb96a42c 204 rq = data->hctx->tags->rqs[tag];
5dee8577 205
cb96a42c 206 if (blk_mq_tag_busy(data->hctx)) {
5dee8577 207 rq->cmd_flags = REQ_MQ_INFLIGHT;
cb96a42c 208 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
209 }
210
211 rq->tag = tag;
cb96a42c 212 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
5dee8577
CH
213 return rq;
214 }
215
216 return NULL;
217}
218
4ce01dd1
CH
219struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
220 bool reserved)
320ae51f 221{
d852564f
CH
222 struct blk_mq_ctx *ctx;
223 struct blk_mq_hw_ctx *hctx;
320ae51f 224 struct request *rq;
cb96a42c 225 struct blk_mq_alloc_data alloc_data;
a492f075 226 int ret;
320ae51f 227
a492f075
JL
228 ret = blk_mq_queue_enter(q);
229 if (ret)
230 return ERR_PTR(ret);
320ae51f 231
d852564f
CH
232 ctx = blk_mq_get_ctx(q);
233 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
234 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
235 reserved, ctx, hctx);
d852564f 236
cb96a42c 237 rq = __blk_mq_alloc_request(&alloc_data, rw);
d852564f
CH
238 if (!rq && (gfp & __GFP_WAIT)) {
239 __blk_mq_run_hw_queue(hctx);
240 blk_mq_put_ctx(ctx);
241
242 ctx = blk_mq_get_ctx(q);
243 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
244 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
245 hctx);
246 rq = __blk_mq_alloc_request(&alloc_data, rw);
247 ctx = alloc_data.ctx;
d852564f
CH
248 }
249 blk_mq_put_ctx(ctx);
a492f075
JL
250 if (!rq)
251 return ERR_PTR(-EWOULDBLOCK);
320ae51f
JA
252 return rq;
253}
4bb659b1 254EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 255
320ae51f
JA
256static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
257 struct blk_mq_ctx *ctx, struct request *rq)
258{
259 const int tag = rq->tag;
260 struct request_queue *q = rq->q;
261
0d2602ca
JA
262 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
263 atomic_dec(&hctx->nr_active);
683d0e12 264 rq->cmd_flags = 0;
0d2602ca 265
af76e555 266 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 267 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
320ae51f
JA
268 blk_mq_queue_exit(q);
269}
270
271void blk_mq_free_request(struct request *rq)
272{
273 struct blk_mq_ctx *ctx = rq->mq_ctx;
274 struct blk_mq_hw_ctx *hctx;
275 struct request_queue *q = rq->q;
276
277 ctx->rq_completed[rq_is_sync(rq)]++;
278
279 hctx = q->mq_ops->map_queue(q, ctx->cpu);
280 __blk_mq_free_request(hctx, ctx, rq);
281}
282
8727af4b
CH
283/*
284 * Clone all relevant state from a request that has been put on hold in
285 * the flush state machine into the preallocated flush request that hangs
286 * off the request queue.
287 *
288 * For a driver the flush request should be invisible, that's why we are
289 * impersonating the original request here.
290 */
291void blk_mq_clone_flush_request(struct request *flush_rq,
292 struct request *orig_rq)
293{
294 struct blk_mq_hw_ctx *hctx =
295 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
296
297 flush_rq->mq_ctx = orig_rq->mq_ctx;
298 flush_rq->tag = orig_rq->tag;
299 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
300 hctx->cmd_size);
301}
302
63151a44 303inline void __blk_mq_end_io(struct request *rq, int error)
320ae51f 304{
0d11e6ac
ML
305 blk_account_io_done(rq);
306
91b63639 307 if (rq->end_io) {
320ae51f 308 rq->end_io(rq, error);
91b63639
CH
309 } else {
310 if (unlikely(blk_bidi_rq(rq)))
311 blk_mq_free_request(rq->next_rq);
320ae51f 312 blk_mq_free_request(rq);
91b63639 313 }
320ae51f 314}
63151a44
CH
315EXPORT_SYMBOL(__blk_mq_end_io);
316
317void blk_mq_end_io(struct request *rq, int error)
318{
319 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
320 BUG();
321 __blk_mq_end_io(rq, error);
322}
323EXPORT_SYMBOL(blk_mq_end_io);
320ae51f 324
30a91cb4 325static void __blk_mq_complete_request_remote(void *data)
320ae51f 326{
3d6efbf6 327 struct request *rq = data;
320ae51f 328
30a91cb4 329 rq->q->softirq_done_fn(rq);
320ae51f 330}
320ae51f 331
ed851860 332static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
333{
334 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 335 bool shared = false;
320ae51f
JA
336 int cpu;
337
38535201 338 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
339 rq->q->softirq_done_fn(rq);
340 return;
341 }
320ae51f
JA
342
343 cpu = get_cpu();
38535201
CH
344 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
345 shared = cpus_share_cache(cpu, ctx->cpu);
346
347 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 348 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
349 rq->csd.info = rq;
350 rq->csd.flags = 0;
c46fff2a 351 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 352 } else {
30a91cb4 353 rq->q->softirq_done_fn(rq);
3d6efbf6 354 }
320ae51f
JA
355 put_cpu();
356}
30a91cb4 357
ed851860
JA
358void __blk_mq_complete_request(struct request *rq)
359{
360 struct request_queue *q = rq->q;
361
362 if (!q->softirq_done_fn)
363 blk_mq_end_io(rq, rq->errors);
364 else
365 blk_mq_ipi_complete_request(rq);
366}
367
30a91cb4
CH
368/**
369 * blk_mq_complete_request - end I/O on a request
370 * @rq: the request being processed
371 *
372 * Description:
373 * Ends all I/O on a request. It does not handle partial completions.
374 * The actual completion happens out-of-order, through a IPI handler.
375 **/
376void blk_mq_complete_request(struct request *rq)
377{
95f09684
JA
378 struct request_queue *q = rq->q;
379
380 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 381 return;
ed851860
JA
382 if (!blk_mark_rq_complete(rq))
383 __blk_mq_complete_request(rq);
30a91cb4
CH
384}
385EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 386
bf572297 387static void blk_mq_start_request(struct request *rq)
320ae51f
JA
388{
389 struct request_queue *q = rq->q;
390
391 trace_block_rq_issue(q, rq);
392
742ee69b 393 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
394 if (unlikely(blk_bidi_rq(rq)))
395 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 396
2b8393b4 397 blk_add_timer(rq);
87ee7b11 398
538b7534
JA
399 /*
400 * Ensure that ->deadline is visible before set the started
401 * flag and clear the completed flag.
402 */
403 smp_mb__before_atomic();
404
87ee7b11
JA
405 /*
406 * Mark us as started and clear complete. Complete might have been
407 * set if requeue raced with timeout, which then marked it as
408 * complete. So be sure to clear complete again when we start
409 * the request, otherwise we'll ignore the completion event.
410 */
4b570521
JA
411 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
412 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
413 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
414 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
415
416 if (q->dma_drain_size && blk_rq_bytes(rq)) {
417 /*
418 * Make sure space for the drain appears. We know we can do
419 * this because max_hw_segments has been adjusted to be one
420 * fewer than the device can handle.
