]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-mq.c
blk-mq: allow changing of queue depth through sysfs
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
CommitLineData
320ae51f
JA
1#include <linux/kernel.h>
2#include <linux/module.h>
3#include <linux/backing-dev.h>
4#include <linux/bio.h>
5#include <linux/blkdev.h>
6#include <linux/mm.h>
7#include <linux/init.h>
8#include <linux/slab.h>
9#include <linux/workqueue.h>
10#include <linux/smp.h>
11#include <linux/llist.h>
12#include <linux/list_sort.h>
13#include <linux/cpu.h>
14#include <linux/cache.h>
15#include <linux/sched/sysctl.h>
16#include <linux/delay.h>
17
18#include <trace/events/block.h>
19
20#include <linux/blk-mq.h>
21#include "blk.h"
22#include "blk-mq.h"
23#include "blk-mq-tag.h"
24
25static DEFINE_MUTEX(all_q_mutex);
26static LIST_HEAD(all_q_list);
27
28static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
320ae51f
JA
30static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
32{
33 return per_cpu_ptr(q->queue_ctx, cpu);
34}
35
36/*
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
41 */
42static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43{
44 return __blk_mq_get_ctx(q, get_cpu());
45}
46
47static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48{
49 put_cpu();
50}
51
52/*
53 * Check if any of the ctx's have pending work in this hardware queue
54 */
55static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56{
57 unsigned int i;
58
1429d7c9
JA
59 for (i = 0; i < hctx->ctx_map.map_size; i++)
60 if (hctx->ctx_map.map[i].word)
320ae51f
JA
61 return true;
62
63 return false;
64}
65
1429d7c9
JA
66static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
67 struct blk_mq_ctx *ctx)
68{
69 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
70}
71
72#define CTX_TO_BIT(hctx, ctx) \
73 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
74
320ae51f
JA
75/*
76 * Mark this ctx as having pending work in this hardware queue
77 */
78static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
79 struct blk_mq_ctx *ctx)
80{
1429d7c9
JA
81 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
82
83 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
84 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
85}
86
87static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
88 struct blk_mq_ctx *ctx)
89{
90 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
91
92 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
93}
94
081241e5 95static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
4bb659b1 96 struct blk_mq_ctx *ctx,
081241e5 97 gfp_t gfp, bool reserved)
320ae51f
JA
98{
99 struct request *rq;
100 unsigned int tag;
101
0d2602ca 102 tag = blk_mq_get_tag(hctx, &ctx->last_tag, gfp, reserved);
320ae51f 103 if (tag != BLK_MQ_TAG_FAIL) {
24d2f903 104 rq = hctx->tags->rqs[tag];
0d2602ca
JA
105
106 rq->cmd_flags = 0;
107 if (blk_mq_tag_busy(hctx)) {
108 rq->cmd_flags = REQ_MQ_INFLIGHT;
109 atomic_inc(&hctx->nr_active);
110 }
111
320ae51f 112 rq->tag = tag;
320ae51f
JA
113 return rq;
114 }
115
116 return NULL;
117}
118
119static int blk_mq_queue_enter(struct request_queue *q)
120{
121 int ret;
122
123 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
124 smp_wmb();
125 /* we have problems to freeze the queue if it's initializing */
126 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
127 return 0;
128
129 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
130
131 spin_lock_irq(q->queue_lock);
132 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
43a5e4e2
ML
133 !blk_queue_bypass(q) || blk_queue_dying(q),
134 *q->queue_lock);
320ae51f 135 /* inc usage with lock hold to avoid freeze_queue runs here */
43a5e4e2 136 if (!ret && !blk_queue_dying(q))
320ae51f 137 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
43a5e4e2
ML
138 else if (blk_queue_dying(q))
139 ret = -ENODEV;
320ae51f
JA
140 spin_unlock_irq(q->queue_lock);
141
142 return ret;
143}
144
145static void blk_mq_queue_exit(struct request_queue *q)
146{
147 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
148}
149
43a5e4e2
ML
150static void __blk_mq_drain_queue(struct request_queue *q)
151{
152 while (true) {
153 s64 count;
154
155 spin_lock_irq(q->queue_lock);
156 count = percpu_counter_sum(&q->mq_usage_counter);
157 spin_unlock_irq(q->queue_lock);
158
159 if (count == 0)
160 break;
161 blk_mq_run_queues(q, false);
162 msleep(10);
163 }
164}
165
320ae51f
JA
166/*
167 * Guarantee no request is in use, so we can change any data structure of
168 * the queue afterward.
169 */
170static void blk_mq_freeze_queue(struct request_queue *q)
171{
172 bool drain;
173
174 spin_lock_irq(q->queue_lock);
175 drain = !q->bypass_depth++;
176 queue_flag_set(QUEUE_FLAG_BYPASS, q);
177 spin_unlock_irq(q->queue_lock);
178
43a5e4e2
ML
179 if (drain)
180 __blk_mq_drain_queue(q);
181}
320ae51f 182
43a5e4e2
ML
183void blk_mq_drain_queue(struct request_queue *q)
184{
185 __blk_mq_drain_queue(q);
320ae51f
JA
186}
187
188static void blk_mq_unfreeze_queue(struct request_queue *q)
189{
190 bool wake = false;
191
192 spin_lock_irq(q->queue_lock);
193 if (!--q->bypass_depth) {
194 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
195 wake = true;
196 }
197 WARN_ON_ONCE(q->bypass_depth < 0);
198 spin_unlock_irq(q->queue_lock);
199 if (wake)
200 wake_up_all(&q->mq_freeze_wq);
201}
202
203bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
204{
205 return blk_mq_has_free_tags(hctx->tags);
206}
207EXPORT_SYMBOL(blk_mq_can_queue);
208
94eddfbe
JA
209static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
210 struct request *rq, unsigned int rw_flags)
320ae51f 211{
94eddfbe
JA
212 if (blk_queue_io_stat(q))
213 rw_flags |= REQ_IO_STAT;
214
af76e555
CH
215 INIT_LIST_HEAD(&rq->queuelist);
216 /* csd/requeue_work/fifo_time is initialized before use */
217 rq->q = q;
320ae51f 218 rq->mq_ctx = ctx;
0d2602ca 219 rq->cmd_flags |= rw_flags;
af76e555
CH
220 rq->cmd_type = 0;
221 /* do not touch atomic flags, it needs atomic ops against the timer */
222 rq->cpu = -1;
223 rq->__data_len = 0;
224 rq->__sector = (sector_t) -1;
225 rq->bio = NULL;
226 rq->biotail = NULL;
227 INIT_HLIST_NODE(&rq->hash);
228 RB_CLEAR_NODE(&rq->rb_node);
229 memset(&rq->flush, 0, max(sizeof(rq->flush), sizeof(rq->elv)));
230 rq->rq_disk = NULL;
231 rq->part = NULL;
0fec08b4 232 rq->start_time = jiffies;
af76e555
CH
233#ifdef CONFIG_BLK_CGROUP
234 rq->rl = NULL;
0fec08b4 235 set_start_time_ns(rq);
af76e555
CH
236 rq->io_start_time_ns = 0;
237#endif
238 rq->nr_phys_segments = 0;
239#if defined(CONFIG_BLK_DEV_INTEGRITY)
240 rq->nr_integrity_segments = 0;
241#endif
242 rq->ioprio = 0;
243 rq->special = NULL;
244 /* tag was already set */
245 rq->errors = 0;
246 memset(rq->__cmd, 0, sizeof(rq->__cmd));
247 rq->cmd = rq->__cmd;
248 rq->cmd_len = BLK_MAX_CDB;
249
