]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-settings.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-artful-kernel.git] / block / blk-settings.c
CommitLineData
86db1e29
JA
1/*
2 * Functions related to setting various queue properties from drivers
3 */
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <linux/init.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
9#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
70dd5bf3 10#include <linux/gcd.h>
2cda2728 11#include <linux/lcm.h>
ad5ebd2f 12#include <linux/jiffies.h>
5a0e3ad6 13#include <linux/gfp.h>
86db1e29
JA
14
15#include "blk.h"
87760e5e 16#include "blk-wbt.h"
86db1e29 17
6728cb0e 18unsigned long blk_max_low_pfn;
86db1e29 19EXPORT_SYMBOL(blk_max_low_pfn);
6728cb0e
JA
20
21unsigned long blk_max_pfn;
86db1e29
JA
22
23/**
24 * blk_queue_prep_rq - set a prepare_request function for queue
25 * @q: queue
26 * @pfn: prepare_request function
27 *
28 * It's possible for a queue to register a prepare_request callback which
29 * is invoked before the request is handed to the request_fn. The goal of
30 * the function is to prepare a request for I/O, it can be used to build a
31 * cdb from the request data for instance.
32 *
33 */
34void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
35{
36 q->prep_rq_fn = pfn;
37}
86db1e29
JA
38EXPORT_SYMBOL(blk_queue_prep_rq);
39
28018c24
JB
40/**
41 * blk_queue_unprep_rq - set an unprepare_request function for queue
42 * @q: queue
43 * @ufn: unprepare_request function
44 *
45 * It's possible for a queue to register an unprepare_request callback
46 * which is invoked before the request is finally completed. The goal
47 * of the function is to deallocate any data that was allocated in the
48 * prepare_request callback.
49 *
50 */
51void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
52{
53 q->unprep_rq_fn = ufn;
54}
55EXPORT_SYMBOL(blk_queue_unprep_rq);
56
86db1e29
JA
57void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
58{
59 q->softirq_done_fn = fn;
60}
86db1e29
JA
61EXPORT_SYMBOL(blk_queue_softirq_done);
62
242f9dcb
JA
63void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
64{
65 q->rq_timeout = timeout;
66}
67EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
68
69void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
70{
71 q->rq_timed_out_fn = fn;
72}
73EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
74
ef9e3fac
KU
75void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
76{
77 q->lld_busy_fn = fn;
78}
79EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
80
e475bba2
MP
81/**
82 * blk_set_default_limits - reset limits to default values
f740f5ca 83 * @lim: the queue_limits structure to reset
e475bba2
MP
84 *
85 * Description:
b1bd055d 86 * Returns a queue_limit struct to its default state.
e475bba2
MP
87 */
88void blk_set_default_limits(struct queue_limits *lim)
89{
8a78362c 90 lim->max_segments = BLK_MAX_SEGMENTS;
1e739730 91 lim->max_discard_segments = 1;
13f05c8d 92 lim->max_integrity_segments = 0;
e475bba2 93 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
03100aad 94 lim->virt_boundary_mask = 0;
eb28d31b 95 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
5f009d3f
KB
96 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
97 lim->max_dev_sectors = 0;
762380ad 98 lim->chunk_sectors = 0;
4363ac7c 99 lim->max_write_same_sectors = 0;
a6f0788e 100 lim->max_write_zeroes_sectors = 0;
86b37281 101 lim->max_discard_sectors = 0;
0034af03 102 lim->max_hw_discard_sectors = 0;
86b37281
MP
103 lim->discard_granularity = 0;
104 lim->discard_alignment = 0;
105 lim->discard_misaligned = 0;
e475bba2 106 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
3a02c8e8 107 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
e475bba2
MP
108 lim->alignment_offset = 0;
109 lim->io_opt = 0;
110 lim->misaligned = 0;
e692cb66 111 lim->cluster = 1;
797476b8 112 lim->zoned = BLK_ZONED_NONE;
e475bba2
MP
113}
114EXPORT_SYMBOL(blk_set_default_limits);
115
b1bd055d
MP
116/**
117 * blk_set_stacking_limits - set default limits for stacking devices
118 * @lim: the queue_limits structure to reset
119 *
120 * Description:
121 * Returns a queue_limit struct to its default state. Should be used
122 * by stacking drivers like DM that have no internal limits.