421 */
422 rq->nr_phys_segments++;
423 }
320ae51f
JA
424}
425
ed0791b2 426static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
427{
428 struct request_queue *q = rq->q;
429
430 trace_block_rq_requeue(q, rq);
431 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
49f5baa5 432
49f5baa5
CH
433 if (q->dma_drain_size && blk_rq_bytes(rq))
434 rq->nr_phys_segments--;
320ae51f
JA
435}
436
ed0791b2
CH
437void blk_mq_requeue_request(struct request *rq)
438{
ed0791b2
CH
439 __blk_mq_requeue_request(rq);
440 blk_clear_rq_complete(rq);
441
ed0791b2 442 BUG_ON(blk_queued_rq(rq));
6fca6a61 443 blk_mq_add_to_requeue_list(rq, true);
ed0791b2
CH
444}
445EXPORT_SYMBOL(blk_mq_requeue_request);
446
6fca6a61
CH
447static void blk_mq_requeue_work(struct work_struct *work)
448{
449 struct request_queue *q =
450 container_of(work, struct request_queue, requeue_work);
451 LIST_HEAD(rq_list);
452 struct request *rq, *next;
453 unsigned long flags;
454
455 spin_lock_irqsave(&q->requeue_lock, flags);
456 list_splice_init(&q->requeue_list, &rq_list);
457 spin_unlock_irqrestore(&q->requeue_lock, flags);
458
459 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
460 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
461 continue;
462
463 rq->cmd_flags &= ~REQ_SOFTBARRIER;
464 list_del_init(&rq->queuelist);
465 blk_mq_insert_request(rq, true, false, false);
466 }
467
468 while (!list_empty(&rq_list)) {
469 rq = list_entry(rq_list.next, struct request, queuelist);
470 list_del_init(&rq->queuelist);
471 blk_mq_insert_request(rq, false, false, false);
472 }
473
8b957415
JA
474 /*
475 * Use the start variant of queue running here, so that running
476 * the requeue work will kick stopped queues.
477 */
478 blk_mq_start_hw_queues(q);
6fca6a61
CH
479}
480
481void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
482{
483 struct request_queue *q = rq->q;
484 unsigned long flags;
485
486 /*
487 * We abuse this flag that is otherwise used by the I/O scheduler to
488 * request head insertation from the workqueue.
489 */
490 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
491
492 spin_lock_irqsave(&q->requeue_lock, flags);
493 if (at_head) {
494 rq->cmd_flags |= REQ_SOFTBARRIER;
495 list_add(&rq->queuelist, &q->requeue_list);
496 } else {
497 list_add_tail(&rq->queuelist, &q->requeue_list);
498 }
499 spin_unlock_irqrestore(&q->requeue_lock, flags);
500}
501EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
502
503void blk_mq_kick_requeue_list(struct request_queue *q)
504{
505 kblockd_schedule_work(&q->requeue_work);
506}
507EXPORT_SYMBOL(blk_mq_kick_requeue_list);
508
0e62f51f 509static inline bool is_flush_request(struct request *rq, unsigned int tag)
24d2f903 510{
0e62f51f
JA
511 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
512 rq->q->flush_rq->tag == tag);
513}
514
515struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
516{
517 struct request *rq = tags->rqs[tag];
22302375 518
0e62f51f
JA
519 if (!is_flush_request(rq, tag))
520 return rq;
22302375 521
0e62f51f 522 return rq->q->flush_rq;
24d2f903
CH
523}
524EXPORT_SYMBOL(blk_mq_tag_to_rq);
525
320ae51f
JA
526struct blk_mq_timeout_data {
527 struct blk_mq_hw_ctx *hctx;
528 unsigned long *next;
529 unsigned int *next_set;
530};
531
532static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
533{
534 struct blk_mq_timeout_data *data = __data;
535 struct blk_mq_hw_ctx *hctx = data->hctx;
536 unsigned int tag;
537
538 /* It may not be in flight yet (this is where
539 * the REQ_ATOMIC_STARTED flag comes in). The requests are
540 * statically allocated, so we know it's always safe to access the
541 * memory associated with a bit offset into ->rqs[].
542 */
543 tag = 0;
544 do {
545 struct request *rq;
546
24d2f903
CH
547 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
548 if (tag >= hctx->tags->nr_tags)
320ae51f
JA
549 break;
550
0e62f51f 551 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
24d2f903
CH
552 if (rq->q != hctx->queue)
553 continue;
320ae51f
JA
554 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
555 continue;
556
557 blk_rq_check_expired(rq, data->next, data->next_set);
558 } while (1);
559}
560
561static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
562 unsigned long *next,
563 unsigned int *next_set)
564{
565 struct blk_mq_timeout_data data = {
566 .hctx = hctx,
567 .next = next,
568 .next_set = next_set,
569 };
570
571 /*
572 * Ask the tagging code to iterate busy requests, so we can
573 * check them for timeout.
574 */
575 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
576}
577
87ee7b11
JA
578static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
579{
580 struct request_queue *q = rq->q;
581
582 /*
583 * We know that complete is set at this point. If STARTED isn't set
584 * anymore, then the request isn't active and the "timeout" should
585 * just be ignored. This can happen due to the bitflag ordering.
586 * Timeout first checks if STARTED is set, and if it is, assumes
587 * the request is active. But if we race with completion, then
588 * we both flags will get cleared. So check here again, and ignore
589 * a timeout event with a request that isn't active.
590 */
591 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
592 return BLK_EH_NOT_HANDLED;
593
594 if (!q->mq_ops->timeout)
595 return BLK_EH_RESET_TIMER;
596
597 return q->mq_ops->timeout(rq);
598}
599
320ae51f
JA
600static void blk_mq_rq_timer(unsigned long data)
601{
602 struct request_queue *q = (struct request_queue *) data;
603 struct blk_mq_hw_ctx *hctx;
604 unsigned long next = 0;
605 int i, next_set = 0;
606
484b4061
JA
607 queue_for_each_hw_ctx(q, hctx, i) {
608 /*
609 * If not software queues are currently mapped to this
610 * hardware queue, there's nothing to check
611 */
612 if (!hctx->nr_ctx || !hctx->tags)
613 continue;
614
320ae51f 615 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
484b4061 616 }
320ae51f 617
0d2602ca
JA
618 if (next_set) {
619 next = blk_rq_timeout(round_jiffies_up(next));
620 mod_timer(&q->timeout, next);
621 } else {
622 queue_for_each_hw_ctx(q, hctx, i)
623 blk_mq_tag_idle(hctx);
624 }
320ae51f
JA
625}
626
627/*
628 * Reverse check our software queue for entries that we could potentially
629 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
630 * too much time checking for merges.
631 */
632static bool blk_mq_attempt_merge(struct request_queue *q,
633 struct blk_mq_ctx *ctx, struct bio *bio)
634{
635 struct request *rq;
636 int checked = 8;
637
638 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
639 int el_ret;
640
641 if (!checked--)
642 break;
643
644 if (!blk_rq_merge_ok(rq, bio))
645 continue;
646
647 el_ret = blk_try_merge(rq, bio);
648 if (el_ret == ELEVATOR_BACK_MERGE) {
649 if (bio_attempt_back_merge(q, rq, bio)) {
650 ctx->rq_merged++;
651 return true;
652 }
653 break;
654 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
655 if (bio_attempt_front_merge(q, rq, bio)) {
656 ctx->rq_merged++;
657 return true;
658 }
659 break;
660 }
661 }
662
663 return false;
664}
665
1429d7c9
JA
666/*
667 * Process software queues that have been marked busy, splicing them
668 * to the for-dispatch
669 */
670static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
671{
672 struct blk_mq_ctx *ctx;
673 int i;
674
675 for (i = 0; i < hctx->ctx_map.map_size; i++) {
676 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
677 unsigned int off, bit;
678
679 if (!bm->word)
680 continue;
681
682 bit = 0;
683 off = i * hctx->ctx_map.bits_per_word;
684 do {
685 bit = find_next_bit(&bm->word, bm->depth, bit);
686 if (bit >= bm->depth)
687 break;
688
689 ctx = hctx->ctxs[bit + off];
690 clear_bit(bit, &bm->word);
691 spin_lock(&ctx->lock);
692 list_splice_tail_init(&ctx->rq_list, list);
693 spin_unlock(&ctx->lock);
694
695 bit++;
696 } while (1);
697 }
698}
699
320ae51f
JA
700/*
701 * Run this hardware queue, pulling any software queues mapped to it in.
