]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - block/blk-settings.c
block: kill legacy parts of timeout handling
[mirror_ubuntu-hirsute-kernel.git] / block / blk-settings.c
CommitLineData
86db1e29
JA
1/*
2 * Functions related to setting various queue properties from drivers
3 */
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <linux/init.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
57c8a661 9#include <linux/memblock.h> /* for max_pfn/max_low_pfn */
70dd5bf3 10#include <linux/gcd.h>
2cda2728 11#include <linux/lcm.h>
ad5ebd2f 12#include <linux/jiffies.h>
5a0e3ad6 13#include <linux/gfp.h>
86db1e29
JA
14
15#include "blk.h"
87760e5e 16#include "blk-wbt.h"
86db1e29 17
6728cb0e 18unsigned long blk_max_low_pfn;
86db1e29 19EXPORT_SYMBOL(blk_max_low_pfn);
6728cb0e
JA
20
21unsigned long blk_max_pfn;
86db1e29 22
86db1e29
JA
23void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
24{
25 q->softirq_done_fn = fn;
26}
86db1e29
JA
27EXPORT_SYMBOL(blk_queue_softirq_done);
28
242f9dcb
JA
29void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
30{
31 q->rq_timeout = timeout;
32}
33EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
34
e475bba2
MP
35/**
36 * blk_set_default_limits - reset limits to default values
f740f5ca 37 * @lim: the queue_limits structure to reset
e475bba2
MP
38 *
39 * Description:
b1bd055d 40 * Returns a queue_limit struct to its default state.
e475bba2
MP
41 */
42void blk_set_default_limits(struct queue_limits *lim)
43{
8a78362c 44 lim->max_segments = BLK_MAX_SEGMENTS;
1e739730 45 lim->max_discard_segments = 1;
13f05c8d 46 lim->max_integrity_segments = 0;
e475bba2 47 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
03100aad 48 lim->virt_boundary_mask = 0;
eb28d31b 49 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
5f009d3f
KB
50 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
51 lim->max_dev_sectors = 0;
762380ad 52 lim->chunk_sectors = 0;
4363ac7c 53 lim->max_write_same_sectors = 0;
a6f0788e 54 lim->max_write_zeroes_sectors = 0;
86b37281 55 lim->max_discard_sectors = 0;
0034af03 56 lim->max_hw_discard_sectors = 0;
86b37281
MP
57 lim->discard_granularity = 0;
58 lim->discard_alignment = 0;
59 lim->discard_misaligned = 0;
e475bba2 60 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
3a02c8e8 61 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
e475bba2
MP
62 lim->alignment_offset = 0;
63 lim->io_opt = 0;
64 lim->misaligned = 0;
e692cb66 65 lim->cluster = 1;
797476b8 66 lim->zoned = BLK_ZONED_NONE;
e475bba2
MP
67}
68EXPORT_SYMBOL(blk_set_default_limits);
69
b1bd055d
MP
70/**
71 * blk_set_stacking_limits - set default limits for stacking devices
72 * @lim: the queue_limits structure to reset
73 *
74 * Description:
75 * Returns a queue_limit struct to its default state. Should be used
76 * by stacking drivers like DM that have no internal limits.
77 */
78void blk_set_stacking_limits(struct queue_limits *lim)
79{
80 blk_set_default_limits(lim);
81
82 /* Inherit limits from component devices */
b1bd055d 83 lim->max_segments = USHRT_MAX;
42c9cdfe 84 lim->max_discard_segments = USHRT_MAX;
b1bd055d 85 lim->max_hw_sectors = UINT_MAX;
d82ae52e 86 lim->max_segment_size = UINT_MAX;
fe86cdce 87 lim->max_sectors = UINT_MAX;
ca369d51 88 lim->max_dev_sectors = UINT_MAX;
4363ac7c 89 lim->max_write_same_sectors = UINT_MAX;
a6f0788e 90 lim->max_write_zeroes_sectors = UINT_MAX;
b1bd055d
MP
91}
92EXPORT_SYMBOL(blk_set_stacking_limits);
93
86db1e29
JA
94/**
95 * blk_queue_make_request - define an alternate make_request function for a device
96 * @q: the request queue for the device to be affected
97 * @mfn: the alternate make_request function
98 *
99 * Description:
100 * The normal way for &struct bios to be passed to a device
101 * driver is for them to be collected into requests on a request
102 * queue, and then to allow the device driver to select requests
103 * off that queue when it is ready. This works well for many block
104 * devices. However some block devices (typically virtual devices
105 * such as md or lvm) do not benefit from the processing on the
106 * request queue, and are served best by having the requests passed
107 * directly to them. This can be achieved by providing a function
108 * to blk_queue_make_request().
