]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-settings.c
blk-mq: add timer in blk_mq_start_request
[mirror_ubuntu-bionic-kernel.git] / block / blk-settings.c
CommitLineData
86db1e29
JA
1/*
2 * Functions related to setting various queue properties from drivers
3 */
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <linux/init.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
9#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
70dd5bf3 10#include <linux/gcd.h>
2cda2728 11#include <linux/lcm.h>
ad5ebd2f 12#include <linux/jiffies.h>
5a0e3ad6 13#include <linux/gfp.h>
86db1e29
JA
14
15#include "blk.h"
16
6728cb0e 17unsigned long blk_max_low_pfn;
86db1e29 18EXPORT_SYMBOL(blk_max_low_pfn);
6728cb0e
JA
19
20unsigned long blk_max_pfn;
86db1e29
JA
21
22/**
23 * blk_queue_prep_rq - set a prepare_request function for queue
24 * @q: queue
25 * @pfn: prepare_request function
26 *
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
31 *
32 */
33void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
34{
35 q->prep_rq_fn = pfn;
36}
86db1e29
JA
37EXPORT_SYMBOL(blk_queue_prep_rq);
38
28018c24
JB
39/**
40 * blk_queue_unprep_rq - set an unprepare_request function for queue
41 * @q: queue
42 * @ufn: unprepare_request function
43 *
44 * It's possible for a queue to register an unprepare_request callback
45 * which is invoked before the request is finally completed. The goal
46 * of the function is to deallocate any data that was allocated in the
47 * prepare_request callback.
48 *
49 */
50void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
51{
52 q->unprep_rq_fn = ufn;
53}
54EXPORT_SYMBOL(blk_queue_unprep_rq);
55
86db1e29
JA
56/**
57 * blk_queue_merge_bvec - set a merge_bvec function for queue
58 * @q: queue
59 * @mbfn: merge_bvec_fn
60 *
61 * Usually queues have static limitations on the max sectors or segments that
62 * we can put in a request. Stacking drivers may have some settings that
63 * are dynamic, and thus we have to query the queue whether it is ok to
64 * add a new bio_vec to a bio at a given offset or not. If the block device
65 * has such limitations, it needs to register a merge_bvec_fn to control
66 * the size of bio's sent to it. Note that a block device *must* allow a
67 * single page to be added to an empty bio. The block device driver may want
68 * to use the bio_split() function to deal with these bio's. By default
69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
70 * honored.
71 */
72void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
73{
74 q->merge_bvec_fn = mbfn;
75}
86db1e29
JA
76EXPORT_SYMBOL(blk_queue_merge_bvec);
77
78void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
79{
80 q->softirq_done_fn = fn;
81}
86db1e29
JA
82EXPORT_SYMBOL(blk_queue_softirq_done);
83
242f9dcb
JA
84void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
85{
86 q->rq_timeout = timeout;
87}
88EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
89
90void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
91{
92 q->rq_timed_out_fn = fn;
93}
94EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
95
ef9e3fac
KU
96void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
97{
98 q->lld_busy_fn = fn;
99}
100EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
101
e475bba2
MP
102/**
103 * blk_set_default_limits - reset limits to default values
f740f5ca 104 * @lim: the queue_limits structure to reset
e475bba2
MP
105 *
106 * Description:
b1bd055d 107 * Returns a queue_limit struct to its default state.
e475bba2
MP
108 */
109void blk_set_default_limits(struct queue_limits *lim)
110{
8a78362c 111 lim->max_segments = BLK_MAX_SEGMENTS;
13f05c8d 112 lim->max_integrity_segments = 0;
e475bba2 113 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
eb28d31b 114 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
b1bd055d 115 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
762380ad 116 lim->chunk_sectors = 0;
4363ac7c 117 lim->max_write_same_sectors = 0;
86b37281
MP
118 lim->max_discard_sectors = 0;
119 lim->discard_granularity = 0;
120 lim->discard_alignment = 0;
121 lim->discard_misaligned = 0;
b1bd055d 122 lim->discard_zeroes_data = 0;
e475bba2 123 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
3a02c8e8 124 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
e475bba2
MP
125 lim->alignment_offset = 0;
126 lim->io_opt = 0;
127 lim->misaligned = 0;
e692cb66 128 lim->cluster = 1;
e475bba2
MP
129}
130EXPORT_SYMBOL(blk_set_default_limits);
131
b1bd055d
MP
132/**
133 * blk_set_stacking_limits - set default limits for stacking devices
134 * @lim: the queue_limits structure to reset
135 *
136 * Description:
137 * Returns a queue_limit struct to its default state. Should be used
138 * by stacking drivers like DM that have no internal limits.