250 rq->extra_len = 0;
251 rq->sense_len = 0;
252 rq->resid_len = 0;
253 rq->sense = NULL;
254
255 rq->deadline = 0;
256 INIT_LIST_HEAD(&rq->timeout_list);
257 rq->timeout = 0;
258 rq->retries = 0;
259 rq->end_io = NULL;
260 rq->end_io_data = NULL;
261 rq->next_rq = NULL;
262
320ae51f
JA
263 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
264}
265
320ae51f
JA
266static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
267 int rw, gfp_t gfp,
268 bool reserved)
269{
270 struct request *rq;
271
272 do {
273 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
274 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
275
4bb659b1
JA
276 rq = __blk_mq_alloc_request(hctx, ctx, gfp & ~__GFP_WAIT,
277 reserved);
320ae51f 278 if (rq) {
94eddfbe 279 blk_mq_rq_ctx_init(q, ctx, rq, rw);
320ae51f 280 break;
959a35f1 281 }
320ae51f 282
e4043dcf
JA
283 if (gfp & __GFP_WAIT) {
284 __blk_mq_run_hw_queue(hctx);
285 blk_mq_put_ctx(ctx);
286 } else {
287 blk_mq_put_ctx(ctx);
959a35f1 288 break;
e4043dcf 289 }
959a35f1 290
0d2602ca 291 blk_mq_wait_for_tags(hctx, reserved);
320ae51f
JA
292 } while (1);
293
294 return rq;
295}
296
18741986 297struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
320ae51f
JA
298{
299 struct request *rq;
300
301 if (blk_mq_queue_enter(q))
302 return NULL;
303
18741986 304 rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
959a35f1
JM
305 if (rq)
306 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
307 return rq;
308}
4bb659b1 309EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f
JA
310
311struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
312 gfp_t gfp)
313{
314 struct request *rq;
315
316 if (blk_mq_queue_enter(q))
317 return NULL;
318
319 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
959a35f1
JM
320 if (rq)
321 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
322 return rq;
323}
324EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
325
320ae51f
JA
326static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
327 struct blk_mq_ctx *ctx, struct request *rq)
328{
329 const int tag = rq->tag;
330 struct request_queue *q = rq->q;
331
0d2602ca
JA
332 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
333 atomic_dec(&hctx->nr_active);
334
af76e555 335 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 336 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
320ae51f
JA
337 blk_mq_queue_exit(q);
338}
339
340void blk_mq_free_request(struct request *rq)
341{
342 struct blk_mq_ctx *ctx = rq->mq_ctx;
343 struct blk_mq_hw_ctx *hctx;
344 struct request_queue *q = rq->q;
345
346 ctx->rq_completed[rq_is_sync(rq)]++;
347
348 hctx = q->mq_ops->map_queue(q, ctx->cpu);
349 __blk_mq_free_request(hctx, ctx, rq);
350}
351
8727af4b
CH
352/*
353 * Clone all relevant state from a request that has been put on hold in
354 * the flush state machine into the preallocated flush request that hangs
355 * off the request queue.
356 *
357 * For a driver the flush request should be invisible, that's why we are
358 * impersonating the original request here.
359 */
360void blk_mq_clone_flush_request(struct request *flush_rq,
361 struct request *orig_rq)
362{
363 struct blk_mq_hw_ctx *hctx =
364 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
365
366 flush_rq->mq_ctx = orig_rq->mq_ctx;
367 flush_rq->tag = orig_rq->tag;
368 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
369 hctx->cmd_size);
370}
371
63151a44 372inline void __blk_mq_end_io(struct request *rq, int error)
320ae51f 373{
0d11e6ac
ML
374 blk_account_io_done(rq);
375
91b63639 376 if (rq->end_io) {
320ae51f 377 rq->end_io(rq, error);
91b63639
CH
378 } else {
379 if (unlikely(blk_bidi_rq(rq)))
380 blk_mq_free_request(rq->next_rq);
320ae51f 381 blk_mq_free_request(rq);
91b63639 382 }
320ae51f 383}
63151a44
CH
384EXPORT_SYMBOL(__blk_mq_end_io);
385
386void blk_mq_end_io(struct request *rq, int error)
387{
388 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
389 BUG();
390 __blk_mq_end_io(rq, error);
391}
392EXPORT_SYMBOL(blk_mq_end_io);
320ae51f 393
30a91cb4 394static void __blk_mq_complete_request_remote(void *data)
320ae51f 395{
3d6efbf6 396 struct request *rq = data;
320ae51f 397
30a91cb4 398 rq->q->softirq_done_fn(rq);
320ae51f 399}
320ae51f 400
30a91cb4 401void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
402{
403 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 404 bool shared = false;
320ae51f
JA
405 int cpu;
406
38535201 407 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
408 rq->q->softirq_done_fn(rq);
409 return;
410 }
320ae51f
JA
411
412 cpu = get_cpu();
38535201
CH
413 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
414 shared = cpus_share_cache(cpu, ctx->cpu);
415
416 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 417 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
418 rq->csd.info = rq;
419 rq->csd.flags = 0;
c46fff2a 420 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 421 } else {
30a91cb4 422 rq->q->softirq_done_fn(rq);
3d6efbf6 423 }
320ae51f
JA
424 put_cpu();
425}
30a91cb4
CH
426
427/**
428 * blk_mq_complete_request - end I/O on a request
429 * @rq: the request being processed
430 *
431 * Description:
432 * Ends all I/O on a request. It does not handle partial completions.
433 * The actual completion happens out-of-order, through a IPI handler.
434 **/
435void blk_mq_complete_request(struct request *rq)
436{
437 if (unlikely(blk_should_fake_timeout(rq->q)))
438 return;
439 if (!blk_mark_rq_complete(rq))
440 __blk_mq_complete_request(rq);
441}
442EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 443
49f5baa5 444static void blk_mq_start_request(struct request *rq, bool last)
320ae51f
JA
445{
446 struct request_queue *q = rq->q;
447
448 trace_block_rq_issue(q, rq);
449
742ee69b 450 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
451 if (unlikely(blk_bidi_rq(rq)))
452 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 453
320ae51f
JA
454 /*
455 * Just mark start time and set the started bit. Due to memory
456 * ordering, we know we'll see the correct deadline as long as
457 * REQ_ATOMIC_STARTED is seen.
458 */
459 rq->deadline = jiffies + q->rq_timeout;
87ee7b11
JA
460
461 /*
462 * Mark us as started and clear complete. Complete might have been
463 * set if requeue raced with timeout, which then marked it as
464 * complete. So be sure to clear complete again when we start
465 * the request, otherwise we'll ignore the completion event.
466 */
320ae51f 467 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
87ee7b11 468 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
469
470 if (q->dma_drain_size && blk_rq_bytes(rq)) {
471 /*
472 * Make sure space for the drain appears. We know we can do
473 * this because max_hw_segments has been adjusted to be one
474 * fewer than the device can handle.
