]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-mq.c
blk-mq: quiesce queue during switching io sched and updating nr_requests
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
cf43e6be 36#include "blk-stat.h"
87760e5e 37#include "blk-wbt.h"
bd166ef1 38#include "blk-mq-sched.h"
320ae51f 39
ea435e1b 40static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
34dbad5d
OS
41static void blk_mq_poll_stats_start(struct request_queue *q);
42static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
720b8ccc
SB
44static int blk_mq_poll_stats_bkt(const struct request *rq)
45{
46 int ddir, bytes, bucket;
47
99c749a4 48 ddir = rq_data_dir(rq);
720b8ccc
SB
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59}
60
320ae51f
JA
61/*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
79f720a7 64static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 65{
79f720a7
JA
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 68 blk_mq_sched_has_work(hctx);
1429d7c9
JA
69}
70
320ae51f
JA
71/*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76{
88459642
OS
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
79}
80
81static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83{
88459642 84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
85}
86
f299b7c7
JA
87struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90};
91
92static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95{
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
b8d62b3a
JA
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
f299b7c7 105 */
b8d62b3a 106 if (rq->part == mi->part)
f299b7c7 107 mi->inflight[0]++;
b8d62b3a
JA
108 if (mi->part->partno)
109 mi->inflight[1]++;
f299b7c7
JA
110 }
111}
112
113void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115{
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
b8d62b3a 118 inflight[0] = inflight[1] = 0;
f299b7c7
JA
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120}
121
416d3aa7
OS
122static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
123 struct request *rq, void *priv,
124 bool reserved)
125{
126 struct mq_inflight *mi = priv;
127
128 if (rq->part == mi->part)
129 mi->inflight[rq_data_dir(rq)]++;
130}
131
132void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
133 unsigned int inflight[2])
134{
135 struct mq_inflight mi = { .part = part, .inflight = inflight, };
136
137 inflight[0] = inflight[1] = 0;
138 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
139}
140
1671d522 141void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 142{
4ecd4fef 143 int freeze_depth;
cddd5d17 144
4ecd4fef
CH
145 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
146 if (freeze_depth == 1) {
3ef28e83 147 percpu_ref_kill(&q->q_usage_counter);
055f6e18
ML
148 if (q->mq_ops)
149 blk_mq_run_hw_queues(q, false);
cddd5d17 150 }
f3af020b 151}
1671d522 152EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 153
6bae363e 154void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 155{
3ef28e83 156 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 157}
6bae363e 158EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 159
f91328c4
KB
160int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
161 unsigned long timeout)
162{
163 return wait_event_timeout(q->mq_freeze_wq,
164 percpu_ref_is_zero(&q->q_usage_counter),
165 timeout);
166}
167EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 168
f3af020b
TH
169/*
170 * Guarantee no request is in use, so we can change any data structure of
171 * the queue afterward.
172 */
3ef28e83 173void blk_freeze_queue(struct request_queue *q)
f3af020b 174{
3ef28e83
DW
175 /*
176 * In the !blk_mq case we are only calling this to kill the
177 * q_usage_counter, otherwise this increases the freeze depth
178 * and waits for it to return to zero. For this reason there is
179 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
180 * exported to drivers as the only user for unfreeze is blk_mq.
181 */
1671d522 182 blk_freeze_queue_start(q);
454be724
ML
183 if (!q->mq_ops)
184 blk_drain_queue(q);
f3af020b
TH
185 blk_mq_freeze_queue_wait(q);
186}
3ef28e83
DW
187
188void blk_mq_freeze_queue(struct request_queue *q)
189{
190 /*
191 * ...just an alias to keep freeze and unfreeze actions balanced
192 * in the blk_mq_* namespace
193 */
194 blk_freeze_queue(q);
195}
c761d96b 196EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 197
b4c6a028 198void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 199{
4ecd4fef 200 int freeze_depth;
320ae51f 201
4ecd4fef
CH
202 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
203 WARN_ON_ONCE(freeze_depth < 0);
204 if (!freeze_depth) {
3ef28e83 205 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 206 wake_up_all(&q->mq_freeze_wq);
add703fd 207 }
320ae51f 208}
b4c6a028 209EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 210
852ec809
BVA
211/*
212 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213 * mpt3sas driver such that this function can be removed.
214 */
215void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216{
217 unsigned long flags;
218
219 spin_lock_irqsave(q->queue_lock, flags);
220 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
221 spin_unlock_irqrestore(q->queue_lock, flags);
222}
223EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
224
6a83e74d 225/**
69e07c4a 226 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
227 * @q: request queue.
228 *
229 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
230 * callback function is invoked. Once this function is returned, we make
231 * sure no dispatch can happen until the queue is unquiesced via
232 * blk_mq_unquiesce_queue().
6a83e74d
BVA
233 */
234void blk_mq_quiesce_queue(struct request_queue *q)
235{
236 struct blk_mq_hw_ctx *hctx;
237 unsigned int i;
238 bool rcu = false;
239
1d9e9bc6 240 blk_mq_quiesce_queue_nowait(q);
f4560ffe 241
6a83e74d
BVA
242 queue_for_each_hw_ctx(q, hctx, i) {
243 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 244 synchronize_srcu(hctx->queue_rq_srcu);
6a83e74d
BVA
245 else
246 rcu = true;
247 }
248 if (rcu)
249 synchronize_rcu();
250}
251EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
252
e4e73913
ML
253/*
254 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
255 * @q: request queue.
256 *
257 * This function recovers queue into the state before quiescing
258 * which is done by blk_mq_quiesce_queue.
259 */
260void blk_mq_unquiesce_queue(struct request_queue *q)
261{
852ec809
BVA
262 unsigned long flags;
263
264 spin_lock_irqsave(q->queue_lock, flags);
f4560ffe 265 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
852ec809 266 spin_unlock_irqrestore(q->queue_lock, flags);
f4560ffe 267
1d9e9bc6
ML
268 /* dispatch requests which are inserted during quiescing */
269 blk_mq_run_hw_queues(q, true);
e4e73913
ML
270}
271EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
272
aed3ea94
JA
273void blk_mq_wake_waiters(struct request_queue *q)
274{
275 struct blk_mq_hw_ctx *hctx;
276 unsigned int i;
277
278 queue_for_each_hw_ctx(q, hctx, i)
279 if (blk_mq_hw_queue_mapped(hctx))
280 blk_mq_tag_wakeup_all(hctx->tags, true);
281}
282
320ae51f
JA
283bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
284{
285 return blk_mq_has_free_tags(hctx->tags);
286}
287EXPORT_SYMBOL(blk_mq_can_queue);
288
e4cdf1a1
CH
289static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
290 unsigned int tag, unsigned int op)
320ae51f 291{
e4cdf1a1
CH
292 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
293 struct request *rq = tags->static_rqs[tag];
294
c3a148d2
BVA
295 rq->rq_flags = 0;
296
e4cdf1a1
CH
297 if (data->flags & BLK_MQ_REQ_INTERNAL) {
298 rq->tag = -1;
299 rq->internal_tag = tag;
300 } else {
662e29d9 301 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
e4cdf1a1
CH
302 rq->rq_flags = RQF_MQ_INFLIGHT;
303 atomic_inc(&data->hctx->nr_active);
304 }
305 rq->tag = tag;
306 rq->internal_tag = -1;
307 data->hctx->tags->rqs[rq->tag] = rq;
308 }
309
af76e555
CH
310 INIT_LIST_HEAD(&rq->queuelist);
311 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
312 rq->q = data->q;
313 rq->mq_ctx = data->ctx;
ef295ecf 314 rq->cmd_flags = op;
1b6d65a0
BVA
315 if (data->flags & BLK_MQ_REQ_PREEMPT)
316 rq->rq_flags |= RQF_PREEMPT;
e4cdf1a1 317 if (blk_queue_io_stat(data->q))
e8064021 318 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
319 /* do not touch atomic flags, it needs atomic ops against the timer */
320 rq->cpu = -1;
af76e555
CH
321 INIT_HLIST_NODE(&rq->hash);
322 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
323 rq->rq_disk = NULL;
324 rq->part = NULL;
3ee32372 325 rq->start_time = jiffies;
af76e555
CH
326#ifdef CONFIG_BLK_CGROUP
327 rq->rl = NULL;
0fec08b4 328 set_start_time_ns(rq);
af76e555
CH
329 rq->io_start_time_ns = 0;
330#endif
331 rq->nr_phys_segments = 0;
332#if defined(CONFIG_BLK_DEV_INTEGRITY)
333 rq->nr_integrity_segments = 0;
334#endif
af76e555
CH
335 rq->special = NULL;
336 /* tag was already set */
af76e555 337 rq->extra_len = 0;
af76e555 338
af76e555 339 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
340 rq->timeout = 0;
341
af76e555
CH
342 rq->end_io = NULL;
343 rq->end_io_data = NULL;
344 rq->next_rq = NULL;
345
e4cdf1a1
CH
346 data->ctx->rq_dispatched[op_is_sync(op)]++;
347 return rq;
5dee8577
CH
348}
349
d2c0d383
CH
350static struct request *blk_mq_get_request(struct request_queue *q,
351 struct bio *bio, unsigned int op,
352 struct blk_mq_alloc_data *data)
353{
354 struct elevator_queue *e = q->elevator;
355 struct request *rq;
e4cdf1a1 356 unsigned int tag;
21e768b4 357 bool put_ctx_on_error = false;
d2c0d383
CH
358
359 blk_queue_enter_live(q);
360 data->q = q;
21e768b4
BVA
361 if (likely(!data->ctx)) {
362 data->ctx = blk_mq_get_ctx(q);
363 put_ctx_on_error = true;
364 }
d2c0d383
CH
365 if (likely(!data->hctx))
366 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
03a07c92
GR
367 if (op & REQ_NOWAIT)
368 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
369
370 if (e) {
371 data->flags |= BLK_MQ_REQ_INTERNAL;
372
373 /*
374 * Flush requests are special and go directly to the
375 * dispatch list.
376 */
5bbf4e5a
CH
377 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
378 e->type->ops.mq.limit_depth(op, data);
662e29d9
JW
379 } else {
380 blk_mq_tag_busy(data->hctx);
d2c0d383
CH
381 }
382
e4cdf1a1
CH
383 tag = blk_mq_get_tag(data);
384 if (tag == BLK_MQ_TAG_FAIL) {
21e768b4
BVA
385 if (put_ctx_on_error) {
386 blk_mq_put_ctx(data->ctx);
1ad43c00
ML
387 data->ctx = NULL;
388 }
037cebb8
CH
389 blk_queue_exit(q);
390 return NULL;
d2c0d383
CH
391 }
392
e4cdf1a1 393 rq = blk_mq_rq_ctx_init(data, tag, op);
037cebb8
CH
394 if (!op_is_flush(op)) {
395 rq->elv.icq = NULL;
5bbf4e5a 396 if (e && e->type->ops.mq.prepare_request) {
44e8c2bf
CH
397 if (e->type->icq_cache && rq_ioc(bio))
398 blk_mq_sched_assign_ioc(rq, bio);
399
5bbf4e5a
CH
400 e->type->ops.mq.prepare_request(rq, bio);
401 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 402 }
037cebb8
CH
403 }
404 data->hctx->queued++;
405 return rq;
d2c0d383
CH
406}
407
cd6ce148 408struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 409 blk_mq_req_flags_t flags)
320ae51f 410{
5a797e00 411 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 412 struct request *rq;
a492f075 413 int ret;
320ae51f 414
3a0a5299 415 ret = blk_queue_enter(q, flags);
a492f075
JL
416 if (ret)
417 return ERR_PTR(ret);
320ae51f 418
cd6ce148 419 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 420 blk_queue_exit(q);
841bac2c 421
bd166ef1 422 if (!rq)
a492f075 423 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3 424
1ad43c00 425 blk_mq_put_ctx(alloc_data.ctx);
1ad43c00 426
0c4de0f3
CH
427 rq->__data_len = 0;
428 rq->__sector = (sector_t) -1;
429 rq->bio = rq->biotail = NULL;
320ae51f
JA
430 return rq;
431}
4bb659b1 432EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 433
cd6ce148 434struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 435 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 436{
6d2809d5 437 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 438 struct request *rq;
6d2809d5 439 unsigned int cpu;
1f5bd336
ML
440 int ret;
441
442 /*
443 * If the tag allocator sleeps we could get an allocation for a
444 * different hardware context. No need to complicate the low level
445 * allocator for this for the rare use case of a command tied to
446 * a specific queue.