139 */
140void blk_set_stacking_limits(struct queue_limits *lim)
141{
142 blk_set_default_limits(lim);
143
144 /* Inherit limits from component devices */
145 lim->discard_zeroes_data = 1;
146 lim->max_segments = USHRT_MAX;
147 lim->max_hw_sectors = UINT_MAX;
d82ae52e 148 lim->max_segment_size = UINT_MAX;
fe86cdce 149 lim->max_sectors = UINT_MAX;
4363ac7c 150 lim->max_write_same_sectors = UINT_MAX;
b1bd055d
MP
151}
152EXPORT_SYMBOL(blk_set_stacking_limits);
153
86db1e29
JA
154/**
155 * blk_queue_make_request - define an alternate make_request function for a device
156 * @q: the request queue for the device to be affected
157 * @mfn: the alternate make_request function
158 *
159 * Description:
160 * The normal way for &struct bios to be passed to a device
161 * driver is for them to be collected into requests on a request
162 * queue, and then to allow the device driver to select requests
163 * off that queue when it is ready. This works well for many block
164 * devices. However some block devices (typically virtual devices
165 * such as md or lvm) do not benefit from the processing on the
166 * request queue, and are served best by having the requests passed
167 * directly to them. This can be achieved by providing a function
168 * to blk_queue_make_request().
169 *
170 * Caveat:
171 * The driver that does this *must* be able to deal appropriately
172 * with buffers in "highmemory". This can be accomplished by either calling
173 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
174 * blk_queue_bounce() to create a buffer in normal memory.
175 **/
6728cb0e 176void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
86db1e29
JA
177{
178 /*
179 * set defaults
180 */
181 q->nr_requests = BLKDEV_MAX_RQ;
0e435ac2 182
86db1e29 183 q->make_request_fn = mfn;
86db1e29
JA
184 blk_queue_dma_alignment(q, 511);
185 blk_queue_congestion_threshold(q);
186 q->nr_batching = BLK_BATCH_REQ;
187
e475bba2
MP
188 blk_set_default_limits(&q->limits);
189
86db1e29
JA
190 /*
191 * by default assume old behaviour and bounce for any highmem page
192 */
193 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
194}
86db1e29
JA
195EXPORT_SYMBOL(blk_queue_make_request);
196
197/**
198 * blk_queue_bounce_limit - set bounce buffer limit for queue
cd0aca2d 199 * @q: the request queue for the device
9f7e45d8 200 * @max_addr: the maximum address the device can handle
86db1e29
JA
201 *
202 * Description:
203 * Different hardware can have different requirements as to what pages
204 * it can do I/O directly to. A low level driver can call
205 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
9f7e45d8 206 * buffers for doing I/O to pages residing above @max_addr.
86db1e29 207 **/
9f7e45d8 208void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
86db1e29 209{
9f7e45d8 210 unsigned long b_pfn = max_addr >> PAGE_SHIFT;
86db1e29
JA
211 int dma = 0;
212
213 q->bounce_gfp = GFP_NOIO;
214#if BITS_PER_LONG == 64
cd0aca2d
TH
215 /*
216 * Assume anything <= 4GB can be handled by IOMMU. Actually
217 * some IOMMUs can handle everything, but I don't know of a
218 * way to test this here.