123 */
124void blk_set_stacking_limits(struct queue_limits *lim)
125{
126 blk_set_default_limits(lim);
127
128 /* Inherit limits from component devices */
b1bd055d 129 lim->max_segments = USHRT_MAX;
1e739730 130 lim->max_discard_segments = 1;
b1bd055d 131 lim->max_hw_sectors = UINT_MAX;
d82ae52e 132 lim->max_segment_size = UINT_MAX;
fe86cdce 133 lim->max_sectors = UINT_MAX;
ca369d51 134 lim->max_dev_sectors = UINT_MAX;
4363ac7c 135 lim->max_write_same_sectors = UINT_MAX;
a6f0788e 136 lim->max_write_zeroes_sectors = UINT_MAX;
b1bd055d
MP
137}
138EXPORT_SYMBOL(blk_set_stacking_limits);
139
86db1e29
JA
140/**
141 * blk_queue_make_request - define an alternate make_request function for a device
142 * @q: the request queue for the device to be affected
143 * @mfn: the alternate make_request function
144 *
145 * Description:
146 * The normal way for &struct bios to be passed to a device
147 * driver is for them to be collected into requests on a request
148 * queue, and then to allow the device driver to select requests
149 * off that queue when it is ready. This works well for many block
150 * devices. However some block devices (typically virtual devices
151 * such as md or lvm) do not benefit from the processing on the
152 * request queue, and are served best by having the requests passed
153 * directly to them. This can be achieved by providing a function
154 * to blk_queue_make_request().
155 *
156 * Caveat:
157 * The driver that does this *must* be able to deal appropriately
158 * with buffers in "highmemory". This can be accomplished by either calling
159 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
160 * blk_queue_bounce() to create a buffer in normal memory.
161 **/
6728cb0e 162void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
86db1e29
JA
163{
164 /*
165 * set defaults
166 */
167 q->nr_requests = BLKDEV_MAX_RQ;
0e435ac2 168
86db1e29 169 q->make_request_fn = mfn;
86db1e29
JA
170 blk_queue_dma_alignment(q, 511);
171 blk_queue_congestion_threshold(q);
172 q->nr_batching = BLK_BATCH_REQ;
173
e475bba2
MP
174 blk_set_default_limits(&q->limits);
175
86db1e29
JA
176 /*
177 * by default assume old behaviour and bounce for any highmem page
178 */
179 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
180}
86db1e29
JA
181EXPORT_SYMBOL(blk_queue_make_request);
182
183/**
184 * blk_queue_bounce_limit - set bounce buffer limit for queue
cd0aca2d 185 * @q: the request queue for the device
9f7e45d8 186 * @max_addr: the maximum address the device can handle
86db1e29
JA
187 *
188 * Description:
189 * Different hardware can have different requirements as to what pages
190 * it can do I/O directly to. A low level driver can call
191 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
9f7e45d8 192 * buffers for doing I/O to pages residing above @max_addr.
86db1e29 193 **/
9f7e45d8 194void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
86db1e29 195{
9f7e45d8 196 unsigned long b_pfn = max_addr >> PAGE_SHIFT;
86db1e29
JA
197 int dma = 0;
198
199 q->bounce_gfp = GFP_NOIO;
200#if BITS_PER_LONG == 64
cd0aca2d
TH
201 /*
202 * Assume anything <= 4GB can be handled by IOMMU. Actually
203 * some IOMMUs can handle everything, but I don't know of a
204 * way to test this here.
205 */
206 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
86db1e29 207 dma = 1;
efb012b3 208 q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
86db1e29 209#else
6728cb0e 210 if (b_pfn < blk_max_low_pfn)
86db1e29 211 dma = 1;
c49825fa 212 q->limits.bounce_pfn = b_pfn;
260a67a9 213#endif
86db1e29
JA
214 if (dma) {
215 init_emergency_isa_pool();
216 q->bounce_gfp = GFP_NOIO | GFP_DMA;
260a67a9 217 q->limits.bounce_pfn = b_pfn;
86db1e29
JA
218 }
219}
86db1e29
JA
220EXPORT_SYMBOL(blk_queue_bounce_limit);
221
222/**
ca369d51
MP
223 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
224 * @q: the request queue for the device
2800aac1 225 * @max_hw_sectors: max hardware sectors in the usual 512b unit
86db1e29
JA
226 *
227 * Description:
2800aac1
MP
228 * Enables a low level driver to set a hard upper limit,
229 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
4f258a46
MP
230 * the device driver based upon the capabilities of the I/O
231 * controller.