447 */
448 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
449 return ERR_PTR(-EINVAL);
450
451 if (hctx_idx >= q->nr_hw_queues)
452 return ERR_PTR(-EIO);
453
3a0a5299 454 ret = blk_queue_enter(q, flags);
1f5bd336
ML
455 if (ret)
456 return ERR_PTR(ret);
457
c8712c6a
CH
458 /*
459 * Check if the hardware context is actually mapped to anything.
460 * If not tell the caller that it should skip this queue.
461 */
6d2809d5
OS
462 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
463 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
464 blk_queue_exit(q);
465 return ERR_PTR(-EXDEV);
c8712c6a 466 }
8a591698 467 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
6d2809d5 468 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 469
cd6ce148 470 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 471 blk_queue_exit(q);
c8712c6a 472
6d2809d5
OS
473 if (!rq)
474 return ERR_PTR(-EWOULDBLOCK);
475
476 return rq;
1f5bd336
ML
477}
478EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
479
6af54051 480void blk_mq_free_request(struct request *rq)
320ae51f 481{
320ae51f 482 struct request_queue *q = rq->q;
6af54051
CH
483 struct elevator_queue *e = q->elevator;
484 struct blk_mq_ctx *ctx = rq->mq_ctx;
485 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
486 const int sched_tag = rq->internal_tag;
487
5bbf4e5a 488 if (rq->rq_flags & RQF_ELVPRIV) {
6af54051
CH
489 if (e && e->type->ops.mq.finish_request)
490 e->type->ops.mq.finish_request(rq);
491 if (rq->elv.icq) {
492 put_io_context(rq->elv.icq->ioc);
493 rq->elv.icq = NULL;
494 }
495 }
320ae51f 496
6af54051 497 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 498 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 499 atomic_dec(&hctx->nr_active);
87760e5e 500
7beb2f84
JA
501 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
502 laptop_io_completion(q->backing_dev_info);
503
87760e5e 504 wbt_done(q->rq_wb, &rq->issue_stat);
0d2602ca 505
85acb3ba
SL
506 if (blk_rq_rl(rq))
507 blk_put_rl(blk_rq_rl(rq));
508
af76e555 509 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 510 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
511 if (rq->tag != -1)
512 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
513 if (sched_tag != -1)
c05f8525 514 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
6d8c6c0f 515 blk_mq_sched_restart(hctx);
3ef28e83 516 blk_queue_exit(q);
320ae51f 517}
1a3b595a 518EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 519
2a842aca 520inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 521{
0d11e6ac
ML
522 blk_account_io_done(rq);
523
91b63639 524 if (rq->end_io) {
87760e5e 525 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 526 rq->end_io(rq, error);
91b63639
CH
527 } else {
528 if (unlikely(blk_bidi_rq(rq)))
529 blk_mq_free_request(rq->next_rq);
320ae51f 530 blk_mq_free_request(rq);
91b63639 531 }
320ae51f 532}
c8a446ad 533EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 534
2a842aca 535void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
536{
537 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
538 BUG();
c8a446ad 539 __blk_mq_end_request(rq, error);
63151a44 540}
c8a446ad 541EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 542
30a91cb4 543static void __blk_mq_complete_request_remote(void *data)
320ae51f 544{
3d6efbf6 545 struct request *rq = data;
320ae51f 546
30a91cb4 547 rq->q->softirq_done_fn(rq);
320ae51f 548}
320ae51f 549
453f8341 550static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
551{
552 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 553 bool shared = false;
320ae51f
JA
554 int cpu;
555
453f8341
CH
556 if (rq->internal_tag != -1)
557 blk_mq_sched_completed_request(rq);
558 if (rq->rq_flags & RQF_STATS) {
559 blk_mq_poll_stats_start(rq->q);
560 blk_stat_add(rq);
561 }
562
38535201 563 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
564 rq->q->softirq_done_fn(rq);
565 return;
566 }
320ae51f
JA
567
568 cpu = get_cpu();
38535201
CH
569 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
570 shared = cpus_share_cache(cpu, ctx->cpu);
571
572 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 573 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
574 rq->csd.info = rq;
575 rq->csd.flags = 0;
c46fff2a 576 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 577 } else {
30a91cb4 578 rq->q->softirq_done_fn(rq);
3d6efbf6 579 }
320ae51f
JA
580 put_cpu();
581}
30a91cb4
CH
582
583/**
584 * blk_mq_complete_request - end I/O on a request
585 * @rq: the request being processed
586 *
587 * Description:
588 * Ends all I/O on a request. It does not handle partial completions.
589 * The actual completion happens out-of-order, through a IPI handler.
590 **/
08e0029a 591void blk_mq_complete_request(struct request *rq)
30a91cb4 592{
95f09684
JA
593 struct request_queue *q = rq->q;
594
595 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 596 return;
08e0029a 597 if (!blk_mark_rq_complete(rq))
ed851860 598 __blk_mq_complete_request(rq);
30a91cb4
CH
599}
600EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 601
973c0191
KB
602int blk_mq_request_started(struct request *rq)
603{
604 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
605}
606EXPORT_SYMBOL_GPL(blk_mq_request_started);
607
e2490073 608void blk_mq_start_request(struct request *rq)
320ae51f
JA
609{
610 struct request_queue *q = rq->q;
611
bd166ef1
JA
612 blk_mq_sched_started_request(rq);
613
320ae51f
JA
614 trace_block_rq_issue(q, rq);
615
cf43e6be 616 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 617 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 618 rq->rq_flags |= RQF_STATS;
87760e5e 619 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
620 }
621
2b8393b4 622 blk_add_timer(rq);
87ee7b11 623
a7af0af3 624 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
538b7534 625
87ee7b11
JA
626 /*
627 * Mark us as started and clear complete. Complete might have been
628 * set if requeue raced with timeout, which then marked it as
629 * complete. So be sure to clear complete again when we start
630 * the request, otherwise we'll ignore the completion event.
a7af0af3
PZ
631 *
632 * Ensure that ->deadline is visible before we set STARTED, such that
633 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
634 * it observes STARTED.
87ee7b11 635 */
a7af0af3
PZ
636 smp_wmb();
637 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
638 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
639 /*
640 * Coherence order guarantees these consecutive stores to a
641 * single variable propagate in the specified order. Thus the
642 * clear_bit() is ordered _after_ the set bit. See
643 * blk_mq_check_expired().
644 *
645 * (the bits must be part of the same byte for this to be
646 * true).
647 */
4b570521 648 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
a7af0af3 649 }
49f5baa5
CH
650
651 if (q->dma_drain_size && blk_rq_bytes(rq)) {
652 /*
653 * Make sure space for the drain appears. We know we can do
654 * this because max_hw_segments has been adjusted to be one
655 * fewer than the device can handle.
656 */
657 rq->nr_phys_segments++;
658 }
320ae51f 659}
e2490073 660EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 661
d9d149a3
ML
662/*
663 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
48b99c9d 664 * flag isn't set yet, so there may be race with timeout handler,
d9d149a3
ML
665 * but given rq->deadline is just set in .queue_rq() under
666 * this situation, the race won't be possible in reality because
667 * rq->timeout should be set as big enough to cover the window
668 * between blk_mq_start_request() called from .queue_rq() and
669 * clearing REQ_ATOM_STARTED here.
670 */
ed0791b2 671static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
672{
673 struct request_queue *q = rq->q;
674
923218f6
ML
675 blk_mq_put_driver_tag(rq);
676
320ae51f 677 trace_block_rq_requeue(q, rq);
87760e5e 678 wbt_requeue(q->rq_wb, &rq->issue_stat);
49f5baa5 679
e2490073
CH
680 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
681 if (q->dma_drain_size && blk_rq_bytes(rq))
682 rq->nr_phys_segments--;
683 }
320ae51f
JA
684}
685
2b053aca 686void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 687{
ed0791b2 688 __blk_mq_requeue_request(rq);
ed0791b2 689
4c1f67e5
ML
690 /* this request will be re-inserted to io scheduler queue */
691 blk_mq_sched_requeue_request(rq);
692
ed0791b2 693 BUG_ON(blk_queued_rq(rq));
2b053aca 694 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
695}
696EXPORT_SYMBOL(blk_mq_requeue_request);
697
6fca6a61
CH
698static void blk_mq_requeue_work(struct work_struct *work)
699{
700 struct request_queue *q =
2849450a 701 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
702 LIST_HEAD(rq_list);
703 struct request *rq, *next;
6fca6a61 704
18e9781d 705 spin_lock_irq(&q->requeue_lock);
6fca6a61 706 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 707 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
708
709 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e4e131dd 710 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
6fca6a61
CH
711 continue;
712
e8064021 713 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 714 list_del_init(&rq->queuelist);
e4e131dd
JW
715 /*
716 * If RQF_DONTPREP, rq has contained some driver specific
717 * data, so insert it to hctx dispatch list to avoid any
718 * merge.
719 */
720 if (rq->rq_flags & RQF_DONTPREP)
721 blk_mq_request_bypass_insert(rq, false);
722 else
723 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
724 }
725
726 while (!list_empty(&rq_list)) {
727 rq = list_entry(rq_list.next, struct request, queuelist);
728 list_del_init(&rq->queuelist);
bd6737f1 729 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
730 }
731
52d7f1b5 732 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
733}
734
2b053aca
BVA
735void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
736 bool kick_requeue_list)
6fca6a61
CH
737{
738 struct request_queue *q = rq->q;
739 unsigned long flags;
740
741 /*
742 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 743 * request head insertion from the workqueue.
6fca6a61 744 */
e8064021 745 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
746
747 spin_lock_irqsave(&q->requeue_lock, flags);
748 if (at_head) {
e8064021 749 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
750 list_add(&rq->queuelist, &q->requeue_list);
751 } else {
752 list_add_tail(&rq->queuelist, &q->requeue_list);
753 }
754 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
755
756 if (kick_requeue_list)
757 blk_mq_kick_requeue_list(q);
6fca6a61
CH
758}
759EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
760
761void blk_mq_kick_requeue_list(struct request_queue *q)
762{
81517da9 763 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
6fca6a61
CH
764}
765EXPORT_SYMBOL(blk_mq_kick_requeue_list);
766
2849450a
MS
767void blk_mq_delay_kick_requeue_list(struct request_queue *q,
768 unsigned long msecs)
769{
d4acf365
BVA
770 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
771 msecs_to_jiffies(msecs));
2849450a
MS
772}
773EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
774
0e62f51f
JA
775struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
776{
88c7b2b7
JA
777 if (tag < tags->nr_tags) {
778 prefetch(tags->rqs[tag]);
4ee86bab 779 return tags->rqs[tag];
88c7b2b7 780 }
4ee86bab
HR
781
782 return NULL;
24d2f903
CH
783}
784EXPORT_SYMBOL(blk_mq_tag_to_rq);
785
320ae51f 786struct blk_mq_timeout_data {
46f92d42
CH
787 unsigned long next;
788 unsigned int next_set;
320ae51f
JA
789};
790
90415837 791void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 792{
f8a5b122 793 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 794 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
795
796 /*
797 * We know that complete is set at this point. If STARTED isn't set
798 * anymore, then the request isn't active and the "timeout" should
799 * just be ignored. This can happen due to the bitflag ordering.
800 * Timeout first checks if STARTED is set, and if it is, assumes
801 * the request is active. But if we race with completion, then
48b99c9d 802 * both flags will get cleared. So check here again, and ignore
87ee7b11
JA
803 * a timeout event with a request that isn't active.
804 */
46f92d42
CH
805 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
806 return;
87ee7b11 807
46f92d42 808 if (ops->timeout)
0152fb6b 809 ret = ops->timeout(req, reserved);
46f92d42
CH
810
811 switch (ret) {
812 case BLK_EH_HANDLED:
813 __blk_mq_complete_request(req);
814 break;
815 case BLK_EH_RESET_TIMER:
816 blk_add_timer(req);
817 blk_clear_rq_complete(req);
818 break;
819 case BLK_EH_NOT_HANDLED:
820 break;
821 default:
822 printk(KERN_ERR "block: bad eh return: %d\n", ret);
823 break;
824 }
87ee7b11 825}
5b3f25fc 826
81481eb4
CH
827static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
828 struct request *rq, void *priv, bool reserved)
829{
830 struct blk_mq_timeout_data *data = priv;
a7af0af3 831 unsigned long deadline;
87ee7b11 832
95a49603 833 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 834 return;
87ee7b11 835
a7af0af3
PZ
836 /*
837 * Ensures that if we see STARTED we must also see our
838 * up-to-date deadline, see blk_mq_start_request().