702 * Note that this function currently has various problems around ordering
703 * of IO. In particular, we'd like FIFO behaviour on handling existing
704 * items on the hctx->dispatch list. Ignore that for now.
705 */
706static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
707{
708 struct request_queue *q = hctx->queue;
320ae51f
JA
709 struct request *rq;
710 LIST_HEAD(rq_list);
1429d7c9 711 int queued;
320ae51f 712
fd1270d5 713 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 714
5d12f905 715 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
716 return;
717
718 hctx->run++;
719
720 /*
721 * Touch any software queue that has pending entries.
722 */
1429d7c9 723 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
724
725 /*
726 * If we have previous entries on our dispatch list, grab them
727 * and stuff them at the front for more fair dispatch.
728 */
729 if (!list_empty_careful(&hctx->dispatch)) {
730 spin_lock(&hctx->lock);
731 if (!list_empty(&hctx->dispatch))
732 list_splice_init(&hctx->dispatch, &rq_list);
733 spin_unlock(&hctx->lock);
734 }
735
320ae51f
JA
736 /*
737 * Now process all the entries, sending them to the driver.
738 */
1429d7c9 739 queued = 0;
320ae51f
JA
740 while (!list_empty(&rq_list)) {
741 int ret;
742
743 rq = list_first_entry(&rq_list, struct request, queuelist);
744 list_del_init(&rq->queuelist);
320ae51f 745
bf572297 746 blk_mq_start_request(rq);
320ae51f 747
bf572297 748 ret = q->mq_ops->queue_rq(hctx, rq, list_empty(&rq_list));
320ae51f
JA
749 switch (ret) {
750 case BLK_MQ_RQ_QUEUE_OK:
751 queued++;
752 continue;
753 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 754 list_add(&rq->queuelist, &rq_list);
ed0791b2 755 __blk_mq_requeue_request(rq);
320ae51f
JA
756 break;
757 default:
758 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 759 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 760 rq->errors = -EIO;
320ae51f
JA
761 blk_mq_end_io(rq, rq->errors);
762 break;
763 }
764
765 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
766 break;
767 }
768
769 if (!queued)
770 hctx->dispatched[0]++;
771 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
772 hctx->dispatched[ilog2(queued) + 1]++;
773
774 /*
775 * Any items that need requeuing? Stuff them into hctx->dispatch,
776 * that is where we will continue on next queue run.
777 */
778 if (!list_empty(&rq_list)) {
779 spin_lock(&hctx->lock);
780 list_splice(&rq_list, &hctx->dispatch);
781 spin_unlock(&hctx->lock);
782 }
783}
784
506e931f
JA
785/*
786 * It'd be great if the workqueue API had a way to pass
787 * in a mask and had some smarts for more clever placement.
788 * For now we just round-robin here, switching for every
789 * BLK_MQ_CPU_WORK_BATCH queued items.
790 */
791static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
792{
793 int cpu = hctx->next_cpu;
794
795 if (--hctx->next_cpu_batch <= 0) {
796 int next_cpu;
797
798 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
799 if (next_cpu >= nr_cpu_ids)
800 next_cpu = cpumask_first(hctx->cpumask);
801
802 hctx->next_cpu = next_cpu;
803 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
804 }
805
806 return cpu;
807}
808
320ae51f
JA
809void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
810{
5d12f905 811 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
812 return;
813
e4043dcf 814 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
320ae51f 815 __blk_mq_run_hw_queue(hctx);
e4043dcf 816 else if (hctx->queue->nr_hw_queues == 1)
70f4db63 817 kblockd_schedule_delayed_work(&hctx->run_work, 0);
e4043dcf
JA
818 else {
819 unsigned int cpu;
820
506e931f 821 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63 822 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
e4043dcf 823 }
320ae51f
JA
824}
825
826void blk_mq_run_queues(struct request_queue *q, bool async)
827{
828 struct blk_mq_hw_ctx *hctx;
829 int i;
830
831 queue_for_each_hw_ctx(q, hctx, i) {
832 if ((!blk_mq_hctx_has_pending(hctx) &&
833 list_empty_careful(&hctx->dispatch)) ||
5d12f905 834 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
835 continue;
836
e4043dcf 837 preempt_disable();
320ae51f 838 blk_mq_run_hw_queue(hctx, async);
e4043dcf 839 preempt_enable();
320ae51f
JA
840 }
841}
842EXPORT_SYMBOL(blk_mq_run_queues);
843
844void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
845{
70f4db63
CH
846 cancel_delayed_work(&hctx->run_work);
847 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
848 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
849}
850EXPORT_SYMBOL(blk_mq_stop_hw_queue);
851
280d45f6
CH
852void blk_mq_stop_hw_queues(struct request_queue *q)
853{
854 struct blk_mq_hw_ctx *hctx;
855 int i;
856
857 queue_for_each_hw_ctx(q, hctx, i)
858 blk_mq_stop_hw_queue(hctx);
859}
860EXPORT_SYMBOL(blk_mq_stop_hw_queues);
861
320ae51f
JA
862void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
863{
864 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf
JA
865
866 preempt_disable();
0ffbce80 867 blk_mq_run_hw_queue(hctx, false);
e4043dcf 868 preempt_enable();
320ae51f
JA
869}
870EXPORT_SYMBOL(blk_mq_start_hw_queue);
871
2f268556
CH
872void blk_mq_start_hw_queues(struct request_queue *q)
873{
874 struct blk_mq_hw_ctx *hctx;
875 int i;
876
877 queue_for_each_hw_ctx(q, hctx, i)
878 blk_mq_start_hw_queue(hctx);
879}
880EXPORT_SYMBOL(blk_mq_start_hw_queues);
881
882
1b4a3258 883void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
884{
885 struct blk_mq_hw_ctx *hctx;
886 int i;
887
888 queue_for_each_hw_ctx(q, hctx, i) {
889 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
890 continue;
891
892 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 893 preempt_disable();
1b4a3258 894 blk_mq_run_hw_queue(hctx, async);
e4043dcf 895 preempt_enable();
320ae51f
JA
896 }
897}
898EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
899
70f4db63 900static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
901{
902 struct blk_mq_hw_ctx *hctx;
903
70f4db63 904 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 905
320ae51f
JA
906 __blk_mq_run_hw_queue(hctx);
907}
908
70f4db63
CH
909static void blk_mq_delay_work_fn(struct work_struct *work)
910{
911 struct blk_mq_hw_ctx *hctx;
912
913 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
914
915 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
916 __blk_mq_run_hw_queue(hctx);
917}
918
919void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
920{
921 unsigned long tmo = msecs_to_jiffies(msecs);
922
923 if (hctx->queue->nr_hw_queues == 1)
924 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
925 else {
926 unsigned int cpu;
927
506e931f 928 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63