2800aac1 232 *
ca369d51
MP
233 * max_dev_sectors is a hard limit imposed by the storage device for
234 * READ/WRITE requests. It is set by the disk driver.
235 *
2800aac1
MP
236 * max_sectors is a soft limit imposed by the block layer for
237 * filesystem type requests. This value can be overridden on a
238 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
239 * The soft limit can not exceed max_hw_sectors.
86db1e29 240 **/
ca369d51 241void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
86db1e29 242{
ca369d51
MP
243 struct queue_limits *limits = &q->limits;
244 unsigned int max_sectors;
245
09cbfeaf
KS
246 if ((max_hw_sectors << 9) < PAGE_SIZE) {
247 max_hw_sectors = 1 << (PAGE_SHIFT - 9);
24c03d47 248 printk(KERN_INFO "%s: set to minimum %d\n",
2800aac1 249 __func__, max_hw_sectors);
86db1e29
JA
250 }
251
30e2bc08 252 limits->max_hw_sectors = max_hw_sectors;
ca369d51
MP
253 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
254 max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
255 limits->max_sectors = max_sectors;
dc3b17cc 256 q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
86db1e29 257}
086fa5ff 258EXPORT_SYMBOL(blk_queue_max_hw_sectors);
86db1e29 259
762380ad
JA
260/**
261 * blk_queue_chunk_sectors - set size of the chunk for this queue
262 * @q: the request queue for the device
263 * @chunk_sectors: chunk sectors in the usual 512b unit
264 *
265 * Description:
266 * If a driver doesn't want IOs to cross a given chunk size, it can set
267 * this limit and prevent merging across chunks. Note that the chunk size
58a4915a
JA
268 * must currently be a power-of-2 in sectors. Also note that the block
269 * layer must accept a page worth of data at any offset. So if the
270 * crossing of chunks is a hard limitation in the driver, it must still be
271 * prepared to split single page bios.
762380ad
JA
272 **/
273void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
274{
275 BUG_ON(!is_power_of_2(chunk_sectors));
276 q->limits.chunk_sectors = chunk_sectors;
277}
278EXPORT_SYMBOL(blk_queue_chunk_sectors);
279
67efc925
CH
280/**
281 * blk_queue_max_discard_sectors - set max sectors for a single discard
282 * @q: the request queue for the device
c7ebf065 283 * @max_discard_sectors: maximum number of sectors to discard
67efc925
CH
284 **/
285void blk_queue_max_discard_sectors(struct request_queue *q,
286 unsigned int max_discard_sectors)
287{
0034af03 288 q->limits.max_hw_discard_sectors = max_discard_sectors;
67efc925
CH
289 q->limits.max_discard_sectors = max_discard_sectors;
290}
291EXPORT_SYMBOL(blk_queue_max_discard_sectors);
292
4363ac7c
MP
293/**
294 * blk_queue_max_write_same_sectors - set max sectors for a single write same
295 * @q: the request queue for the device
296 * @max_write_same_sectors: maximum number of sectors to write per command
297 **/
298void blk_queue_max_write_same_sectors(struct request_queue *q,
299 unsigned int max_write_same_sectors)
300{
301 q->limits.max_write_same_sectors = max_write_same_sectors;
302}
303EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
304
a6f0788e
CK
305/**
306 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
307 * write zeroes
308 * @q: the request queue for the device
309 * @max_write_zeroes_sectors: maximum number of sectors to write per command
310 **/
311void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
312 unsigned int max_write_zeroes_sectors)
313{
314 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
315}
316EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
317
86db1e29 318/**
8a78362c 319 * blk_queue_max_segments - set max hw segments for a request for this queue
86db1e29
JA
320 * @q: the request queue for the device
321 * @max_segments: max number of segments
322 *
323 * Description:
324 * Enables a low level driver to set an upper limit on the number of
8a78362c 325 * hw data segments in a request.
86db1e29 326 **/
8a78362c 327void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
86db1e29
JA
328{
329 if (!max_segments) {
330 max_segments = 1;
24c03d47
HH
331 printk(KERN_INFO "%s: set to minimum %d\n",
332 __func__, max_segments);
86db1e29
JA
333 }
334
8a78362c 335 q->limits.max_segments = max_segments;
86db1e29 336}
8a78362c 337EXPORT_SYMBOL(blk_queue_max_segments);
86db1e29 338
1e739730
CH
339/**
340 * blk_queue_max_discard_segments - set max segments for discard requests
341 * @q: the request queue for the device
342 * @max_segments: max number of segments
343 *
344 * Description:
345 * Enables a low level driver to set an upper limit on the number of
346 * segments in a discard request.