219 */
220 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
86db1e29 221 dma = 1;
efb012b3 222 q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
86db1e29 223#else
6728cb0e 224 if (b_pfn < blk_max_low_pfn)
86db1e29 225 dma = 1;
c49825fa 226 q->limits.bounce_pfn = b_pfn;
260a67a9 227#endif
86db1e29
JA
228 if (dma) {
229 init_emergency_isa_pool();
230 q->bounce_gfp = GFP_NOIO | GFP_DMA;
260a67a9 231 q->limits.bounce_pfn = b_pfn;
86db1e29
JA
232 }
233}
86db1e29
JA
234EXPORT_SYMBOL(blk_queue_bounce_limit);
235
236/**
72d4cd9f
MS
237 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
238 * @limits: the queue limits
2800aac1 239 * @max_hw_sectors: max hardware sectors in the usual 512b unit
86db1e29
JA
240 *
241 * Description:
2800aac1
MP
242 * Enables a low level driver to set a hard upper limit,
243 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
244 * the device driver based upon the combined capabilities of I/O
245 * controller and storage device.
246 *
247 * max_sectors is a soft limit imposed by the block layer for
248 * filesystem type requests. This value can be overridden on a
249 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
250 * The soft limit can not exceed max_hw_sectors.
86db1e29 251 **/
72d4cd9f 252void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
86db1e29 253{
2800aac1
MP
254 if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
255 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
24c03d47 256 printk(KERN_INFO "%s: set to minimum %d\n",
2800aac1 257 __func__, max_hw_sectors);
86db1e29
JA
258 }
259
72d4cd9f
MS
260 limits->max_hw_sectors = max_hw_sectors;
261 limits->max_sectors = min_t(unsigned int, max_hw_sectors,
262 BLK_DEF_MAX_SECTORS);
263}
264EXPORT_SYMBOL(blk_limits_max_hw_sectors);
265
266/**
267 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
268 * @q: the request queue for the device
269 * @max_hw_sectors: max hardware sectors in the usual 512b unit
270 *
271 * Description:
272 * See description for blk_limits_max_hw_sectors().
273 **/
274void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
275{
276 blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
86db1e29 277}
086fa5ff 278EXPORT_SYMBOL(blk_queue_max_hw_sectors);
86db1e29 279
762380ad
JA
280/**
281 * blk_queue_chunk_sectors - set size of the chunk for this queue
282 * @q: the request queue for the device
283 * @chunk_sectors: chunk sectors in the usual 512b unit
284 *
285 * Description:
286 * If a driver doesn't want IOs to cross a given chunk size, it can set
287 * this limit and prevent merging across chunks. Note that the chunk size
288 * must currently be a power-of-2 in sectors.
289 **/
290void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
291{
292 BUG_ON(!is_power_of_2(chunk_sectors));
293 q->limits.chunk_sectors = chunk_sectors;
294}
295EXPORT_SYMBOL(blk_queue_chunk_sectors);
296
67efc925
CH
297/**
298 * blk_queue_max_discard_sectors - set max sectors for a single discard
299 * @q: the request queue for the device
c7ebf065 300 * @max_discard_sectors: maximum number of sectors to discard
67efc925
CH
301 **/
302void blk_queue_max_discard_sectors(struct request_queue *q,
303 unsigned int max_discard_sectors)
304{
305 q->limits.max_discard_sectors = max_discard_sectors;
306}
307EXPORT_SYMBOL(blk_queue_max_discard_sectors);
308
4363ac7c
MP
309/**
310 * blk_queue_max_write_same_sectors - set max sectors for a single write same
311 * @q: the request queue for the device
312 * @max_write_same_sectors: maximum number of sectors to write per command
313 **/
314void blk_queue_max_write_same_sectors(struct request_queue *q,
315 unsigned int max_write_same_sectors)
316{
317 q->limits.max_write_same_sectors = max_write_same_sectors;
318}
319EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
320
86db1e29 321/**
8a78362c 322 * blk_queue_max_segments - set max hw segments for a request for this queue
86db1e29
JA
323 * @q: the request queue for the device
324 * @max_segments: max number of segments
325 *
326 * Description:
327 * Enables a low level driver to set an upper limit on the number of
8a78362c 328 * hw data segments in a request.
