]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-mq.c
scsi: move blk_mq_start_request call earlier
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/mm.h>
13#include <linux/init.h>
14#include <linux/slab.h>
15#include <linux/workqueue.h>
16#include <linux/smp.h>
17#include <linux/llist.h>
18#include <linux/list_sort.h>
19#include <linux/cpu.h>
20#include <linux/cache.h>
21#include <linux/sched/sysctl.h>
22#include <linux/delay.h>
aedcd72f 23#include <linux/crash_dump.h>
320ae51f
JA
24
25#include <trace/events/block.h>
26
27#include <linux/blk-mq.h>
28#include "blk.h"
29#include "blk-mq.h"
30#include "blk-mq-tag.h"
31
32static DEFINE_MUTEX(all_q_mutex);
33static LIST_HEAD(all_q_list);
34
35static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
320ae51f
JA
37/*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41{
42 unsigned int i;
43
1429d7c9
JA
44 for (i = 0; i < hctx->ctx_map.map_size; i++)
45 if (hctx->ctx_map.map[i].word)
320ae51f
JA
46 return true;
47
48 return false;
49}
50
1429d7c9
JA
51static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
53{
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55}
56
57#define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
320ae51f
JA
60/*
61 * Mark this ctx as having pending work in this hardware queue
62 */
63static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
65{
1429d7c9
JA
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70}
71
72static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
74{
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
78}
79
320ae51f
JA
80static int blk_mq_queue_enter(struct request_queue *q)
81{
add703fd
TH
82 while (true) {
83 int ret;
320ae51f 84
add703fd
TH
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
320ae51f 87
add703fd
TH
88 ret = wait_event_interruptible(q->mq_freeze_wq,
89 !q->mq_freeze_depth || blk_queue_dying(q));
90 if (blk_queue_dying(q))
91 return -ENODEV;
92 if (ret)
93 return ret;
94 }
320ae51f
JA
95}
96
97static void blk_mq_queue_exit(struct request_queue *q)
98{
add703fd
TH
99 percpu_ref_put(&q->mq_usage_counter);
100}
101
102static void blk_mq_usage_counter_release(struct percpu_ref *ref)
103{
104 struct request_queue *q =
105 container_of(ref, struct request_queue, mq_usage_counter);
106
107 wake_up_all(&q->mq_freeze_wq);
320ae51f
JA
108}
109
72d6f02a
TH
110/*
111 * Guarantee no request is in use, so we can change any data structure of
112 * the queue afterward.
113 */
114void blk_mq_freeze_queue(struct request_queue *q)
43a5e4e2 115{
cddd5d17
TH
116 bool freeze;
117
72d6f02a 118 spin_lock_irq(q->queue_lock);
cddd5d17 119 freeze = !q->mq_freeze_depth++;
72d6f02a
TH
120 spin_unlock_irq(q->queue_lock);
121
cddd5d17
TH
122 if (freeze) {
123 percpu_ref_kill(&q->mq_usage_counter);
124 blk_mq_run_queues(q, false);
125 }
add703fd 126 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
43a5e4e2
ML
127}
128
320ae51f
JA
129static void blk_mq_unfreeze_queue(struct request_queue *q)
130{
cddd5d17 131 bool wake;
320ae51f
JA
132
133 spin_lock_irq(q->queue_lock);
780db207
TH
134 wake = !--q->mq_freeze_depth;
135 WARN_ON_ONCE(q->mq_freeze_depth < 0);
320ae51f 136 spin_unlock_irq(q->queue_lock);
add703fd
TH
137 if (wake) {
138 percpu_ref_reinit(&q->mq_usage_counter);
320ae51f 139 wake_up_all(&q->mq_freeze_wq);
add703fd 140 }
320ae51f
JA
141}
142
143bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
144{
145 return blk_mq_has_free_tags(hctx->tags);
146}
147EXPORT_SYMBOL(blk_mq_can_queue);
148
94eddfbe
JA
149static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
150 struct request *rq, unsigned int rw_flags)
320ae51f 151{
94eddfbe
JA
152 if (blk_queue_io_stat(q))
153 rw_flags |= REQ_IO_STAT;
154
af76e555
CH
155 INIT_LIST_HEAD(&rq->queuelist);
156 /* csd/requeue_work/fifo_time is initialized before use */
157 rq->q = q;
320ae51f 158 rq->mq_ctx = ctx;
0d2602ca 159 rq->cmd_flags |= rw_flags;
af76e555
CH
160 /* do not touch atomic flags, it needs atomic ops against the timer */
161 rq->cpu = -1;
af76e555
CH
162 INIT_HLIST_NODE(&rq->hash);
163 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
164 rq->rq_disk = NULL;
165 rq->part = NULL;
3ee32372 166 rq->start_time = jiffies;
af76e555
CH
167#ifdef CONFIG_BLK_CGROUP
168 rq->rl = NULL;
0fec08b4 169 set_start_time_ns(rq);
af76e555
CH
170 rq->io_start_time_ns = 0;
171#endif
172 rq->nr_phys_segments = 0;
173#if defined(CONFIG_BLK_DEV_INTEGRITY)
174 rq->nr_integrity_segments = 0;
175#endif
af76e555
CH
176 rq->special = NULL;
177 /* tag was already set */
178 rq->errors = 0;
af76e555 179
6f4a1626
TB
180 rq->cmd = rq->__cmd;
181
af76e555
CH
182 rq->extra_len = 0;
183 rq->sense_len = 0;
184 rq->resid_len = 0;
185 rq->sense = NULL;
186
af76e555 187 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
188 rq->timeout = 0;
189
af76e555
CH
190 rq->end_io = NULL;
191 rq->end_io_data = NULL;
192 rq->next_rq = NULL;
193
320ae51f
JA
194 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
195}
196
5dee8577 197static struct request *
cb96a42c 198__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
5dee8577
CH
199{
200 struct request *rq;
201 unsigned int tag;
202
cb96a42c 203 tag = blk_mq_get_tag(data);
5dee8577 204 if (tag != BLK_MQ_TAG_FAIL) {
cb96a42c 205 rq = data->hctx->tags->rqs[tag];
5dee8577 206
cb96a42c 207 if (blk_mq_tag_busy(data->hctx)) {
5dee8577 208 rq->cmd_flags = REQ_MQ_INFLIGHT;
cb96a42c 209 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
210 }
211
212 rq->tag = tag;
cb96a42c 213 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
5dee8577
CH
214 return rq;
215 }
216
217 return NULL;
218}
219
4ce01dd1
CH
220struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
221 bool reserved)
320ae51f 222{
d852564f
CH
223 struct blk_mq_ctx *ctx;
224 struct blk_mq_hw_ctx *hctx;
320ae51f 225 struct request *rq;
cb96a42c 226 struct blk_mq_alloc_data alloc_data;
a492f075 227 int ret;
320ae51f 228
a492f075
JL
229 ret = blk_mq_queue_enter(q);
230 if (ret)
231 return ERR_PTR(ret);
320ae51f 232
d852564f
CH
233 ctx = blk_mq_get_ctx(q);
234 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
235 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
236 reserved, ctx, hctx);
d852564f 237
cb96a42c 238 rq = __blk_mq_alloc_request(&alloc_data, rw);
d852564f
CH
239 if (!rq && (gfp & __GFP_WAIT)) {
240 __blk_mq_run_hw_queue(hctx);
241 blk_mq_put_ctx(ctx);
242
243 ctx = blk_mq_get_ctx(q);
244 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
245 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
246 hctx);
247 rq = __blk_mq_alloc_request(&alloc_data, rw);
248 ctx = alloc_data.ctx;
d852564f
CH
249 }
250 blk_mq_put_ctx(ctx);
a492f075
JL
251 if (!rq)
252 return ERR_PTR(-EWOULDBLOCK);
320ae51f
JA
253 return rq;
254}
4bb659b1 255EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 256
320ae51f
JA
257static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
258 struct blk_mq_ctx *ctx, struct request *rq)
259{
260 const int tag = rq->tag;
261 struct request_queue *q = rq->q;
262
0d2602ca
JA
263 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
264 atomic_dec(&hctx->nr_active);
683d0e12 265 rq->cmd_flags = 0;
0d2602ca 266
af76e555 267 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 268 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
320ae51f
JA
269 blk_mq_queue_exit(q);
270}
271
272void blk_mq_free_request(struct request *rq)
273{
274 struct blk_mq_ctx *ctx = rq->mq_ctx;
275 struct blk_mq_hw_ctx *hctx;
276 struct request_queue *q = rq->q;
277
278 ctx->rq_completed[rq_is_sync(rq)]++;
279
280 hctx = q->mq_ops->map_queue(q, ctx->cpu);
281 __blk_mq_free_request(hctx, ctx, rq);
282}
283
8727af4b
CH
284/*
285 * Clone all relevant state from a request that has been put on hold in
286 * the flush state machine into the preallocated flush request that hangs
287 * off the request queue.