347 **/
348void blk_queue_max_discard_segments(struct request_queue *q,
349 unsigned short max_segments)
350{
351 q->limits.max_discard_segments = max_segments;
352}
353EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
354
86db1e29
JA
355/**
356 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
357 * @q: the request queue for the device
358 * @max_size: max size of segment in bytes
359 *
360 * Description:
361 * Enables a low level driver to set an upper limit on the size of a
362 * coalesced segment
363 **/
364void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
365{
09cbfeaf
KS
366 if (max_size < PAGE_SIZE) {
367 max_size = PAGE_SIZE;
24c03d47
HH
368 printk(KERN_INFO "%s: set to minimum %d\n",
369 __func__, max_size);
86db1e29
JA
370 }
371
025146e1 372 q->limits.max_segment_size = max_size;
86db1e29 373}
86db1e29
JA
374EXPORT_SYMBOL(blk_queue_max_segment_size);
375
376/**
e1defc4f 377 * blk_queue_logical_block_size - set logical block size for the queue
86db1e29 378 * @q: the request queue for the device
e1defc4f 379 * @size: the logical block size, in bytes
86db1e29
JA
380 *
381 * Description:
e1defc4f
MP
382 * This should be set to the lowest possible block size that the
383 * storage device can address. The default of 512 covers most
384 * hardware.
86db1e29 385 **/
e1defc4f 386void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
86db1e29 387{
025146e1 388 q->limits.logical_block_size = size;
c72758f3
MP
389
390 if (q->limits.physical_block_size < size)
391 q->limits.physical_block_size = size;
392
393 if (q->limits.io_min < q->limits.physical_block_size)
394 q->limits.io_min = q->limits.physical_block_size;
86db1e29 395}
e1defc4f 396EXPORT_SYMBOL(blk_queue_logical_block_size);
86db1e29 397
c72758f3
MP
398/**
399 * blk_queue_physical_block_size - set physical block size for the queue
400 * @q: the request queue for the device
401 * @size: the physical block size, in bytes
402 *
403 * Description:
404 * This should be set to the lowest possible sector size that the
405 * hardware can operate on without reverting to read-modify-write
406 * operations.
407 */
892b6f90 408void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
c72758f3
MP
409{
410 q->limits.physical_block_size = size;
411
412 if (q->limits.physical_block_size < q->limits.logical_block_size)
413 q->limits.physical_block_size = q->limits.logical_block_size;
414
415 if (q->limits.io_min < q->limits.physical_block_size)
416 q->limits.io_min = q->limits.physical_block_size;
417}
418EXPORT_SYMBOL(blk_queue_physical_block_size);
419
420/**
421 * blk_queue_alignment_offset - set physical block alignment offset
422 * @q: the request queue for the device
8ebf9756 423 * @offset: alignment offset in bytes
c72758f3
MP
424 *
425 * Description:
426 * Some devices are naturally misaligned to compensate for things like
427 * the legacy DOS partition table 63-sector offset. Low-level drivers
428 * should call this function for devices whose first sector is not
429 * naturally aligned.
430 */
431void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
432{
433 q->limits.alignment_offset =
434 offset & (q->limits.physical_block_size - 1);
435 q->limits.misaligned = 0;
436}
437EXPORT_SYMBOL(blk_queue_alignment_offset);
438
7c958e32
MP
439/**
440 * blk_limits_io_min - set minimum request size for a device
441 * @limits: the queue limits
442 * @min: smallest I/O size in bytes
443 *
444 * Description:
445 * Some devices have an internal block size bigger than the reported
446 * hardware sector size. This function can be used to signal the
447 * smallest I/O the device can perform without incurring a performance
448 * penalty.