109 *
110 * Caveat:
111 * The driver that does this *must* be able to deal appropriately
112 * with buffers in "highmemory". This can be accomplished by either calling
d004a5e7 113 * kmap_atomic() to get a temporary kernel mapping, or by calling
86db1e29
JA
114 * blk_queue_bounce() to create a buffer in normal memory.
115 **/
6728cb0e 116void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
86db1e29
JA
117{
118 /*
119 * set defaults
120 */
121 q->nr_requests = BLKDEV_MAX_RQ;
0e435ac2 122
86db1e29 123 q->make_request_fn = mfn;
86db1e29 124 blk_queue_dma_alignment(q, 511);
86db1e29 125
e475bba2 126 blk_set_default_limits(&q->limits);
86db1e29 127}
86db1e29
JA
128EXPORT_SYMBOL(blk_queue_make_request);
129
130/**
131 * blk_queue_bounce_limit - set bounce buffer limit for queue
cd0aca2d 132 * @q: the request queue for the device
9f7e45d8 133 * @max_addr: the maximum address the device can handle
86db1e29
JA
134 *
135 * Description:
136 * Different hardware can have different requirements as to what pages
137 * it can do I/O directly to. A low level driver can call
138 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
9f7e45d8 139 * buffers for doing I/O to pages residing above @max_addr.
86db1e29 140 **/
9f7e45d8 141void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
86db1e29 142{
9f7e45d8 143 unsigned long b_pfn = max_addr >> PAGE_SHIFT;
86db1e29
JA
144 int dma = 0;
145
146 q->bounce_gfp = GFP_NOIO;
147#if BITS_PER_LONG == 64
cd0aca2d
TH
148 /*
149 * Assume anything <= 4GB can be handled by IOMMU. Actually
150 * some IOMMUs can handle everything, but I don't know of a
151 * way to test this here.
152 */
153 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
86db1e29 154 dma = 1;
efb012b3 155 q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
86db1e29 156#else
6728cb0e 157 if (b_pfn < blk_max_low_pfn)
86db1e29 158 dma = 1;
c49825fa 159 q->limits.bounce_pfn = b_pfn;
260a67a9 160#endif
86db1e29
JA
161 if (dma) {
162 init_emergency_isa_pool();
163 q->bounce_gfp = GFP_NOIO | GFP_DMA;
260a67a9 164 q->limits.bounce_pfn = b_pfn;
86db1e29
JA
165 }
166}
86db1e29
JA
167EXPORT_SYMBOL(blk_queue_bounce_limit);
168
169/**
ca369d51
MP
170 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
171 * @q: the request queue for the device
2800aac1 172 * @max_hw_sectors: max hardware sectors in the usual 512b unit
86db1e29
JA
173 *
174 * Description:
2800aac1
MP
175 * Enables a low level driver to set a hard upper limit,
176 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
4f258a46
MP
177 * the device driver based upon the capabilities of the I/O
178 * controller.
2800aac1 179 *
ca369d51
MP
180 * max_dev_sectors is a hard limit imposed by the storage device for
181 * READ/WRITE requests. It is set by the disk driver.
182 *
2800aac1
MP
183 * max_sectors is a soft limit imposed by the block layer for
184 * filesystem type requests. This value can be overridden on a
185 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
186 * The soft limit can not exceed max_hw_sectors.