288 *
289 * For a driver the flush request should be invisible, that's why we are
290 * impersonating the original request here.
291 */
292void blk_mq_clone_flush_request(struct request *flush_rq,
293 struct request *orig_rq)
294{
295 struct blk_mq_hw_ctx *hctx =
296 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
297
298 flush_rq->mq_ctx = orig_rq->mq_ctx;
299 flush_rq->tag = orig_rq->tag;
300 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
301 hctx->cmd_size);
302}
303
c8a446ad 304inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 305{
0d11e6ac
ML
306 blk_account_io_done(rq);
307
91b63639 308 if (rq->end_io) {
320ae51f 309 rq->end_io(rq, error);
91b63639
CH
310 } else {
311 if (unlikely(blk_bidi_rq(rq)))
312 blk_mq_free_request(rq->next_rq);
320ae51f 313 blk_mq_free_request(rq);
91b63639 314 }
320ae51f 315}
c8a446ad 316EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 317
c8a446ad 318void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
319{
320 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
321 BUG();
c8a446ad 322 __blk_mq_end_request(rq, error);
63151a44 323}
c8a446ad 324EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 325
30a91cb4 326static void __blk_mq_complete_request_remote(void *data)
320ae51f 327{
3d6efbf6 328 struct request *rq = data;
320ae51f 329
30a91cb4 330 rq->q->softirq_done_fn(rq);
320ae51f 331}
320ae51f 332
ed851860 333static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
334{
335 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 336 bool shared = false;
320ae51f
JA
337 int cpu;
338
38535201 339 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
340 rq->q->softirq_done_fn(rq);
341 return;
342 }
320ae51f
JA
343
344 cpu = get_cpu();
38535201
CH
345 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
346 shared = cpus_share_cache(cpu, ctx->cpu);
347
348 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 349 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
350 rq->csd.info = rq;
351 rq->csd.flags = 0;
c46fff2a 352 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 353 } else {
30a91cb4 354 rq->q->softirq_done_fn(rq);
3d6efbf6 355 }
320ae51f
JA
356 put_cpu();
357}
30a91cb4 358
ed851860
JA
359void __blk_mq_complete_request(struct request *rq)
360{
361 struct request_queue *q = rq->q;
362
363 if (!q->softirq_done_fn)
c8a446ad 364 blk_mq_end_request(rq, rq->errors);
ed851860
JA
365 else
366 blk_mq_ipi_complete_request(rq);
367}
368
30a91cb4
CH
369/**
370 * blk_mq_complete_request - end I/O on a request
371 * @rq: the request being processed
372 *
373 * Description:
374 * Ends all I/O on a request. It does not handle partial completions.
375 * The actual completion happens out-of-order, through a IPI handler.
376 **/
377void blk_mq_complete_request(struct request *rq)
378{
95f09684
JA
379 struct request_queue *q = rq->q;
380
381 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 382 return;
ed851860
JA
383 if (!blk_mark_rq_complete(rq))
384 __blk_mq_complete_request(rq);
30a91cb4
CH
385}
386EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 387
e2490073 388void blk_mq_start_request(struct request *rq)
320ae51f
JA
389{
390 struct request_queue *q = rq->q;
391
392 trace_block_rq_issue(q, rq);
393
742ee69b 394 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
395 if (unlikely(blk_bidi_rq(rq)))
396 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 397
2b8393b4 398 blk_add_timer(rq);
87ee7b11 399
538b7534
JA
400 /*
401 * Ensure that ->deadline is visible before set the started
402 * flag and clear the completed flag.
403 */
404 smp_mb__before_atomic();
405
87ee7b11
JA
406 /*
407 * Mark us as started and clear complete. Complete might have been
408 * set if requeue raced with timeout, which then marked it as
409 * complete. So be sure to clear complete again when we start
410 * the request, otherwise we'll ignore the completion event.
411 */
4b570521
JA
412 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
413 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
414 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
415 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
416
417 if (q->dma_drain_size && blk_rq_bytes(rq)) {
418 /*
419 * Make sure space for the drain appears. We know we can do
420 * this because max_hw_segments has been adjusted to be one
421 * fewer than the device can handle.
422 */
423 rq->nr_phys_segments++;
424 }
320ae51f 425}
e2490073 426EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 427
ed0791b2 428static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
429{
430 struct request_queue *q = rq->q;
431
432 trace_block_rq_requeue(q, rq);
49f5baa5 433
e2490073
CH
434 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
435 if (q->dma_drain_size && blk_rq_bytes(rq))
436 rq->nr_phys_segments--;
437 }
320ae51f
JA
438}
439
ed0791b2
CH
440void blk_mq_requeue_request(struct request *rq)
441{
ed0791b2 442 __blk_mq_requeue_request(rq);
ed0791b2 443
ed0791b2 444 BUG_ON(blk_queued_rq(rq));
6fca6a61 445 blk_mq_add_to_requeue_list(rq, true);
ed0791b2
CH
446}
447EXPORT_SYMBOL(blk_mq_requeue_request);
448
6fca6a61
CH
449static void blk_mq_requeue_work(struct work_struct *work)
450{
451 struct request_queue *q =
452 container_of(work, struct request_queue, requeue_work);
453 LIST_HEAD(rq_list);
454 struct request *rq, *next;
455 unsigned long flags;
456
457 spin_lock_irqsave(&q->requeue_lock, flags);
458 list_splice_init(&q->requeue_list, &rq_list);
459 spin_unlock_irqrestore(&q->requeue_lock, flags);
460
461 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
462 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
463 continue;
464
465 rq->cmd_flags &= ~REQ_SOFTBARRIER;
466 list_del_init(&rq->queuelist);
467 blk_mq_insert_request(rq, true, false, false);
468 }
469
470 while (!list_empty(&rq_list)) {
471 rq = list_entry(rq_list.next, struct request, queuelist);
472 list_del_init(&rq->queuelist);
473 blk_mq_insert_request(rq, false, false, false);
474 }
475
8b957415
JA
476 /*
477 * Use the start variant of queue running here, so that running
478 * the requeue work will kick stopped queues.
479 */
480 blk_mq_start_hw_queues(q);
6fca6a61
CH
481}
482
483void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
484{
485 struct request_queue *q = rq->q;
486 unsigned long flags;
487
488 /*
489 * We abuse this flag that is otherwise used by the I/O scheduler to
490 * request head insertation from the workqueue.
491 */
492 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
493
494 spin_lock_irqsave(&q->requeue_lock, flags);
495 if (at_head) {
496 rq->cmd_flags |= REQ_SOFTBARRIER;
497 list_add(&rq->queuelist, &q->requeue_list);
498 } else {
499 list_add_tail(&rq->queuelist, &q->requeue_list);
500 }
501 spin_unlock_irqrestore(&q->requeue_lock, flags);
502}
503EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
504
505void blk_mq_kick_requeue_list(struct request_queue *q)
506{
507 kblockd_schedule_work(&q->requeue_work);
508}
509EXPORT_SYMBOL(blk_mq_kick_requeue_list);
510
0e62f51f 511static inline bool is_flush_request(struct request *rq, unsigned int tag)
24d2f903 512{
0e62f51f
JA
513 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
514 rq->q->flush_rq->tag == tag);
515}
516
517struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
518{
519 struct request *rq = tags->rqs[tag];
22302375 520
0e62f51f
JA
521 if (!is_flush_request(rq, tag))
522 return rq;
22302375 523
0e62f51f 524 return rq->q->flush_rq;
24d2f903
CH
525}
526EXPORT_SYMBOL(blk_mq_tag_to_rq);
527
46f92d42
CH
528struct blk_mq_timeout_data {
529 unsigned long next;
530 unsigned int next_set;
531};
532
90415837 533void blk_mq_rq_timed_out(struct request *req, bool reserved)
87ee7b11 534{
46f92d42
CH
535 struct blk_mq_ops *ops = req->q->mq_ops;
536 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
537
538 /*
539 * We know that complete is set at this point. If STARTED isn't set
540 * anymore, then the request isn't active and the "timeout" should
541 * just be ignored. This can happen due to the bitflag ordering.