449 */
450void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
451{
452 limits->io_min = min;
453
454 if (limits->io_min < limits->logical_block_size)
455 limits->io_min = limits->logical_block_size;
456
457 if (limits->io_min < limits->physical_block_size)
458 limits->io_min = limits->physical_block_size;
459}
460EXPORT_SYMBOL(blk_limits_io_min);
461
c72758f3
MP
462/**
463 * blk_queue_io_min - set minimum request size for the queue
464 * @q: the request queue for the device
8ebf9756 465 * @min: smallest I/O size in bytes
c72758f3
MP
466 *
467 * Description:
7e5f5fb0
MP
468 * Storage devices may report a granularity or preferred minimum I/O
469 * size which is the smallest request the device can perform without
470 * incurring a performance penalty. For disk drives this is often the
471 * physical block size. For RAID arrays it is often the stripe chunk
472 * size. A properly aligned multiple of minimum_io_size is the
473 * preferred request size for workloads where a high number of I/O
474 * operations is desired.
c72758f3
MP
475 */
476void blk_queue_io_min(struct request_queue *q, unsigned int min)
477{
7c958e32 478 blk_limits_io_min(&q->limits, min);
c72758f3
MP
479}
480EXPORT_SYMBOL(blk_queue_io_min);
481
3c5820c7
MP
482/**
483 * blk_limits_io_opt - set optimal request size for a device
484 * @limits: the queue limits
485 * @opt: smallest I/O size in bytes
486 *
487 * Description:
488 * Storage devices may report an optimal I/O size, which is the
489 * device's preferred unit for sustained I/O. This is rarely reported
490 * for disk drives. For RAID arrays it is usually the stripe width or
491 * the internal track size. A properly aligned multiple of
492 * optimal_io_size is the preferred request size for workloads where
493 * sustained throughput is desired.
494 */
495void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
496{
497 limits->io_opt = opt;
498}
499EXPORT_SYMBOL(blk_limits_io_opt);
500
c72758f3
MP
501/**
502 * blk_queue_io_opt - set optimal request size for the queue
503 * @q: the request queue for the device
8ebf9756 504 * @opt: optimal request size in bytes
c72758f3
MP
505 *
506 * Description:
7e5f5fb0
MP
507 * Storage devices may report an optimal I/O size, which is the
508 * device's preferred unit for sustained I/O. This is rarely reported
509 * for disk drives. For RAID arrays it is usually the stripe width or
510 * the internal track size. A properly aligned multiple of
511 * optimal_io_size is the preferred request size for workloads where
512 * sustained throughput is desired.
c72758f3
MP
513 */
514void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
515{
3c5820c7 516 blk_limits_io_opt(&q->limits, opt);
c72758f3
MP
517}
518EXPORT_SYMBOL(blk_queue_io_opt);
519
86db1e29
JA
520/**
521 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
522 * @t: the stacking driver (top)
523 * @b: the underlying device (bottom)
524 **/
525void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
526{
fef24667 527 blk_stack_limits(&t->limits, &b->limits, 0);
86db1e29 528}
86db1e29
JA
529EXPORT_SYMBOL(blk_queue_stack_limits);
530
c72758f3
MP
531/**
532 * blk_stack_limits - adjust queue_limits for stacked devices
81744ee4
MP
533 * @t: the stacking driver limits (top device)
534 * @b: the underlying queue limits (bottom, component device)
e03a72e1 535 * @start: first data sector within component device
c72758f3
MP
536 *
537 * Description:
81744ee4
MP
538 * This function is used by stacking drivers like MD and DM to ensure
539 * that all component devices have compatible block sizes and
540 * alignments. The stacking driver must provide a queue_limits
541 * struct (top) and then iteratively call the stacking function for
542 * all component (bottom) devices. The stacking function will
543 * attempt to combine the values and ensure proper alignment.
544 *
545 * Returns 0 if the top and bottom queue_limits are compatible. The
546 * top device's block sizes and alignment offsets may be adjusted to
547 * ensure alignment with the bottom device. If no compatible sizes
548 * and alignments exist, -1 is returned and the resulting top
549 * queue_limits will have the misaligned flag set to indicate that
550 * the alignment_offset is undefined.
c72758f3
MP
551 */
552int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
e03a72e1 553 sector_t start)
c72758f3 554{
e03a72e1 555 unsigned int top, bottom, alignment, ret = 0;
86b37281 556
c72758f3
MP
557 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
558 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
ca369d51 559 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
4363ac7c
MP
560 t->max_write_same_sectors = min(t->max_write_same_sectors,
561 b->max_write_same_sectors);
a6f0788e
CK
562 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
563 b->max_write_zeroes_sectors);
77634f33 564 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
c72758f3
MP
565
566 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
567 b->seg_boundary_mask);
03100aad
KB
568 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
569 b->virt_boundary_mask);
c72758f3 570
8a78362c 571 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
1e739730
CH
572 t->max_discard_segments = min_not_zero(t->max_discard_segments,
573 b->max_discard_segments);
13f05c8d
MP
574 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
575 b->max_integrity_segments);
c72758f3
MP
576
577 t->max_segment_size = min_not_zero(t->max_segment_size,
578 b->max_segment_size);
579
fe0b393f
MP
580 t->misaligned |= b->misaligned;
581
e03a72e1 582 alignment = queue_limit_alignment_offset(b, start);
9504e086 583
81744ee4
MP
584 /* Bottom device has different alignment. Check that it is
585 * compatible with the current top alignment.