839 */
840 smp_rmb();
841
842 deadline = READ_ONCE(rq->deadline);
843
d9d149a3
ML
844 /*
845 * The rq being checked may have been freed and reallocated
846 * out already here, we avoid this race by checking rq->deadline
847 * and REQ_ATOM_COMPLETE flag together:
848 *
849 * - if rq->deadline is observed as new value because of
850 * reusing, the rq won't be timed out because of timing.
851 * - if rq->deadline is observed as previous value,
852 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
853 * because we put a barrier between setting rq->deadline
854 * and clearing the flag in blk_mq_start_request(), so
855 * this rq won't be timed out too.
856 */
a7af0af3
PZ
857 if (time_after_eq(jiffies, deadline)) {
858 if (!blk_mark_rq_complete(rq)) {
859 /*
860 * Again coherence order ensures that consecutive reads
861 * from the same variable must be in that order. This
862 * ensures that if we see COMPLETE clear, we must then
863 * see STARTED set and we'll ignore this timeout.
864 *
865 * (There's also the MB implied by the test_and_clear())
866 */
0152fb6b 867 blk_mq_rq_timed_out(rq, reserved);
a7af0af3
PZ
868 }
869 } else if (!data->next_set || time_after(data->next, deadline)) {
870 data->next = deadline;
46f92d42
CH
871 data->next_set = 1;
872 }
87ee7b11
JA
873}
874
287922eb 875static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 876{
287922eb
CH
877 struct request_queue *q =
878 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
879 struct blk_mq_timeout_data data = {
880 .next = 0,
881 .next_set = 0,
882 };
81481eb4 883 int i;
320ae51f 884
71f79fb3
GKB
885 /* A deadlock might occur if a request is stuck requiring a
886 * timeout at the same time a queue freeze is waiting
887 * completion, since the timeout code would not be able to
888 * acquire the queue reference here.
889 *
890 * That's why we don't use blk_queue_enter here; instead, we use
891 * percpu_ref_tryget directly, because we need to be able to
892 * obtain a reference even in the short window between the queue
893 * starting to freeze, by dropping the first reference in
1671d522 894 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
895 * consumed, marked by the instant q_usage_counter reaches
896 * zero.
897 */
898 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
899 return;
900
0bf6cd5b 901 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 902
81481eb4
CH
903 if (data.next_set) {
904 data.next = blk_rq_timeout(round_jiffies_up(data.next));
905 mod_timer(&q->timeout, data.next);
0d2602ca 906 } else {
0bf6cd5b
CH
907 struct blk_mq_hw_ctx *hctx;
908
f054b56c
ML
909 queue_for_each_hw_ctx(q, hctx, i) {
910 /* the hctx may be unmapped, so check it here */
911 if (blk_mq_hw_queue_mapped(hctx))
912 blk_mq_tag_idle(hctx);
913 }
0d2602ca 914 }
287922eb 915 blk_queue_exit(q);
320ae51f
JA
916}
917
88459642
OS
918struct flush_busy_ctx_data {
919 struct blk_mq_hw_ctx *hctx;
920 struct list_head *list;
921};
922
923static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
924{
925 struct flush_busy_ctx_data *flush_data = data;
926 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
927 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
928
929 sbitmap_clear_bit(sb, bitnr);
930 spin_lock(&ctx->lock);
931 list_splice_tail_init(&ctx->rq_list, flush_data->list);
932 spin_unlock(&ctx->lock);
933 return true;
934}
935
1429d7c9
JA
936/*
937 * Process software queues that have been marked busy, splicing them
938 * to the for-dispatch
939 */
2c3ad667 940void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 941{
88459642
OS
942 struct flush_busy_ctx_data data = {
943 .hctx = hctx,
944 .list = list,
945 };
1429d7c9 946
88459642 947 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 948}
2c3ad667 949EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 950
b347689f
ML
951struct dispatch_rq_data {
952 struct blk_mq_hw_ctx *hctx;
953 struct request *rq;
954};
955
956static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
957 void *data)
958{
959 struct dispatch_rq_data *dispatch_data = data;
960 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
961 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
962
963 spin_lock(&ctx->lock);
964 if (unlikely(!list_empty(&ctx->rq_list))) {
965 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
966 list_del_init(&dispatch_data->rq->queuelist);
967 if (list_empty(&ctx->rq_list))
968 sbitmap_clear_bit(sb, bitnr);
969 }
970 spin_unlock(&ctx->lock);
971
972 return !dispatch_data->rq;
973}
974
975struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
976 struct blk_mq_ctx *start)
977{
978 unsigned off = start ? start->index_hw : 0;
979 struct dispatch_rq_data data = {
980 .hctx = hctx,
981 .rq = NULL,
982 };
983
984 __sbitmap_for_each_set(&hctx->ctx_map, off,
985 dispatch_rq_from_ctx, &data);
986
987 return data.rq;
988}
989
703fd1c0
JA
990static inline unsigned int queued_to_index(unsigned int queued)
991{
992 if (!queued)
993 return 0;
1429d7c9 994
703fd1c0 995 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
996}
997
bd6737f1
JA
998bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
999 bool wait)
bd166ef1
JA
1000{
1001 struct blk_mq_alloc_data data = {
1002 .q = rq->q,
bd166ef1
JA
1003 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1004 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1005 };
662e29d9 1006 bool shared;
bd166ef1 1007
5feeacdd
JA
1008 might_sleep_if(wait);
1009
81380ca1
OS
1010 if (rq->tag != -1)
1011 goto done;
bd166ef1 1012
415b806d
SG
1013 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1014 data.flags |= BLK_MQ_REQ_RESERVED;
1015
662e29d9 1016 shared = blk_mq_tag_busy(data.hctx);
bd166ef1
JA
1017 rq->tag = blk_mq_get_tag(&data);
1018 if (rq->tag >= 0) {
662e29d9 1019 if (shared) {
200e86b3
JA
1020 rq->rq_flags |= RQF_MQ_INFLIGHT;
1021 atomic_inc(&data.hctx->nr_active);
1022 }
bd166ef1 1023 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
1024 }
1025
81380ca1
OS
1026done:
1027 if (hctx)
1028 *hctx = data.hctx;
1029 return rq->tag != -1;
bd166ef1
JA
1030}
1031
eb619fdb
JA
1032static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1033 int flags, void *key)
da55f2cc
OS
1034{
1035 struct blk_mq_hw_ctx *hctx;
1036
1037 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1038
eb619fdb 1039 list_del_init(&wait->entry);
da55f2cc
OS
1040 blk_mq_run_hw_queue(hctx, true);
1041 return 1;
1042}
1043
f906a6a0
JA
1044/*
1045 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1046 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1047 * restart. For both caes, take care to check the condition again after
1048 * marking us as waiting.
1049 */
1050static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1051 struct request *rq)
da55f2cc 1052{
eb619fdb 1053 struct blk_mq_hw_ctx *this_hctx = *hctx;
f906a6a0 1054 bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
da55f2cc 1055 struct sbq_wait_state *ws;
f906a6a0
JA
1056 wait_queue_entry_t *wait;
1057 bool ret;
da55f2cc 1058
f906a6a0
JA
1059 if (!shared_tags) {
1060 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1061 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1062 } else {
1063 wait = &this_hctx->dispatch_wait;
1064 if (!list_empty_careful(&wait->entry))
1065 return false;
1066
1067 spin_lock(&this_hctx->lock);
1068 if (!list_empty(&wait->entry)) {
1069 spin_unlock(&this_hctx->lock);
1070 return false;
1071 }
eb619fdb 1072
f906a6a0
JA
1073 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1074 add_wait_queue(&ws->wait, wait);
eb619fdb
JA
1075 }
1076
da55f2cc 1077 /*
eb619fdb
JA
1078 * It's possible that a tag was freed in the window between the
1079 * allocation failure and adding the hardware queue to the wait
1080 * queue.
da55f2cc 1081 */
f906a6a0
JA
1082 ret = blk_mq_get_driver_tag(rq, hctx, false);
1083
1084 if (!shared_tags) {
1085 /*
1086 * Don't clear RESTART here, someone else could have set it.
1087 * At most this will cost an extra queue run.
1088 */
1089 return ret;
1090 } else {
1091 if (!ret) {
1092 spin_unlock(&this_hctx->lock);
1093 return false;
1094 }
1095
1096 /*
1097 * We got a tag, remove ourselves from the wait queue to ensure
1098 * someone else gets the wakeup.
1099 */
1100 spin_lock_irq(&ws->wait.lock);
1101 list_del_init(&wait->entry);
1102 spin_unlock_irq(&ws->wait.lock);
eb619fdb 1103 spin_unlock(&this_hctx->lock);
f906a6a0 1104 return true;
eb619fdb 1105 }
da55f2cc
OS
1106}
1107
de148297 1108bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
eb619fdb 1109 bool got_budget)
320ae51f 1110{
81380ca1 1111 struct blk_mq_hw_ctx *hctx;
6d6f167c 1112 struct request *rq, *nxt;
eb619fdb 1113 bool no_tag = false;
fc17b653 1114 int errors, queued;
320ae51f 1115
81380ca1
OS
1116 if (list_empty(list))
1117 return false;
1118
de148297
ML
1119 WARN_ON(!list_is_singular(list) && got_budget);
1120
320ae51f
JA
1121 /*
1122 * Now process all the entries, sending them to the driver.
1123 */
93efe981 1124 errors = queued = 0;
81380ca1 1125 do {
74c45052 1126 struct blk_mq_queue_data bd;
fc17b653 1127 blk_status_t ret;
320ae51f 1128
f04c3df3 1129 rq = list_first_entry(list, struct request, queuelist);
462131c7
ML
1130
1131 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1132 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1133 break;
1134
1135 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
3c782d67 1136 /*
da55f2cc 1137 * The initial allocation attempt failed, so we need to
eb619fdb
JA
1138 * rerun the hardware queue when a tag is freed. The
1139 * waitqueue takes care of that. If the queue is run
1140 * before we add this entry back on the dispatch list,
1141 * we'll re-run it below.
3c782d67 1142 */
f906a6a0 1143 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
462131c7 1144 blk_mq_put_dispatch_budget(hctx);
f906a6a0
JA
1145 /*
1146 * For non-shared tags, the RESTART check
1147 * will suffice.
1148 */
1149 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1150 no_tag = true;
de148297
ML
1151 break;
1152 }
1153 }
1154
320ae51f 1155 list_del_init(&rq->queuelist);
320ae51f 1156
74c45052 1157 bd.rq = rq;
113285b4
JA
1158
1159 /*
1160 * Flag last if we have no more requests, or if we have more
1161 * but can't assign a driver tag to it.
1162 */
1163 if (list_empty(list))
1164 bd.last = true;
1165 else {
113285b4
JA
1166 nxt = list_first_entry(list, struct request, queuelist);
1167 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1168 }
74c45052
JA
1169
1170 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653 1171 if (ret == BLK_STS_RESOURCE) {
6d6f167c
JW
1172 /*
1173 * If an I/O scheduler has been configured and we got a
ff821d27
JA
1174 * driver tag for the next request already, free it
1175 * again.
6d6f167c
JW
1176 */
1177 if (!list_empty(list)) {
1178 nxt = list_first_entry(list, struct request, queuelist);
1179 blk_mq_put_driver_tag(nxt);
1180 }
f04c3df3 1181 list_add(&rq->queuelist, list);
ed0791b2 1182 __blk_mq_requeue_request(rq);
320ae51f 1183 break;
fc17b653
CH
1184 }
1185
1186 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1187 errors++;
2a842aca 1188 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1189 continue;
320ae51f
JA
1190 }
1191
fc17b653 1192 queued++;
81380ca1 1193 } while (!list_empty(list));
320ae51f 1194
703fd1c0 1195 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1196
1197 /*
1198 * Any items that need requeuing? Stuff them into hctx->dispatch,
1199 * that is where we will continue on next queue run.