86db1e29 187 **/
ca369d51 188void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
86db1e29 189{
ca369d51
MP
190 struct queue_limits *limits = &q->limits;
191 unsigned int max_sectors;
192
09cbfeaf
KS
193 if ((max_hw_sectors << 9) < PAGE_SIZE) {
194 max_hw_sectors = 1 << (PAGE_SHIFT - 9);
24c03d47 195 printk(KERN_INFO "%s: set to minimum %d\n",
2800aac1 196 __func__, max_hw_sectors);
86db1e29
JA
197 }
198
30e2bc08 199 limits->max_hw_sectors = max_hw_sectors;
ca369d51
MP
200 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
201 max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
202 limits->max_sectors = max_sectors;
dc3b17cc 203 q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
86db1e29 204}
086fa5ff 205EXPORT_SYMBOL(blk_queue_max_hw_sectors);
86db1e29 206
762380ad
JA
207/**
208 * blk_queue_chunk_sectors - set size of the chunk for this queue
209 * @q: the request queue for the device
210 * @chunk_sectors: chunk sectors in the usual 512b unit
211 *
212 * Description:
213 * If a driver doesn't want IOs to cross a given chunk size, it can set
214 * this limit and prevent merging across chunks. Note that the chunk size
58a4915a
JA
215 * must currently be a power-of-2 in sectors. Also note that the block
216 * layer must accept a page worth of data at any offset. So if the
217 * crossing of chunks is a hard limitation in the driver, it must still be
218 * prepared to split single page bios.
762380ad
JA
219 **/
220void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
221{
222 BUG_ON(!is_power_of_2(chunk_sectors));
223 q->limits.chunk_sectors = chunk_sectors;
224}
225EXPORT_SYMBOL(blk_queue_chunk_sectors);
226
67efc925
CH
227/**
228 * blk_queue_max_discard_sectors - set max sectors for a single discard
229 * @q: the request queue for the device
c7ebf065 230 * @max_discard_sectors: maximum number of sectors to discard
67efc925
CH
231 **/
232void blk_queue_max_discard_sectors(struct request_queue *q,
233 unsigned int max_discard_sectors)
234{
0034af03 235 q->limits.max_hw_discard_sectors = max_discard_sectors;
67efc925
CH
236 q->limits.max_discard_sectors = max_discard_sectors;
237}
238EXPORT_SYMBOL(blk_queue_max_discard_sectors);
239
4363ac7c
MP
240/**
241 * blk_queue_max_write_same_sectors - set max sectors for a single write same
242 * @q: the request queue for the device
243 * @max_write_same_sectors: maximum number of sectors to write per command
244 **/
245void blk_queue_max_write_same_sectors(struct request_queue *q,
246 unsigned int max_write_same_sectors)
247{
248 q->limits.max_write_same_sectors = max_write_same_sectors;
249}
250EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
251
a6f0788e
CK
252/**
253 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
254 * write zeroes
255 * @q: the request queue for the device
256 * @max_write_zeroes_sectors: maximum number of sectors to write per command
257 **/
258void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
259 unsigned int max_write_zeroes_sectors)
260{
261 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
262}
263EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
264
86db1e29 265/**
8a78362c 266 * blk_queue_max_segments - set max hw segments for a request for this queue
86db1e29
JA
267 * @q: the request queue for the device
268 * @max_segments: max number of segments
269 *
270 * Description:
271 * Enables a low level driver to set an upper limit on the number of
8a78362c 272 * hw data segments in a request.
86db1e29 273 **/
8a78362c 274void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
86db1e29
JA
275{
276 if (!max_segments) {
277 max_segments = 1;
24c03d47
HH
278 printk(KERN_INFO "%s: set to minimum %d\n",
279 __func__, max_segments);
86db1e29
JA
280 }
281
8a78362c 282 q->limits.max_segments = max_segments;
86db1e29 283}
8a78362c 284EXPORT_SYMBOL(blk_queue_max_segments);
86db1e29 285
1e739730
CH
286/**
287 * blk_queue_max_discard_segments - set max segments for discard requests
288 * @q: the request queue for the device
289 * @max_segments: max number of segments
290 *
291 * Description:
292 * Enables a low level driver to set an upper limit on the number of
293 * segments in a discard request.