586 */
9504e086
MP
587 if (t->alignment_offset != alignment) {
588
589 top = max(t->physical_block_size, t->io_min)
590 + t->alignment_offset;
81744ee4 591 bottom = max(b->physical_block_size, b->io_min) + alignment;
9504e086 592
81744ee4 593 /* Verify that top and bottom intervals line up */
b8839b8c 594 if (max(top, bottom) % min(top, bottom)) {
9504e086 595 t->misaligned = 1;
fe0b393f
MP
596 ret = -1;
597 }
9504e086
MP
598 }
599
c72758f3
MP
600 t->logical_block_size = max(t->logical_block_size,
601 b->logical_block_size);
602
603 t->physical_block_size = max(t->physical_block_size,
604 b->physical_block_size);
605
606 t->io_min = max(t->io_min, b->io_min);
e9637415 607 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
9504e086 608
e692cb66 609 t->cluster &= b->cluster;
c72758f3 610
81744ee4 611 /* Physical block size a multiple of the logical block size? */
9504e086
MP
612 if (t->physical_block_size & (t->logical_block_size - 1)) {
613 t->physical_block_size = t->logical_block_size;
c72758f3 614 t->misaligned = 1;
fe0b393f 615 ret = -1;
86b37281
MP
616 }
617
81744ee4 618 /* Minimum I/O a multiple of the physical block size? */
9504e086
MP
619 if (t->io_min & (t->physical_block_size - 1)) {
620 t->io_min = t->physical_block_size;
621 t->misaligned = 1;
fe0b393f 622 ret = -1;
c72758f3
MP
623 }
624
81744ee4 625 /* Optimal I/O a multiple of the physical block size? */
9504e086
MP
626 if (t->io_opt & (t->physical_block_size - 1)) {
627 t->io_opt = 0;
628 t->misaligned = 1;
fe0b393f 629 ret = -1;
9504e086 630 }
c72758f3 631
c78afc62
KO
632 t->raid_partial_stripes_expensive =
633 max(t->raid_partial_stripes_expensive,
634 b->raid_partial_stripes_expensive);
635
81744ee4 636 /* Find lowest common alignment_offset */
e9637415 637 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
b8839b8c 638 % max(t->physical_block_size, t->io_min);
86b37281 639
81744ee4 640 /* Verify that new alignment_offset is on a logical block boundary */
fe0b393f 641 if (t->alignment_offset & (t->logical_block_size - 1)) {
c72758f3 642 t->misaligned = 1;
fe0b393f
MP
643 ret = -1;
644 }
c72758f3 645
9504e086
MP
646 /* Discard alignment and granularity */
647 if (b->discard_granularity) {
e03a72e1 648 alignment = queue_limit_discard_alignment(b, start);
9504e086
MP
649
650 if (t->discard_granularity != 0 &&
651 t->discard_alignment != alignment) {
652 top = t->discard_granularity + t->discard_alignment;
653 bottom = b->discard_granularity + alignment;
70dd5bf3 654
9504e086 655 /* Verify that top and bottom intervals line up */
8dd2cb7e 656 if ((max(top, bottom) % min(top, bottom)) != 0)
9504e086
MP
657 t->discard_misaligned = 1;
658 }
659
81744ee4
MP
660 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
661 b->max_discard_sectors);
0034af03
JA
662 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
663 b->max_hw_discard_sectors);
9504e086
MP
664 t->discard_granularity = max(t->discard_granularity,
665 b->discard_granularity);
e9637415 666 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
8dd2cb7e 667 t->discard_granularity;
9504e086 668 }
70dd5bf3 669
987b3b26
HR
670 if (b->chunk_sectors)
671 t->chunk_sectors = min_not_zero(t->chunk_sectors,
672 b->chunk_sectors);
673
fe0b393f 674 return ret;
c72758f3 675}
5d85d324 676EXPORT_SYMBOL(blk_stack_limits);
c72758f3 677
17be8c24
MP
678/**
679 * bdev_stack_limits - adjust queue limits for stacked drivers
680 * @t: the stacking driver limits (top device)
681 * @bdev: the component block_device (bottom)
682 * @start: first data sector within component device
683 *
684 * Description:
685 * Merges queue limits for a top device and a block_device. Returns
686 * 0 if alignment didn't change. Returns -1 if adding the bottom
687 * device caused misalignment.