1200 */
f04c3df3 1201 if (!list_empty(list)) {
320ae51f 1202 spin_lock(&hctx->lock);
c13660a0 1203 list_splice_init(list, &hctx->dispatch);
320ae51f 1204 spin_unlock(&hctx->lock);
f04c3df3 1205
9ba52e58 1206 /*
710c785f
BVA
1207 * If SCHED_RESTART was set by the caller of this function and
1208 * it is no longer set that means that it was cleared by another
1209 * thread and hence that a queue rerun is needed.
9ba52e58 1210 *
eb619fdb
JA
1211 * If 'no_tag' is set, that means that we failed getting
1212 * a driver tag with an I/O scheduler attached. If our dispatch
1213 * waitqueue is no longer active, ensure that we run the queue
1214 * AFTER adding our entries back to the list.
bd166ef1 1215 *
710c785f
BVA
1216 * If no I/O scheduler has been configured it is possible that
1217 * the hardware queue got stopped and restarted before requests
1218 * were pushed back onto the dispatch list. Rerun the queue to
1219 * avoid starvation. Notes:
1220 * - blk_mq_run_hw_queue() checks whether or not a queue has
1221 * been stopped before rerunning a queue.
1222 * - Some but not all block drivers stop a queue before
fc17b653 1223 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1224 * and dm-rq.
bd166ef1 1225 */
eb619fdb
JA
1226 if (!blk_mq_sched_needs_restart(hctx) ||
1227 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1228 blk_mq_run_hw_queue(hctx, true);
320ae51f 1229 }
f04c3df3 1230
93efe981 1231 return (queued + errors) != 0;
f04c3df3
JA
1232}
1233
6a83e74d
BVA
1234static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1235{
1236 int srcu_idx;
1237
b7a71e66
JA
1238 /*
1239 * We should be running this queue from one of the CPUs that
1240 * are mapped to it.
54011168
ML
1241 *
1242 * There are at least two related races now between setting
1243 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1244 * __blk_mq_run_hw_queue():
1245 *
1246 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1247 * but later it becomes online, then this warning is harmless
1248 * at all
1249 *
1250 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1251 * but later it becomes offline, then the warning can't be
1252 * triggered, and we depend on blk-mq timeout handler to
1253 * handle dispatched requests to this hctx
b7a71e66 1254 */
54011168
ML
1255 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1256 cpu_online(hctx->next_cpu)) {
1257 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1258 raw_smp_processor_id(),
1259 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1260 dump_stack();
1261 }
6a83e74d 1262
b7a71e66
JA
1263 /*
1264 * We can't run the queue inline with ints disabled. Ensure that
1265 * we catch bad users of this early.
1266 */
1267 WARN_ON_ONCE(in_interrupt());
1268
6a83e74d
BVA
1269 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1270 rcu_read_lock();
1f460b63 1271 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1272 rcu_read_unlock();
1273 } else {
bf4907c0
JA
1274 might_sleep();
1275
07319678 1276 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1f460b63 1277 blk_mq_sched_dispatch_requests(hctx);
07319678 1278 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
6a83e74d
BVA
1279 }
1280}
1281
6204c099
ML
1282static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1283{
1284 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1285
1286 if (cpu >= nr_cpu_ids)
1287 cpu = cpumask_first(hctx->cpumask);
1288 return cpu;
1289}
1290
506e931f
JA
1291/*
1292 * It'd be great if the workqueue API had a way to pass
1293 * in a mask and had some smarts for more clever placement.
1294 * For now we just round-robin here, switching for every
1295 * BLK_MQ_CPU_WORK_BATCH queued items.
1296 */
1297static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1298{
9027a417 1299 bool tried = false;
88f4a962 1300 int next_cpu = hctx->next_cpu;
9027a417 1301
b657d7e6
CH
1302 if (hctx->queue->nr_hw_queues == 1)
1303 return WORK_CPU_UNBOUND;
506e931f
JA
1304
1305 if (--hctx->next_cpu_batch <= 0) {
9027a417 1306select_cpu:
88f4a962 1307 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
8a591698 1308 cpu_online_mask);
506e931f 1309 if (next_cpu >= nr_cpu_ids)
6204c099 1310 next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
1311 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1312 }
1313
9027a417
ML
1314 /*
1315 * Do unbound schedule if we can't find a online CPU for this hctx,
1316 * and it should only happen in the path of handling CPU DEAD.
1317 */
88f4a962 1318 if (!cpu_online(next_cpu)) {
9027a417
ML
1319 if (!tried) {
1320 tried = true;
1321 goto select_cpu;
1322 }
1323
1324 /*
1325 * Make sure to re-select CPU next time once after CPUs
1326 * in hctx->cpumask become online again.
1327 */
88f4a962 1328 hctx->next_cpu = next_cpu;
9027a417
ML
1329 hctx->next_cpu_batch = 1;
1330 return WORK_CPU_UNBOUND;
1331 }
88f4a962
ML
1332
1333 hctx->next_cpu = next_cpu;
1334 return next_cpu;
506e931f
JA
1335}
1336
7587a5ae
BVA
1337static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1338 unsigned long msecs)
320ae51f 1339{
5435c023 1340 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1341 return;
1342
1b792f2f 1343 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1344 int cpu = get_cpu();
1345 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1346 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1347 put_cpu();
398205b8
PB
1348 return;
1349 }
e4043dcf 1350
2a90d4aa 1351 put_cpu();
e4043dcf 1352 }
398205b8 1353
81517da9
BVA
1354 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1355 msecs_to_jiffies(msecs));
7587a5ae
BVA
1356}
1357
1358void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1359{
1360 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1361}
1362EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1363
79f720a7 1364bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 1365{
d2265003
ML
1366 int srcu_idx;
1367 bool need_run;
1368
1369 /*
1370 * When queue is quiesced, we may be switching io scheduler, or
1371 * updating nr_hw_queues, or other things, and we can't run queue
1372 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1373 *
1374 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1375 * quiesced.
1376 */
1377 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1378 rcu_read_lock();
1379 need_run = !blk_queue_quiesced(hctx->queue) &&
1380 blk_mq_hctx_has_pending(hctx);
1381 rcu_read_unlock();
1382 } else {
1383 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1384 need_run = !blk_queue_quiesced(hctx->queue) &&
1385 blk_mq_hctx_has_pending(hctx);
1386 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1387 }
1388
1389 if (need_run) {
79f720a7
JA
1390 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1391 return true;
1392 }
1393
1394 return false;
320ae51f 1395}
5b727272 1396EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1397
b94ec296 1398void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1399{
1400 struct blk_mq_hw_ctx *hctx;
1401 int i;
1402
1403 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 1404 if (blk_mq_hctx_stopped(hctx))
320ae51f
JA
1405 continue;
1406
b94ec296 1407 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1408 }
1409}
b94ec296 1410EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1411
fd001443
BVA
1412/**
1413 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1414 * @q: request queue.
1415 *
1416 * The caller is responsible for serializing this function against
1417 * blk_mq_{start,stop}_hw_queue().
1418 */
1419bool blk_mq_queue_stopped(struct request_queue *q)
1420{
1421 struct blk_mq_hw_ctx *hctx;
1422 int i;
1423
1424 queue_for_each_hw_ctx(q, hctx, i)
1425 if (blk_mq_hctx_stopped(hctx))
1426 return true;
1427
1428 return false;
1429}
1430EXPORT_SYMBOL(blk_mq_queue_stopped);
1431
39a70c76
ML
1432/*
1433 * This function is often used for pausing .queue_rq() by driver when
1434 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1435 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1436 *
1437 * We do not guarantee that dispatch can be drained or blocked
1438 * after blk_mq_stop_hw_queue() returns. Please use
1439 * blk_mq_quiesce_queue() for that requirement.
1440 */
2719aa21
JA
1441void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1442{
641a9ed6 1443 cancel_delayed_work(&hctx->run_work);
280d45f6 1444
641a9ed6 1445 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1446}
641a9ed6 1447EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1448
39a70c76
ML
1449/*
1450 * This function is often used for pausing .queue_rq() by driver when
1451 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1452 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1453 *
1454 * We do not guarantee that dispatch can be drained or blocked
1455 * after blk_mq_stop_hw_queues() returns. Please use
1456 * blk_mq_quiesce_queue() for that requirement.
1457 */
2719aa21
JA
1458void blk_mq_stop_hw_queues(struct request_queue *q)
1459{
641a9ed6
ML
1460 struct blk_mq_hw_ctx *hctx;
1461 int i;
1462
1463 queue_for_each_hw_ctx(q, hctx, i)
1464 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1465}
1466EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1467
320ae51f
JA
1468void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1469{
1470 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1471
0ffbce80 1472 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1473}
1474EXPORT_SYMBOL(blk_mq_start_hw_queue);
1475
2f268556
CH
1476void blk_mq_start_hw_queues(struct request_queue *q)
1477{
1478 struct blk_mq_hw_ctx *hctx;
1479 int i;
1480
1481 queue_for_each_hw_ctx(q, hctx, i)
1482 blk_mq_start_hw_queue(hctx);
1483}
1484EXPORT_SYMBOL(blk_mq_start_hw_queues);
1485
ae911c5e
JA
1486void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1487{
1488 if (!blk_mq_hctx_stopped(hctx))
1489 return;
1490
1491 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1492 blk_mq_run_hw_queue(hctx, async);
1493}
1494EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1495
1b4a3258 1496void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1497{
1498 struct blk_mq_hw_ctx *hctx;
1499 int i;
1500
ae911c5e
JA
1501 queue_for_each_hw_ctx(q, hctx, i)
1502 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1503}
1504EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1505
70f4db63 1506static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1507{
1508 struct blk_mq_hw_ctx *hctx;
1509
9f993737 1510 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1511
21c6e939
JA
1512 /*
1513 * If we are stopped, don't run the queue. The exception is if
1514 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1515 * the STOPPED bit and run it.
1516 */
1517 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1518 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1519 return;
7587a5ae 1520
21c6e939
JA
1521 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1522 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1523 }
7587a5ae
BVA
1524
1525 __blk_mq_run_hw_queue(hctx);
1526}
1527
70f4db63
CH
1528
1529void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1530{
5435c023 1531 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
19c66e59 1532 return;
70f4db63 1533
21c6e939
JA
1534 /*
1535 * Stop the hw queue, then modify currently delayed work.
1536 * This should prevent us from running the queue prematurely.
1537 * Mark the queue as auto-clearing STOPPED when it runs.
1538 */
7e79dadc 1539 blk_mq_stop_hw_queue(hctx);
21c6e939
JA
1540 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1541 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1542 &hctx->run_work,
1543 msecs_to_jiffies(msecs));
70f4db63
CH
1544}
1545EXPORT_SYMBOL(blk_mq_delay_queue);
1546
cfd0c552 1547static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1548 struct request *rq,
1549 bool at_head)
320ae51f 1550{
e57690fe
JA
1551 struct blk_mq_ctx *ctx = rq->mq_ctx;
1552
7b607814
BVA
1553 lockdep_assert_held(&ctx->lock);
1554
01b983c9
JA
1555 trace_block_rq_insert(hctx->queue, rq);
1556
72a0a36e
CH
1557 if (at_head)
1558 list_add(&rq->queuelist, &ctx->rq_list);
1559 else
1560 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1561}
4bb659b1 1562
2c3ad667
JA
1563void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1564 bool at_head)
cfd0c552
ML
1565{
1566 struct blk_mq_ctx *ctx = rq->mq_ctx;
1567
7b607814
BVA
1568 lockdep_assert_held(&ctx->lock);
1569
e57690fe 1570 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1571 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1572}
1573
157f377b
JA
1574/*
1575 * Should only be used carefully, when the caller knows we want to
1576 * bypass a potential IO scheduler on the target device.