542 * Timeout first checks if STARTED is set, and if it is, assumes
543 * the request is active. But if we race with completion, then
544 * we both flags will get cleared. So check here again, and ignore
545 * a timeout event with a request that isn't active.
546 */
46f92d42
CH
547 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
548 return;
87ee7b11 549
46f92d42 550 if (ops->timeout)
0152fb6b 551 ret = ops->timeout(req, reserved);
46f92d42
CH
552
553 switch (ret) {
554 case BLK_EH_HANDLED:
555 __blk_mq_complete_request(req);
556 break;
557 case BLK_EH_RESET_TIMER:
558 blk_add_timer(req);
559 blk_clear_rq_complete(req);
560 break;
561 case BLK_EH_NOT_HANDLED:
562 break;
563 default:
564 printk(KERN_ERR "block: bad eh return: %d\n", ret);
565 break;
566 }
87ee7b11 567}
81481eb4 568
81481eb4
CH
569static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
570 struct request *rq, void *priv, bool reserved)
571{
572 struct blk_mq_timeout_data *data = priv;
87ee7b11 573
46f92d42
CH
574 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
575 return;
576
577 if (time_after_eq(jiffies, rq->deadline)) {
578 if (!blk_mark_rq_complete(rq))
0152fb6b 579 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
580 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
581 data->next = rq->deadline;
582 data->next_set = 1;
583 }
81481eb4
CH
584}
585
586static void blk_mq_rq_timer(unsigned long priv)
320ae51f 587{
81481eb4
CH
588 struct request_queue *q = (struct request_queue *)priv;
589 struct blk_mq_timeout_data data = {
590 .next = 0,
591 .next_set = 0,
592 };
320ae51f 593 struct blk_mq_hw_ctx *hctx;
81481eb4 594 int i;
320ae51f 595
484b4061
JA
596 queue_for_each_hw_ctx(q, hctx, i) {
597 /*
598 * If not software queues are currently mapped to this
599 * hardware queue, there's nothing to check
600 */
601 if (!hctx->nr_ctx || !hctx->tags)
602 continue;
603
81481eb4 604 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
484b4061 605 }
320ae51f 606
81481eb4
CH
607 if (data.next_set) {
608 data.next = blk_rq_timeout(round_jiffies_up(data.next));
609 mod_timer(&q->timeout, data.next);
0d2602ca
JA
610 } else {
611 queue_for_each_hw_ctx(q, hctx, i)
612 blk_mq_tag_idle(hctx);
613 }
320ae51f
JA
614}
615
616/*
617 * Reverse check our software queue for entries that we could potentially
618 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
619 * too much time checking for merges.
620 */
621static bool blk_mq_attempt_merge(struct request_queue *q,
622 struct blk_mq_ctx *ctx, struct bio *bio)
623{
624 struct request *rq;
625 int checked = 8;
626
627 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
628 int el_ret;
629
630 if (!checked--)
631 break;
632
633 if (!blk_rq_merge_ok(rq, bio))
634 continue;
635
636 el_ret = blk_try_merge(rq, bio);
637 if (el_ret == ELEVATOR_BACK_MERGE) {
638 if (bio_attempt_back_merge(q, rq, bio)) {
639 ctx->rq_merged++;
640 return true;
641 }
642 break;
643 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
644 if (bio_attempt_front_merge(q, rq, bio)) {
645 ctx->rq_merged++;
646 return true;
647 }
648 break;
649 }
650 }
651
652 return false;
653}
654
1429d7c9
JA
655/*
656 * Process software queues that have been marked busy, splicing them
657 * to the for-dispatch
658 */
659static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
660{
661 struct blk_mq_ctx *ctx;
662 int i;
663
664 for (i = 0; i < hctx->ctx_map.map_size; i++) {
665 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
666 unsigned int off, bit;
667
668 if (!bm->word)
669 continue;
670
671 bit = 0;
672 off = i * hctx->ctx_map.bits_per_word;
673 do {
674 bit = find_next_bit(&bm->word, bm->depth, bit);
675 if (bit >= bm->depth)
676 break;
677
678 ctx = hctx->ctxs[bit + off];
679 clear_bit(bit, &bm->word);
680 spin_lock(&ctx->lock);
681 list_splice_tail_init(&ctx->rq_list, list);
682 spin_unlock(&ctx->lock);
683
684 bit++;
685 } while (1);
686 }
687}
688
320ae51f
JA
689/*
690 * Run this hardware queue, pulling any software queues mapped to it in.
691 * Note that this function currently has various problems around ordering
692 * of IO. In particular, we'd like FIFO behaviour on handling existing
693 * items on the hctx->dispatch list. Ignore that for now.
694 */
695static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
696{
697 struct request_queue *q = hctx->queue;
320ae51f
JA
698 struct request *rq;
699 LIST_HEAD(rq_list);
1429d7c9 700 int queued;
320ae51f 701
fd1270d5 702 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 703
5d12f905 704 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
705 return;
706
707 hctx->run++;
708
709 /*
710 * Touch any software queue that has pending entries.
711 */
1429d7c9 712 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
713
714 /*
715 * If we have previous entries on our dispatch list, grab them
716 * and stuff them at the front for more fair dispatch.
717 */
718 if (!list_empty_careful(&hctx->dispatch)) {
719 spin_lock(&hctx->lock);
720 if (!list_empty(&hctx->dispatch))
721 list_splice_init(&hctx->dispatch, &rq_list);
722 spin_unlock(&hctx->lock);
723 }
724
320ae51f
JA
725 /*
726 * Now process all the entries, sending them to the driver.
727 */
1429d7c9 728 queued = 0;
320ae51f
JA
729 while (!list_empty(&rq_list)) {
730 int ret;
731
732 rq = list_first_entry(&rq_list, struct request, queuelist);
733 list_del_init(&rq->queuelist);
320ae51f 734
bf572297 735 ret = q->mq_ops->queue_rq(hctx, rq, list_empty(&rq_list));
320ae51f
JA
736 switch (ret) {
737 case BLK_MQ_RQ_QUEUE_OK:
738 queued++;
739 continue;
740 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 741 list_add(&rq->queuelist, &rq_list);
ed0791b2 742 __blk_mq_requeue_request(rq);
320ae51f
JA
743 break;
744 default:
745 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 746 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 747 rq->errors = -EIO;
c8a446ad 748 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
749 break;
750 }
751
752 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
753 break;
754 }
755
756 if (!queued)
757 hctx->dispatched[0]++;
758 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
759 hctx->dispatched[ilog2(queued) + 1]++;
760
761 /*
762 * Any items that need requeuing? Stuff them into hctx->dispatch,
763 * that is where we will continue on next queue run.
764 */
765 if (!list_empty(&rq_list)) {
766 spin_lock(&hctx->lock);
767 list_splice(&rq_list, &hctx->dispatch);
768 spin_unlock(&hctx->lock);
769 }
770}
771
506e931f
JA
772/*
773 * It'd be great if the workqueue API had a way to pass
774 * in a mask and had some smarts for more clever placement.
775 * For now we just round-robin here, switching for every
776 * BLK_MQ_CPU_WORK_BATCH queued items.