CH
929 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
930 }
931}
932EXPORT_SYMBOL(blk_mq_delay_queue);
933
320ae51f 934static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 935 struct request *rq, bool at_head)
320ae51f
JA
936{
937 struct blk_mq_ctx *ctx = rq->mq_ctx;
938
01b983c9
JA
939 trace_block_rq_insert(hctx->queue, rq);
940
72a0a36e
CH
941 if (at_head)
942 list_add(&rq->queuelist, &ctx->rq_list);
943 else
944 list_add_tail(&rq->queuelist, &ctx->rq_list);
4bb659b1 945
320ae51f 946 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
947}
948
eeabc850
CH
949void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
950 bool async)
320ae51f 951{
eeabc850 952 struct request_queue *q = rq->q;
320ae51f 953 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
954 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
955
956 current_ctx = blk_mq_get_ctx(q);
957 if (!cpu_online(ctx->cpu))
958 rq->mq_ctx = ctx = current_ctx;
320ae51f 959
320ae51f
JA
960 hctx = q->mq_ops->map_queue(q, ctx->cpu);
961
a57a178a
CH
962 spin_lock(&ctx->lock);
963 __blk_mq_insert_request(hctx, rq, at_head);
964 spin_unlock(&ctx->lock);
320ae51f 965
320ae51f
JA
966 if (run_queue)
967 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
968
969 blk_mq_put_ctx(current_ctx);
320ae51f
JA
970}
971
972static void blk_mq_insert_requests(struct request_queue *q,
973 struct blk_mq_ctx *ctx,
974 struct list_head *list,
975 int depth,
976 bool from_schedule)
977
978{
979 struct blk_mq_hw_ctx *hctx;
980 struct blk_mq_ctx *current_ctx;
981
982 trace_block_unplug(q, depth, !from_schedule);
983
984 current_ctx = blk_mq_get_ctx(q);
985
986 if (!cpu_online(ctx->cpu))
987 ctx = current_ctx;
988 hctx = q->mq_ops->map_queue(q, ctx->cpu);
989
990 /*
991 * preemption doesn't flush plug list, so it's possible ctx->cpu is
992 * offline now
993 */
994 spin_lock(&ctx->lock);
995 while (!list_empty(list)) {
996 struct request *rq;
997
998 rq = list_first_entry(list, struct request, queuelist);
999 list_del_init(&rq->queuelist);
1000 rq->mq_ctx = ctx;
72a0a36e 1001 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
1002 }
1003 spin_unlock(&ctx->lock);
1004
320ae51f 1005 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 1006 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1007}
1008
1009static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1010{
1011 struct request *rqa = container_of(a, struct request, queuelist);
1012 struct request *rqb = container_of(b, struct request, queuelist);
1013
1014 return !(rqa->mq_ctx < rqb->mq_ctx ||
1015 (rqa->mq_ctx == rqb->mq_ctx &&
1016 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1017}
1018
1019void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1020{
1021 struct blk_mq_ctx *this_ctx;
1022 struct request_queue *this_q;
1023 struct request *rq;
1024 LIST_HEAD(list);
1025 LIST_HEAD(ctx_list);
1026 unsigned int depth;
1027
1028 list_splice_init(&plug->mq_list, &list);
1029
1030 list_sort(NULL, &list, plug_ctx_cmp);
1031
1032 this_q = NULL;
1033 this_ctx = NULL;
1034 depth = 0;
1035
1036 while (!list_empty(&list)) {
1037 rq = list_entry_rq(list.next);
1038 list_del_init(&rq->queuelist);
1039 BUG_ON(!rq->q);
1040 if (rq->mq_ctx != this_ctx) {
1041 if (this_ctx) {
1042 blk_mq_insert_requests(this_q, this_ctx,
1043 &ctx_list, depth,
1044 from_schedule);
1045 }
1046
1047 this_ctx = rq->mq_ctx;
1048 this_q = rq->q;
1049 depth = 0;
1050 }
1051
1052 depth++;
1053 list_add_tail(&rq->queuelist, &ctx_list);
1054 }
1055
1056 /*
1057 * If 'this_ctx' is set, we know we have entries to complete
1058 * on 'ctx_list'. Do those.
1059 */
1060 if (this_ctx) {
1061 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1062 from_schedule);
1063 }
1064}
1065
1066static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1067{
1068 init_request_from_bio(rq, bio);
4b570521 1069
3ee32372 1070 if (blk_do_io_stat(rq))
4b570521 1071 blk_account_io_start(rq, 1);
320ae51f
JA
1072}
1073
274a5843
JA
1074static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1075{
1076 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1077 !blk_queue_nomerges(hctx->queue);
1078}
1079
07068d5b
JA
1080static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1081 struct blk_mq_ctx *ctx,
1082 struct request *rq, struct bio *bio)
320ae51f 1083{
274a5843 1084 if (!hctx_allow_merges(hctx)) {
07068d5b
JA
1085 blk_mq_bio_to_request(rq, bio);
1086 spin_lock(&ctx->lock);
1087insert_rq:
1088 __blk_mq_insert_request(hctx, rq, false);
1089 spin_unlock(&ctx->lock);
1090 return false;
1091 } else {
274a5843
JA
1092 struct request_queue *q = hctx->queue;
1093
07068d5b
JA
1094 spin_lock(&ctx->lock);
1095 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1096 blk_mq_bio_to_request(rq, bio);
1097 goto insert_rq;
1098 }
320ae51f 1099
07068d5b
JA
1100 spin_unlock(&ctx->lock);
1101 __blk_mq_free_request(hctx, ctx, rq);
1102 return true;
14ec77f3 1103 }
07068d5b 1104}
14ec77f3 1105
07068d5b
JA
1106struct blk_map_ctx {
1107 struct blk_mq_hw_ctx *hctx;
1108 struct blk_mq_ctx *ctx;
1109};
1110
1111static struct request *blk_mq_map_request(struct request_queue *q,
1112 struct bio *bio,
1113 struct blk_map_ctx *data)
1114{
1115 struct blk_mq_hw_ctx *hctx;
1116 struct blk_mq_ctx *ctx;
1117 struct request *rq;
1118 int rw = bio_data_dir(bio);
cb96a42c 1119 struct blk_mq_alloc_data alloc_data;
320ae51f 1120
07068d5b 1121 if (unlikely(blk_mq_queue_enter(q))) {
320ae51f 1122 bio_endio(bio, -EIO);
07068d5b 1123 return NULL;
320ae51f
JA
1124 }
1125
1126 ctx = blk_mq_get_ctx(q);
1127 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1128
07068d5b 1129 if (rw_is_sync(bio->bi_rw))
27fbf4e8 1130 rw |= REQ_SYNC;
07068d5b 1131
320ae51f 1132 trace_block_getrq(q, bio, rw);
cb96a42c
ML
1133 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1134 hctx);
1135 rq = __blk_mq_alloc_request(&alloc_data, rw);
5dee8577 1136 if (unlikely(!rq)) {
793597a6 1137 __blk_mq_run_hw_queue(hctx);
320ae51f
JA
1138 blk_mq_put_ctx(ctx);
1139 trace_block_sleeprq(q, bio, rw);
793597a6
CH
1140
1141 ctx = blk_mq_get_ctx(q);
320ae51f 1142 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
1143 blk_mq_set_alloc_data(&alloc_data, q,
1144 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1145 rq = __blk_mq_alloc_request(&alloc_data, rw);
1146 ctx = alloc_data.ctx;
1147 hctx = alloc_data.hctx;
320ae51f
JA
1148 }
1149
1150 hctx->queued++;
07068d5b
JA
1151 data->hctx = hctx;
1152 data->ctx = ctx;
1153 return rq;
1154}
1155
1156/*
1157 * Multiple hardware queue variant. This will not use per-process plugs,
1158 * but will attempt to bypass the hctx queueing if we can go straight to
1159 * hardware for SYNC IO.