1577 */
b0850297 1578void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
157f377b
JA
1579{
1580 struct blk_mq_ctx *ctx = rq->mq_ctx;
1581 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1582
1583 spin_lock(&hctx->lock);
1584 list_add_tail(&rq->queuelist, &hctx->dispatch);
1585 spin_unlock(&hctx->lock);
1586
b0850297
ML
1587 if (run_queue)
1588 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1589}
1590
bd166ef1
JA
1591void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1592 struct list_head *list)
320ae51f
JA
1593
1594{
320ae51f
JA
1595 /*
1596 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1597 * offline now
1598 */
1599 spin_lock(&ctx->lock);
1600 while (!list_empty(list)) {
1601 struct request *rq;
1602
1603 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1604 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1605 list_del_init(&rq->queuelist);
e57690fe 1606 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1607 }
cfd0c552 1608 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1609 spin_unlock(&ctx->lock);
320ae51f
JA
1610}
1611
1612static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1613{
1614 struct request *rqa = container_of(a, struct request, queuelist);
1615 struct request *rqb = container_of(b, struct request, queuelist);
1616
1617 return !(rqa->mq_ctx < rqb->mq_ctx ||
1618 (rqa->mq_ctx == rqb->mq_ctx &&
1619 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1620}
1621
1622void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1623{
1624 struct blk_mq_ctx *this_ctx;
1625 struct request_queue *this_q;
1626 struct request *rq;
1627 LIST_HEAD(list);
1628 LIST_HEAD(ctx_list);
1629 unsigned int depth;
1630
1631 list_splice_init(&plug->mq_list, &list);
1632
1633 list_sort(NULL, &list, plug_ctx_cmp);
1634
1635 this_q = NULL;
1636 this_ctx = NULL;
1637 depth = 0;
1638
1639 while (!list_empty(&list)) {
1640 rq = list_entry_rq(list.next);
1641 list_del_init(&rq->queuelist);
1642 BUG_ON(!rq->q);
1643 if (rq->mq_ctx != this_ctx) {
1644 if (this_ctx) {
0f7cb0db 1645 trace_block_unplug(this_q, depth, !from_schedule);
bd166ef1
JA
1646 blk_mq_sched_insert_requests(this_q, this_ctx,
1647 &ctx_list,
1648 from_schedule);
320ae51f
JA
1649 }
1650
1651 this_ctx = rq->mq_ctx;
1652 this_q = rq->q;
1653 depth = 0;
1654 }
1655
1656 depth++;
1657 list_add_tail(&rq->queuelist, &ctx_list);
1658 }
1659
1660 /*
1661 * If 'this_ctx' is set, we know we have entries to complete
1662 * on 'ctx_list'. Do those.
1663 */
1664 if (this_ctx) {
0f7cb0db 1665 trace_block_unplug(this_q, depth, !from_schedule);
bd166ef1
JA
1666 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1667 from_schedule);
320ae51f
JA
1668 }
1669}
1670
1671static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1672{
da8d7f07 1673 blk_init_request_from_bio(rq, bio);
4b570521 1674
85acb3ba
SL
1675 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1676
6e85eaf3 1677 blk_account_io_start(rq, true);
320ae51f
JA
1678}
1679
ab42f35d
ML
1680static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1681 struct blk_mq_ctx *ctx,
1682 struct request *rq)
1683{
1684 spin_lock(&ctx->lock);
1685 __blk_mq_insert_request(hctx, rq, false);
1686 spin_unlock(&ctx->lock);
07068d5b 1687}
14ec77f3 1688
fd2d3326
JA
1689static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1690{
bd166ef1
JA
1691 if (rq->tag != -1)
1692 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1693
1694 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1695}
1696
d964f04a
ML
1697static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1698 struct request *rq,
1699 blk_qc_t *cookie, bool may_sleep)
f984df1f 1700{
f984df1f 1701 struct request_queue *q = rq->q;
f984df1f
SL
1702 struct blk_mq_queue_data bd = {
1703 .rq = rq,
d945a365 1704 .last = true,
f984df1f 1705 };
bd166ef1 1706 blk_qc_t new_cookie;
f06345ad 1707 blk_status_t ret;
d964f04a
ML
1708 bool run_queue = true;
1709
f4560ffe
ML
1710 /* RCU or SRCU read lock is needed before checking quiesced flag */
1711 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a
ML
1712 run_queue = false;
1713 goto insert;
1714 }
f984df1f 1715
bd166ef1 1716 if (q->elevator)
2253efc8
BVA
1717 goto insert;
1718
462131c7 1719 if (!blk_mq_get_dispatch_budget(hctx))
bd166ef1
JA
1720 goto insert;
1721
462131c7
ML
1722 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1723 blk_mq_put_dispatch_budget(hctx);
de148297 1724 goto insert;
88022d72 1725 }
de148297 1726
bd166ef1
JA
1727 new_cookie = request_to_qc_t(hctx, rq);
1728
f984df1f
SL
1729 /*
1730 * For OK queue, we are done. For error, kill it. Any other
1731 * error (busy), just add it to our list as we previously
1732 * would have done
1733 */
1734 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653
CH
1735 switch (ret) {
1736 case BLK_STS_OK:
7b371636 1737 *cookie = new_cookie;
2253efc8 1738 return;
fc17b653
CH
1739 case BLK_STS_RESOURCE:
1740 __blk_mq_requeue_request(rq);
1741 goto insert;
1742 default:
7b371636 1743 *cookie = BLK_QC_T_NONE;
fc17b653 1744 blk_mq_end_request(rq, ret);
2253efc8 1745 return;
f984df1f 1746 }
7b371636 1747
2253efc8 1748insert:
d964f04a 1749 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
f984df1f
SL
1750}
1751
5eb6126e
CH
1752static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1753 struct request *rq, blk_qc_t *cookie)
1754{
1755 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1756 rcu_read_lock();
d964f04a 1757 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
5eb6126e
CH
1758 rcu_read_unlock();
1759 } else {
bf4907c0
JA
1760 unsigned int srcu_idx;
1761
1762 might_sleep();
1763
07319678 1764 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
d964f04a 1765 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
07319678 1766 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
5eb6126e
CH
1767 }
1768}
1769
dece1635 1770static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1771{
ef295ecf 1772 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1773 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1774 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1775 struct request *rq;
5eb6126e 1776 unsigned int request_count = 0;
f984df1f 1777 struct blk_plug *plug;
5b3f341f 1778 struct request *same_queue_rq = NULL;
7b371636 1779 blk_qc_t cookie;
87760e5e 1780 unsigned int wb_acct;
07068d5b
JA
1781
1782 blk_queue_bounce(q, &bio);
1783
af67c31f 1784 blk_queue_split(q, &bio);
f36ea50c 1785
e23947bd 1786 if (!bio_integrity_prep(bio))
dece1635 1787 return BLK_QC_T_NONE;
07068d5b 1788
87c279e6
OS
1789 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1790 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1791 return BLK_QC_T_NONE;
f984df1f 1792
bd166ef1
JA
1793 if (blk_mq_sched_bio_merge(q, bio))
1794 return BLK_QC_T_NONE;
1795
87760e5e
JA
1796 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1797
bd166ef1
JA
1798 trace_block_getrq(q, bio, bio->bi_opf);
1799
d2c0d383 1800 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1801 if (unlikely(!rq)) {
1802 __wbt_done(q->rq_wb, wb_acct);
03a07c92
GR
1803 if (bio->bi_opf & REQ_NOWAIT)
1804 bio_wouldblock_error(bio);
dece1635 1805 return BLK_QC_T_NONE;
87760e5e
JA
1806 }
1807
1808 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1809
fd2d3326 1810 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1811
f984df1f 1812 plug = current->plug;
07068d5b 1813 if (unlikely(is_flush_fua)) {
f984df1f 1814 blk_mq_put_ctx(data.ctx);
07068d5b 1815 blk_mq_bio_to_request(rq, bio);
923218f6
ML
1816
1817 /* bypass scheduler for flush rq */
1818 blk_insert_flush(rq);
1819 blk_mq_run_hw_queue(data.hctx, true);
a4d907b6 1820 } else if (plug && q->nr_hw_queues == 1) {
600271d9
SL
1821 struct request *last = NULL;
1822
b00c53e8 1823 blk_mq_put_ctx(data.ctx);
e6c4438b 1824 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1825
1826 /*
1827 * @request_count may become stale because of schedule
1828 * out, so check the list again.
1829 */
1830 if (list_empty(&plug->mq_list))
1831 request_count = 0;
254d259d
CH
1832 else if (blk_queue_nomerges(q))
1833 request_count = blk_plug_queued_count(q);
1834
676d0607 1835 if (!request_count)
e6c4438b 1836 trace_block_plug(q);
600271d9
SL
1837 else
1838 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1839
600271d9
SL
1840 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1841 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1842 blk_flush_plug_list(plug, false);
1843 trace_block_plug(q);
320ae51f 1844 }
b094f89c 1845
e6c4438b 1846 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1847 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1848 blk_mq_bio_to_request(rq, bio);
07068d5b 1849
07068d5b 1850 /*
6a83e74d 1851 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1852 * Otherwise the existing request in the plug list will be
1853 * issued. So the plug list will have one request at most
2299722c
CH
1854 * The plug list might get flushed before this. If that happens,
1855 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1856 */
2299722c
CH
1857 if (list_empty(&plug->mq_list))
1858 same_queue_rq = NULL;
1859 if (same_queue_rq)
1860 list_del_init(&same_queue_rq->queuelist);
1861 list_add_tail(&rq->queuelist, &plug->mq_list);
1862
bf4907c0
JA
1863 blk_mq_put_ctx(data.ctx);
1864
dad7a3be
ML
1865 if (same_queue_rq) {
1866 data.hctx = blk_mq_map_queue(q,
1867 same_queue_rq->mq_ctx->cpu);
2299722c
CH
1868 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1869 &cookie);
dad7a3be 1870 }
a4d907b6 1871 } else if (q->nr_hw_queues > 1 && is_sync) {
bf4907c0 1872 blk_mq_put_ctx(data.ctx);
2299722c 1873 blk_mq_bio_to_request(rq, bio);
2299722c 1874 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
a4d907b6 1875 } else if (q->elevator) {
b00c53e8 1876 blk_mq_put_ctx(data.ctx);
bd166ef1 1877 blk_mq_bio_to_request(rq, bio);
a4d907b6 1878 blk_mq_sched_insert_request(rq, false, true, true, true);
ab42f35d 1879 } else {
b00c53e8 1880 blk_mq_put_ctx(data.ctx);
ab42f35d
ML
1881 blk_mq_bio_to_request(rq, bio);
1882 blk_mq_queue_io(data.hctx, data.ctx, rq);
a4d907b6 1883 blk_mq_run_hw_queue(data.hctx, true);
ab42f35d 1884 }
320ae51f 1885
7b371636 1886 return cookie;
320ae51f
JA
1887}
1888
cc71a6f4
JA
1889void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1890 unsigned int hctx_idx)
95363efd 1891{
e9b267d9 1892 struct page *page;
320ae51f 1893
24d2f903 1894 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1895 int i;
320ae51f 1896
24d2f903 1897 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1898 struct request *rq = tags->static_rqs[i];
1899
1900 if (!rq)
e9b267d9 1901 continue;
d6296d39 1902 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 1903 tags->static_rqs[i] = NULL;
e9b267d9 1904 }
320ae51f 1905 }
320ae51f 1906
24d2f903
CH
1907 while (!list_empty(&tags->page_list)) {
1908 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1909 list_del_init(&page->lru);
f75782e4
CM
1910 /*
1911 * Remove kmemleak object previously allocated in
1912 * blk_mq_init_rq_map().