294 **/
295void blk_queue_max_discard_segments(struct request_queue *q,
296 unsigned short max_segments)
297{
298 q->limits.max_discard_segments = max_segments;
299}
300EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
301
86db1e29
JA
302/**
303 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
304 * @q: the request queue for the device
305 * @max_size: max size of segment in bytes
306 *
307 * Description:
308 * Enables a low level driver to set an upper limit on the size of a
309 * coalesced segment
310 **/
311void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
312{
09cbfeaf
KS
313 if (max_size < PAGE_SIZE) {
314 max_size = PAGE_SIZE;
24c03d47
HH
315 printk(KERN_INFO "%s: set to minimum %d\n",
316 __func__, max_size);
86db1e29
JA
317 }
318
025146e1 319 q->limits.max_segment_size = max_size;
86db1e29 320}
86db1e29
JA
321EXPORT_SYMBOL(blk_queue_max_segment_size);
322
323/**
e1defc4f 324 * blk_queue_logical_block_size - set logical block size for the queue
86db1e29 325 * @q: the request queue for the device
e1defc4f 326 * @size: the logical block size, in bytes
86db1e29
JA
327 *
328 * Description:
e1defc4f
MP
329 * This should be set to the lowest possible block size that the
330 * storage device can address. The default of 512 covers most
331 * hardware.
86db1e29 332 **/
e1defc4f 333void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
86db1e29 334{
025146e1 335 q->limits.logical_block_size = size;
c72758f3
MP
336
337 if (q->limits.physical_block_size < size)
338 q->limits.physical_block_size = size;
339
340 if (q->limits.io_min < q->limits.physical_block_size)
341 q->limits.io_min = q->limits.physical_block_size;
86db1e29 342}
e1defc4f 343EXPORT_SYMBOL(blk_queue_logical_block_size);
86db1e29 344
c72758f3
MP
345/**
346 * blk_queue_physical_block_size - set physical block size for the queue
347 * @q: the request queue for the device
348 * @size: the physical block size, in bytes
349 *
350 * Description:
351 * This should be set to the lowest possible sector size that the
352 * hardware can operate on without reverting to read-modify-write
353 * operations.
354 */
892b6f90 355void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
c72758f3
MP
356{
357 q->limits.physical_block_size = size;
358
359 if (q->limits.physical_block_size < q->limits.logical_block_size)
360 q->limits.physical_block_size = q->limits.logical_block_size;
361
362 if (q->limits.io_min < q->limits.physical_block_size)
363 q->limits.io_min = q->limits.physical_block_size;
364}
365EXPORT_SYMBOL(blk_queue_physical_block_size);
366
367/**
368 * blk_queue_alignment_offset - set physical block alignment offset
369 * @q: the request queue for the device
8ebf9756 370 * @offset: alignment offset in bytes
c72758f3
MP
371 *
372 * Description:
373 * Some devices are naturally misaligned to compensate for things like
374 * the legacy DOS partition table 63-sector offset. Low-level drivers
375 * should call this function for devices whose first sector is not
376 * naturally aligned.
377 */
378void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
379{
380 q->limits.alignment_offset =
381 offset & (q->limits.physical_block_size - 1);
382 q->limits.misaligned = 0;
383}
384EXPORT_SYMBOL(blk_queue_alignment_offset);
385
7c958e32
MP
386/**
387 * blk_limits_io_min - set minimum request size for a device
388 * @limits: the queue limits
389 * @min: smallest I/O size in bytes
390 *
391 * Description:
392 * Some devices have an internal block size bigger than the reported
393 * hardware sector size. This function can be used to signal the
394 * smallest I/O the device can perform without incurring a performance
395 * penalty.