777 */
778static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
779{
780 int cpu = hctx->next_cpu;
781
782 if (--hctx->next_cpu_batch <= 0) {
783 int next_cpu;
784
785 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
786 if (next_cpu >= nr_cpu_ids)
787 next_cpu = cpumask_first(hctx->cpumask);
788
789 hctx->next_cpu = next_cpu;
790 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
791 }
792
793 return cpu;
794}
795
320ae51f
JA
796void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
797{
5d12f905 798 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
799 return;
800
e4043dcf 801 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
320ae51f 802 __blk_mq_run_hw_queue(hctx);
e4043dcf 803 else if (hctx->queue->nr_hw_queues == 1)
70f4db63 804 kblockd_schedule_delayed_work(&hctx->run_work, 0);
e4043dcf
JA
805 else {
806 unsigned int cpu;
807
506e931f 808 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63 809 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
e4043dcf 810 }
320ae51f
JA
811}
812
813void blk_mq_run_queues(struct request_queue *q, bool async)
814{
815 struct blk_mq_hw_ctx *hctx;
816 int i;
817
818 queue_for_each_hw_ctx(q, hctx, i) {
819 if ((!blk_mq_hctx_has_pending(hctx) &&
820 list_empty_careful(&hctx->dispatch)) ||
5d12f905 821 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
822 continue;
823
e4043dcf 824 preempt_disable();
320ae51f 825 blk_mq_run_hw_queue(hctx, async);
e4043dcf 826 preempt_enable();
320ae51f
JA
827 }
828}
829EXPORT_SYMBOL(blk_mq_run_queues);
830
831void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
832{
70f4db63
CH
833 cancel_delayed_work(&hctx->run_work);
834 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
835 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
836}
837EXPORT_SYMBOL(blk_mq_stop_hw_queue);
838
280d45f6
CH
839void blk_mq_stop_hw_queues(struct request_queue *q)
840{
841 struct blk_mq_hw_ctx *hctx;
842 int i;
843
844 queue_for_each_hw_ctx(q, hctx, i)
845 blk_mq_stop_hw_queue(hctx);
846}
847EXPORT_SYMBOL(blk_mq_stop_hw_queues);
848
320ae51f
JA
849void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
850{
851 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf
JA
852
853 preempt_disable();
0ffbce80 854 blk_mq_run_hw_queue(hctx, false);
e4043dcf 855 preempt_enable();
320ae51f
JA
856}
857EXPORT_SYMBOL(blk_mq_start_hw_queue);
858
2f268556
CH
859void blk_mq_start_hw_queues(struct request_queue *q)
860{
861 struct blk_mq_hw_ctx *hctx;
862 int i;
863
864 queue_for_each_hw_ctx(q, hctx, i)
865 blk_mq_start_hw_queue(hctx);
866}
867EXPORT_SYMBOL(blk_mq_start_hw_queues);
868
869
1b4a3258 870void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
871{
872 struct blk_mq_hw_ctx *hctx;
873 int i;
874
875 queue_for_each_hw_ctx(q, hctx, i) {
876 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
877 continue;
878
879 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 880 preempt_disable();
1b4a3258 881 blk_mq_run_hw_queue(hctx, async);
e4043dcf 882 preempt_enable();
320ae51f
JA
883 }
884}
885EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
886
70f4db63 887static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
888{
889 struct blk_mq_hw_ctx *hctx;
890
70f4db63 891 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 892
320ae51f
JA
893 __blk_mq_run_hw_queue(hctx);
894}
895
70f4db63
CH
896static void blk_mq_delay_work_fn(struct work_struct *work)
897{
898 struct blk_mq_hw_ctx *hctx;
899
900 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
901
902 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
903 __blk_mq_run_hw_queue(hctx);
904}
905
906void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
907{
908 unsigned long tmo = msecs_to_jiffies(msecs);
909
910 if (hctx->queue->nr_hw_queues == 1)
911 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
912 else {
913 unsigned int cpu;
914
506e931f 915 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63
CH
916 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
917 }
918}
919EXPORT_SYMBOL(blk_mq_delay_queue);
920
320ae51f 921static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 922 struct request *rq, bool at_head)
320ae51f
JA
923{
924 struct blk_mq_ctx *ctx = rq->mq_ctx;
925
01b983c9
JA
926 trace_block_rq_insert(hctx->queue, rq);
927
72a0a36e
CH
928 if (at_head)
929 list_add(&rq->queuelist, &ctx->rq_list);
930 else
931 list_add_tail(&rq->queuelist, &ctx->rq_list);
4bb659b1 932
320ae51f 933 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
934}
935
eeabc850
CH
936void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
937 bool async)
320ae51f 938{
eeabc850 939 struct request_queue *q = rq->q;
320ae51f 940 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
941 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
942
943 current_ctx = blk_mq_get_ctx(q);
944 if (!cpu_online(ctx->cpu))
945 rq->mq_ctx = ctx = current_ctx;
320ae51f 946
320ae51f
JA
947 hctx = q->mq_ops->map_queue(q, ctx->cpu);
948
a57a178a
CH
949 spin_lock(&ctx->lock);
950 __blk_mq_insert_request(hctx, rq, at_head);
951 spin_unlock(&ctx->lock);
320ae51f 952
320ae51f
JA
953 if (run_queue)
954 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
955
956 blk_mq_put_ctx(current_ctx);
320ae51f
JA
957}
958
959static void blk_mq_insert_requests(struct request_queue *q,
960 struct blk_mq_ctx *ctx,
961 struct list_head *list,
962 int depth,
963 bool from_schedule)
964
965{
966 struct blk_mq_hw_ctx *hctx;
967 struct blk_mq_ctx *current_ctx;
968
969 trace_block_unplug(q, depth, !from_schedule);
970
971 current_ctx = blk_mq_get_ctx(q);
972
973 if (!cpu_online(ctx->cpu))
974 ctx = current_ctx;
975 hctx = q->mq_ops->map_queue(q, ctx->cpu);
976
977 /*
978 * preemption doesn't flush plug list, so it's possible ctx->cpu is
979 * offline now
980 */
981 spin_lock(&ctx->lock);
982 while (!list_empty(list)) {
983 struct request *rq;
984
985 rq = list_first_entry(list, struct request, queuelist);
986 list_del_init(&rq->queuelist);
987 rq->mq_ctx = ctx;
72a0a36e 988 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
989 }
990 spin_unlock(&ctx->lock);
991
320ae51f 992 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 993 blk_mq_put_ctx(current_ctx);
320ae51f
JA
994}
995
996static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
997{
998 struct request *rqa = container_of(a, struct request, queuelist);
999 struct request *rqb = container_of(b, struct request, queuelist);
1000
1001 return !(rqa->mq_ctx < rqb->mq_ctx ||
1002 (rqa->mq_ctx == rqb->mq_ctx &&
1003 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1004}
1005
1006void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1007{
1008 struct blk_mq_ctx *this_ctx;
1009 struct request_queue *this_q;
1010 struct request *rq;
1011 LIST_HEAD(list);
1012 LIST_HEAD(ctx_list);
1013 unsigned int depth;
1014
1015 list_splice_init(&plug->mq_list, &list);
1016
1017 list_sort(NULL, &list, plug_ctx_cmp);
1018
1019 this_q = NULL;
1020 this_ctx = NULL;
1021 depth = 0;
1022
1023 while (!list_empty(&list)) {
1024 rq = list_entry_rq(list.next);
1025 list_del_init(&rq->queuelist);
1026 BUG_ON(!rq->q);
1027 if (rq->mq_ctx != this_ctx) {
1028 if (this_ctx) {
1029 blk_mq_insert_requests(this_q, this_ctx,
1030 &ctx_list, depth,
1031 from_schedule);
1032 }
1033
1034 this_ctx = rq->mq_ctx;
1035 this_q = rq->q;
1036 depth = 0;
1037 }
1038
1039 depth++;
1040 list_add_tail(&rq->queuelist, &ctx_list);
1041 }
1042
1043 /*
1044 * If 'this_ctx' is set, we know we have entries to complete
1045 * on 'ctx_list'. Do those.