1913 */
1914 kmemleak_free(page_address(page));
320ae51f
JA
1915 __free_pages(page, page->private);
1916 }
cc71a6f4 1917}
320ae51f 1918
cc71a6f4
JA
1919void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1920{
24d2f903 1921 kfree(tags->rqs);
cc71a6f4 1922 tags->rqs = NULL;
2af8cbe3
JA
1923 kfree(tags->static_rqs);
1924 tags->static_rqs = NULL;
320ae51f 1925
24d2f903 1926 blk_mq_free_tags(tags);
320ae51f
JA
1927}
1928
cc71a6f4
JA
1929struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1930 unsigned int hctx_idx,
1931 unsigned int nr_tags,
1932 unsigned int reserved_tags)
320ae51f 1933{
24d2f903 1934 struct blk_mq_tags *tags;
59f082e4 1935 int node;
320ae51f 1936
59f082e4
SL
1937 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1938 if (node == NUMA_NO_NODE)
1939 node = set->numa_node;
1940
1941 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1942 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1943 if (!tags)
1944 return NULL;
320ae51f 1945
cc71a6f4 1946 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1947 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1948 node);
24d2f903
CH
1949 if (!tags->rqs) {
1950 blk_mq_free_tags(tags);
1951 return NULL;
1952 }
320ae51f 1953
2af8cbe3
JA
1954 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1955 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1956 node);
2af8cbe3
JA
1957 if (!tags->static_rqs) {
1958 kfree(tags->rqs);
1959 blk_mq_free_tags(tags);
1960 return NULL;
1961 }
1962
cc71a6f4
JA
1963 return tags;
1964}
1965
1966static size_t order_to_size(unsigned int order)
1967{
1968 return (size_t)PAGE_SIZE << order;
1969}
1970
1971int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1972 unsigned int hctx_idx, unsigned int depth)
1973{
1974 unsigned int i, j, entries_per_page, max_order = 4;
1975 size_t rq_size, left;
59f082e4
SL
1976 int node;
1977
1978 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1979 if (node == NUMA_NO_NODE)
1980 node = set->numa_node;
cc71a6f4
JA
1981
1982 INIT_LIST_HEAD(&tags->page_list);
1983
320ae51f
JA
1984 /*
1985 * rq_size is the size of the request plus driver payload, rounded
1986 * to the cacheline size
1987 */
24d2f903 1988 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1989 cache_line_size());
cc71a6f4 1990 left = rq_size * depth;
320ae51f 1991
cc71a6f4 1992 for (i = 0; i < depth; ) {
320ae51f
JA
1993 int this_order = max_order;
1994 struct page *page;
1995 int to_do;
1996 void *p;
1997
b3a834b1 1998 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1999 this_order--;
2000
2001 do {
59f082e4 2002 page = alloc_pages_node(node,
36e1f3d1 2003 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 2004 this_order);
320ae51f
JA
2005 if (page)
2006 break;
2007 if (!this_order--)
2008 break;
2009 if (order_to_size(this_order) < rq_size)
2010 break;
2011 } while (1);
2012
2013 if (!page)
24d2f903 2014 goto fail;
320ae51f
JA
2015
2016 page->private = this_order;
24d2f903 2017 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
2018
2019 p = page_address(page);
f75782e4
CM
2020 /*
2021 * Allow kmemleak to scan these pages as they contain pointers
2022 * to additional allocations like via ops->init_request().
2023 */
36e1f3d1 2024 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 2025 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 2026 to_do = min(entries_per_page, depth - i);
320ae51f
JA
2027 left -= to_do * rq_size;
2028 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
2029 struct request *rq = p;
2030
2031 tags->static_rqs[i] = rq;
24d2f903 2032 if (set->ops->init_request) {
d6296d39 2033 if (set->ops->init_request(set, rq, hctx_idx,
59f082e4 2034 node)) {
2af8cbe3 2035 tags->static_rqs[i] = NULL;
24d2f903 2036 goto fail;
a5164405 2037 }
e9b267d9
CH
2038 }
2039
320ae51f
JA
2040 p += rq_size;
2041 i++;
2042 }
2043 }
cc71a6f4 2044 return 0;
320ae51f 2045
24d2f903 2046fail:
cc71a6f4
JA
2047 blk_mq_free_rqs(set, tags, hctx_idx);
2048 return -ENOMEM;
320ae51f
JA
2049}
2050
e57690fe
JA
2051/*
2052 * 'cpu' is going away. splice any existing rq_list entries from this
2053 * software queue to the hw queue dispatch list, and ensure that it
2054 * gets run.
2055 */
9467f859 2056static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 2057{
9467f859 2058 struct blk_mq_hw_ctx *hctx;
484b4061
JA
2059 struct blk_mq_ctx *ctx;
2060 LIST_HEAD(tmp);
2061
9467f859 2062 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 2063 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
2064
2065 spin_lock(&ctx->lock);
2066 if (!list_empty(&ctx->rq_list)) {
2067 list_splice_init(&ctx->rq_list, &tmp);
2068 blk_mq_hctx_clear_pending(hctx, ctx);
2069 }
2070 spin_unlock(&ctx->lock);
2071
2072 if (list_empty(&tmp))
9467f859 2073 return 0;
484b4061 2074
e57690fe
JA
2075 spin_lock(&hctx->lock);
2076 list_splice_tail_init(&tmp, &hctx->dispatch);
2077 spin_unlock(&hctx->lock);
484b4061
JA
2078
2079 blk_mq_run_hw_queue(hctx, true);
9467f859 2080 return 0;
484b4061
JA
2081}
2082
9467f859 2083static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 2084{
9467f859
TG
2085 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2086 &hctx->cpuhp_dead);
484b4061
JA
2087}
2088
c3b4afca 2089/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
2090static void blk_mq_exit_hctx(struct request_queue *q,
2091 struct blk_mq_tag_set *set,
2092 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2093{
9c1051aa
OS
2094 blk_mq_debugfs_unregister_hctx(hctx);
2095
25a2bfb9
ML
2096 if (blk_mq_hw_queue_mapped(hctx))
2097 blk_mq_tag_idle(hctx);
08e98fc6 2098
f70ced09 2099 if (set->ops->exit_request)
d6296d39 2100 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 2101
93252632
OS
2102 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2103
08e98fc6
ML
2104 if (set->ops->exit_hctx)
2105 set->ops->exit_hctx(hctx, hctx_idx);
2106
9467f859 2107 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
2108}
2109
624dbe47
ML
2110static void blk_mq_exit_hw_queues(struct request_queue *q,
2111 struct blk_mq_tag_set *set, int nr_queue)
2112{
2113 struct blk_mq_hw_ctx *hctx;
2114 unsigned int i;
2115
2116 queue_for_each_hw_ctx(q, hctx, i) {
2117 if (i == nr_queue)
2118 break;
08e98fc6 2119 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 2120 }
624dbe47
ML
2121}
2122
08e98fc6
ML
2123static int blk_mq_init_hctx(struct request_queue *q,
2124 struct blk_mq_tag_set *set,
2125 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 2126{
08e98fc6
ML
2127 int node;
2128
2129 node = hctx->numa_node;
2130 if (node == NUMA_NO_NODE)
2131 node = hctx->numa_node = set->numa_node;
2132
9f993737 2133 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2134 spin_lock_init(&hctx->lock);
2135 INIT_LIST_HEAD(&hctx->dispatch);
2136 hctx->queue = q;
2404e607 2137 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2138
9467f859 2139 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
2140
2141 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
2142
2143 /*
08e98fc6
ML
2144 * Allocate space for all possible cpus to avoid allocation at
2145 * runtime
320ae51f 2146 */
d904bfa7 2147 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3bcd45bf 2148 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
08e98fc6
ML
2149 if (!hctx->ctxs)
2150 goto unregister_cpu_notifier;
320ae51f 2151
3bcd45bf
JW
2152 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2153 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
08e98fc6 2154 goto free_ctxs;
320ae51f 2155
08e98fc6 2156 hctx->nr_ctx = 0;
320ae51f 2157
eb619fdb
JA
2158 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2159 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2160
08e98fc6
ML
2161 if (set->ops->init_hctx &&
2162 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2163 goto free_bitmap;
320ae51f 2164
93252632
OS
2165 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2166 goto exit_hctx;
2167
3bcd45bf
JW
2168 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2169 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
f70ced09 2170 if (!hctx->fq)
93252632 2171 goto sched_exit_hctx;
320ae51f 2172
f70ced09 2173 if (set->ops->init_request &&
d6296d39
CH
2174 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2175 node))
f70ced09 2176 goto free_fq;
320ae51f 2177
6a83e74d 2178 if (hctx->flags & BLK_MQ_F_BLOCKING)
07319678 2179 init_srcu_struct(hctx->queue_rq_srcu);
6a83e74d 2180
9c1051aa
OS
2181 blk_mq_debugfs_register_hctx(q, hctx);
2182
08e98fc6 2183 return 0;
320ae51f 2184
f70ced09 2185 free_fq:
aa82ef2f 2186 blk_free_flush_queue(hctx->fq);
93252632
OS
2187 sched_exit_hctx:
2188 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
2189 exit_hctx:
2190 if (set->ops->exit_hctx)
2191 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 2192 free_bitmap:
88459642 2193 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2194 free_ctxs:
2195 kfree(hctx->ctxs);
2196 unregister_cpu_notifier:
9467f859 2197 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
2198 return -1;
2199}
320ae51f 2200
320ae51f
JA
2201static void blk_mq_init_cpu_queues(struct request_queue *q,
2202 unsigned int nr_hw_queues)
2203{
2204 unsigned int i;
2205
2206 for_each_possible_cpu(i) {
2207 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2208 struct blk_mq_hw_ctx *hctx;
2209
320ae51f
JA
2210 __ctx->cpu = i;
2211 spin_lock_init(&__ctx->lock);
2212 INIT_LIST_HEAD(&__ctx->rq_list);
2213 __ctx->queue = q;
2214
320ae51f
JA
2215 /*
2216 * Set local node, IFF we have more than one hw queue. If
2217 * not, we remain on the home node of the device
2218 */
8a591698 2219 hctx = blk_mq_map_queue(q, i);
320ae51f 2220 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 2221 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
2222 }
2223}
2224
cc71a6f4
JA
2225static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2226{
2227 int ret = 0;
2228
2229 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2230 set->queue_depth, set->reserved_tags);
2231 if (!set->tags[hctx_idx])
2232 return false;
2233
2234 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2235 set->queue_depth);
2236 if (!ret)
2237 return true;
2238
2239 blk_mq_free_rq_map(set->tags[hctx_idx]);
2240 set->tags[hctx_idx] = NULL;
2241 return false;
2242}
2243
2244static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2245 unsigned int hctx_idx)
2246{
bd166ef1
JA
2247 if (set->tags[hctx_idx]) {
2248 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2249 blk_mq_free_rq_map(set->tags[hctx_idx]);
2250 set->tags[hctx_idx] = NULL;
2251 }
cc71a6f4
JA
2252}
2253
4b855ad3 2254static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2255{
d1b1cea1 2256 unsigned int i, hctx_idx;
320ae51f
JA
2257 struct blk_mq_hw_ctx *hctx;
2258 struct blk_mq_ctx *ctx;
2a34c087 2259 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2260
60de074b
AM
2261 /*
2262 * Avoid others reading imcomplete hctx->cpumask through sysfs
2263 */
2264 mutex_lock(&q->sysfs_lock);
2265
320ae51f 2266 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2267 cpumask_clear(hctx->cpumask);
320ae51f
JA
2268 hctx->nr_ctx = 0;
2269 }
2270
2271 /*
4b855ad3
CH
2272 * Map software to hardware queues.
2273 *
2274 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2275 */
8a591698 2276 for_each_possible_cpu(i) {
d1b1cea1
GKB
2277 hctx_idx = q->mq_map[i];
2278 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2279 if (!set->tags[hctx_idx] &&
2280 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2281 /*
2282 * If tags initialization fail for some hctx,
2283 * that hctx won't be brought online. In this
2284 * case, remap the current ctx to hctx[0] which
2285 * is guaranteed to always have tags allocated
2286 */
cc71a6f4 2287 q->mq_map[i] = 0;
d1b1cea1
GKB
2288 }
2289
897bb0c7 2290 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2291 hctx = blk_mq_map_queue(q, i);
868f2f0b 2292
e4043dcf 2293 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2294 ctx->index_hw = hctx->nr_ctx;
2295 hctx->ctxs[hctx->nr_ctx++] = ctx;
2296 }
506e931f 2297
60de074b
AM
2298 mutex_unlock(&q->sysfs_lock);
2299
506e931f 2300 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2301 /*
a68aafa5
JA
2302 * If no software queues are mapped to this hardware queue,
2303 * disable it and free the request entries.
484b4061
JA
2304 */
2305 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2306 /* Never unmap queue 0. We need it as a
2307 * fallback in case of a new remap fails
2308 * allocation
2309 */
cc71a6f4
JA
2310 if (i && set->tags[i])
2311 blk_mq_free_map_and_requests(set, i);
2312
2a34c087 2313 hctx->tags = NULL;
484b4061
JA
2314 continue;
2315 }
2316
2a34c087
ML
2317 hctx->tags = set->tags[i];
2318 WARN_ON(!hctx->tags);
2319
889fa31f
CY
2320 /*
2321 * Set the map size to the number of mapped software queues.
2322 * This is more accurate and more efficient than looping
2323 * over all possibly mapped software queues.
2324 */
88459642 2325 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2326
484b4061
JA
2327 /*
2328 * Initialize batch roundrobin counts
2329 */
6204c099 2330 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
2331 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2332 }
320ae51f
JA
2333}
2334
8e8320c9
JA
2335/*
2336 * Caller needs to ensure that we're either frozen/quiesced, or that
2337 * the queue isn't live yet.