688 */
689int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
690 sector_t start)
691{
692 struct request_queue *bq = bdev_get_queue(bdev);
693
694 start += get_start_sect(bdev);
695
e03a72e1 696 return blk_stack_limits(t, &bq->limits, start);
17be8c24
MP
697}
698EXPORT_SYMBOL(bdev_stack_limits);
699
c72758f3
MP
700/**
701 * disk_stack_limits - adjust queue limits for stacked drivers
77634f33 702 * @disk: MD/DM gendisk (top)
c72758f3
MP
703 * @bdev: the underlying block device (bottom)
704 * @offset: offset to beginning of data within component device
705 *
706 * Description:
e03a72e1
MP
707 * Merges the limits for a top level gendisk and a bottom level
708 * block_device.
c72758f3
MP
709 */
710void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
711 sector_t offset)
712{
713 struct request_queue *t = disk->queue;
c72758f3 714
e03a72e1 715 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
c72758f3
MP
716 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
717
718 disk_name(disk, 0, top);
719 bdevname(bdev, bottom);
720
721 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
722 top, bottom);
723 }
c72758f3
MP
724}
725EXPORT_SYMBOL(disk_stack_limits);
726
e3790c7d
TH
727/**
728 * blk_queue_dma_pad - set pad mask
729 * @q: the request queue for the device
730 * @mask: pad mask
731 *
27f8221a 732 * Set dma pad mask.
e3790c7d 733 *
27f8221a
FT
734 * Appending pad buffer to a request modifies the last entry of a
735 * scatter list such that it includes the pad buffer.
e3790c7d
TH
736 **/
737void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
738{
739 q->dma_pad_mask = mask;
740}
741EXPORT_SYMBOL(blk_queue_dma_pad);
742
27f8221a
FT
743/**
744 * blk_queue_update_dma_pad - update pad mask
745 * @q: the request queue for the device
746 * @mask: pad mask
747 *
748 * Update dma pad mask.
749 *
750 * Appending pad buffer to a request modifies the last entry of a
751 * scatter list such that it includes the pad buffer.
752 **/
753void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
754{
755 if (mask > q->dma_pad_mask)
756 q->dma_pad_mask = mask;
757}
758EXPORT_SYMBOL(blk_queue_update_dma_pad);
759
86db1e29
JA
760/**
761 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
86db1e29 762 * @q: the request queue for the device
2fb98e84 763 * @dma_drain_needed: fn which returns non-zero if drain is necessary
86db1e29
JA
764 * @buf: physically contiguous buffer
765 * @size: size of the buffer in bytes
766 *
767 * Some devices have excess DMA problems and can't simply discard (or
768 * zero fill) the unwanted piece of the transfer. They have to have a
769 * real area of memory to transfer it into. The use case for this is
770 * ATAPI devices in DMA mode. If the packet command causes a transfer
771 * bigger than the transfer size some HBAs will lock up if there
772 * aren't DMA elements to contain the excess transfer. What this API
773 * does is adjust the queue so that the buf is always appended
774 * silently to the scatterlist.
775 *
8a78362c
MP
776 * Note: This routine adjusts max_hw_segments to make room for appending
777 * the drain buffer. If you call blk_queue_max_segments() after calling
778 * this routine, you must set the limit to one fewer than your device
779 * can support otherwise there won't be room for the drain buffer.