1160 */
1161static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1162{
1163 const int is_sync = rw_is_sync(bio->bi_rw);
1164 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1165 struct blk_map_ctx data;
1166 struct request *rq;
1167
1168 blk_queue_bounce(q, &bio);
1169
1170 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1171 bio_endio(bio, -EIO);
1172 return;
1173 }
1174
1175 rq = blk_mq_map_request(q, bio, &data);
1176 if (unlikely(!rq))
1177 return;
1178
1179 if (unlikely(is_flush_fua)) {
1180 blk_mq_bio_to_request(rq, bio);
1181 blk_insert_flush(rq);
1182 goto run_queue;
1183 }
1184
1185 if (is_sync) {
1186 int ret;
1187
1188 blk_mq_bio_to_request(rq, bio);
bf572297 1189 blk_mq_start_request(rq);
07068d5b
JA
1190
1191 /*
1192 * For OK queue, we are done. For error, kill it. Any other
1193 * error (busy), just add it to our list as we previously
1194 * would have done
1195 */
bf572297 1196 ret = q->mq_ops->queue_rq(data.hctx, rq, true);
07068d5b
JA
1197 if (ret == BLK_MQ_RQ_QUEUE_OK)
1198 goto done;
1199 else {
1200 __blk_mq_requeue_request(rq);
1201
1202 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1203 rq->errors = -EIO;
1204 blk_mq_end_io(rq, rq->errors);
1205 goto done;
1206 }
1207 }
1208 }
1209
1210 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1211 /*
1212 * For a SYNC request, send it to the hardware immediately. For
1213 * an ASYNC request, just ensure that we run it later on. The
1214 * latter allows for merging opportunities and more efficient
1215 * dispatching.
1216 */
1217run_queue:
1218 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1219 }
1220done:
1221 blk_mq_put_ctx(data.ctx);
1222}
1223
1224/*
1225 * Single hardware queue variant. This will attempt to use any per-process
1226 * plug for merging and IO deferral.
1227 */
1228static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1229{
1230 const int is_sync = rw_is_sync(bio->bi_rw);
1231 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1232 unsigned int use_plug, request_count = 0;
1233 struct blk_map_ctx data;
1234 struct request *rq;
1235
1236 /*
1237 * If we have multiple hardware queues, just go directly to
1238 * one of those for sync IO.
1239 */
1240 use_plug = !is_flush_fua && !is_sync;
1241
1242 blk_queue_bounce(q, &bio);
1243
1244 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1245 bio_endio(bio, -EIO);
1246 return;
1247 }
1248
1249 if (use_plug && !blk_queue_nomerges(q) &&
1250 blk_attempt_plug_merge(q, bio, &request_count))
1251 return;
1252
1253 rq = blk_mq_map_request(q, bio, &data);
ff87bcec
JA
1254 if (unlikely(!rq))
1255 return;
320ae51f
JA
1256
1257 if (unlikely(is_flush_fua)) {
1258 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1259 blk_insert_flush(rq);
1260 goto run_queue;
1261 }
1262
1263 /*
1264 * A task plug currently exists. Since this is completely lockless,
1265 * utilize that to temporarily store requests until the task is
1266 * either done or scheduled away.
1267 */
1268 if (use_plug) {
1269 struct blk_plug *plug = current->plug;
1270
1271 if (plug) {
1272 blk_mq_bio_to_request(rq, bio);
92f399c7 1273 if (list_empty(&plug->mq_list))
320ae51f
JA
1274 trace_block_plug(q);
1275 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1276 blk_flush_plug_list(plug, false);
1277 trace_block_plug(q);
1278 }
1279 list_add_tail(&rq->queuelist, &plug->mq_list);
07068d5b 1280 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1281 return;
1282 }
1283 }
1284
07068d5b
JA
1285 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1286 /*
1287 * For a SYNC request, send it to the hardware immediately. For
1288 * an ASYNC request, just ensure that we run it later on. The
1289 * latter allows for merging opportunities and more efficient
1290 * dispatching.
1291 */
1292run_queue:
1293 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1294 }
1295
07068d5b 1296 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1297}
1298
1299/*
1300 * Default mapping to a software queue, since we use one per CPU.
1301 */
1302struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1303{
1304 return q->queue_hw_ctx[q->mq_map[cpu]];
1305}
1306EXPORT_SYMBOL(blk_mq_map_queue);
1307
24d2f903
CH
1308static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1309 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1310{
e9b267d9 1311 struct page *page;
320ae51f 1312
24d2f903 1313 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1314 int i;
320ae51f 1315
24d2f903
CH
1316 for (i = 0; i < tags->nr_tags; i++) {
1317 if (!tags->rqs[i])
e9b267d9 1318 continue;
24d2f903
CH
1319 set->ops->exit_request(set->driver_data, tags->rqs[i],
1320 hctx_idx, i);
a5164405 1321 tags->rqs[i] = NULL;
e9b267d9 1322 }
320ae51f 1323 }
320ae51f 1324
24d2f903
CH
1325 while (!list_empty(&tags->page_list)) {
1326 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1327 list_del_init(&page->lru);
320ae51f
JA
1328 __free_pages(page, page->private);
1329 }
1330
24d2f903 1331 kfree(tags->rqs);
320ae51f 1332
24d2f903 1333 blk_mq_free_tags(tags);
320ae51f
JA
1334}
1335
1336static size_t order_to_size(unsigned int order)
1337{
4ca08500 1338 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1339}
1340
24d2f903
CH
1341static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1342 unsigned int hctx_idx)
320ae51f 1343{
24d2f903 1344 struct blk_mq_tags *tags;
320ae51f
JA
1345 unsigned int i, j, entries_per_page, max_order = 4;
1346 size_t rq_size, left;
1347
24d2f903
CH
1348 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1349 set->numa_node);
1350 if (!tags)
1351 return NULL;
320ae51f 1352
24d2f903
CH
1353 INIT_LIST_HEAD(&tags->page_list);
1354
a5164405
JA
1355 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1356 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1357 set->numa_node);
24d2f903
CH
1358 if (!tags->rqs) {
1359 blk_mq_free_tags(tags);
1360 return NULL;
1361 }
320ae51f
JA
1362
1363 /*
1364 * rq_size is the size of the request plus driver payload, rounded
1365 * to the cacheline size
1366 */
24d2f903 1367 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1368 cache_line_size());
24d2f903 1369 left = rq_size * set->queue_depth;
320ae51f 1370
24d2f903 1371 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1372 int this_order = max_order;
1373 struct page *page;
1374 int to_do;
1375 void *p;
1376
1377 while (left < order_to_size(this_order - 1) && this_order)
1378 this_order--;
1379
1380 do {
a5164405
JA
1381 page = alloc_pages_node(set->numa_node,
1382 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1383 this_order);
320ae51f
JA
1384 if (page)
1385 break;
1386 if (!this_order--)
1387 break;
1388 if (order_to_size(this_order) < rq_size)
1389 break;
1390 } while (1);
1391
1392 if (!page)
24d2f903 1393 goto fail;
320ae51f
JA
1394
1395 page->private = this_order;
24d2f903 1396 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1397
1398 p = page_address(page);
1399 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1400 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1401 left -= to_do * rq_size;
1402 for (j = 0; j < to_do; j++) {
24d2f903 1403 tags->rqs[i] = p;
683d0e12
DH
1404 tags->rqs[i]->atomic_flags = 0;
1405 tags->rqs[i]->cmd_flags = 0;
24d2f903
CH
1406 if (set->ops->init_request) {
1407 if (set->ops->init_request(set->driver_data,
1408 tags->rqs[i], hctx_idx, i,
a5164405
JA
1409 set->numa_node)) {
1410 tags->rqs[i] = NULL;
24d2f903 1411 goto fail;
a5164405 1412 }
e9b267d9
CH
1413 }
1414
320ae51f
JA
1415 p += rq_size;
1416 i++;
1417 }
1418 }
1419
24d2f903 1420 return tags;
320ae51f 1421
24d2f903 1422fail:
24d2f903
CH
1423 blk_mq_free_rq_map(set, tags, hctx_idx);
1424 return NULL;
320ae51f
JA
1425}
1426
1429d7c9
JA
1427static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1428{
1429 kfree(bitmap->map);
1430}
1431
1432static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1433{
1434 unsigned int bpw = 8, total, num_maps, i;
1435
1436 bitmap->bits_per_word = bpw;
1437
1438 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1439 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1440 GFP_KERNEL, node);
1441 if (!bitmap->map)
1442 return -ENOMEM;
1443
1444 bitmap->map_size = num_maps;
1445
1446 total = nr_cpu_ids;
1447 for (i = 0; i < num_maps; i++) {
1448 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1449 total -= bitmap->map[i].depth;
1450 }
1451
1452 return 0;
1453}
1454
484b4061
JA
1455static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1456{
1457 struct request_queue *q = hctx->queue;
1458 struct blk_mq_ctx *ctx;
1459 LIST_HEAD(tmp);
1460
1461 /*
1462 * Move ctx entries to new CPU, if this one is going away.