475 */
476 rq->nr_phys_segments++;
477 }
478
479 /*
480 * Flag the last request in the series so that drivers know when IO
481 * should be kicked off, if they don't do it on a per-request basis.
482 *
483 * Note: the flag isn't the only condition drivers should do kick off.
484 * If drive is busy, the last request might not have the bit set.
485 */
486 if (last)
487 rq->cmd_flags |= REQ_END;
320ae51f
JA
488}
489
ed0791b2 490static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
491{
492 struct request_queue *q = rq->q;
493
494 trace_block_rq_requeue(q, rq);
495 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
49f5baa5
CH
496
497 rq->cmd_flags &= ~REQ_END;
498
499 if (q->dma_drain_size && blk_rq_bytes(rq))
500 rq->nr_phys_segments--;
320ae51f
JA
501}
502
ed0791b2
CH
503void blk_mq_requeue_request(struct request *rq)
504{
ed0791b2
CH
505 __blk_mq_requeue_request(rq);
506 blk_clear_rq_complete(rq);
507
ed0791b2
CH
508 BUG_ON(blk_queued_rq(rq));
509 blk_mq_insert_request(rq, true, true, false);
510}
511EXPORT_SYMBOL(blk_mq_requeue_request);
512
24d2f903
CH
513struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
514{
515 return tags->rqs[tag];
516}
517EXPORT_SYMBOL(blk_mq_tag_to_rq);
518
320ae51f
JA
519struct blk_mq_timeout_data {
520 struct blk_mq_hw_ctx *hctx;
521 unsigned long *next;
522 unsigned int *next_set;
523};
524
525static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
526{
527 struct blk_mq_timeout_data *data = __data;
528 struct blk_mq_hw_ctx *hctx = data->hctx;
529 unsigned int tag;
530
531 /* It may not be in flight yet (this is where
532 * the REQ_ATOMIC_STARTED flag comes in). The requests are
533 * statically allocated, so we know it's always safe to access the
534 * memory associated with a bit offset into ->rqs[].
535 */
536 tag = 0;
537 do {
538 struct request *rq;
539
24d2f903
CH
540 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
541 if (tag >= hctx->tags->nr_tags)
320ae51f
JA
542 break;
543
24d2f903
CH
544 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
545 if (rq->q != hctx->queue)
546 continue;
320ae51f
JA
547 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
548 continue;
549
550 blk_rq_check_expired(rq, data->next, data->next_set);
551 } while (1);
552}
553
554static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
555 unsigned long *next,
556 unsigned int *next_set)
557{
558 struct blk_mq_timeout_data data = {
559 .hctx = hctx,
560 .next = next,
561 .next_set = next_set,
562 };
563
564 /*
565 * Ask the tagging code to iterate busy requests, so we can
566 * check them for timeout.
567 */
568 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
569}
570
87ee7b11
JA
571static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
572{
573 struct request_queue *q = rq->q;
574
575 /*
576 * We know that complete is set at this point. If STARTED isn't set
577 * anymore, then the request isn't active and the "timeout" should
578 * just be ignored. This can happen due to the bitflag ordering.
579 * Timeout first checks if STARTED is set, and if it is, assumes
580 * the request is active. But if we race with completion, then
581 * we both flags will get cleared. So check here again, and ignore
582 * a timeout event with a request that isn't active.
583 */
584 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
585 return BLK_EH_NOT_HANDLED;
586
587 if (!q->mq_ops->timeout)
588 return BLK_EH_RESET_TIMER;
589
590 return q->mq_ops->timeout(rq);
591}
592
320ae51f
JA
593static void blk_mq_rq_timer(unsigned long data)
594{
595 struct request_queue *q = (struct request_queue *) data;
596 struct blk_mq_hw_ctx *hctx;
597 unsigned long next = 0;
598 int i, next_set = 0;
599
600 queue_for_each_hw_ctx(q, hctx, i)
601 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
602
0d2602ca
JA
603 if (next_set) {
604 next = blk_rq_timeout(round_jiffies_up(next));
605 mod_timer(&q->timeout, next);
606 } else {
607 queue_for_each_hw_ctx(q, hctx, i)
608 blk_mq_tag_idle(hctx);
609 }
320ae51f
JA
610}
611
612/*
613 * Reverse check our software queue for entries that we could potentially
614 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
615 * too much time checking for merges.
616 */
617static bool blk_mq_attempt_merge(struct request_queue *q,
618 struct blk_mq_ctx *ctx, struct bio *bio)
619{
620 struct request *rq;
621 int checked = 8;
622
623 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
624 int el_ret;
625
626 if (!checked--)
627 break;
628
629 if (!blk_rq_merge_ok(rq, bio))
630 continue;
631
632 el_ret = blk_try_merge(rq, bio);
633 if (el_ret == ELEVATOR_BACK_MERGE) {
634 if (bio_attempt_back_merge(q, rq, bio)) {
635 ctx->rq_merged++;
636 return true;
637 }
638 break;
639 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
640 if (bio_attempt_front_merge(q, rq, bio)) {
641 ctx->rq_merged++;
642 return true;
643 }
644 break;
645 }
646 }
647
648 return false;
649}
650
1429d7c9
JA
651/*
652 * Process software queues that have been marked busy, splicing them
653 * to the for-dispatch
654 */
655static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
656{
657 struct blk_mq_ctx *ctx;
658 int i;
659
660 for (i = 0; i < hctx->ctx_map.map_size; i++) {
661 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
662 unsigned int off, bit;
663
664 if (!bm->word)
665 continue;
666
667 bit = 0;
668 off = i * hctx->ctx_map.bits_per_word;
669 do {
670 bit = find_next_bit(&bm->word, bm->depth, bit);
671 if (bit >= bm->depth)
672 break;
673
674 ctx = hctx->ctxs[bit + off];
675 clear_bit(bit, &bm->word);
676 spin_lock(&ctx->lock);
677 list_splice_tail_init(&ctx->rq_list, list);
678 spin_unlock(&ctx->lock);
679
680 bit++;
681 } while (1);
682 }
683}
684
320ae51f
JA
685/*
686 * Run this hardware queue, pulling any software queues mapped to it in.
687 * Note that this function currently has various problems around ordering
688 * of IO. In particular, we'd like FIFO behaviour on handling existing
689 * items on the hctx->dispatch list. Ignore that for now.
690 */
691static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
692{
693 struct request_queue *q = hctx->queue;
320ae51f
JA
694 struct request *rq;
695 LIST_HEAD(rq_list);
1429d7c9 696 int queued;
320ae51f 697
fd1270d5 698 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 699
5d12f905 700 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
701 return;
702
703 hctx->run++;
704
705 /*
706 * Touch any software queue that has pending entries.
707 */
1429d7c9 708 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
709
710 /*
711 * If we have previous entries on our dispatch list, grab them
712 * and stuff them at the front for more fair dispatch.
713 */
714 if (!list_empty_careful(&hctx->dispatch)) {
715 spin_lock(&hctx->lock);
716 if (!list_empty(&hctx->dispatch))
717 list_splice_init(&hctx->dispatch, &rq_list);
718 spin_unlock(&hctx->lock);
719 }
720
320ae51f
JA
721 /*
722 * Now process all the entries, sending them to the driver.