396 */
397void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
398{
399 limits->io_min = min;
400
401 if (limits->io_min < limits->logical_block_size)
402 limits->io_min = limits->logical_block_size;
403
404 if (limits->io_min < limits->physical_block_size)
405 limits->io_min = limits->physical_block_size;
406}
407EXPORT_SYMBOL(blk_limits_io_min);
408
c72758f3
MP
409/**
410 * blk_queue_io_min - set minimum request size for the queue
411 * @q: the request queue for the device
8ebf9756 412 * @min: smallest I/O size in bytes
c72758f3
MP
413 *
414 * Description:
7e5f5fb0
MP
415 * Storage devices may report a granularity or preferred minimum I/O
416 * size which is the smallest request the device can perform without
417 * incurring a performance penalty. For disk drives this is often the
418 * physical block size. For RAID arrays it is often the stripe chunk
419 * size. A properly aligned multiple of minimum_io_size is the
420 * preferred request size for workloads where a high number of I/O
421 * operations is desired.
c72758f3
MP
422 */
423void blk_queue_io_min(struct request_queue *q, unsigned int min)
424{
7c958e32 425 blk_limits_io_min(&q->limits, min);
c72758f3
MP
426}
427EXPORT_SYMBOL(blk_queue_io_min);
428
3c5820c7
MP
429/**
430 * blk_limits_io_opt - set optimal request size for a device
431 * @limits: the queue limits
432 * @opt: smallest I/O size in bytes
433 *
434 * Description:
435 * Storage devices may report an optimal I/O size, which is the
436 * device's preferred unit for sustained I/O. This is rarely reported
437 * for disk drives. For RAID arrays it is usually the stripe width or
438 * the internal track size. A properly aligned multiple of
439 * optimal_io_size is the preferred request size for workloads where
440 * sustained throughput is desired.
441 */
442void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
443{
444 limits->io_opt = opt;
445}
446EXPORT_SYMBOL(blk_limits_io_opt);
447
c72758f3
MP
448/**
449 * blk_queue_io_opt - set optimal request size for the queue
450 * @q: the request queue for the device
8ebf9756 451 * @opt: optimal request size in bytes
c72758f3
MP
452 *
453 * Description:
7e5f5fb0
MP
454 * Storage devices may report an optimal I/O size, which is the
455 * device's preferred unit for sustained I/O. This is rarely reported
456 * for disk drives. For RAID arrays it is usually the stripe width or
457 * the internal track size. A properly aligned multiple of
458 * optimal_io_size is the preferred request size for workloads where
459 * sustained throughput is desired.
c72758f3
MP
460 */
461void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
462{
3c5820c7 463 blk_limits_io_opt(&q->limits, opt);
c72758f3
MP
464}
465EXPORT_SYMBOL(blk_queue_io_opt);
466
86db1e29
JA
467/**
468 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
469 * @t: the stacking driver (top)
470 * @b: the underlying device (bottom)
471 **/
472void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
473{
fef24667 474 blk_stack_limits(&t->limits, &b->limits, 0);
86db1e29 475}
86db1e29
JA
476EXPORT_SYMBOL(blk_queue_stack_limits);
477
c72758f3
MP
478/**
479 * blk_stack_limits - adjust queue_limits for stacked devices
81744ee4
MP
480 * @t: the stacking driver limits (top device)
481 * @b: the underlying queue limits (bottom, component device)
e03a72e1 482 * @start: first data sector within component device
c72758f3
MP
483 *
484 * Description:
81744ee4
MP
485 * This function is used by stacking drivers like MD and DM to ensure
486 * that all component devices have compatible block sizes and
487 * alignments. The stacking driver must provide a queue_limits
488 * struct (top) and then iteratively call the stacking function for
489 * all component (bottom) devices. The stacking function will
490 * attempt to combine the values and ensure proper alignment.