1463 */
1464 ctx = __blk_mq_get_ctx(q, cpu);
1465
1466 spin_lock(&ctx->lock);
1467 if (!list_empty(&ctx->rq_list)) {
1468 list_splice_init(&ctx->rq_list, &tmp);
1469 blk_mq_hctx_clear_pending(hctx, ctx);
1470 }
1471 spin_unlock(&ctx->lock);
1472
1473 if (list_empty(&tmp))
1474 return NOTIFY_OK;
1475
1476 ctx = blk_mq_get_ctx(q);
1477 spin_lock(&ctx->lock);
1478
1479 while (!list_empty(&tmp)) {
1480 struct request *rq;
1481
1482 rq = list_first_entry(&tmp, struct request, queuelist);
1483 rq->mq_ctx = ctx;
1484 list_move_tail(&rq->queuelist, &ctx->rq_list);
1485 }
1486
1487 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1488 blk_mq_hctx_mark_pending(hctx, ctx);
1489
1490 spin_unlock(&ctx->lock);
1491
1492 blk_mq_run_hw_queue(hctx, true);
1493 blk_mq_put_ctx(ctx);
1494 return NOTIFY_OK;
1495}
1496
1497static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1498{
1499 struct request_queue *q = hctx->queue;
1500 struct blk_mq_tag_set *set = q->tag_set;
1501
1502 if (set->tags[hctx->queue_num])
1503 return NOTIFY_OK;
1504
1505 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1506 if (!set->tags[hctx->queue_num])
1507 return NOTIFY_STOP;
1508
1509 hctx->tags = set->tags[hctx->queue_num];
1510 return NOTIFY_OK;
1511}
1512
1513static int blk_mq_hctx_notify(void *data, unsigned long action,
1514 unsigned int cpu)
1515{
1516 struct blk_mq_hw_ctx *hctx = data;
1517
1518 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1519 return blk_mq_hctx_cpu_offline(hctx, cpu);
1520 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1521 return blk_mq_hctx_cpu_online(hctx, cpu);
1522
1523 return NOTIFY_OK;
1524}
1525
624dbe47
ML
1526static void blk_mq_exit_hw_queues(struct request_queue *q,
1527 struct blk_mq_tag_set *set, int nr_queue)
1528{
1529 struct blk_mq_hw_ctx *hctx;
1530 unsigned int i;
1531
1532 queue_for_each_hw_ctx(q, hctx, i) {
1533 if (i == nr_queue)
1534 break;
1535
f899fed4
JA
1536 blk_mq_tag_idle(hctx);
1537
624dbe47
ML
1538 if (set->ops->exit_hctx)
1539 set->ops->exit_hctx(hctx, i);
1540
1541 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1542 kfree(hctx->ctxs);
1543 blk_mq_free_bitmap(&hctx->ctx_map);
1544 }
1545
1546}
1547
1548static void blk_mq_free_hw_queues(struct request_queue *q,
1549 struct blk_mq_tag_set *set)
1550{
1551 struct blk_mq_hw_ctx *hctx;
1552 unsigned int i;
1553
1554 queue_for_each_hw_ctx(q, hctx, i) {
1555 free_cpumask_var(hctx->cpumask);
cdef54dd 1556 kfree(hctx);
624dbe47
ML
1557 }
1558}
1559
320ae51f 1560static int blk_mq_init_hw_queues(struct request_queue *q,
24d2f903 1561 struct blk_mq_tag_set *set)
320ae51f
JA
1562{
1563 struct blk_mq_hw_ctx *hctx;
624dbe47 1564 unsigned int i;
320ae51f
JA
1565
1566 /*
1567 * Initialize hardware queues
1568 */
1569 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f
JA
1570 int node;
1571
1572 node = hctx->numa_node;
1573 if (node == NUMA_NO_NODE)
24d2f903 1574 node = hctx->numa_node = set->numa_node;
320ae51f 1575
70f4db63
CH
1576 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1577 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
320ae51f
JA
1578 spin_lock_init(&hctx->lock);
1579 INIT_LIST_HEAD(&hctx->dispatch);
1580 hctx->queue = q;
1581 hctx->queue_num = i;
24d2f903
CH
1582 hctx->flags = set->flags;
1583 hctx->cmd_size = set->cmd_size;
320ae51f
JA
1584
1585 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1586 blk_mq_hctx_notify, hctx);
1587 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1588
24d2f903 1589 hctx->tags = set->tags[i];
320ae51f
JA
1590
1591 /*
a68aafa5 1592 * Allocate space for all possible cpus to avoid allocation at
320ae51f
JA
1593 * runtime
1594 */
1595 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1596 GFP_KERNEL, node);
1597 if (!hctx->ctxs)
1598 break;
1599
1429d7c9 1600 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
320ae51f
JA
1601 break;
1602
320ae51f
JA
1603 hctx->nr_ctx = 0;
1604
24d2f903
CH
1605 if (set->ops->init_hctx &&
1606 set->ops->init_hctx(hctx, set->driver_data, i))
320ae51f
JA
1607 break;
1608 }
1609
1610 if (i == q->nr_hw_queues)
1611 return 0;
1612
1613 /*
1614 * Init failed
1615 */
624dbe47 1616 blk_mq_exit_hw_queues(q, set, i);
320ae51f
JA
1617
1618 return 1;
1619}
1620
1621static void blk_mq_init_cpu_queues(struct request_queue *q,
1622 unsigned int nr_hw_queues)
1623{
1624 unsigned int i;
1625
1626 for_each_possible_cpu(i) {
1627 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1628 struct blk_mq_hw_ctx *hctx;
1629
1630 memset(__ctx, 0, sizeof(*__ctx));
1631 __ctx->cpu = i;
1632 spin_lock_init(&__ctx->lock);
1633 INIT_LIST_HEAD(&__ctx->rq_list);
1634 __ctx->queue = q;
1635
1636 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1637 if (!cpu_online(i))
1638 continue;
1639
e4043dcf
JA
1640 hctx = q->mq_ops->map_queue(q, i);
1641 cpumask_set_cpu(i, hctx->cpumask);
1642 hctx->nr_ctx++;
1643
320ae51f
JA
1644 /*
1645 * Set local node, IFF we have more than one hw queue. If
1646 * not, we remain on the home node of the device
1647 */
1648 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1649 hctx->numa_node = cpu_to_node(i);
1650 }
1651}
1652
1653static void blk_mq_map_swqueue(struct request_queue *q)
1654{
1655 unsigned int i;
1656 struct blk_mq_hw_ctx *hctx;
1657 struct blk_mq_ctx *ctx;
1658
1659 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1660 cpumask_clear(hctx->cpumask);
320ae51f
JA
1661 hctx->nr_ctx = 0;
1662 }
1663
1664 /*
1665 * Map software to hardware queues
1666 */
1667 queue_for_each_ctx(q, ctx, i) {
1668 /* If the cpu isn't online, the cpu is mapped to first hctx */
e4043dcf
JA
1669 if (!cpu_online(i))
1670 continue;
1671
320ae51f 1672 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1673 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1674 ctx->index_hw = hctx->nr_ctx;
1675 hctx->ctxs[hctx->nr_ctx++] = ctx;
1676 }
506e931f
JA
1677
1678 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 1679 /*
a68aafa5
JA
1680 * If no software queues are mapped to this hardware queue,
1681 * disable it and free the request entries.