723 */
1429d7c9 724 queued = 0;
320ae51f
JA
725 while (!list_empty(&rq_list)) {
726 int ret;
727
728 rq = list_first_entry(&rq_list, struct request, queuelist);
729 list_del_init(&rq->queuelist);
320ae51f 730
49f5baa5 731 blk_mq_start_request(rq, list_empty(&rq_list));
320ae51f
JA
732
733 ret = q->mq_ops->queue_rq(hctx, rq);
734 switch (ret) {
735 case BLK_MQ_RQ_QUEUE_OK:
736 queued++;
737 continue;
738 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 739 list_add(&rq->queuelist, &rq_list);
ed0791b2 740 __blk_mq_requeue_request(rq);
320ae51f
JA
741 break;
742 default:
743 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 744 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 745 rq->errors = -EIO;
320ae51f
JA
746 blk_mq_end_io(rq, rq->errors);
747 break;
748 }
749
750 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
751 break;
752 }
753
754 if (!queued)
755 hctx->dispatched[0]++;
756 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
757 hctx->dispatched[ilog2(queued) + 1]++;
758
759 /*
760 * Any items that need requeuing? Stuff them into hctx->dispatch,
761 * that is where we will continue on next queue run.
762 */
763 if (!list_empty(&rq_list)) {
764 spin_lock(&hctx->lock);
765 list_splice(&rq_list, &hctx->dispatch);
766 spin_unlock(&hctx->lock);
767 }
768}
769
506e931f
JA
770/*
771 * It'd be great if the workqueue API had a way to pass
772 * in a mask and had some smarts for more clever placement.
773 * For now we just round-robin here, switching for every
774 * BLK_MQ_CPU_WORK_BATCH queued items.
775 */
776static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
777{
778 int cpu = hctx->next_cpu;
779
780 if (--hctx->next_cpu_batch <= 0) {
781 int next_cpu;
782
783 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
784 if (next_cpu >= nr_cpu_ids)
785 next_cpu = cpumask_first(hctx->cpumask);
786
787 hctx->next_cpu = next_cpu;
788 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
789 }
790
791 return cpu;
792}
793
320ae51f
JA
794void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
795{
5d12f905 796 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
797 return;
798
e4043dcf 799 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
320ae51f 800 __blk_mq_run_hw_queue(hctx);
e4043dcf 801 else if (hctx->queue->nr_hw_queues == 1)
70f4db63 802 kblockd_schedule_delayed_work(&hctx->run_work, 0);
e4043dcf
JA
803 else {
804 unsigned int cpu;
805
506e931f 806 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63 807 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
e4043dcf 808 }
320ae51f
JA
809}
810
811void blk_mq_run_queues(struct request_queue *q, bool async)
812{
813 struct blk_mq_hw_ctx *hctx;
814 int i;
815
816 queue_for_each_hw_ctx(q, hctx, i) {
817 if ((!blk_mq_hctx_has_pending(hctx) &&
818 list_empty_careful(&hctx->dispatch)) ||
5d12f905 819 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
820 continue;
821
e4043dcf 822 preempt_disable();
320ae51f 823 blk_mq_run_hw_queue(hctx, async);
e4043dcf 824 preempt_enable();
320ae51f
JA
825 }
826}
827EXPORT_SYMBOL(blk_mq_run_queues);
828
829void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
830{
70f4db63
CH
831 cancel_delayed_work(&hctx->run_work);
832 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
833 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
834}
835EXPORT_SYMBOL(blk_mq_stop_hw_queue);
836
280d45f6
CH
837void blk_mq_stop_hw_queues(struct request_queue *q)
838{
839 struct blk_mq_hw_ctx *hctx;
840 int i;
841
842 queue_for_each_hw_ctx(q, hctx, i)
843 blk_mq_stop_hw_queue(hctx);
844}
845EXPORT_SYMBOL(blk_mq_stop_hw_queues);
846
320ae51f
JA
847void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
848{
849 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf
JA
850
851 preempt_disable();
320ae51f 852 __blk_mq_run_hw_queue(hctx);
e4043dcf 853 preempt_enable();
320ae51f
JA
854}
855EXPORT_SYMBOL(blk_mq_start_hw_queue);
856
2f268556
CH
857void blk_mq_start_hw_queues(struct request_queue *q)
858{
859 struct blk_mq_hw_ctx *hctx;
860 int i;
861
862 queue_for_each_hw_ctx(q, hctx, i)
863 blk_mq_start_hw_queue(hctx);
864}
865EXPORT_SYMBOL(blk_mq_start_hw_queues);
866
867
1b4a3258 868void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
869{
870 struct blk_mq_hw_ctx *hctx;
871 int i;
872
873 queue_for_each_hw_ctx(q, hctx, i) {
874 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
875 continue;
876
877 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 878 preempt_disable();
1b4a3258 879 blk_mq_run_hw_queue(hctx, async);
e4043dcf 880 preempt_enable();
320ae51f
JA
881 }
882}
883EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
884
70f4db63 885static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
886{
887 struct blk_mq_hw_ctx *hctx;
888
70f4db63 889 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 890
320ae51f
JA
891 __blk_mq_run_hw_queue(hctx);
892}
893
70f4db63
CH
894static void blk_mq_delay_work_fn(struct work_struct *work)
895{
896 struct blk_mq_hw_ctx *hctx;
897
898 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
899
900 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
901 __blk_mq_run_hw_queue(hctx);
902}
903
904void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
905{
906 unsigned long tmo = msecs_to_jiffies(msecs);
907
908 if (hctx->queue->nr_hw_queues == 1)
909 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
910 else {
911 unsigned int cpu;
912
506e931f 913 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63
CH
914 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
915 }
916}
917EXPORT_SYMBOL(blk_mq_delay_queue);
918
320ae51f 919static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 920 struct request *rq, bool at_head)
320ae51f
JA
921{
922 struct blk_mq_ctx *ctx = rq->mq_ctx;
923
01b983c9
JA
924 trace_block_rq_insert(hctx->queue, rq);
925
72a0a36e
CH
926 if (at_head)
927 list_add(&rq->queuelist, &ctx->rq_list);
928 else
929 list_add_tail(&rq->queuelist, &ctx->rq_list);
4bb659b1 930
320ae51f
JA
931 blk_mq_hctx_mark_pending(hctx, ctx);
932
933 /*
934 * We do this early, to ensure we are on the right CPU.