1046 */
1047 if (this_ctx) {
1048 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1049 from_schedule);
1050 }
1051}
1052
1053static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1054{
1055 init_request_from_bio(rq, bio);
4b570521 1056
3ee32372 1057 if (blk_do_io_stat(rq))
4b570521 1058 blk_account_io_start(rq, 1);
320ae51f
JA
1059}
1060
274a5843
JA
1061static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1062{
1063 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1064 !blk_queue_nomerges(hctx->queue);
1065}
1066
07068d5b
JA
1067static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1068 struct blk_mq_ctx *ctx,
1069 struct request *rq, struct bio *bio)
320ae51f 1070{
274a5843 1071 if (!hctx_allow_merges(hctx)) {
07068d5b
JA
1072 blk_mq_bio_to_request(rq, bio);
1073 spin_lock(&ctx->lock);
1074insert_rq:
1075 __blk_mq_insert_request(hctx, rq, false);
1076 spin_unlock(&ctx->lock);
1077 return false;
1078 } else {
274a5843
JA
1079 struct request_queue *q = hctx->queue;
1080
07068d5b
JA
1081 spin_lock(&ctx->lock);
1082 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1083 blk_mq_bio_to_request(rq, bio);
1084 goto insert_rq;
1085 }
320ae51f 1086
07068d5b
JA
1087 spin_unlock(&ctx->lock);
1088 __blk_mq_free_request(hctx, ctx, rq);
1089 return true;
14ec77f3 1090 }
07068d5b 1091}
14ec77f3 1092
07068d5b
JA
1093struct blk_map_ctx {
1094 struct blk_mq_hw_ctx *hctx;
1095 struct blk_mq_ctx *ctx;
1096};
1097
1098static struct request *blk_mq_map_request(struct request_queue *q,
1099 struct bio *bio,
1100 struct blk_map_ctx *data)
1101{
1102 struct blk_mq_hw_ctx *hctx;
1103 struct blk_mq_ctx *ctx;
1104 struct request *rq;
1105 int rw = bio_data_dir(bio);
cb96a42c 1106 struct blk_mq_alloc_data alloc_data;
320ae51f 1107
07068d5b 1108 if (unlikely(blk_mq_queue_enter(q))) {
320ae51f 1109 bio_endio(bio, -EIO);
07068d5b 1110 return NULL;
320ae51f
JA
1111 }
1112
1113 ctx = blk_mq_get_ctx(q);
1114 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1115
07068d5b 1116 if (rw_is_sync(bio->bi_rw))
27fbf4e8 1117 rw |= REQ_SYNC;
07068d5b 1118
320ae51f 1119 trace_block_getrq(q, bio, rw);
cb96a42c
ML
1120 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1121 hctx);
1122 rq = __blk_mq_alloc_request(&alloc_data, rw);
5dee8577 1123 if (unlikely(!rq)) {
793597a6 1124 __blk_mq_run_hw_queue(hctx);
320ae51f
JA
1125 blk_mq_put_ctx(ctx);
1126 trace_block_sleeprq(q, bio, rw);
793597a6
CH
1127
1128 ctx = blk_mq_get_ctx(q);
320ae51f 1129 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
1130 blk_mq_set_alloc_data(&alloc_data, q,
1131 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1132 rq = __blk_mq_alloc_request(&alloc_data, rw);
1133 ctx = alloc_data.ctx;
1134 hctx = alloc_data.hctx;
320ae51f
JA
1135 }
1136
1137 hctx->queued++;
07068d5b
JA
1138 data->hctx = hctx;
1139 data->ctx = ctx;
1140 return rq;
1141}
1142
1143/*
1144 * Multiple hardware queue variant. This will not use per-process plugs,
1145 * but will attempt to bypass the hctx queueing if we can go straight to
1146 * hardware for SYNC IO.
1147 */
1148static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1149{
1150 const int is_sync = rw_is_sync(bio->bi_rw);
1151 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1152 struct blk_map_ctx data;
1153 struct request *rq;
1154
1155 blk_queue_bounce(q, &bio);
1156
1157 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1158 bio_endio(bio, -EIO);
1159 return;
1160 }
1161
1162 rq = blk_mq_map_request(q, bio, &data);
1163 if (unlikely(!rq))
1164 return;
1165
1166 if (unlikely(is_flush_fua)) {
1167 blk_mq_bio_to_request(rq, bio);
1168 blk_insert_flush(rq);
1169 goto run_queue;
1170 }
1171
1172 if (is_sync) {
1173 int ret;
1174
1175 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1176
1177 /*
1178 * For OK queue, we are done. For error, kill it. Any other
1179 * error (busy), just add it to our list as we previously
1180 * would have done
1181 */
bf572297 1182 ret = q->mq_ops->queue_rq(data.hctx, rq, true);
07068d5b
JA
1183 if (ret == BLK_MQ_RQ_QUEUE_OK)
1184 goto done;
1185 else {
1186 __blk_mq_requeue_request(rq);
1187
1188 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1189 rq->errors = -EIO;
c8a446ad 1190 blk_mq_end_request(rq, rq->errors);
07068d5b
JA
1191 goto done;
1192 }
1193 }
1194 }
1195
1196 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1197 /*
1198 * For a SYNC request, send it to the hardware immediately. For
1199 * an ASYNC request, just ensure that we run it later on. The
1200 * latter allows for merging opportunities and more efficient
1201 * dispatching.
1202 */
1203run_queue:
1204 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1205 }
1206done:
1207 blk_mq_put_ctx(data.ctx);
1208}
1209
1210/*
1211 * Single hardware queue variant. This will attempt to use any per-process
1212 * plug for merging and IO deferral.
1213 */
1214static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1215{
1216 const int is_sync = rw_is_sync(bio->bi_rw);
1217 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1218 unsigned int use_plug, request_count = 0;
1219 struct blk_map_ctx data;
1220 struct request *rq;
1221
1222 /*
1223 * If we have multiple hardware queues, just go directly to
1224 * one of those for sync IO.
1225 */
1226 use_plug = !is_flush_fua && !is_sync;
1227
1228 blk_queue_bounce(q, &bio);
1229
1230 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1231 bio_endio(bio, -EIO);
1232 return;
1233 }
1234
1235 if (use_plug && !blk_queue_nomerges(q) &&
1236 blk_attempt_plug_merge(q, bio, &request_count))
1237 return;
1238
1239 rq = blk_mq_map_request(q, bio, &data);
ff87bcec
JA
1240 if (unlikely(!rq))
1241 return;
320ae51f
JA
1242
1243 if (unlikely(is_flush_fua)) {
1244 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1245 blk_insert_flush(rq);
1246 goto run_queue;
1247 }
1248
1249 /*
1250 * A task plug currently exists. Since this is completely lockless,
1251 * utilize that to temporarily store requests until the task is
1252 * either done or scheduled away.
1253 */
1254 if (use_plug) {
1255 struct blk_plug *plug = current->plug;
1256
1257 if (plug) {
1258 blk_mq_bio_to_request(rq, bio);
92f399c7 1259 if (list_empty(&plug->mq_list))
320ae51f
JA
1260 trace_block_plug(q);
1261 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1262 blk_flush_plug_list(plug, false);
1263 trace_block_plug(q);
1264 }
1265 list_add_tail(&rq->queuelist, &plug->mq_list);
07068d5b 1266 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1267 return;
1268 }
1269 }
1270
07068d5b
JA
1271 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1272 /*
1273 * For a SYNC request, send it to the hardware immediately. For
1274 * an ASYNC request, just ensure that we run it later on. The
1275 * latter allows for merging opportunities and more efficient
1276 * dispatching.
1277 */
1278run_queue:
1279 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1280 }
1281
07068d5b 1282 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1283}
1284
1285/*
1286 * Default mapping to a software queue, since we use one per CPU.