2338 */
2404e607 2339static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2340{
2341 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2342 int i;
2343
2404e607 2344 queue_for_each_hw_ctx(q, hctx, i) {
8e8320c9
JA
2345 if (shared) {
2346 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2347 atomic_inc(&q->shared_hctx_restart);
2404e607 2348 hctx->flags |= BLK_MQ_F_TAG_SHARED;
8e8320c9
JA
2349 } else {
2350 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2351 atomic_dec(&q->shared_hctx_restart);
2404e607 2352 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
8e8320c9 2353 }
2404e607
JM
2354 }
2355}
2356
8e8320c9
JA
2357static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2358 bool shared)
2404e607
JM
2359{
2360 struct request_queue *q;
0d2602ca 2361
705cda97
BVA
2362 lockdep_assert_held(&set->tag_list_lock);
2363
0d2602ca
JA
2364 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2365 blk_mq_freeze_queue(q);
2404e607 2366 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2367 blk_mq_unfreeze_queue(q);
2368 }
2369}
2370
2371static void blk_mq_del_queue_tag_set(struct request_queue *q)
2372{
2373 struct blk_mq_tag_set *set = q->tag_set;
2374
0d2602ca 2375 mutex_lock(&set->tag_list_lock);
705cda97 2376 list_del_rcu(&q->tag_set_list);
2404e607
JM
2377 if (list_is_singular(&set->tag_list)) {
2378 /* just transitioned to unshared */
2379 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2380 /* update existing queue */
2381 blk_mq_update_tag_set_depth(set, false);
2382 }
0d2602ca 2383 mutex_unlock(&set->tag_list_lock);
705cda97 2384 synchronize_rcu();
7c68628e 2385 INIT_LIST_HEAD(&q->tag_set_list);
0d2602ca
JA
2386}
2387
2388static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2389 struct request_queue *q)
2390{
2391 q->tag_set = set;
2392
2393 mutex_lock(&set->tag_list_lock);
2404e607 2394
ff821d27
JA
2395 /*
2396 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2397 */
2398 if (!list_empty(&set->tag_list) &&
2399 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2404e607
JM
2400 set->flags |= BLK_MQ_F_TAG_SHARED;
2401 /* update existing queue */
2402 blk_mq_update_tag_set_depth(set, true);
2403 }
2404 if (set->flags & BLK_MQ_F_TAG_SHARED)
2405 queue_set_hctx_shared(q, true);
705cda97 2406 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2407
0d2602ca
JA
2408 mutex_unlock(&set->tag_list_lock);
2409}
2410
e09aae7e
ML
2411/*
2412 * It is the actual release handler for mq, but we do it from
2413 * request queue's release handler for avoiding use-after-free
2414 * and headache because q->mq_kobj shouldn't have been introduced,
2415 * but we can't group ctx/kctx kobj without it.
2416 */
2417void blk_mq_release(struct request_queue *q)
2418{
2419 struct blk_mq_hw_ctx *hctx;
2420 unsigned int i;
2421
2422 /* hctx kobj stays in hctx */
c3b4afca
ML
2423 queue_for_each_hw_ctx(q, hctx, i) {
2424 if (!hctx)
2425 continue;
6c8b232e 2426 kobject_put(&hctx->kobj);
c3b4afca 2427 }
e09aae7e 2428
a723bab3
AM
2429 q->mq_map = NULL;
2430
e09aae7e
ML
2431 kfree(q->queue_hw_ctx);
2432
7ea5fe31
ML
2433 /*
2434 * release .mq_kobj and sw queue's kobject now because
2435 * both share lifetime with request queue.
2436 */
2437 blk_mq_sysfs_deinit(q);
2438
e09aae7e
ML
2439 free_percpu(q->queue_ctx);
2440}
2441
24d2f903 2442struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2443{
2444 struct request_queue *uninit_q, *q;
2445
2446 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2447 if (!uninit_q)
2448 return ERR_PTR(-ENOMEM);
2449
2450 q = blk_mq_init_allocated_queue(set, uninit_q);
2451 if (IS_ERR(q))
2452 blk_cleanup_queue(uninit_q);
2453
2454 return q;
2455}
2456EXPORT_SYMBOL(blk_mq_init_queue);
2457
07319678
BVA
2458static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2459{
2460 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2461
2462 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2463 __alignof__(struct blk_mq_hw_ctx)) !=
2464 sizeof(struct blk_mq_hw_ctx));
2465
2466 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2467 hw_ctx_size += sizeof(struct srcu_struct);
2468
2469 return hw_ctx_size;
2470}
2471
868f2f0b
KB
2472static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2473 struct request_queue *q)
320ae51f 2474{
868f2f0b
KB
2475 int i, j;
2476 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2477
868f2f0b 2478 blk_mq_sysfs_unregister(q);
a7e54b6a
ML
2479
2480 /* protect against switching io scheduler */
2481 mutex_lock(&q->sysfs_lock);
24d2f903 2482 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2483 int node;
f14bbe77 2484
868f2f0b
KB
2485 if (hctxs[i])
2486 continue;
2487
2488 node = blk_mq_hw_queue_to_node(q->mq_map, i);
07319678 2489 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
3bcd45bf
JW
2490 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2491 node);
320ae51f 2492 if (!hctxs[i])
868f2f0b 2493 break;
320ae51f 2494
3bcd45bf
JW
2495 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask,
2496 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2497 node)) {
868f2f0b
KB
2498 kfree(hctxs[i]);
2499 hctxs[i] = NULL;
2500 break;
2501 }
e4043dcf 2502
0d2602ca 2503 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2504 hctxs[i]->numa_node = node;
320ae51f 2505 hctxs[i]->queue_num = i;
868f2f0b
KB
2506
2507 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2508 free_cpumask_var(hctxs[i]->cpumask);
2509 kfree(hctxs[i]);
2510 hctxs[i] = NULL;
2511 break;
2512 }
2513 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2514 }
868f2f0b
KB
2515 for (j = i; j < q->nr_hw_queues; j++) {
2516 struct blk_mq_hw_ctx *hctx = hctxs[j];
2517
2518 if (hctx) {
cc71a6f4
JA
2519 if (hctx->tags)
2520 blk_mq_free_map_and_requests(set, j);
868f2f0b 2521 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2522 kobject_put(&hctx->kobj);
868f2f0b
KB
2523 hctxs[j] = NULL;
2524
2525 }
2526 }
2527 q->nr_hw_queues = i;
a7e54b6a 2528 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
2529 blk_mq_sysfs_register(q);
2530}
2531
2532struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2533 struct request_queue *q)
2534{
66841672
ML
2535 /* mark the queue as mq asap */
2536 q->mq_ops = set->ops;
2537
34dbad5d 2538 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2539 blk_mq_poll_stats_bkt,
2540 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2541 if (!q->poll_cb)
2542 goto err_exit;
2543
868f2f0b
KB
2544 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2545 if (!q->queue_ctx)
c7de5726 2546 goto err_exit;
868f2f0b 2547
737f98cf
ML
2548 /* init q->mq_kobj and sw queues' kobjects */
2549 blk_mq_sysfs_init(q);
2550
868f2f0b
KB
2551 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2552 GFP_KERNEL, set->numa_node);
2553 if (!q->queue_hw_ctx)
2554 goto err_percpu;
2555
bdd17e75 2556 q->mq_map = set->mq_map;
868f2f0b
KB
2557
2558 blk_mq_realloc_hw_ctxs(set, q);
2559 if (!q->nr_hw_queues)
2560 goto err_hctxs;
320ae51f 2561
287922eb 2562 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2563 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2564
2565 q->nr_queues = nr_cpu_ids;
320ae51f 2566
94eddfbe 2567 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2568
05f1dd53
JA
2569 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2570 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2571
1be036e9
CH
2572 q->sg_reserved_size = INT_MAX;
2573
2849450a 2574 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2575 INIT_LIST_HEAD(&q->requeue_list);
2576 spin_lock_init(&q->requeue_lock);
2577
254d259d 2578 blk_queue_make_request(q, blk_mq_make_request);
ea435e1b
CH
2579 if (q->mq_ops->poll)
2580 q->poll_fn = blk_mq_poll;
07068d5b 2581
eba71768
JA
2582 /*
2583 * Do this after blk_queue_make_request() overrides it...
2584 */
2585 q->nr_requests = set->queue_depth;
2586
64f1c21e
JA
2587 /*
2588 * Default to classic polling
2589 */
2590 q->poll_nsec = -1;
2591
24d2f903
CH
2592 if (set->ops->complete)
2593 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2594
24d2f903 2595 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2596 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2597 blk_mq_map_swqueue(q);
4593fdbe 2598
d3484991
JA
2599 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2600 int ret;
2601
2602 ret = blk_mq_sched_init(q);
2603 if (ret)
2604 return ERR_PTR(ret);
2605 }
2606
320ae51f 2607 return q;
18741986 2608
320ae51f 2609err_hctxs:
868f2f0b 2610 kfree(q->queue_hw_ctx);
320ae51f 2611err_percpu:
868f2f0b 2612 free_percpu(q->queue_ctx);
c7de5726
ML
2613err_exit:
2614 q->mq_ops = NULL;
320ae51f
JA
2615 return ERR_PTR(-ENOMEM);
2616}
b62c21b7 2617EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f 2618
84c8ff7f
ML
2619/* tags can _not_ be used after returning from blk_mq_exit_queue */
2620void blk_mq_exit_queue(struct request_queue *q)
320ae51f 2621{
624dbe47 2622 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2623
0d2602ca 2624 blk_mq_del_queue_tag_set(q);
624dbe47 2625 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2626}
320ae51f
JA
2627
2628/* Basically redo blk_mq_init_queue with queue frozen */
4b855ad3 2629static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f 2630{
4ecd4fef 2631 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2632
9c1051aa 2633 blk_mq_debugfs_unregister_hctxs(q);
67aec14c
JA
2634 blk_mq_sysfs_unregister(q);
2635
320ae51f
JA
2636 /*
2637 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
ff821d27
JA
2638 * we should change hctx numa_node according to the new topology (this
2639 * involves freeing and re-allocating memory, worth doing?)
320ae51f 2640 */
4b855ad3 2641 blk_mq_map_swqueue(q);
320ae51f 2642
67aec14c 2643 blk_mq_sysfs_register(q);
9c1051aa 2644 blk_mq_debugfs_register_hctxs(q);
320ae51f
JA
2645}
2646
a5164405
JA
2647static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2648{
2649 int i;
2650
cc71a6f4
JA
2651 for (i = 0; i < set->nr_hw_queues; i++)
2652 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2653 goto out_unwind;
a5164405
JA
2654
2655 return 0;
2656
2657out_unwind:
2658 while (--i >= 0)
cc71a6f4 2659 blk_mq_free_rq_map(set->tags[i]);
a5164405 2660
a5164405
JA
2661 return -ENOMEM;
2662}
2663
2664/*
2665 * Allocate the request maps associated with this tag_set. Note that this
2666 * may reduce the depth asked for, if memory is tight. set->queue_depth
2667 * will be updated to reflect the allocated depth.
2668 */
2669static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2670{
2671 unsigned int depth;
2672 int err;
2673
2674 depth = set->queue_depth;
2675 do {
2676 err = __blk_mq_alloc_rq_maps(set);
2677 if (!err)
2678 break;
2679
2680 set->queue_depth >>= 1;
2681 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2682 err = -ENOMEM;
2683 break;
2684 }
2685 } while (set->queue_depth);
2686
2687 if (!set->queue_depth || err) {
2688 pr_err("blk-mq: failed to allocate request map\n");
2689 return -ENOMEM;
2690 }
2691
2692 if (depth != set->queue_depth)
2693 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2694 depth, set->queue_depth);
2695
2696 return 0;
2697}
2698
ebe8bddb
OS
2699static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2700{
6a684e3d
ML
2701 if (set->ops->map_queues) {
2702 int cpu;
2703 /*
2704 * transport .map_queues is usually done in the following
2705 * way:
2706 *
2707 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2708 * mask = get_cpu_mask(queue)
2709 * for_each_cpu(cpu, mask)
2710 * set->mq_map[cpu] = queue;
2711 * }
2712 *
2713 * When we need to remap, the table has to be cleared for
2714 * killing stale mapping since one CPU may not be mapped
2715 * to any hw queue.