935 */
87ee7b11 936 blk_add_timer(rq);
320ae51f
JA
937}
938
eeabc850
CH
939void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
940 bool async)
320ae51f 941{
eeabc850 942 struct request_queue *q = rq->q;
320ae51f 943 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
944 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
945
946 current_ctx = blk_mq_get_ctx(q);
947 if (!cpu_online(ctx->cpu))
948 rq->mq_ctx = ctx = current_ctx;
320ae51f 949
320ae51f
JA
950 hctx = q->mq_ops->map_queue(q, ctx->cpu);
951
eeabc850
CH
952 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
953 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
320ae51f
JA
954 blk_insert_flush(rq);
955 } else {
320ae51f 956 spin_lock(&ctx->lock);
72a0a36e 957 __blk_mq_insert_request(hctx, rq, at_head);
320ae51f 958 spin_unlock(&ctx->lock);
320ae51f
JA
959 }
960
320ae51f
JA
961 if (run_queue)
962 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
963
964 blk_mq_put_ctx(current_ctx);
320ae51f
JA
965}
966
967static void blk_mq_insert_requests(struct request_queue *q,
968 struct blk_mq_ctx *ctx,
969 struct list_head *list,
970 int depth,
971 bool from_schedule)
972
973{
974 struct blk_mq_hw_ctx *hctx;
975 struct blk_mq_ctx *current_ctx;
976
977 trace_block_unplug(q, depth, !from_schedule);
978
979 current_ctx = blk_mq_get_ctx(q);
980
981 if (!cpu_online(ctx->cpu))
982 ctx = current_ctx;
983 hctx = q->mq_ops->map_queue(q, ctx->cpu);
984
985 /*
986 * preemption doesn't flush plug list, so it's possible ctx->cpu is
987 * offline now
988 */
989 spin_lock(&ctx->lock);
990 while (!list_empty(list)) {
991 struct request *rq;
992
993 rq = list_first_entry(list, struct request, queuelist);
994 list_del_init(&rq->queuelist);
995 rq->mq_ctx = ctx;
72a0a36e 996 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
997 }
998 spin_unlock(&ctx->lock);
999
320ae51f 1000 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 1001 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1002}
1003
1004static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1005{
1006 struct request *rqa = container_of(a, struct request, queuelist);
1007 struct request *rqb = container_of(b, struct request, queuelist);
1008
1009 return !(rqa->mq_ctx < rqb->mq_ctx ||
1010 (rqa->mq_ctx == rqb->mq_ctx &&
1011 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1012}
1013
1014void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1015{
1016 struct blk_mq_ctx *this_ctx;
1017 struct request_queue *this_q;
1018 struct request *rq;
1019 LIST_HEAD(list);
1020 LIST_HEAD(ctx_list);
1021 unsigned int depth;
1022
1023 list_splice_init(&plug->mq_list, &list);
1024
1025 list_sort(NULL, &list, plug_ctx_cmp);
1026
1027 this_q = NULL;
1028 this_ctx = NULL;
1029 depth = 0;
1030
1031 while (!list_empty(&list)) {
1032 rq = list_entry_rq(list.next);
1033 list_del_init(&rq->queuelist);
1034 BUG_ON(!rq->q);
1035 if (rq->mq_ctx != this_ctx) {
1036 if (this_ctx) {
1037 blk_mq_insert_requests(this_q, this_ctx,
1038 &ctx_list, depth,
1039 from_schedule);
1040 }
1041
1042 this_ctx = rq->mq_ctx;
1043 this_q = rq->q;
1044 depth = 0;
1045 }
1046
1047 depth++;
1048 list_add_tail(&rq->queuelist, &ctx_list);
1049 }
1050
1051 /*
1052 * If 'this_ctx' is set, we know we have entries to complete
1053 * on 'ctx_list'. Do those.
1054 */
1055 if (this_ctx) {
1056 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1057 from_schedule);
1058 }
1059}
1060
1061static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1062{
1063 init_request_from_bio(rq, bio);
1064 blk_account_io_start(rq, 1);
1065}
1066
1067static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1068{
1069 struct blk_mq_hw_ctx *hctx;
1070 struct blk_mq_ctx *ctx;
1071 const int is_sync = rw_is_sync(bio->bi_rw);
1072 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1073 int rw = bio_data_dir(bio);
1074 struct request *rq;
1075 unsigned int use_plug, request_count = 0;
1076
1077 /*
1078 * If we have multiple hardware queues, just go directly to
1079 * one of those for sync IO.
1080 */
1081 use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
1082
1083 blk_queue_bounce(q, &bio);
1084
14ec77f3
NB
1085 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1086 bio_endio(bio, -EIO);
1087 return;
1088 }
1089
320ae51f
JA
1090 if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
1091 return;
1092
1093 if (blk_mq_queue_enter(q)) {
1094 bio_endio(bio, -EIO);
1095 return;
1096 }
1097
1098 ctx = blk_mq_get_ctx(q);
1099 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1100
27fbf4e8
SL
1101 if (is_sync)
1102 rw |= REQ_SYNC;
320ae51f 1103 trace_block_getrq(q, bio, rw);
4bb659b1 1104 rq = __blk_mq_alloc_request(hctx, ctx, GFP_ATOMIC, false);
320ae51f 1105 if (likely(rq))
18741986 1106 blk_mq_rq_ctx_init(q, ctx, rq, rw);
320ae51f
JA
1107 else {
1108 blk_mq_put_ctx(ctx);
1109 trace_block_sleeprq(q, bio, rw);
18741986
CH
1110 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
1111 false);
320ae51f
JA
1112 ctx = rq->mq_ctx;
1113 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1114 }
1115
1116 hctx->queued++;
1117
1118 if (unlikely(is_flush_fua)) {
1119 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1120 blk_insert_flush(rq);
1121 goto run_queue;
1122 }
1123
1124 /*
1125 * A task plug currently exists. Since this is completely lockless,
1126 * utilize that to temporarily store requests until the task is
1127 * either done or scheduled away.
1128 */
1129 if (use_plug) {
1130 struct blk_plug *plug = current->plug;
1131
1132 if (plug) {
1133 blk_mq_bio_to_request(rq, bio);
92f399c7 1134 if (list_empty(&plug->mq_list))
320ae51f
JA
1135 trace_block_plug(q);
1136 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1137 blk_flush_plug_list(plug, false);
1138 trace_block_plug(q);
1139 }
1140 list_add_tail(&rq->queuelist, &plug->mq_list);
1141 blk_mq_put_ctx(ctx);
1142 return;
1143 }
1144 }
1145
c6d600c6 1146 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
cf4b50af 1147 blk_mq_bio_to_request(rq, bio);
c6d600c6
JA
1148 spin_lock(&ctx->lock);
1149insert_rq:
72a0a36e 1150 __blk_mq_insert_request(hctx, rq, false);
c6d600c6 1151 spin_unlock(&ctx->lock);
c6d600c6
JA
1152 } else {
1153 spin_lock(&ctx->lock);
1154 if (!blk_mq_attempt_merge(q, ctx, bio)) {
cf4b50af 1155 blk_mq_bio_to_request(rq, bio);
c6d600c6
JA
1156 goto insert_rq;
1157 }
1158
1159 spin_unlock(&ctx->lock);
1160 __blk_mq_free_request(hctx, ctx, rq);
320ae51f
JA
1161 }
1162
320ae51f
JA
1163
1164 /*
1165 * For a SYNC request, send it to the hardware immediately. For an
1166 * ASYNC request, just ensure that we run it later on. The latter
1167 * allows for merging opportunities and more efficient dispatching.
1168 */
1169run_queue:
1170 blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
e4043dcf 1171 blk_mq_put_ctx(ctx);
320ae51f
JA
1172}
1173
1174/*
1175 * Default mapping to a software queue, since we use one per CPU.