1287 */
1288struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1289{
1290 return q->queue_hw_ctx[q->mq_map[cpu]];
1291}
1292EXPORT_SYMBOL(blk_mq_map_queue);
1293
24d2f903
CH
1294static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1295 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1296{
e9b267d9 1297 struct page *page;
320ae51f 1298
24d2f903 1299 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1300 int i;
320ae51f 1301
24d2f903
CH
1302 for (i = 0; i < tags->nr_tags; i++) {
1303 if (!tags->rqs[i])
e9b267d9 1304 continue;
24d2f903
CH
1305 set->ops->exit_request(set->driver_data, tags->rqs[i],
1306 hctx_idx, i);
a5164405 1307 tags->rqs[i] = NULL;
e9b267d9 1308 }
320ae51f 1309 }
320ae51f 1310
24d2f903
CH
1311 while (!list_empty(&tags->page_list)) {
1312 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1313 list_del_init(&page->lru);
320ae51f
JA
1314 __free_pages(page, page->private);
1315 }
1316
24d2f903 1317 kfree(tags->rqs);
320ae51f 1318
24d2f903 1319 blk_mq_free_tags(tags);
320ae51f
JA
1320}
1321
1322static size_t order_to_size(unsigned int order)
1323{
4ca08500 1324 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1325}
1326
24d2f903
CH
1327static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1328 unsigned int hctx_idx)
320ae51f 1329{
24d2f903 1330 struct blk_mq_tags *tags;
320ae51f
JA
1331 unsigned int i, j, entries_per_page, max_order = 4;
1332 size_t rq_size, left;
1333
24d2f903
CH
1334 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1335 set->numa_node);
1336 if (!tags)
1337 return NULL;
320ae51f 1338
24d2f903
CH
1339 INIT_LIST_HEAD(&tags->page_list);
1340
a5164405
JA
1341 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1342 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1343 set->numa_node);
24d2f903
CH
1344 if (!tags->rqs) {
1345 blk_mq_free_tags(tags);
1346 return NULL;
1347 }
320ae51f
JA
1348
1349 /*
1350 * rq_size is the size of the request plus driver payload, rounded
1351 * to the cacheline size
1352 */
24d2f903 1353 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1354 cache_line_size());
24d2f903 1355 left = rq_size * set->queue_depth;
320ae51f 1356
24d2f903 1357 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1358 int this_order = max_order;
1359 struct page *page;
1360 int to_do;
1361 void *p;
1362
1363 while (left < order_to_size(this_order - 1) && this_order)
1364 this_order--;
1365
1366 do {
a5164405
JA
1367 page = alloc_pages_node(set->numa_node,
1368 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1369 this_order);
320ae51f
JA
1370 if (page)
1371 break;
1372 if (!this_order--)
1373 break;
1374 if (order_to_size(this_order) < rq_size)
1375 break;
1376 } while (1);
1377
1378 if (!page)
24d2f903 1379 goto fail;
320ae51f
JA
1380
1381 page->private = this_order;
24d2f903 1382 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1383
1384 p = page_address(page);
1385 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1386 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1387 left -= to_do * rq_size;
1388 for (j = 0; j < to_do; j++) {
24d2f903 1389 tags->rqs[i] = p;
683d0e12
DH
1390 tags->rqs[i]->atomic_flags = 0;
1391 tags->rqs[i]->cmd_flags = 0;
24d2f903
CH
1392 if (set->ops->init_request) {
1393 if (set->ops->init_request(set->driver_data,
1394 tags->rqs[i], hctx_idx, i,
a5164405
JA
1395 set->numa_node)) {
1396 tags->rqs[i] = NULL;
24d2f903 1397 goto fail;
a5164405 1398 }
e9b267d9
CH
1399 }
1400
320ae51f
JA
1401 p += rq_size;
1402 i++;
1403 }
1404 }
1405
24d2f903 1406 return tags;
320ae51f 1407
24d2f903 1408fail:
24d2f903
CH
1409 blk_mq_free_rq_map(set, tags, hctx_idx);
1410 return NULL;
320ae51f
JA
1411}
1412
1429d7c9
JA
1413static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1414{
1415 kfree(bitmap->map);
1416}
1417
1418static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1419{
1420 unsigned int bpw = 8, total, num_maps, i;
1421
1422 bitmap->bits_per_word = bpw;
1423
1424 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1425 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1426 GFP_KERNEL, node);
1427 if (!bitmap->map)
1428 return -ENOMEM;
1429
1430 bitmap->map_size = num_maps;
1431
1432 total = nr_cpu_ids;
1433 for (i = 0; i < num_maps; i++) {
1434 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1435 total -= bitmap->map[i].depth;
1436 }
1437
1438 return 0;
1439}
1440
484b4061
JA
1441static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1442{
1443 struct request_queue *q = hctx->queue;
1444 struct blk_mq_ctx *ctx;
1445 LIST_HEAD(tmp);
1446
1447 /*
1448 * Move ctx entries to new CPU, if this one is going away.
1449 */
1450 ctx = __blk_mq_get_ctx(q, cpu);
1451
1452 spin_lock(&ctx->lock);
1453 if (!list_empty(&ctx->rq_list)) {
1454 list_splice_init(&ctx->rq_list, &tmp);
1455 blk_mq_hctx_clear_pending(hctx, ctx);
1456 }
1457 spin_unlock(&ctx->lock);
1458
1459 if (list_empty(&tmp))
1460 return NOTIFY_OK;
1461
1462 ctx = blk_mq_get_ctx(q);
1463 spin_lock(&ctx->lock);
1464
1465 while (!list_empty(&tmp)) {
1466 struct request *rq;
1467
1468 rq = list_first_entry(&tmp, struct request, queuelist);
1469 rq->mq_ctx = ctx;
1470 list_move_tail(&rq->queuelist, &ctx->rq_list);
1471 }
1472
1473 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1474 blk_mq_hctx_mark_pending(hctx, ctx);
1475
1476 spin_unlock(&ctx->lock);
1477
1478 blk_mq_run_hw_queue(hctx, true);
1479 blk_mq_put_ctx(ctx);
1480 return NOTIFY_OK;
1481}
1482
1483static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1484{
1485 struct request_queue *q = hctx->queue;
1486 struct blk_mq_tag_set *set = q->tag_set;
1487
1488 if (set->tags[hctx->queue_num])
1489 return NOTIFY_OK;
1490
1491 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1492 if (!set->tags[hctx->queue_num])
1493 return NOTIFY_STOP;
1494
1495 hctx->tags = set->tags[hctx->queue_num];
1496 return NOTIFY_OK;
1497}
1498
1499static int blk_mq_hctx_notify(void *data, unsigned long action,
1500 unsigned int cpu)
1501{
1502 struct blk_mq_hw_ctx *hctx = data;
1503
1504 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1505 return blk_mq_hctx_cpu_offline(hctx, cpu);
1506 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1507 return blk_mq_hctx_cpu_online(hctx, cpu);
1508
1509 return NOTIFY_OK;
1510}
1511
624dbe47
ML
1512static void blk_mq_exit_hw_queues(struct request_queue *q,
1513 struct blk_mq_tag_set *set, int nr_queue)
1514{
1515 struct blk_mq_hw_ctx *hctx;
1516 unsigned int i;
1517
1518 queue_for_each_hw_ctx(q, hctx, i) {
1519 if (i == nr_queue)
1520 break;
1521
f899fed4
JA
1522 blk_mq_tag_idle(hctx);
1523
624dbe47
ML
1524 if (set->ops->exit_hctx)
1525 set->ops->exit_hctx(hctx, i);
1526
1527 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1528 kfree(hctx->ctxs);
1529 blk_mq_free_bitmap(&hctx->ctx_map);
1530 }
1531
1532}
1533
1534static void blk_mq_free_hw_queues(struct request_queue *q,
1535 struct blk_mq_tag_set *set)
1536{
1537 struct blk_mq_hw_ctx *hctx;
1538 unsigned int i;
1539
1540 queue_for_each_hw_ctx(q, hctx, i) {
1541 free_cpumask_var(hctx->cpumask);
cdef54dd 1542 kfree(hctx);
624dbe47
ML
1543 }
1544}
1545
320ae51f 1546static int blk_mq_init_hw_queues(struct request_queue *q,
24d2f903 1547 struct blk_mq_tag_set *set)
320ae51f
JA
1548{
1549 struct blk_mq_hw_ctx *hctx;
624dbe47 1550 unsigned int i;
320ae51f
JA
1551
1552 /*
1553 * Initialize hardware queues
1554 */
1555 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f
JA
1556 int node;
1557
1558 node = hctx->numa_node;
1559 if (node == NUMA_NO_NODE)
24d2f903 1560 node = hctx->numa_node = set->numa_node;
320ae51f 1561
70f4db63