86db1e29 329 **/
8a78362c 330void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
86db1e29
JA
331{
332 if (!max_segments) {
333 max_segments = 1;
24c03d47
HH
334 printk(KERN_INFO "%s: set to minimum %d\n",
335 __func__, max_segments);
86db1e29
JA
336 }
337
8a78362c 338 q->limits.max_segments = max_segments;
86db1e29 339}
8a78362c 340EXPORT_SYMBOL(blk_queue_max_segments);
86db1e29
JA
341
342/**
343 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
344 * @q: the request queue for the device
345 * @max_size: max size of segment in bytes
346 *
347 * Description:
348 * Enables a low level driver to set an upper limit on the size of a
349 * coalesced segment
350 **/
351void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
352{
353 if (max_size < PAGE_CACHE_SIZE) {
354 max_size = PAGE_CACHE_SIZE;
24c03d47
HH
355 printk(KERN_INFO "%s: set to minimum %d\n",
356 __func__, max_size);
86db1e29
JA
357 }
358
025146e1 359 q->limits.max_segment_size = max_size;
86db1e29 360}
86db1e29
JA
361EXPORT_SYMBOL(blk_queue_max_segment_size);
362
363/**
e1defc4f 364 * blk_queue_logical_block_size - set logical block size for the queue
86db1e29 365 * @q: the request queue for the device
e1defc4f 366 * @size: the logical block size, in bytes
86db1e29
JA
367 *
368 * Description:
e1defc4f
MP
369 * This should be set to the lowest possible block size that the
370 * storage device can address. The default of 512 covers most
371 * hardware.
86db1e29 372 **/
e1defc4f 373void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
86db1e29 374{
025146e1 375 q->limits.logical_block_size = size;
c72758f3
MP
376
377 if (q->limits.physical_block_size < size)
378 q->limits.physical_block_size = size;
379
380 if (q->limits.io_min < q->limits.physical_block_size)
381 q->limits.io_min = q->limits.physical_block_size;
86db1e29 382}
e1defc4f 383EXPORT_SYMBOL(blk_queue_logical_block_size);
86db1e29 384
c72758f3
MP
385/**
386 * blk_queue_physical_block_size - set physical block size for the queue
387 * @q: the request queue for the device
388 * @size: the physical block size, in bytes
389 *
390 * Description:
391 * This should be set to the lowest possible sector size that the
392 * hardware can operate on without reverting to read-modify-write
393 * operations.
394 */
892b6f90 395void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
c72758f3
MP
396{
397 q->limits.physical_block_size = size;
398
399 if (q->limits.physical_block_size < q->limits.logical_block_size)
400 q->limits.physical_block_size = q->limits.logical_block_size;
401
402 if (q->limits.io_min < q->limits.physical_block_size)
403 q->limits.io_min = q->limits.physical_block_size;
404}
405EXPORT_SYMBOL(blk_queue_physical_block_size);
406
407/**
408 * blk_queue_alignment_offset - set physical block alignment offset
409 * @q: the request queue for the device
8ebf9756 410 * @offset: alignment offset in bytes
c72758f3
MP
411 *
412 * Description:
413 * Some devices are naturally misaligned to compensate for things like
414 * the legacy DOS partition table 63-sector offset. Low-level drivers
415 * should call this function for devices whose first sector is not
416 * naturally aligned.
417 */
418void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
419{
420 q->limits.alignment_offset =
421 offset & (q->limits.physical_block_size - 1);
422 q->limits.misaligned = 0;
423}
424EXPORT_SYMBOL(blk_queue_alignment_offset);
425
7c958e32
MP
426/**
427 * blk_limits_io_min - set minimum request size for a device
428 * @limits: the queue limits
429 * @min: smallest I/O size in bytes
430 *
431 * Description:
432 * Some devices have an internal block size bigger than the reported
433 * hardware sector size. This function can be used to signal the
434 * smallest I/O the device can perform without incurring a performance
435 * penalty.