484b4061
JA
1682 */
1683 if (!hctx->nr_ctx) {
1684 struct blk_mq_tag_set *set = q->tag_set;
1685
1686 if (set->tags[i]) {
1687 blk_mq_free_rq_map(set, set->tags[i], i);
1688 set->tags[i] = NULL;
1689 hctx->tags = NULL;
1690 }
1691 continue;
1692 }
1693
1694 /*
1695 * Initialize batch roundrobin counts
1696 */
506e931f
JA
1697 hctx->next_cpu = cpumask_first(hctx->cpumask);
1698 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1699 }
320ae51f
JA
1700}
1701
0d2602ca
JA
1702static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1703{
1704 struct blk_mq_hw_ctx *hctx;
1705 struct request_queue *q;
1706 bool shared;
1707 int i;
1708
1709 if (set->tag_list.next == set->tag_list.prev)
1710 shared = false;
1711 else
1712 shared = true;
1713
1714 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1715 blk_mq_freeze_queue(q);
1716
1717 queue_for_each_hw_ctx(q, hctx, i) {
1718 if (shared)
1719 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1720 else
1721 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1722 }
1723 blk_mq_unfreeze_queue(q);
1724 }
1725}
1726
1727static void blk_mq_del_queue_tag_set(struct request_queue *q)
1728{
1729 struct blk_mq_tag_set *set = q->tag_set;
1730
0d2602ca
JA
1731 mutex_lock(&set->tag_list_lock);
1732 list_del_init(&q->tag_set_list);
1733 blk_mq_update_tag_set_depth(set);
1734 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
1735}
1736
1737static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1738 struct request_queue *q)
1739{
1740 q->tag_set = set;
1741
1742 mutex_lock(&set->tag_list_lock);
1743 list_add_tail(&q->tag_set_list, &set->tag_list);
1744 blk_mq_update_tag_set_depth(set);
1745 mutex_unlock(&set->tag_list_lock);
1746}
1747
24d2f903 1748struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
320ae51f
JA
1749{
1750 struct blk_mq_hw_ctx **hctxs;
e6cdb092 1751 struct blk_mq_ctx __percpu *ctx;
320ae51f 1752 struct request_queue *q;
f14bbe77 1753 unsigned int *map;
320ae51f
JA
1754 int i;
1755
320ae51f
JA
1756 ctx = alloc_percpu(struct blk_mq_ctx);
1757 if (!ctx)
1758 return ERR_PTR(-ENOMEM);
1759
24d2f903
CH
1760 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1761 set->numa_node);
320ae51f
JA
1762
1763 if (!hctxs)
1764 goto err_percpu;
1765
f14bbe77
JA
1766 map = blk_mq_make_queue_map(set);
1767 if (!map)
1768 goto err_map;
1769
24d2f903 1770 for (i = 0; i < set->nr_hw_queues; i++) {
f14bbe77
JA
1771 int node = blk_mq_hw_queue_to_node(map, i);
1772
cdef54dd
CH
1773 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1774 GFP_KERNEL, node);
320ae51f
JA
1775 if (!hctxs[i])
1776 goto err_hctxs;
1777
e4043dcf
JA
1778 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1779 goto err_hctxs;
1780
0d2602ca 1781 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 1782 hctxs[i]->numa_node = node;
320ae51f
JA
1783 hctxs[i]->queue_num = i;
1784 }
1785
24d2f903 1786 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
320ae51f
JA
1787 if (!q)
1788 goto err_hctxs;
1789
add703fd 1790 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release))
3d2936f4
ML
1791 goto err_map;
1792
320ae51f
JA
1793 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1794 blk_queue_rq_timeout(q, 30000);
1795
1796 q->nr_queues = nr_cpu_ids;
24d2f903 1797 q->nr_hw_queues = set->nr_hw_queues;
f14bbe77 1798 q->mq_map = map;
320ae51f
JA
1799
1800 q->queue_ctx = ctx;
1801 q->queue_hw_ctx = hctxs;
1802
24d2f903 1803 q->mq_ops = set->ops;
94eddfbe 1804 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1805
05f1dd53
JA
1806 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1807 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1808
1be036e9
CH
1809 q->sg_reserved_size = INT_MAX;
1810
6fca6a61
CH
1811 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1812 INIT_LIST_HEAD(&q->requeue_list);
1813 spin_lock_init(&q->requeue_lock);
1814
07068d5b
JA
1815 if (q->nr_hw_queues > 1)
1816 blk_queue_make_request(q, blk_mq_make_request);
1817 else
1818 blk_queue_make_request(q, blk_sq_make_request);
1819
87ee7b11 1820 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
24d2f903
CH
1821 if (set->timeout)
1822 blk_queue_rq_timeout(q, set->timeout);
320ae51f 1823
eba71768
JA
1824 /*
1825 * Do this after blk_queue_make_request() overrides it...