CH
1562 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1563 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
320ae51f
JA
1564 spin_lock_init(&hctx->lock);
1565 INIT_LIST_HEAD(&hctx->dispatch);
1566 hctx->queue = q;
1567 hctx->queue_num = i;
24d2f903
CH
1568 hctx->flags = set->flags;
1569 hctx->cmd_size = set->cmd_size;
320ae51f
JA
1570
1571 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1572 blk_mq_hctx_notify, hctx);
1573 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1574
24d2f903 1575 hctx->tags = set->tags[i];
320ae51f
JA
1576
1577 /*
a68aafa5 1578 * Allocate space for all possible cpus to avoid allocation at
320ae51f
JA
1579 * runtime
1580 */
1581 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1582 GFP_KERNEL, node);
1583 if (!hctx->ctxs)
1584 break;
1585
1429d7c9 1586 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
320ae51f
JA
1587 break;
1588
320ae51f
JA
1589 hctx->nr_ctx = 0;
1590
24d2f903
CH
1591 if (set->ops->init_hctx &&
1592 set->ops->init_hctx(hctx, set->driver_data, i))
320ae51f
JA
1593 break;
1594 }
1595
1596 if (i == q->nr_hw_queues)
1597 return 0;
1598
1599 /*
1600 * Init failed
1601 */
624dbe47 1602 blk_mq_exit_hw_queues(q, set, i);
320ae51f
JA
1603
1604 return 1;
1605}
1606
1607static void blk_mq_init_cpu_queues(struct request_queue *q,
1608 unsigned int nr_hw_queues)
1609{
1610 unsigned int i;
1611
1612 for_each_possible_cpu(i) {
1613 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1614 struct blk_mq_hw_ctx *hctx;
1615
1616 memset(__ctx, 0, sizeof(*__ctx));
1617 __ctx->cpu = i;
1618 spin_lock_init(&__ctx->lock);
1619 INIT_LIST_HEAD(&__ctx->rq_list);
1620 __ctx->queue = q;
1621
1622 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1623 if (!cpu_online(i))
1624 continue;
1625
e4043dcf
JA
1626 hctx = q->mq_ops->map_queue(q, i);
1627 cpumask_set_cpu(i, hctx->cpumask);
1628 hctx->nr_ctx++;
1629
320ae51f
JA
1630 /*
1631 * Set local node, IFF we have more than one hw queue. If
1632 * not, we remain on the home node of the device
1633 */
1634 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1635 hctx->numa_node = cpu_to_node(i);
1636 }
1637}
1638
1639static void blk_mq_map_swqueue(struct request_queue *q)
1640{
1641 unsigned int i;
1642 struct blk_mq_hw_ctx *hctx;
1643 struct blk_mq_ctx *ctx;
1644
1645 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1646 cpumask_clear(hctx->cpumask);
320ae51f
JA
1647 hctx->nr_ctx = 0;
1648 }
1649
1650 /*
1651 * Map software to hardware queues
1652 */
1653 queue_for_each_ctx(q, ctx, i) {
1654 /* If the cpu isn't online, the cpu is mapped to first hctx */
e4043dcf
JA
1655 if (!cpu_online(i))
1656 continue;
1657
320ae51f 1658 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1659 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1660 ctx->index_hw = hctx->nr_ctx;
1661 hctx->ctxs[hctx->nr_ctx++] = ctx;
1662 }
506e931f
JA
1663
1664 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 1665 /*
a68aafa5
JA
1666 * If no software queues are mapped to this hardware queue,
1667 * disable it and free the request entries.
484b4061
JA
1668 */
1669 if (!hctx->nr_ctx) {
1670 struct blk_mq_tag_set *set = q->tag_set;
1671
1672 if (set->tags[i]) {
1673 blk_mq_free_rq_map(set, set->tags[i], i);
1674 set->tags[i] = NULL;
1675 hctx->tags = NULL;
1676 }
1677 continue;
1678 }
1679
1680 /*
1681 * Initialize batch roundrobin counts
1682 */
506e931f
JA
1683 hctx->next_cpu = cpumask_first(hctx->cpumask);
1684 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1685 }
320ae51f
JA
1686}
1687
0d2602ca
JA
1688static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1689{
1690 struct blk_mq_hw_ctx *hctx;
1691 struct request_queue *q;
1692 bool shared;
1693 int i;
1694
1695 if (set->tag_list.next == set->tag_list.prev)
1696 shared = false;
1697 else
1698 shared = true;
1699
1700 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1701 blk_mq_freeze_queue(q);
1702
1703 queue_for_each_hw_ctx(q, hctx, i) {
1704 if (shared)
1705 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1706 else
1707 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1708 }
1709 blk_mq_unfreeze_queue(q);
1710 }
1711}
1712
1713static void blk_mq_del_queue_tag_set(struct request_queue *q)
1714{
1715 struct blk_mq_tag_set *set = q->tag_set;
1716
0d2602ca
JA
1717 mutex_lock(&set->tag_list_lock);
1718 list_del_init(&q->tag_set_list);
1719 blk_mq_update_tag_set_depth(set);
1720 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
1721}
1722
1723static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1724 struct request_queue *q)
1725{
1726 q->tag_set = set;
1727
1728 mutex_lock(&set->tag_list_lock);
1729 list_add_tail(&q->tag_set_list, &set->tag_list);
1730 blk_mq_update_tag_set_depth(set);
1731 mutex_unlock(&set->tag_list_lock);
1732}
1733
24d2f903 1734struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
320ae51f
JA
1735{
1736 struct blk_mq_hw_ctx **hctxs;
e6cdb092 1737 struct blk_mq_ctx __percpu *ctx;
320ae51f 1738 struct request_queue *q;
f14bbe77 1739 unsigned int *map;
320ae51f
JA
1740 int i;
1741
320ae51f
JA
1742 ctx = alloc_percpu(struct blk_mq_ctx);
1743 if (!ctx)
1744 return ERR_PTR(-ENOMEM);
1745
aedcd72f
JA
1746 /*
1747 * If a crashdump is active, then we are potentially in a very
1748 * memory constrained environment. Limit us to 1 queue and
1749 * 64 tags to prevent using too much memory.
1750 */
1751 if (is_kdump_kernel()) {
1752 set->nr_hw_queues = 1;
1753 set->queue_depth = min(64U, set->queue_depth);
1754 }
1755
24d2f903
CH
1756 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1757 set->numa_node);
320ae51f
JA
1758
1759 if (!hctxs)
1760 goto err_percpu;
1761
f14bbe77
JA
1762 map = blk_mq_make_queue_map(set);
1763 if (!map)
1764 goto err_map;
1765
24d2f903 1766 for (i = 0; i < set->nr_hw_queues; i++) {
f14bbe77
JA
1767 int node = blk_mq_hw_queue_to_node(map, i);
1768
cdef54dd
CH
1769 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1770 GFP_KERNEL, node);
320ae51f
JA
1771 if (!hctxs[i])
1772 goto err_hctxs;
1773
e4043dcf
JA
1774 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1775 goto err_hctxs;
1776
0d2602ca 1777 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 1778 hctxs[i]->numa_node = node;
320ae51f
JA
1779 hctxs[i]->queue_num = i;
1780 }
1781
24d2f903 1782 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
320ae51f
JA
1783 if (!q)
1784 goto err_hctxs;
1785
add703fd 1786 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release))
3d2936f4
ML
1787 goto err_map;
1788
320ae51f
JA
1789 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1790 blk_queue_rq_timeout(q, 30000);
1791
1792 q->nr_queues = nr_cpu_ids;
24d2f903 1793 q->nr_hw_queues = set->nr_hw_queues;
f14bbe77 1794 q->mq_map = map;
320ae51f
JA
1795
1796 q->queue_ctx = ctx;
1797 q->queue_hw_ctx = hctxs;
1798
24d2f903 1799 q->mq_ops = set->ops;
94eddfbe 1800 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1801
05f1dd53
JA
1802 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1803 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1804
1be036e9
CH
1805 q->sg_reserved_size = INT_MAX;
1806
6fca6a61
CH
1807 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1808 INIT_LIST_HEAD(&q->requeue_list);
1809 spin_lock_init(&q->requeue_lock);
1810
07068d5b
JA
1811 if (q->nr_hw_queues > 1)
1812 blk_queue_make_request(q, blk_mq_make_request);
1813 else
1814 blk_queue_make_request(q, blk_sq_make_request);
1815
24d2f903
CH
1816 if (set->timeout)
1817 blk_queue_rq_timeout(q, set->timeout);
320ae51f 1818
eba71768
JA
1819 /*
1820 * Do this after blk_queue_make_request() overrides it...