1176 */
1177struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1178{
1179 return q->queue_hw_ctx[q->mq_map[cpu]];
1180}
1181EXPORT_SYMBOL(blk_mq_map_queue);
1182
24d2f903 1183struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set,
320ae51f
JA
1184 unsigned int hctx_index)
1185{
4bb659b1
JA
1186 return kzalloc_node(sizeof(struct blk_mq_hw_ctx), GFP_KERNEL,
1187 set->numa_node);
320ae51f
JA
1188}
1189EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1190
1191void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1192 unsigned int hctx_index)
1193{
1194 kfree(hctx);
1195}
1196EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1197
1198static void blk_mq_hctx_notify(void *data, unsigned long action,
1199 unsigned int cpu)
1200{
1201 struct blk_mq_hw_ctx *hctx = data;
bccb5f7c 1202 struct request_queue *q = hctx->queue;
320ae51f
JA
1203 struct blk_mq_ctx *ctx;
1204 LIST_HEAD(tmp);
1205
1206 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1207 return;
1208
1209 /*
1210 * Move ctx entries to new CPU, if this one is going away.
1211 */
bccb5f7c 1212 ctx = __blk_mq_get_ctx(q, cpu);
320ae51f
JA
1213
1214 spin_lock(&ctx->lock);
1215 if (!list_empty(&ctx->rq_list)) {
1216 list_splice_init(&ctx->rq_list, &tmp);
1429d7c9 1217 blk_mq_hctx_clear_pending(hctx, ctx);
320ae51f
JA
1218 }
1219 spin_unlock(&ctx->lock);
1220
1221 if (list_empty(&tmp))
1222 return;
1223
bccb5f7c 1224 ctx = blk_mq_get_ctx(q);
320ae51f
JA
1225 spin_lock(&ctx->lock);
1226
1227 while (!list_empty(&tmp)) {
1228 struct request *rq;
1229
1230 rq = list_first_entry(&tmp, struct request, queuelist);
1231 rq->mq_ctx = ctx;
1232 list_move_tail(&rq->queuelist, &ctx->rq_list);
1233 }
1234
bccb5f7c 1235 hctx = q->mq_ops->map_queue(q, ctx->cpu);
320ae51f
JA
1236 blk_mq_hctx_mark_pending(hctx, ctx);
1237
1238 spin_unlock(&ctx->lock);
bccb5f7c
JA
1239
1240 blk_mq_run_hw_queue(hctx, true);
e4043dcf 1241 blk_mq_put_ctx(ctx);
320ae51f
JA
1242}
1243
24d2f903
CH
1244static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1245 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1246{
e9b267d9 1247 struct page *page;
320ae51f 1248
24d2f903 1249 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1250 int i;
320ae51f 1251
24d2f903
CH
1252 for (i = 0; i < tags->nr_tags; i++) {
1253 if (!tags->rqs[i])
e9b267d9 1254 continue;
24d2f903
CH
1255 set->ops->exit_request(set->driver_data, tags->rqs[i],
1256 hctx_idx, i);
e9b267d9 1257 }
320ae51f 1258 }
320ae51f 1259
24d2f903
CH
1260 while (!list_empty(&tags->page_list)) {
1261 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1262 list_del_init(&page->lru);
320ae51f
JA
1263 __free_pages(page, page->private);
1264 }
1265
24d2f903 1266 kfree(tags->rqs);
320ae51f 1267
24d2f903 1268 blk_mq_free_tags(tags);
320ae51f
JA
1269}
1270
1271static size_t order_to_size(unsigned int order)
1272{
4ca08500 1273 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1274}
1275
24d2f903
CH
1276static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1277 unsigned int hctx_idx)
320ae51f 1278{
24d2f903 1279 struct blk_mq_tags *tags;
320ae51f
JA
1280 unsigned int i, j, entries_per_page, max_order = 4;
1281 size_t rq_size, left;
1282
24d2f903
CH
1283 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1284 set->numa_node);
1285 if (!tags)
1286 return NULL;
320ae51f 1287
24d2f903
CH
1288 INIT_LIST_HEAD(&tags->page_list);
1289
1290 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1291 GFP_KERNEL, set->numa_node);
1292 if (!tags->rqs) {
1293 blk_mq_free_tags(tags);
1294 return NULL;
1295 }
320ae51f
JA
1296
1297 /*
1298 * rq_size is the size of the request plus driver payload, rounded
1299 * to the cacheline size
1300 */
24d2f903 1301 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1302 cache_line_size());
24d2f903 1303 left = rq_size * set->queue_depth;
320ae51f 1304
24d2f903 1305 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1306 int this_order = max_order;
1307 struct page *page;
1308 int to_do;
1309 void *p;
1310
1311 while (left < order_to_size(this_order - 1) && this_order)
1312 this_order--;
1313
1314 do {
24d2f903
CH
1315 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1316 this_order);
320ae51f
JA
1317 if (page)
1318 break;
1319 if (!this_order--)
1320 break;
1321 if (order_to_size(this_order) < rq_size)
1322 break;
1323 } while (1);
1324
1325 if (!page)
24d2f903 1326 goto fail;
320ae51f
JA
1327
1328 page->private = this_order;
24d2f903 1329 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1330
1331 p = page_address(page);
1332 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1333 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1334 left -= to_do * rq_size;
1335 for (j = 0; j < to_do; j++) {
24d2f903
CH
1336 tags->rqs[i] = p;
1337 if (set->ops->init_request) {
1338 if (set->ops->init_request(set->driver_data,
1339 tags->rqs[i], hctx_idx, i,
1340 set->numa_node))
1341 goto fail;
e9b267d9
CH
1342 }
1343
320ae51f
JA
1344 p += rq_size;
1345 i++;
1346 }
1347 }
1348
24d2f903 1349 return tags;
320ae51f 1350
24d2f903
CH
1351fail:
1352 pr_warn("%s: failed to allocate requests\n", __func__);
1353 blk_mq_free_rq_map(set, tags, hctx_idx);
1354 return NULL;
320ae51f
JA
1355}
1356
1429d7c9
JA
1357static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1358{
1359 kfree(bitmap->map);
1360}
1361
1362static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1363{
1364 unsigned int bpw = 8, total, num_maps, i;
1365
1366 bitmap->bits_per_word = bpw;
1367
1368 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1369 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1370 GFP_KERNEL, node);
1371 if (!bitmap->map)
1372 return -ENOMEM;
1373
1374 bitmap->map_size = num_maps;
1375
1376 total = nr_cpu_ids;
1377 for (i = 0; i < num_maps; i++) {
1378 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1379 total -= bitmap->map[i].depth;
1380 }
1381
1382 return 0;
1383}
1384
320ae51f 1385static int blk_mq_init_hw_queues(struct request_queue *q,
24d2f903 1386 struct blk_mq_tag_set *set)
320ae51f
JA
1387{
1388 struct blk_mq_hw_ctx *hctx;
1389 unsigned int i, j;
1390
1391 /*
1392 * Initialize hardware queues