491 *
492 * Returns 0 if the top and bottom queue_limits are compatible. The
493 * top device's block sizes and alignment offsets may be adjusted to
494 * ensure alignment with the bottom device. If no compatible sizes
495 * and alignments exist, -1 is returned and the resulting top
496 * queue_limits will have the misaligned flag set to indicate that
497 * the alignment_offset is undefined.
c72758f3
MP
498 */
499int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
e03a72e1 500 sector_t start)
c72758f3 501{
e03a72e1 502 unsigned int top, bottom, alignment, ret = 0;
86b37281 503
c72758f3
MP
504 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
505 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
ca369d51 506 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
4363ac7c
MP
507 t->max_write_same_sectors = min(t->max_write_same_sectors,
508 b->max_write_same_sectors);
a6f0788e
CK
509 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
510 b->max_write_zeroes_sectors);
77634f33 511 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
c72758f3
MP
512
513 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
514 b->seg_boundary_mask);
03100aad
KB
515 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
516 b->virt_boundary_mask);
c72758f3 517
8a78362c 518 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
1e739730
CH
519 t->max_discard_segments = min_not_zero(t->max_discard_segments,
520 b->max_discard_segments);
13f05c8d
MP
521 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
522 b->max_integrity_segments);
c72758f3
MP
523
524 t->max_segment_size = min_not_zero(t->max_segment_size,
525 b->max_segment_size);
526
fe0b393f
MP
527 t->misaligned |= b->misaligned;
528
e03a72e1 529 alignment = queue_limit_alignment_offset(b, start);
9504e086 530
81744ee4
MP
531 /* Bottom device has different alignment. Check that it is
532 * compatible with the current top alignment.
533 */
9504e086
MP
534 if (t->alignment_offset != alignment) {
535
536 top = max(t->physical_block_size, t->io_min)
537 + t->alignment_offset;
81744ee4 538 bottom = max(b->physical_block_size, b->io_min) + alignment;
9504e086 539
81744ee4 540 /* Verify that top and bottom intervals line up */
b8839b8c 541 if (max(top, bottom) % min(top, bottom)) {
9504e086 542 t->misaligned = 1;
fe0b393f
MP
543 ret = -1;
544 }
9504e086
MP
545 }
546
c72758f3
MP
547 t->logical_block_size = max(t->logical_block_size,
548 b->logical_block_size);
549
550 t->physical_block_size = max(t->physical_block_size,
551 b->physical_block_size);
552
553 t->io_min = max(t->io_min, b->io_min);
e9637415 554 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
9504e086 555
e692cb66 556 t->cluster &= b->cluster;
c72758f3 557
81744ee4 558 /* Physical block size a multiple of the logical block size? */
9504e086
MP
559 if (t->physical_block_size & (t->logical_block_size - 1)) {
560 t->physical_block_size = t->logical_block_size;
c72758f3 561 t->misaligned = 1;
fe0b393f 562 ret = -1;
86b37281
MP
563 }
564
81744ee4 565 /* Minimum I/O a multiple of the physical block size? */
9504e086
MP
566 if (t->io_min & (t->physical_block_size - 1)) {
567 t->io_min = t->physical_block_size;
568 t->misaligned = 1;
fe0b393f 569 ret = -1;
c72758f3
MP
570 }
571
81744ee4 572 /* Optimal I/O a multiple of the physical block size? */
9504e086
MP
573 if (t->io_opt & (t->physical_block_size - 1)) {
574 t->io_opt = 0;
575 t->misaligned = 1;
fe0b393f 576 ret = -1;
9504e086 577 }
c72758f3 578
c78afc62
KO
579 t->raid_partial_stripes_expensive =
580 max(t->raid_partial_stripes_expensive,
581 b->raid_partial_stripes_expensive);
582
81744ee4 583 /* Find lowest common alignment_offset */
e9637415 584 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
b8839b8c 585 % max(t->physical_block_size, t->io_min);
86b37281 586