1821 */
1822 q->nr_requests = set->queue_depth;
1823
24d2f903
CH
1824 if (set->ops->complete)
1825 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 1826
320ae51f 1827 blk_mq_init_flush(q);
24d2f903 1828 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 1829
24d2f903
CH
1830 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1831 set->cmd_size, cache_line_size()),
1832 GFP_KERNEL);
18741986 1833 if (!q->flush_rq)
320ae51f
JA
1834 goto err_hw;
1835
24d2f903 1836 if (blk_mq_init_hw_queues(q, set))
18741986
CH
1837 goto err_flush_rq;
1838
320ae51f
JA
1839 mutex_lock(&all_q_mutex);
1840 list_add_tail(&q->all_q_node, &all_q_list);
1841 mutex_unlock(&all_q_mutex);
1842
0d2602ca
JA
1843 blk_mq_add_queue_tag_set(set, q);
1844
484b4061
JA
1845 blk_mq_map_swqueue(q);
1846
320ae51f 1847 return q;
18741986
CH
1848
1849err_flush_rq:
1850 kfree(q->flush_rq);
320ae51f 1851err_hw:
320ae51f
JA
1852 blk_cleanup_queue(q);
1853err_hctxs:
f14bbe77 1854 kfree(map);
24d2f903 1855 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
1856 if (!hctxs[i])
1857 break;
e4043dcf 1858 free_cpumask_var(hctxs[i]->cpumask);
cdef54dd 1859 kfree(hctxs[i]);
320ae51f 1860 }
f14bbe77 1861err_map:
320ae51f
JA
1862 kfree(hctxs);
1863err_percpu:
1864 free_percpu(ctx);
1865 return ERR_PTR(-ENOMEM);
1866}
1867EXPORT_SYMBOL(blk_mq_init_queue);
1868
1869void blk_mq_free_queue(struct request_queue *q)
1870{
624dbe47 1871 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1872
0d2602ca
JA
1873 blk_mq_del_queue_tag_set(q);
1874
624dbe47
ML
1875 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1876 blk_mq_free_hw_queues(q, set);
320ae51f 1877
add703fd 1878 percpu_ref_exit(&q->mq_usage_counter);
3d2936f4 1879
320ae51f
JA
1880 free_percpu(q->queue_ctx);
1881 kfree(q->queue_hw_ctx);
1882 kfree(q->mq_map);
1883
1884 q->queue_ctx = NULL;
1885 q->queue_hw_ctx = NULL;
1886 q->mq_map = NULL;
1887
1888 mutex_lock(&all_q_mutex);
1889 list_del_init(&q->all_q_node);
1890 mutex_unlock(&all_q_mutex);
1891}
320ae51f
JA
1892
1893/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1894static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1895{
1896 blk_mq_freeze_queue(q);
1897
67aec14c
JA
1898 blk_mq_sysfs_unregister(q);
1899
320ae51f
JA
1900 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1901
1902 /*
1903 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1904 * we should change hctx numa_node according to new topology (this
1905 * involves free and re-allocate memory, worthy doing?)
1906 */
1907
1908 blk_mq_map_swqueue(q);
1909
67aec14c
JA
1910 blk_mq_sysfs_register(q);
1911
320ae51f
JA
1912 blk_mq_unfreeze_queue(q);
1913}
1914
f618ef7c
PG
1915static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1916 unsigned long action, void *hcpu)
320ae51f
JA
1917{
1918 struct request_queue *q;
1919
1920 /*
9fccfed8
JA
1921 * Before new mappings are established, hotadded cpu might already
1922 * start handling requests. This doesn't break anything as we map
1923 * offline CPUs to first hardware queue. We will re-init the queue
1924 * below to get optimal settings.
320ae51f
JA
1925 */
1926 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1927 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1928 return NOTIFY_OK;
1929
1930 mutex_lock(&all_q_mutex);
1931 list_for_each_entry(q, &all_q_list, all_q_node)
1932 blk_mq_queue_reinit(q);
1933 mutex_unlock(&all_q_mutex);
1934 return NOTIFY_OK;
1935}
1936
a5164405
JA
1937static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1938{
1939 int i;
1940
1941 for (i = 0; i < set->nr_hw_queues; i++) {
1942 set->tags[i] = blk_mq_init_rq_map(set, i);
1943 if (!set->tags[i])
1944 goto out_unwind;
1945 }
1946
1947 return 0;
1948
1949out_unwind:
1950 while (--i >= 0)
1951 blk_mq_free_rq_map(set, set->tags[i], i);
1952
a5164405
JA
1953 return -ENOMEM;
1954}
1955
1956/*
1957 * Allocate the request maps associated with this tag_set. Note that this
1958 * may reduce the depth asked for, if memory is tight. set->queue_depth
1959 * will be updated to reflect the allocated depth.
1960 */
1961static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1962{
1963 unsigned int depth;
1964 int err;
1965
1966 depth = set->queue_depth;
1967 do {
1968 err = __blk_mq_alloc_rq_maps(set);
1969 if (!err)
1970 break;
1971
1972 set->queue_depth >>= 1;
1973 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
1974 err = -ENOMEM;
1975 break;
1976 }
1977 } while (set->queue_depth);
1978
1979 if (!set->queue_depth || err) {
1980 pr_err("blk-mq: failed to allocate request map\n");
1981 return -ENOMEM;
1982 }
1983
1984 if (depth != set->queue_depth)
1985 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
1986 depth, set->queue_depth);
1987
1988 return 0;
1989}
1990
a4391c64
JA
1991/*
1992 * Alloc a tag set to be associated with one or more request queues.
1993 * May fail with EINVAL for various error conditions. May adjust the
1994 * requested depth down, if if it too large. In that case, the set
1995 * value will be stored in set->queue_depth.
1996 */
24d2f903
CH
1997int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1998{
24d2f903
CH
1999 if (!set->nr_hw_queues)
2000 return -EINVAL;
a4391c64 2001 if (!set->queue_depth)
24d2f903
CH
2002 return -EINVAL;
2003 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2004 return -EINVAL;
2005
cdef54dd 2006 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
24d2f903
CH
2007 return -EINVAL;
2008
a4391c64
JA
2009 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2010 pr_info("blk-mq: reduced tag depth to %u\n",
2011 BLK_MQ_MAX_DEPTH);
2012 set->queue_depth = BLK_MQ_MAX_DEPTH;
2013 }
24d2f903 2014
48479005
ML
2015 set->tags = kmalloc_node(set->nr_hw_queues *
2016 sizeof(struct blk_mq_tags *),
24d2f903
CH
2017 GFP_KERNEL, set->numa_node);
2018 if (!set->tags)
a5164405 2019 return -ENOMEM;
24d2f903 2020
a5164405
JA
2021 if (blk_mq_alloc_rq_maps(set))
2022 goto enomem;
24d2f903 2023
0d2602ca
JA
2024 mutex_init(&set->tag_list_lock);
2025 INIT_LIST_HEAD(&set->tag_list);
2026
24d2f903 2027 return 0;
a5164405 2028enomem:
5676e7b6
RE
2029 kfree(set->tags);
2030 set->tags = NULL;
24d2f903
CH
2031 return -ENOMEM;
2032}
2033EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2034
2035void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2036{
2037 int i;
2038
484b4061
JA
2039 for (i = 0; i < set->nr_hw_queues; i++) {
2040 if (set->tags[i])
2041 blk_mq_free_rq_map(set, set->tags[i], i);
2042 }
2043
981bd189 2044 kfree(set->tags);
5676e7b6 2045 set->tags = NULL;
24d2f903
CH
2046}
2047EXPORT_SYMBOL(blk_mq_free_tag_set);
2048
e3a2b3f9
JA
2049int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2050{
2051 struct blk_mq_tag_set *set = q->tag_set;
2052 struct blk_mq_hw_ctx *hctx;
2053 int i, ret;
2054
2055 if (!set || nr > set->queue_depth)
2056 return -EINVAL;
2057
2058 ret = 0;
2059 queue_for_each_hw_ctx(q, hctx, i) {
2060 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2061 if (ret)
2062 break;
2063 }
2064
2065 if (!ret)
2066 q->nr_requests = nr;
2067
2068 return ret;
2069}
2070
676141e4
JA
2071void blk_mq_disable_hotplug(void)
2072{
2073 mutex_lock(&all_q_mutex);
2074}
2075
2076void blk_mq_enable_hotplug(void)
2077{
2078 mutex_unlock(&all_q_mutex);
2079}
2080
320ae51f
JA
2081static int __init blk_mq_init(void)
2082{
320ae51f
JA
2083 blk_mq_cpu_init();
2084
add703fd 2085 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
320ae51f
JA
2086
2087 return 0;
2088}
2089subsys_initcall(blk_mq_init);