86db1e29 780 */
448da4d2 781int blk_queue_dma_drain(struct request_queue *q,
2fb98e84
TH
782 dma_drain_needed_fn *dma_drain_needed,
783 void *buf, unsigned int size)
86db1e29 784{
8a78362c 785 if (queue_max_segments(q) < 2)
86db1e29
JA
786 return -EINVAL;
787 /* make room for appending the drain */
8a78362c 788 blk_queue_max_segments(q, queue_max_segments(q) - 1);
2fb98e84 789 q->dma_drain_needed = dma_drain_needed;
86db1e29
JA
790 q->dma_drain_buffer = buf;
791 q->dma_drain_size = size;
792
793 return 0;
794}
86db1e29
JA
795EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
796
797/**
798 * blk_queue_segment_boundary - set boundary rules for segment merging
799 * @q: the request queue for the device
800 * @mask: the memory boundary mask
801 **/
802void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
803{
09cbfeaf
KS
804 if (mask < PAGE_SIZE - 1) {
805 mask = PAGE_SIZE - 1;
24c03d47
HH
806 printk(KERN_INFO "%s: set to minimum %lx\n",
807 __func__, mask);
86db1e29
JA
808 }
809
025146e1 810 q->limits.seg_boundary_mask = mask;
86db1e29 811}
86db1e29
JA
812EXPORT_SYMBOL(blk_queue_segment_boundary);
813
03100aad
KB
814/**
815 * blk_queue_virt_boundary - set boundary rules for bio merging
816 * @q: the request queue for the device
817 * @mask: the memory boundary mask
818 **/
819void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
820{
821 q->limits.virt_boundary_mask = mask;
822}
823EXPORT_SYMBOL(blk_queue_virt_boundary);
824
86db1e29
JA
825/**
826 * blk_queue_dma_alignment - set dma length and memory alignment
827 * @q: the request queue for the device
828 * @mask: alignment mask
829 *
830 * description:
710027a4 831 * set required memory and length alignment for direct dma transactions.
8feb4d20 832 * this is used when building direct io requests for the queue.
86db1e29
JA
833 *
834 **/
835void blk_queue_dma_alignment(struct request_queue *q, int mask)
836{
837 q->dma_alignment = mask;
838}
86db1e29
JA
839EXPORT_SYMBOL(blk_queue_dma_alignment);
840
841/**
842 * blk_queue_update_dma_alignment - update dma length and memory alignment
843 * @q: the request queue for the device
844 * @mask: alignment mask
845 *
846 * description:
710027a4 847 * update required memory and length alignment for direct dma transactions.
86db1e29
JA
848 * If the requested alignment is larger than the current alignment, then
849 * the current queue alignment is updated to the new value, otherwise it
850 * is left alone. The design of this is to allow multiple objects
851 * (driver, device, transport etc) to set their respective
852 * alignments without having them interfere.
853 *
854 **/
855void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
856{
857 BUG_ON(mask > PAGE_SIZE);
858
859 if (mask > q->dma_alignment)
860 q->dma_alignment = mask;
861}
86db1e29
JA
862EXPORT_SYMBOL(blk_queue_update_dma_alignment);
863
f3876930 864void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
865{
c888a8f9
JA
866 spin_lock_irq(q->queue_lock);
867 if (queueable)
868 clear_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
869 else
870 set_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
871 spin_unlock_irq(q->queue_lock);
f3876930 872}
873EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
874
d278d4a8
JA
875/**
876 * blk_set_queue_depth - tell the block layer about the device queue depth
877 * @q: the request queue for the device
878 * @depth: queue depth
879 *
880 */
881void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
882{
883 q->queue_depth = depth;
87760e5e 884 wbt_set_queue_depth(q->rq_wb, depth);
d278d4a8
JA
885}
886EXPORT_SYMBOL(blk_set_queue_depth);
887
93e9d8e8
JA
888/**
889 * blk_queue_write_cache - configure queue's write cache
890 * @q: the request queue for the device
891 * @wc: write back cache on or off
892 * @fua: device supports FUA writes, if true
893 *
894 * Tell the block layer about the write cache of @q.
895 */
896void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
897{
898 spin_lock_irq(q->queue_lock);
c888a8f9 899 if (wc)
93e9d8e8 900 queue_flag_set(QUEUE_FLAG_WC, q);
c888a8f9 901 else
93e9d8e8 902 queue_flag_clear(QUEUE_FLAG_WC, q);
c888a8f9 903 if (fua)
93e9d8e8 904 queue_flag_set(QUEUE_FLAG_FUA, q);
c888a8f9 905 else
93e9d8e8
JA
906 queue_flag_clear(QUEUE_FLAG_FUA, q);
907 spin_unlock_irq(q->queue_lock);
87760e5e
JA
908
909 wbt_set_write_cache(q->rq_wb, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
93e9d8e8
JA
910}
911EXPORT_SYMBOL_GPL(blk_queue_write_cache);
912
aeb3d3a8 913static int __init blk_settings_init(void)
86db1e29
JA
914{
915 blk_max_low_pfn = max_low_pfn - 1;
916 blk_max_pfn = max_pfn - 1;
917 return 0;
918}
919subsys_initcall(blk_settings_init);