1826 */
1827 q->nr_requests = set->queue_depth;
1828
24d2f903
CH
1829 if (set->ops->complete)
1830 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 1831
320ae51f 1832 blk_mq_init_flush(q);
24d2f903 1833 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 1834
24d2f903
CH
1835 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1836 set->cmd_size, cache_line_size()),
1837 GFP_KERNEL);
18741986 1838 if (!q->flush_rq)
320ae51f
JA
1839 goto err_hw;
1840
24d2f903 1841 if (blk_mq_init_hw_queues(q, set))
18741986
CH
1842 goto err_flush_rq;
1843
320ae51f
JA
1844 mutex_lock(&all_q_mutex);
1845 list_add_tail(&q->all_q_node, &all_q_list);
1846 mutex_unlock(&all_q_mutex);
1847
0d2602ca
JA
1848 blk_mq_add_queue_tag_set(set, q);
1849
484b4061
JA
1850 blk_mq_map_swqueue(q);
1851
320ae51f 1852 return q;
18741986
CH
1853
1854err_flush_rq:
1855 kfree(q->flush_rq);
320ae51f 1856err_hw:
320ae51f
JA
1857 blk_cleanup_queue(q);
1858err_hctxs:
f14bbe77 1859 kfree(map);
24d2f903 1860 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
1861 if (!hctxs[i])
1862 break;
e4043dcf 1863 free_cpumask_var(hctxs[i]->cpumask);
cdef54dd 1864 kfree(hctxs[i]);
320ae51f 1865 }
f14bbe77 1866err_map:
320ae51f
JA
1867 kfree(hctxs);
1868err_percpu:
1869 free_percpu(ctx);
1870 return ERR_PTR(-ENOMEM);
1871}
1872EXPORT_SYMBOL(blk_mq_init_queue);
1873
1874void blk_mq_free_queue(struct request_queue *q)
1875{
624dbe47 1876 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1877
0d2602ca
JA
1878 blk_mq_del_queue_tag_set(q);
1879
624dbe47
ML
1880 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1881 blk_mq_free_hw_queues(q, set);
320ae51f 1882
add703fd 1883 percpu_ref_exit(&q->mq_usage_counter);
3d2936f4 1884
320ae51f
JA
1885 free_percpu(q->queue_ctx);
1886 kfree(q->queue_hw_ctx);
1887 kfree(q->mq_map);
1888
1889 q->queue_ctx = NULL;
1890 q->queue_hw_ctx = NULL;
1891 q->mq_map = NULL;
1892
1893 mutex_lock(&all_q_mutex);
1894 list_del_init(&q->all_q_node);
1895 mutex_unlock(&all_q_mutex);
1896}
320ae51f
JA
1897
1898/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1899static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1900{
1901 blk_mq_freeze_queue(q);
1902
67aec14c
JA
1903 blk_mq_sysfs_unregister(q);
1904
320ae51f
JA
1905 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1906
1907 /*
1908 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1909 * we should change hctx numa_node according to new topology (this
1910 * involves free and re-allocate memory, worthy doing?)
1911 */
1912
1913 blk_mq_map_swqueue(q);
1914
67aec14c
JA
1915 blk_mq_sysfs_register(q);
1916
320ae51f
JA
1917 blk_mq_unfreeze_queue(q);
1918}
1919
f618ef7c
PG
1920static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1921 unsigned long action, void *hcpu)
320ae51f
JA
1922{
1923 struct request_queue *q;
1924
1925 /*
9fccfed8
JA
1926 * Before new mappings are established, hotadded cpu might already
1927 * start handling requests. This doesn't break anything as we map
1928 * offline CPUs to first hardware queue. We will re-init the queue
1929 * below to get optimal settings.
320ae51f
JA
1930 */
1931 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1932 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1933 return NOTIFY_OK;
1934
1935 mutex_lock(&all_q_mutex);
1936 list_for_each_entry(q, &all_q_list, all_q_node)
1937 blk_mq_queue_reinit(q);
1938 mutex_unlock(&all_q_mutex);
1939 return NOTIFY_OK;
1940}
1941
a5164405
JA
1942static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1943{
1944 int i;
1945
1946 for (i = 0; i < set->nr_hw_queues; i++) {
1947 set->tags[i] = blk_mq_init_rq_map(set, i);
1948 if (!set->tags[i])
1949 goto out_unwind;
1950 }
1951
1952 return 0;
1953
1954out_unwind:
1955 while (--i >= 0)
1956 blk_mq_free_rq_map(set, set->tags[i], i);
1957
a5164405
JA
1958 return -ENOMEM;
1959}
1960
1961/*
1962 * Allocate the request maps associated with this tag_set. Note that this
1963 * may reduce the depth asked for, if memory is tight. set->queue_depth
1964 * will be updated to reflect the allocated depth.
1965 */
1966static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1967{
1968 unsigned int depth;
1969 int err;
1970
1971 depth = set->queue_depth;
1972 do {
1973 err = __blk_mq_alloc_rq_maps(set);
1974 if (!err)
1975 break;
1976
1977 set->queue_depth >>= 1;
1978 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
1979 err = -ENOMEM;
1980 break;
1981 }
1982 } while (set->queue_depth);
1983
1984 if (!set->queue_depth || err) {
1985 pr_err("blk-mq: failed to allocate request map\n");
1986 return -ENOMEM;
1987 }
1988
1989 if (depth != set->queue_depth)
1990 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
1991 depth, set->queue_depth);
1992
1993 return 0;
1994}
1995
a4391c64
JA
1996/*
1997 * Alloc a tag set to be associated with one or more request queues.
1998 * May fail with EINVAL for various error conditions. May adjust the
1999 * requested depth down, if if it too large. In that case, the set
2000 * value will be stored in set->queue_depth.
2001 */
24d2f903
CH
2002int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2003{
24d2f903
CH
2004 if (!set->nr_hw_queues)
2005 return -EINVAL;
a4391c64 2006 if (!set->queue_depth)
24d2f903
CH
2007 return -EINVAL;
2008 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2009 return -EINVAL;
2010
cdef54dd 2011 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
24d2f903
CH
2012 return -EINVAL;
2013
a4391c64
JA
2014 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2015 pr_info("blk-mq: reduced tag depth to %u\n",
2016 BLK_MQ_MAX_DEPTH);
2017 set->queue_depth = BLK_MQ_MAX_DEPTH;
2018 }
24d2f903 2019
48479005
ML
2020 set->tags = kmalloc_node(set->nr_hw_queues *
2021 sizeof(struct blk_mq_tags *),
24d2f903
CH
2022 GFP_KERNEL, set->numa_node);
2023 if (!set->tags)
a5164405 2024 return -ENOMEM;
24d2f903 2025
a5164405
JA
2026 if (blk_mq_alloc_rq_maps(set))
2027 goto enomem;
24d2f903 2028
0d2602ca
JA
2029 mutex_init(&set->tag_list_lock);
2030 INIT_LIST_HEAD(&set->tag_list);
2031
24d2f903 2032 return 0;
a5164405 2033enomem:
5676e7b6
RE
2034 kfree(set->tags);
2035 set->tags = NULL;
24d2f903
CH
2036 return -ENOMEM;
2037}
2038EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2039
2040void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2041{
2042 int i;
2043
484b4061
JA
2044 for (i = 0; i < set->nr_hw_queues; i++) {
2045 if (set->tags[i])
2046 blk_mq_free_rq_map(set, set->tags[i], i);
2047 }
2048
981bd189 2049 kfree(set->tags);
5676e7b6 2050 set->tags = NULL;
24d2f903
CH
2051}
2052EXPORT_SYMBOL(blk_mq_free_tag_set);
2053
e3a2b3f9
JA
2054int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2055{
2056 struct blk_mq_tag_set *set = q->tag_set;
2057 struct blk_mq_hw_ctx *hctx;
2058 int i, ret;
2059
2060 if (!set || nr > set->queue_depth)
2061 return -EINVAL;
2062
2063 ret = 0;
2064 queue_for_each_hw_ctx(q, hctx, i) {
2065 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2066 if (ret)
2067 break;
2068 }
2069
2070 if (!ret)
2071 q->nr_requests = nr;
2072
2073 return ret;
2074}
2075
676141e4
JA
2076void blk_mq_disable_hotplug(void)
2077{
2078 mutex_lock(&all_q_mutex);
2079}
2080
2081void blk_mq_enable_hotplug(void)
2082{
2083 mutex_unlock(&all_q_mutex);
2084}
2085
320ae51f
JA
2086static int __init blk_mq_init(void)
2087{
320ae51f
JA
2088 blk_mq_cpu_init();
2089
add703fd 2090 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
320ae51f
JA
2091
2092 return 0;
2093}
2094subsys_initcall(blk_mq_init);