2716 */
2717 for_each_possible_cpu(cpu)
2718 set->mq_map[cpu] = 0;
2719
ebe8bddb 2720 return set->ops->map_queues(set);
6a684e3d 2721 } else
ebe8bddb
OS
2722 return blk_mq_map_queues(set);
2723}
2724
a4391c64
JA
2725/*
2726 * Alloc a tag set to be associated with one or more request queues.
2727 * May fail with EINVAL for various error conditions. May adjust the
2728 * requested depth down, if if it too large. In that case, the set
2729 * value will be stored in set->queue_depth.
2730 */
24d2f903
CH
2731int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2732{
da695ba2
CH
2733 int ret;
2734
205fb5f5
BVA
2735 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2736
24d2f903
CH
2737 if (!set->nr_hw_queues)
2738 return -EINVAL;
a4391c64 2739 if (!set->queue_depth)
24d2f903
CH
2740 return -EINVAL;
2741 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2742 return -EINVAL;
2743
7d7e0f90 2744 if (!set->ops->queue_rq)
24d2f903
CH
2745 return -EINVAL;
2746
de148297
ML
2747 if (!set->ops->get_budget ^ !set->ops->put_budget)
2748 return -EINVAL;
2749
a4391c64
JA
2750 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2751 pr_info("blk-mq: reduced tag depth to %u\n",
2752 BLK_MQ_MAX_DEPTH);
2753 set->queue_depth = BLK_MQ_MAX_DEPTH;
2754 }
24d2f903 2755
6637fadf
SL
2756 /*
2757 * If a crashdump is active, then we are potentially in a very
2758 * memory constrained environment. Limit us to 1 queue and
2759 * 64 tags to prevent using too much memory.
2760 */
2761 if (is_kdump_kernel()) {
2762 set->nr_hw_queues = 1;
2763 set->queue_depth = min(64U, set->queue_depth);
2764 }
868f2f0b
KB
2765 /*
2766 * There is no use for more h/w queues than cpus.
2767 */
2768 if (set->nr_hw_queues > nr_cpu_ids)
2769 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2770
868f2f0b 2771 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2772 GFP_KERNEL, set->numa_node);
2773 if (!set->tags)
a5164405 2774 return -ENOMEM;
24d2f903 2775
da695ba2
CH
2776 ret = -ENOMEM;
2777 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2778 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2779 if (!set->mq_map)
2780 goto out_free_tags;
2781
ebe8bddb 2782 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2783 if (ret)
2784 goto out_free_mq_map;
2785
2786 ret = blk_mq_alloc_rq_maps(set);
2787 if (ret)
bdd17e75 2788 goto out_free_mq_map;
24d2f903 2789
0d2602ca
JA
2790 mutex_init(&set->tag_list_lock);
2791 INIT_LIST_HEAD(&set->tag_list);
2792
24d2f903 2793 return 0;
bdd17e75
CH
2794
2795out_free_mq_map:
2796 kfree(set->mq_map);
2797 set->mq_map = NULL;
2798out_free_tags:
5676e7b6
RE
2799 kfree(set->tags);
2800 set->tags = NULL;
da695ba2 2801 return ret;
24d2f903
CH
2802}
2803EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2804
2805void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2806{
2807 int i;
2808
cc71a6f4
JA
2809 for (i = 0; i < nr_cpu_ids; i++)
2810 blk_mq_free_map_and_requests(set, i);
484b4061 2811
bdd17e75
CH
2812 kfree(set->mq_map);
2813 set->mq_map = NULL;
2814
981bd189 2815 kfree(set->tags);
5676e7b6 2816 set->tags = NULL;
24d2f903
CH
2817}
2818EXPORT_SYMBOL(blk_mq_free_tag_set);
2819
e3a2b3f9
JA
2820int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2821{
2822 struct blk_mq_tag_set *set = q->tag_set;
2823 struct blk_mq_hw_ctx *hctx;
2824 int i, ret;
2825
bd166ef1 2826 if (!set)
e3a2b3f9
JA
2827 return -EINVAL;
2828
ac99bae9
AZ
2829 if (q->nr_requests == nr)
2830 return 0;
2831
70f36b60 2832 blk_mq_freeze_queue(q);
d2265003 2833 blk_mq_quiesce_queue(q);
70f36b60 2834
e3a2b3f9
JA
2835 ret = 0;
2836 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2837 if (!hctx->tags)
2838 continue;
bd166ef1
JA
2839 /*
2840 * If we're using an MQ scheduler, just update the scheduler
2841 * queue depth. This is similar to what the old code would do.
2842 */
70f36b60 2843 if (!hctx->sched_tags) {
c2e82a23 2844 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
2845 false);
2846 } else {
2847 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2848 nr, true);
2849 }
e3a2b3f9
JA
2850 if (ret)
2851 break;
2852 }
2853
2854 if (!ret)
2855 q->nr_requests = nr;
2856
d2265003 2857 blk_mq_unquiesce_queue(q);
70f36b60 2858 blk_mq_unfreeze_queue(q);
70f36b60 2859
e3a2b3f9
JA
2860 return ret;
2861}
2862
e4dc2b32
KB
2863static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2864 int nr_hw_queues)
868f2f0b
KB
2865{
2866 struct request_queue *q;
2867
705cda97
BVA
2868 lockdep_assert_held(&set->tag_list_lock);
2869
868f2f0b
KB
2870 if (nr_hw_queues > nr_cpu_ids)
2871 nr_hw_queues = nr_cpu_ids;
2872 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2873 return;
2874
2875 list_for_each_entry(q, &set->tag_list, tag_set_list)
2876 blk_mq_freeze_queue(q);
2877
2878 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2879 blk_mq_update_queue_map(set);
868f2f0b
KB
2880 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2881 blk_mq_realloc_hw_ctxs(set, q);
4b855ad3 2882 blk_mq_queue_reinit(q);
868f2f0b
KB
2883 }
2884
2885 list_for_each_entry(q, &set->tag_list, tag_set_list)
2886 blk_mq_unfreeze_queue(q);
2887}
e4dc2b32
KB
2888
2889void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2890{
2891 mutex_lock(&set->tag_list_lock);
2892 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2893 mutex_unlock(&set->tag_list_lock);
2894}
868f2f0b
KB
2895EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2896
34dbad5d
OS
2897/* Enable polling stats and return whether they were already enabled. */
2898static bool blk_poll_stats_enable(struct request_queue *q)
2899{
2900 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2901 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2902 return true;
2903 blk_stat_add_callback(q, q->poll_cb);
2904 return false;
2905}
2906
2907static void blk_mq_poll_stats_start(struct request_queue *q)
2908{
2909 /*
2910 * We don't arm the callback if polling stats are not enabled or the
2911 * callback is already active.
2912 */
2913 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2914 blk_stat_is_active(q->poll_cb))
2915 return;
2916
2917 blk_stat_activate_msecs(q->poll_cb, 100);
2918}
2919
2920static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2921{
2922 struct request_queue *q = cb->data;
720b8ccc 2923 int bucket;
34dbad5d 2924
720b8ccc
SB
2925 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2926 if (cb->stat[bucket].nr_samples)
2927 q->poll_stat[bucket] = cb->stat[bucket];
2928 }
34dbad5d
OS
2929}
2930
64f1c21e
JA
2931static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2932 struct blk_mq_hw_ctx *hctx,
2933 struct request *rq)
2934{
64f1c21e 2935 unsigned long ret = 0;
720b8ccc 2936 int bucket;
64f1c21e
JA
2937
2938 /*
2939 * If stats collection isn't on, don't sleep but turn it on for
2940 * future users
2941 */
34dbad5d 2942 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2943 return 0;
2944
64f1c21e
JA
2945 /*
2946 * As an optimistic guess, use half of the mean service time
2947 * for this type of request. We can (and should) make this smarter.
2948 * For instance, if the completion latencies are tight, we can
2949 * get closer than just half the mean. This is especially
2950 * important on devices where the completion latencies are longer
720b8ccc
SB
2951 * than ~10 usec. We do use the stats for the relevant IO size
2952 * if available which does lead to better estimates.
64f1c21e 2953 */
720b8ccc
SB
2954 bucket = blk_mq_poll_stats_bkt(rq);
2955 if (bucket < 0)
2956 return ret;
2957
2958 if (q->poll_stat[bucket].nr_samples)
2959 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
2960
2961 return ret;
2962}
2963
06426adf 2964static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2965 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2966 struct request *rq)
2967{
2968 struct hrtimer_sleeper hs;
2969 enum hrtimer_mode mode;
64f1c21e 2970 unsigned int nsecs;
06426adf
JA
2971 ktime_t kt;
2972
64f1c21e
JA
2973 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2974 return false;
2975
2976 /*
2977 * poll_nsec can be:
2978 *
2979 * -1: don't ever hybrid sleep
2980 * 0: use half of prev avg
2981 * >0: use this specific value
2982 */
2983 if (q->poll_nsec == -1)
2984 return false;
2985 else if (q->poll_nsec > 0)
2986 nsecs = q->poll_nsec;
2987 else
2988 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2989
2990 if (!nsecs)
06426adf
JA
2991 return false;
2992
2993 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2994
2995 /*
2996 * This will be replaced with the stats tracking code, using
2997 * 'avg_completion_time / 2' as the pre-sleep target.
2998 */
8b0e1953 2999 kt = nsecs;
06426adf
JA
3000
3001 mode = HRTIMER_MODE_REL;
3002 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3003 hrtimer_set_expires(&hs.timer, kt);
3004
3005 hrtimer_init_sleeper(&hs, current);
3006 do {
3007 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
3008 break;
3009 set_current_state(TASK_UNINTERRUPTIBLE);
3010 hrtimer_start_expires(&hs.timer, mode);
3011 if (hs.task)
3012 io_schedule();
3013 hrtimer_cancel(&hs.timer);
3014 mode = HRTIMER_MODE_ABS;
3015 } while (hs.task && !signal_pending(current));
3016
3017 __set_current_state(TASK_RUNNING);
3018 destroy_hrtimer_on_stack(&hs.timer);
3019 return true;
3020}
3021
bbd7bb70
JA
3022static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3023{
3024 struct request_queue *q = hctx->queue;
3025 long state;
3026
06426adf
JA
3027 /*
3028 * If we sleep, have the caller restart the poll loop to reset
3029 * the state. Like for the other success return cases, the
3030 * caller is responsible for checking if the IO completed. If
3031 * the IO isn't complete, we'll get called again and will go
3032 * straight to the busy poll loop.
3033 */
64f1c21e 3034 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
3035 return true;
3036
bbd7bb70
JA
3037 hctx->poll_considered++;
3038
3039 state = current->state;
3040 while (!need_resched()) {
3041 int ret;
3042
3043 hctx->poll_invoked++;
3044
3045 ret = q->mq_ops->poll(hctx, rq->tag);
3046 if (ret > 0) {
3047 hctx->poll_success++;
3048 set_current_state(TASK_RUNNING);
3049 return true;
3050 }
3051
3052 if (signal_pending_state(state, current))
3053 set_current_state(TASK_RUNNING);
3054
3055 if (current->state == TASK_RUNNING)
3056 return true;
3057 if (ret < 0)
3058 break;
3059 cpu_relax();
3060 }
3061
3062 return false;
3063}
3064
ea435e1b 3065static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
bbd7bb70
JA
3066{
3067 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
3068 struct request *rq;
3069
ea435e1b 3070 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
bbd7bb70
JA
3071 return false;
3072
bbd7bb70 3073 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
3074 if (!blk_qc_t_is_internal(cookie))
3075 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3a07bb1d 3076 else {
bd166ef1 3077 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3a07bb1d
JA
3078 /*
3079 * With scheduling, if the request has completed, we'll
3080 * get a NULL return here, as we clear the sched tag when
3081 * that happens. The request still remains valid, like always,
3082 * so we should be safe with just the NULL check.
3083 */
3084 if (!rq)
3085 return false;
3086 }
bbd7bb70
JA
3087
3088 return __blk_mq_poll(hctx, rq);
3089}
bbd7bb70 3090
320ae51f
JA
3091static int __init blk_mq_init(void)
3092{
fc13457f
JA
3093 /*
3094 * See comment in block/blk.h rq_atomic_flags enum
3095 */
3096 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
3097 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
3098
9467f859
TG
3099 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3100 blk_mq_hctx_notify_dead);
320ae51f
JA
3101 return 0;
3102}
3103subsys_initcall(blk_mq_init);