436 */
437void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
438{
439 limits->io_min = min;
440
441 if (limits->io_min < limits->logical_block_size)
442 limits->io_min = limits->logical_block_size;
443
444 if (limits->io_min < limits->physical_block_size)
445 limits->io_min = limits->physical_block_size;
446}
447EXPORT_SYMBOL(blk_limits_io_min);
448
c72758f3
MP
449/**
450 * blk_queue_io_min - set minimum request size for the queue
451 * @q: the request queue for the device
8ebf9756 452 * @min: smallest I/O size in bytes
c72758f3
MP
453 *
454 * Description:
7e5f5fb0
MP
455 * Storage devices may report a granularity or preferred minimum I/O
456 * size which is the smallest request the device can perform without
457 * incurring a performance penalty. For disk drives this is often the
458 * physical block size. For RAID arrays it is often the stripe chunk
459 * size. A properly aligned multiple of minimum_io_size is the
460 * preferred request size for workloads where a high number of I/O
461 * operations is desired.
c72758f3
MP
462 */
463void blk_queue_io_min(struct request_queue *q, unsigned int min)
464{
7c958e32 465 blk_limits_io_min(&q->limits, min);
c72758f3
MP
466}
467EXPORT_SYMBOL(blk_queue_io_min);
468
3c5820c7
MP
469/**
470 * blk_limits_io_opt - set optimal request size for a device
471 * @limits: the queue limits
472 * @opt: smallest I/O size in bytes
473 *
474 * Description:
475 * Storage devices may report an optimal I/O size, which is the
476 * device's preferred unit for sustained I/O. This is rarely reported
477 * for disk drives. For RAID arrays it is usually the stripe width or
478 * the internal track size. A properly aligned multiple of
479 * optimal_io_size is the preferred request size for workloads where
480 * sustained throughput is desired.
481 */
482void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
483{
484 limits->io_opt = opt;
485}
486EXPORT_SYMBOL(blk_limits_io_opt);
487
c72758f3
MP
488/**
489 * blk_queue_io_opt - set optimal request size for the queue
490 * @q: the request queue for the device
8ebf9756 491 * @opt: optimal request size in bytes
c72758f3
MP
492 *
493 * Description:
7e5f5fb0
MP
494 * Storage devices may report an optimal I/O size, which is the
495 * device's preferred unit for sustained I/O. This is rarely reported
496 * for disk drives. For RAID arrays it is usually the stripe width or
497 * the internal track size. A properly aligned multiple of
498 * optimal_io_size is the preferred request size for workloads where
499 * sustained throughput is desired.
c72758f3
MP
500 */
501void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
502{
3c5820c7 503 blk_limits_io_opt(&q->limits, opt);
c72758f3
MP
504}
505EXPORT_SYMBOL(blk_queue_io_opt);
506
86db1e29
JA
507/**
508 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
509 * @t: the stacking driver (top)
510 * @b: the underlying device (bottom)
511 **/
512void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
513{
fef24667 514 blk_stack_limits(&t->limits, &b->limits, 0);
86db1e29 515}
86db1e29
JA
516EXPORT_SYMBOL(blk_queue_stack_limits);
517
c72758f3
MP
518/**
519 * blk_stack_limits - adjust queue_limits for stacked devices
81744ee4
MP
520 * @t: the stacking driver limits (top device)
521 * @b: the underlying queue limits (bottom, component device)
e03a72e1 522 * @start: first data sector within component device
c72758f3
MP
523 *
524 * Description:
81744ee4
MP
525 * This function is used by stacking drivers like MD and DM to ensure
526 * that all component devices have compatible block sizes and
527 * alignments. The stacking driver must provide a queue_limits
528 * struct (top) and then iteratively call the stacking function for
529 * all component (bottom) devices. The stacking function will
530 * attempt to combine the values and ensure proper alignment.