81744ee4 587 /* Verify that new alignment_offset is on a logical block boundary */
fe0b393f 588 if (t->alignment_offset & (t->logical_block_size - 1)) {
c72758f3 589 t->misaligned = 1;
fe0b393f
MP
590 ret = -1;
591 }
c72758f3 592
9504e086
MP
593 /* Discard alignment and granularity */
594 if (b->discard_granularity) {
e03a72e1 595 alignment = queue_limit_discard_alignment(b, start);
9504e086
MP
596
597 if (t->discard_granularity != 0 &&
598 t->discard_alignment != alignment) {
599 top = t->discard_granularity + t->discard_alignment;
600 bottom = b->discard_granularity + alignment;
70dd5bf3 601
9504e086 602 /* Verify that top and bottom intervals line up */
8dd2cb7e 603 if ((max(top, bottom) % min(top, bottom)) != 0)
9504e086
MP
604 t->discard_misaligned = 1;
605 }
606
81744ee4
MP
607 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
608 b->max_discard_sectors);
0034af03
JA
609 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
610 b->max_hw_discard_sectors);
9504e086
MP
611 t->discard_granularity = max(t->discard_granularity,
612 b->discard_granularity);
e9637415 613 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
8dd2cb7e 614 t->discard_granularity;
9504e086 615 }
70dd5bf3 616
987b3b26
HR
617 if (b->chunk_sectors)
618 t->chunk_sectors = min_not_zero(t->chunk_sectors,
619 b->chunk_sectors);
620
fe0b393f 621 return ret;
c72758f3 622}
5d85d324 623EXPORT_SYMBOL(blk_stack_limits);
c72758f3 624
17be8c24
MP
625/**
626 * bdev_stack_limits - adjust queue limits for stacked drivers
627 * @t: the stacking driver limits (top device)
628 * @bdev: the component block_device (bottom)
629 * @start: first data sector within component device
630 *
631 * Description:
632 * Merges queue limits for a top device and a block_device. Returns
633 * 0 if alignment didn't change. Returns -1 if adding the bottom
634 * device caused misalignment.
635 */
636int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
637 sector_t start)
638{
639 struct request_queue *bq = bdev_get_queue(bdev);
640
641 start += get_start_sect(bdev);
642
e03a72e1 643 return blk_stack_limits(t, &bq->limits, start);
17be8c24
MP
644}
645EXPORT_SYMBOL(bdev_stack_limits);
646
c72758f3
MP
647/**
648 * disk_stack_limits - adjust queue limits for stacked drivers
77634f33 649 * @disk: MD/DM gendisk (top)
c72758f3
MP
650 * @bdev: the underlying block device (bottom)
651 * @offset: offset to beginning of data within component device
652 *
653 * Description:
e03a72e1
MP
654 * Merges the limits for a top level gendisk and a bottom level
655 * block_device.
c72758f3
MP
656 */
657void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
658 sector_t offset)
659{
660 struct request_queue *t = disk->queue;
c72758f3 661
e03a72e1 662 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
c72758f3
MP
663 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
664
665 disk_name(disk, 0, top);
666 bdevname(bdev, bottom);
667
668 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
669 top, bottom);
670 }
c72758f3
MP
671}
672EXPORT_SYMBOL(disk_stack_limits);
673
e3790c7d
TH
674/**
675 * blk_queue_dma_pad - set pad mask
676 * @q: the request queue for the device
677 * @mask: pad mask
678 *
27f8221a 679 * Set dma pad mask.
e3790c7d 680 *
27f8221a
FT
681 * Appending pad buffer to a request modifies the last entry of a
682 * scatter list such that it includes the pad buffer.
e3790c7d
TH
683 **/
684void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
685{
686 q->dma_pad_mask = mask;
687}
688EXPORT_SYMBOL(blk_queue_dma_pad);
689
27f8221a
FT
690/**
691 * blk_queue_update_dma_pad - update pad mask
692 * @q: the request queue for the device
693 * @mask: pad mask
694 *
695 * Update dma pad mask.
696 *
697 * Appending pad buffer to a request modifies the last entry of a
698 * scatter list such that it includes the pad buffer.