1393 */
1394 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f
JA
1395 int node;
1396
1397 node = hctx->numa_node;
1398 if (node == NUMA_NO_NODE)
24d2f903 1399 node = hctx->numa_node = set->numa_node;
320ae51f 1400
70f4db63
CH
1401 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1402 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
320ae51f
JA
1403 spin_lock_init(&hctx->lock);
1404 INIT_LIST_HEAD(&hctx->dispatch);
1405 hctx->queue = q;
1406 hctx->queue_num = i;
24d2f903
CH
1407 hctx->flags = set->flags;
1408 hctx->cmd_size = set->cmd_size;
320ae51f
JA
1409
1410 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1411 blk_mq_hctx_notify, hctx);
1412 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1413
24d2f903 1414 hctx->tags = set->tags[i];
320ae51f
JA
1415
1416 /*
1417 * Allocate space for all possible cpus to avoid allocation in
1418 * runtime
1419 */
1420 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1421 GFP_KERNEL, node);
1422 if (!hctx->ctxs)
1423 break;
1424
1429d7c9 1425 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
320ae51f
JA
1426 break;
1427
320ae51f
JA
1428 hctx->nr_ctx = 0;
1429
24d2f903
CH
1430 if (set->ops->init_hctx &&
1431 set->ops->init_hctx(hctx, set->driver_data, i))
320ae51f
JA
1432 break;
1433 }
1434
1435 if (i == q->nr_hw_queues)
1436 return 0;
1437
1438 /*
1439 * Init failed
1440 */
1441 queue_for_each_hw_ctx(q, hctx, j) {
1442 if (i == j)
1443 break;
1444
24d2f903
CH
1445 if (set->ops->exit_hctx)
1446 set->ops->exit_hctx(hctx, j);
320ae51f
JA
1447
1448 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
320ae51f 1449 kfree(hctx->ctxs);
1429d7c9 1450 blk_mq_free_bitmap(&hctx->ctx_map);
320ae51f
JA
1451 }
1452
1453 return 1;
1454}
1455
1456static void blk_mq_init_cpu_queues(struct request_queue *q,
1457 unsigned int nr_hw_queues)
1458{
1459 unsigned int i;
1460
1461 for_each_possible_cpu(i) {
1462 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1463 struct blk_mq_hw_ctx *hctx;
1464
1465 memset(__ctx, 0, sizeof(*__ctx));
1466 __ctx->cpu = i;
1467 spin_lock_init(&__ctx->lock);
1468 INIT_LIST_HEAD(&__ctx->rq_list);
1469 __ctx->queue = q;
1470
1471 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1472 if (!cpu_online(i))
1473 continue;
1474
e4043dcf
JA
1475 hctx = q->mq_ops->map_queue(q, i);
1476 cpumask_set_cpu(i, hctx->cpumask);
1477 hctx->nr_ctx++;
1478
320ae51f
JA
1479 /*
1480 * Set local node, IFF we have more than one hw queue. If
1481 * not, we remain on the home node of the device
1482 */
1483 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1484 hctx->numa_node = cpu_to_node(i);
1485 }
1486}
1487
1488static void blk_mq_map_swqueue(struct request_queue *q)
1489{
1490 unsigned int i;
1491 struct blk_mq_hw_ctx *hctx;
1492 struct blk_mq_ctx *ctx;
1493
1494 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1495 cpumask_clear(hctx->cpumask);
320ae51f
JA
1496 hctx->nr_ctx = 0;
1497 }
1498
1499 /*
1500 * Map software to hardware queues
1501 */
1502 queue_for_each_ctx(q, ctx, i) {
1503 /* If the cpu isn't online, the cpu is mapped to first hctx */
e4043dcf
JA
1504 if (!cpu_online(i))
1505 continue;
1506
320ae51f 1507 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1508 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1509 ctx->index_hw = hctx->nr_ctx;
1510 hctx->ctxs[hctx->nr_ctx++] = ctx;
1511 }
506e931f
JA
1512
1513 queue_for_each_hw_ctx(q, hctx, i) {
1514 hctx->next_cpu = cpumask_first(hctx->cpumask);
1515 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1516 }
320ae51f
JA
1517}
1518
0d2602ca
JA
1519static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1520{
1521 struct blk_mq_hw_ctx *hctx;
1522 struct request_queue *q;
1523 bool shared;
1524 int i;
1525
1526 if (set->tag_list.next == set->tag_list.prev)
1527 shared = false;
1528 else
1529 shared = true;
1530
1531 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1532 blk_mq_freeze_queue(q);
1533
1534 queue_for_each_hw_ctx(q, hctx, i) {
1535 if (shared)
1536 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1537 else
1538 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1539 }
1540 blk_mq_unfreeze_queue(q);
1541 }
1542}
1543
1544static void blk_mq_del_queue_tag_set(struct request_queue *q)
1545{
1546 struct blk_mq_tag_set *set = q->tag_set;
1547
1548 blk_mq_freeze_queue(q);
1549
1550 mutex_lock(&set->tag_list_lock);
1551 list_del_init(&q->tag_set_list);
1552 blk_mq_update_tag_set_depth(set);
1553 mutex_unlock(&set->tag_list_lock);
1554
1555 blk_mq_unfreeze_queue(q);
1556}
1557
1558static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1559 struct request_queue *q)
1560{
1561 q->tag_set = set;
1562
1563 mutex_lock(&set->tag_list_lock);
1564 list_add_tail(&q->tag_set_list, &set->tag_list);
1565 blk_mq_update_tag_set_depth(set);
1566 mutex_unlock(&set->tag_list_lock);
1567}
1568
24d2f903 1569struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
320ae51f
JA
1570{
1571 struct blk_mq_hw_ctx **hctxs;
1572 struct blk_mq_ctx *ctx;
1573 struct request_queue *q;
1574 int i;
1575
320ae51f
JA
1576 ctx = alloc_percpu(struct blk_mq_ctx);
1577 if (!ctx)
1578 return ERR_PTR(-ENOMEM);
1579
24d2f903
CH
1580 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1581 set->numa_node);
320ae51f
JA
1582
1583 if (!hctxs)
1584 goto err_percpu;
1585
24d2f903
CH
1586 for (i = 0; i < set->nr_hw_queues; i++) {
1587 hctxs[i] = set->ops->alloc_hctx(set, i);
320ae51f
JA
1588 if (!hctxs[i])
1589 goto err_hctxs;
1590
e4043dcf
JA
1591 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1592 goto err_hctxs;
1593
0d2602ca 1594 atomic_set(&hctxs[i]->nr_active, 0);
320ae51f
JA
1595 hctxs[i]->numa_node = NUMA_NO_NODE;
1596 hctxs[i]->queue_num = i;
1597 }
1598
24d2f903 1599 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
320ae51f
JA
1600 if (!q)
1601 goto err_hctxs;
1602
24d2f903 1603 q->mq_map = blk_mq_make_queue_map(set);
320ae51f
JA
1604 if (!q->mq_map)
1605 goto err_map;
1606
1607 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1608 blk_queue_rq_timeout(q, 30000);
1609
1610 q->nr_queues = nr_cpu_ids;
24d2f903 1611 q->nr_hw_queues = set->nr_hw_queues;