531 *
532 * Returns 0 if the top and bottom queue_limits are compatible. The
533 * top device's block sizes and alignment offsets may be adjusted to
534 * ensure alignment with the bottom device. If no compatible sizes
535 * and alignments exist, -1 is returned and the resulting top
536 * queue_limits will have the misaligned flag set to indicate that
537 * the alignment_offset is undefined.
c72758f3
MP
538 */
539int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
e03a72e1 540 sector_t start)
c72758f3 541{
e03a72e1 542 unsigned int top, bottom, alignment, ret = 0;
86b37281 543
c72758f3
MP
544 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
545 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
4363ac7c
MP
546 t->max_write_same_sectors = min(t->max_write_same_sectors,
547 b->max_write_same_sectors);
77634f33 548 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
c72758f3
MP
549
550 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
551 b->seg_boundary_mask);
552
8a78362c 553 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
13f05c8d
MP
554 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
555 b->max_integrity_segments);
c72758f3
MP
556
557 t->max_segment_size = min_not_zero(t->max_segment_size,
558 b->max_segment_size);
559
fe0b393f
MP
560 t->misaligned |= b->misaligned;
561
e03a72e1 562 alignment = queue_limit_alignment_offset(b, start);
9504e086 563
81744ee4
MP
564 /* Bottom device has different alignment. Check that it is
565 * compatible with the current top alignment.
566 */
9504e086
MP
567 if (t->alignment_offset != alignment) {
568
569 top = max(t->physical_block_size, t->io_min)
570 + t->alignment_offset;
81744ee4 571 bottom = max(b->physical_block_size, b->io_min) + alignment;
9504e086 572
81744ee4 573 /* Verify that top and bottom intervals line up */
fe0b393f 574 if (max(top, bottom) & (min(top, bottom) - 1)) {
9504e086 575 t->misaligned = 1;
fe0b393f
MP
576 ret = -1;
577 }
9504e086
MP
578 }
579
c72758f3
MP
580 t->logical_block_size = max(t->logical_block_size,
581 b->logical_block_size);
582
583 t->physical_block_size = max(t->physical_block_size,
584 b->physical_block_size);
585
586 t->io_min = max(t->io_min, b->io_min);
9504e086
MP
587 t->io_opt = lcm(t->io_opt, b->io_opt);
588
e692cb66 589 t->cluster &= b->cluster;
98262f27 590 t->discard_zeroes_data &= b->discard_zeroes_data;
c72758f3 591
81744ee4 592 /* Physical block size a multiple of the logical block size? */
9504e086
MP
593 if (t->physical_block_size & (t->logical_block_size - 1)) {
594 t->physical_block_size = t->logical_block_size;
c72758f3 595 t->misaligned = 1;
fe0b393f 596 ret = -1;
86b37281
MP
597 }
598
81744ee4 599 /* Minimum I/O a multiple of the physical block size? */
9504e086
MP
600 if (t->io_min & (t->physical_block_size - 1)) {
601 t->io_min = t->physical_block_size;
602 t->misaligned = 1;
fe0b393f 603 ret = -1;
c72758f3
MP
604 }
605
81744ee4 606 /* Optimal I/O a multiple of the physical block size? */
9504e086
MP
607 if (t->io_opt & (t->physical_block_size - 1)) {
608 t->io_opt = 0;
609 t->misaligned = 1;
fe0b393f 610 ret = -1;
9504e086 611 }
c72758f3 612
c78afc62
KO
613 t->raid_partial_stripes_expensive =
614 max(t->raid_partial_stripes_expensive,
615 b->raid_partial_stripes_expensive);
616
81744ee4 617 /* Find lowest common alignment_offset */
9504e086
MP
618 t->alignment_offset = lcm(t->alignment_offset, alignment)
619 & (max(t->physical_block_size, t->io_min) - 1);
86b37281 620
81744ee4 621 /* Verify that new alignment_offset is on a logical block boundary */
fe0b393f 622 if (t->alignment_offset & (t->logical_block_size - 1)) {
c72758f3 623 t->misaligned = 1;
fe0b393f
MP
624 ret = -1;
625 }
c72758f3 626
9504e086
MP
627 /* Discard alignment and granularity */
628 if (b->discard_granularity) {
e03a72e1 629 alignment = queue_limit_discard_alignment(b, start);
9504e086
MP
630
631 if (t->discard_granularity != 0 &&
632 t->discard_alignment != alignment) {
633 top = t->discard_granularity + t->discard_alignment;
634 bottom = b->discard_granularity + alignment;
70dd5bf3 635
9504e086 636 /* Verify that top and bottom intervals line up */
8dd2cb7e 637 if ((max(top, bottom) % min(top, bottom)) != 0)
9504e086
MP
638 t->discard_misaligned = 1;
639 }
640
81744ee4
MP
641 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
642 b->max_discard_sectors);
9504e086
MP
643 t->discard_granularity = max(t->discard_granularity,
644 b->discard_granularity);
8dd2cb7e
SL
645 t->discard_alignment = lcm(t->discard_alignment, alignment) %
646 t->discard_granularity;
9504e086 647 }
70dd5bf3 648
fe0b393f 649 return ret;
c72758f3 650}
5d85d324 651EXPORT_SYMBOL(blk_stack_limits);
c72758f3 652
17be8c24
MP
653/**
654 * bdev_stack_limits - adjust queue limits for stacked drivers
655 * @t: the stacking driver limits (top device)
656 * @bdev: the component block_device (bottom)
657 * @start: first data sector within component device
658 *
659 * Description:
660 * Merges queue limits for a top device and a block_device. Returns
661 * 0 if alignment didn't change. Returns -1 if adding the bottom
662 * device caused misalignment.
663 */
664int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
665 sector_t start)
666{
667 struct request_queue *bq = bdev_get_queue(bdev);
668
669 start += get_start_sect(bdev);
670
e03a72e1 671 return blk_stack_limits(t, &bq->limits, start);
17be8c24
MP
672}
673EXPORT_SYMBOL(bdev_stack_limits);
674
c72758f3
MP
675/**
676 * disk_stack_limits - adjust queue limits for stacked drivers
77634f33 677 * @disk: MD/DM gendisk (top)
c72758f3
MP
678 * @bdev: the underlying block device (bottom)
679 * @offset: offset to beginning of data within component device
680 *
681 * Description:
e03a72e1
MP
682 * Merges the limits for a top level gendisk and a bottom level
683 * block_device.
c72758f3
MP
684 */
685void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
686 sector_t offset)
687{
688 struct request_queue *t = disk->queue;
c72758f3 689
e03a72e1 690 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
c72758f3
MP
691 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
692
693 disk_name(disk, 0, top);
694 bdevname(bdev, bottom);
695
696 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
697 top, bottom);
698 }
c72758f3
MP
699}
700EXPORT_SYMBOL(disk_stack_limits);
701
e3790c7d
TH
702/**
703 * blk_queue_dma_pad - set pad mask
704 * @q: the request queue for the device
705 * @mask: pad mask
706 *
27f8221a 707 * Set dma pad mask.
e3790c7d 708 *
27f8221a
FT
709 * Appending pad buffer to a request modifies the last entry of a
710 * scatter list such that it includes the pad buffer.
e3790c7d
TH
711 **/
712void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
713{
714 q->dma_pad_mask = mask;
715}
716EXPORT_SYMBOL(blk_queue_dma_pad);
717
27f8221a
FT
718/**
719 * blk_queue_update_dma_pad - update pad mask
720 * @q: the request queue for the device
721 * @mask: pad mask
722 *
723 * Update dma pad mask.
724 *
725 * Appending pad buffer to a request modifies the last entry of a
726 * scatter list such that it includes the pad buffer.
727 **/
728void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
729{
730 if (mask > q->dma_pad_mask)
731 q->dma_pad_mask = mask;
732}
733EXPORT_SYMBOL(blk_queue_update_dma_pad);
734
86db1e29
JA
735/**
736 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
86db1e29 737 * @q: the request queue for the device
2fb98e84 738 * @dma_drain_needed: fn which returns non-zero if drain is necessary
86db1e29
JA
739 * @buf: physically contiguous buffer
740 * @size: size of the buffer in bytes
741 *
742 * Some devices have excess DMA problems and can't simply discard (or
743 * zero fill) the unwanted piece of the transfer. They have to have a
744 * real area of memory to transfer it into. The use case for this is
745 * ATAPI devices in DMA mode. If the packet command causes a transfer
746 * bigger than the transfer size some HBAs will lock up if there
747 * aren't DMA elements to contain the excess transfer. What this API
748 * does is adjust the queue so that the buf is always appended
749 * silently to the scatterlist.