320ae51f
JA
1612
1613 q->queue_ctx = ctx;
1614 q->queue_hw_ctx = hctxs;
1615
24d2f903 1616 q->mq_ops = set->ops;
94eddfbe 1617 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1618
1be036e9
CH
1619 q->sg_reserved_size = INT_MAX;
1620
320ae51f 1621 blk_queue_make_request(q, blk_mq_make_request);
87ee7b11 1622 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
24d2f903
CH
1623 if (set->timeout)
1624 blk_queue_rq_timeout(q, set->timeout);
320ae51f 1625
24d2f903
CH
1626 if (set->ops->complete)
1627 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 1628
320ae51f 1629 blk_mq_init_flush(q);
24d2f903 1630 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 1631
24d2f903
CH
1632 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1633 set->cmd_size, cache_line_size()),
1634 GFP_KERNEL);
18741986 1635 if (!q->flush_rq)
320ae51f
JA
1636 goto err_hw;
1637
24d2f903 1638 if (blk_mq_init_hw_queues(q, set))
18741986
CH
1639 goto err_flush_rq;
1640
320ae51f
JA
1641 blk_mq_map_swqueue(q);
1642
1643 mutex_lock(&all_q_mutex);
1644 list_add_tail(&q->all_q_node, &all_q_list);
1645 mutex_unlock(&all_q_mutex);
1646
0d2602ca
JA
1647 blk_mq_add_queue_tag_set(set, q);
1648
320ae51f 1649 return q;
18741986
CH
1650
1651err_flush_rq:
1652 kfree(q->flush_rq);
320ae51f
JA
1653err_hw:
1654 kfree(q->mq_map);
1655err_map:
1656 blk_cleanup_queue(q);
1657err_hctxs:
24d2f903 1658 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
1659 if (!hctxs[i])
1660 break;
e4043dcf 1661 free_cpumask_var(hctxs[i]->cpumask);
24d2f903 1662 set->ops->free_hctx(hctxs[i], i);
320ae51f
JA
1663 }
1664 kfree(hctxs);
1665err_percpu:
1666 free_percpu(ctx);
1667 return ERR_PTR(-ENOMEM);
1668}
1669EXPORT_SYMBOL(blk_mq_init_queue);
1670
1671void blk_mq_free_queue(struct request_queue *q)
1672{
1673 struct blk_mq_hw_ctx *hctx;
1674 int i;
1675
0d2602ca
JA
1676 blk_mq_del_queue_tag_set(q);
1677
320ae51f 1678 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f 1679 kfree(hctx->ctxs);
320ae51f
JA
1680 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1681 if (q->mq_ops->exit_hctx)
1682 q->mq_ops->exit_hctx(hctx, i);
e4043dcf 1683 free_cpumask_var(hctx->cpumask);
320ae51f
JA
1684 q->mq_ops->free_hctx(hctx, i);
1685 }
1686
1687 free_percpu(q->queue_ctx);
1688 kfree(q->queue_hw_ctx);
1689 kfree(q->mq_map);
1690
1691 q->queue_ctx = NULL;
1692 q->queue_hw_ctx = NULL;
1693 q->mq_map = NULL;
1694
1695 mutex_lock(&all_q_mutex);
1696 list_del_init(&q->all_q_node);
1697 mutex_unlock(&all_q_mutex);
1698}
320ae51f
JA
1699
1700/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1701static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1702{
1703 blk_mq_freeze_queue(q);
1704
1705 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1706
1707 /*
1708 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1709 * we should change hctx numa_node according to new topology (this
1710 * involves free and re-allocate memory, worthy doing?)
1711 */
1712
1713 blk_mq_map_swqueue(q);
1714
1715 blk_mq_unfreeze_queue(q);
1716}
1717
f618ef7c
PG
1718static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1719 unsigned long action, void *hcpu)
320ae51f
JA
1720{
1721 struct request_queue *q;
1722
1723 /*
9fccfed8
JA
1724 * Before new mappings are established, hotadded cpu might already
1725 * start handling requests. This doesn't break anything as we map
1726 * offline CPUs to first hardware queue. We will re-init the queue
1727 * below to get optimal settings.
320ae51f
JA
1728 */
1729 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1730 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1731 return NOTIFY_OK;
1732
1733 mutex_lock(&all_q_mutex);
1734 list_for_each_entry(q, &all_q_list, all_q_node)
1735 blk_mq_queue_reinit(q);
1736 mutex_unlock(&all_q_mutex);
1737 return NOTIFY_OK;
1738}
1739
24d2f903
CH
1740int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1741{
1742 int i;
1743
1744 if (!set->nr_hw_queues)
1745 return -EINVAL;
1746 if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
1747 return -EINVAL;
1748 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1749 return -EINVAL;
1750
1751 if (!set->nr_hw_queues ||
1752 !set->ops->queue_rq || !set->ops->map_queue ||
1753 !set->ops->alloc_hctx || !set->ops->free_hctx)
1754 return -EINVAL;
1755
1756
48479005
ML
1757 set->tags = kmalloc_node(set->nr_hw_queues *
1758 sizeof(struct blk_mq_tags *),
24d2f903
CH
1759 GFP_KERNEL, set->numa_node);
1760 if (!set->tags)
1761 goto out;
1762
1763 for (i = 0; i < set->nr_hw_queues; i++) {
1764 set->tags[i] = blk_mq_init_rq_map(set, i);
1765 if (!set->tags[i])
1766 goto out_unwind;
1767 }
1768
0d2602ca
JA
1769 mutex_init(&set->tag_list_lock);
1770 INIT_LIST_HEAD(&set->tag_list);
1771
24d2f903
CH
1772 return 0;
1773
1774out_unwind:
1775 while (--i >= 0)
1776 blk_mq_free_rq_map(set, set->tags[i], i);
1777out:
1778 return -ENOMEM;
1779}
1780EXPORT_SYMBOL(blk_mq_alloc_tag_set);
1781
1782void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
1783{
1784 int i;
1785
1786 for (i = 0; i < set->nr_hw_queues; i++)
1787 blk_mq_free_rq_map(set, set->tags[i], i);
981bd189 1788 kfree(set->tags);
24d2f903
CH
1789}
1790EXPORT_SYMBOL(blk_mq_free_tag_set);
1791
e3a2b3f9
JA
1792int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
1793{
1794 struct blk_mq_tag_set *set = q->tag_set;
1795 struct blk_mq_hw_ctx *hctx;
1796 int i, ret;
1797
1798 if (!set || nr > set->queue_depth)
1799 return -EINVAL;
1800
1801 ret = 0;
1802 queue_for_each_hw_ctx(q, hctx, i) {
1803 ret = blk_mq_tag_update_depth(hctx->tags, nr);
1804 if (ret)
1805 break;
1806 }
1807
1808 if (!ret)
1809 q->nr_requests = nr;
1810
1811 return ret;
1812}
1813
676141e4
JA
1814void blk_mq_disable_hotplug(void)
1815{
1816 mutex_lock(&all_q_mutex);
1817}
1818
1819void blk_mq_enable_hotplug(void)
1820{
1821 mutex_unlock(&all_q_mutex);
1822}
1823
320ae51f
JA
1824static int __init blk_mq_init(void)
1825{
320ae51f
JA
1826 blk_mq_cpu_init();
1827
1828 /* Must be called after percpu_counter_hotcpu_callback() */
1829 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1830
1831 return 0;
1832}
1833subsys_initcall(blk_mq_init);