750 *
8a78362c
MP
751 * Note: This routine adjusts max_hw_segments to make room for appending
752 * the drain buffer. If you call blk_queue_max_segments() after calling
753 * this routine, you must set the limit to one fewer than your device
754 * can support otherwise there won't be room for the drain buffer.
86db1e29 755 */
448da4d2 756int blk_queue_dma_drain(struct request_queue *q,
2fb98e84
TH
757 dma_drain_needed_fn *dma_drain_needed,
758 void *buf, unsigned int size)
86db1e29 759{
8a78362c 760 if (queue_max_segments(q) < 2)
86db1e29
JA
761 return -EINVAL;
762 /* make room for appending the drain */
8a78362c 763 blk_queue_max_segments(q, queue_max_segments(q) - 1);
2fb98e84 764 q->dma_drain_needed = dma_drain_needed;
86db1e29
JA
765 q->dma_drain_buffer = buf;
766 q->dma_drain_size = size;
767
768 return 0;
769}
86db1e29
JA
770EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
771
772/**
773 * blk_queue_segment_boundary - set boundary rules for segment merging
774 * @q: the request queue for the device
775 * @mask: the memory boundary mask
776 **/
777void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
778{
779 if (mask < PAGE_CACHE_SIZE - 1) {
780 mask = PAGE_CACHE_SIZE - 1;
24c03d47
HH
781 printk(KERN_INFO "%s: set to minimum %lx\n",
782 __func__, mask);
86db1e29
JA
783 }
784
025146e1 785 q->limits.seg_boundary_mask = mask;
86db1e29 786}
86db1e29
JA
787EXPORT_SYMBOL(blk_queue_segment_boundary);
788
789/**
790 * blk_queue_dma_alignment - set dma length and memory alignment
791 * @q: the request queue for the device
792 * @mask: alignment mask
793 *
794 * description:
710027a4 795 * set required memory and length alignment for direct dma transactions.
8feb4d20 796 * this is used when building direct io requests for the queue.
86db1e29
JA
797 *
798 **/
799void blk_queue_dma_alignment(struct request_queue *q, int mask)
800{
801 q->dma_alignment = mask;
802}
86db1e29
JA
803EXPORT_SYMBOL(blk_queue_dma_alignment);
804
805/**
806 * blk_queue_update_dma_alignment - update dma length and memory alignment
807 * @q: the request queue for the device
808 * @mask: alignment mask
809 *
810 * description:
710027a4 811 * update required memory and length alignment for direct dma transactions.
86db1e29
JA
812 * If the requested alignment is larger than the current alignment, then
813 * the current queue alignment is updated to the new value, otherwise it
814 * is left alone. The design of this is to allow multiple objects
815 * (driver, device, transport etc) to set their respective
816 * alignments without having them interfere.
817 *
818 **/
819void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
820{
821 BUG_ON(mask > PAGE_SIZE);
822
823 if (mask > q->dma_alignment)
824 q->dma_alignment = mask;
825}
86db1e29
JA
826EXPORT_SYMBOL(blk_queue_update_dma_alignment);
827
4913efe4
TH
828/**
829 * blk_queue_flush - configure queue's cache flush capability
830 * @q: the request queue for the device
831 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
832 *
833 * Tell block layer cache flush capability of @q. If it supports
834 * flushing, REQ_FLUSH should be set. If it supports bypassing
835 * write cache for individual writes, REQ_FUA should be set.
836 */
837void blk_queue_flush(struct request_queue *q, unsigned int flush)
838{
839 WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
840
841 if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
842 flush &= ~REQ_FUA;
843
844 q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
845}
846EXPORT_SYMBOL_GPL(blk_queue_flush);
847
f3876930 848void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
849{
850 q->flush_not_queueable = !queueable;
851}
852EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
853
aeb3d3a8 854static int __init blk_settings_init(void)
86db1e29
JA
855{
856 blk_max_low_pfn = max_low_pfn - 1;
857 blk_max_pfn = max_pfn - 1;
858 return 0;
859}
860subsys_initcall(blk_settings_init);