699 **/
700void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
701{
702 if (mask > q->dma_pad_mask)
703 q->dma_pad_mask = mask;
704}
705EXPORT_SYMBOL(blk_queue_update_dma_pad);
706
86db1e29
JA
707/**
708 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
86db1e29 709 * @q: the request queue for the device
2fb98e84 710 * @dma_drain_needed: fn which returns non-zero if drain is necessary
86db1e29
JA
711 * @buf: physically contiguous buffer
712 * @size: size of the buffer in bytes
713 *
714 * Some devices have excess DMA problems and can't simply discard (or
715 * zero fill) the unwanted piece of the transfer. They have to have a
716 * real area of memory to transfer it into. The use case for this is
717 * ATAPI devices in DMA mode. If the packet command causes a transfer
718 * bigger than the transfer size some HBAs will lock up if there
719 * aren't DMA elements to contain the excess transfer. What this API
720 * does is adjust the queue so that the buf is always appended
721 * silently to the scatterlist.
722 *
8a78362c
MP
723 * Note: This routine adjusts max_hw_segments to make room for appending
724 * the drain buffer. If you call blk_queue_max_segments() after calling
725 * this routine, you must set the limit to one fewer than your device
726 * can support otherwise there won't be room for the drain buffer.
86db1e29 727 */
448da4d2 728int blk_queue_dma_drain(struct request_queue *q,
2fb98e84
TH
729 dma_drain_needed_fn *dma_drain_needed,
730 void *buf, unsigned int size)
86db1e29 731{
8a78362c 732 if (queue_max_segments(q) < 2)
86db1e29
JA
733 return -EINVAL;
734 /* make room for appending the drain */
8a78362c 735 blk_queue_max_segments(q, queue_max_segments(q) - 1);
2fb98e84 736 q->dma_drain_needed = dma_drain_needed;
86db1e29
JA
737 q->dma_drain_buffer = buf;
738 q->dma_drain_size = size;
739
740 return 0;
741}
86db1e29
JA
742EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
743
744/**
745 * blk_queue_segment_boundary - set boundary rules for segment merging
746 * @q: the request queue for the device
747 * @mask: the memory boundary mask
748 **/
749void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
750{
09cbfeaf
KS
751 if (mask < PAGE_SIZE - 1) {
752 mask = PAGE_SIZE - 1;
24c03d47
HH
753 printk(KERN_INFO "%s: set to minimum %lx\n",
754 __func__, mask);
86db1e29
JA
755 }
756
025146e1 757 q->limits.seg_boundary_mask = mask;
86db1e29 758}
86db1e29
JA
759EXPORT_SYMBOL(blk_queue_segment_boundary);
760
03100aad
KB
761/**
762 * blk_queue_virt_boundary - set boundary rules for bio merging
763 * @q: the request queue for the device
764 * @mask: the memory boundary mask
765 **/
766void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
767{
768 q->limits.virt_boundary_mask = mask;
769}
770EXPORT_SYMBOL(blk_queue_virt_boundary);
771
86db1e29
JA
772/**
773 * blk_queue_dma_alignment - set dma length and memory alignment
774 * @q: the request queue for the device
775 * @mask: alignment mask
776 *
777 * description:
710027a4 778 * set required memory and length alignment for direct dma transactions.
8feb4d20 779 * this is used when building direct io requests for the queue.
86db1e29
JA
780 *
781 **/
782void blk_queue_dma_alignment(struct request_queue *q, int mask)
783{
784 q->dma_alignment = mask;
785}
86db1e29
JA
786EXPORT_SYMBOL(blk_queue_dma_alignment);
787
788/**
789 * blk_queue_update_dma_alignment - update dma length and memory alignment
790 * @q: the request queue for the device
791 * @mask: alignment mask
792 *
793 * description:
710027a4 794 * update required memory and length alignment for direct dma transactions.
86db1e29
JA
795 * If the requested alignment is larger than the current alignment, then
796 * the current queue alignment is updated to the new value, otherwise it
797 * is left alone. The design of this is to allow multiple objects
798 * (driver, device, transport etc) to set their respective
799 * alignments without having them interfere.
800 *
801 **/
802void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
803{
804 BUG_ON(mask > PAGE_SIZE);
805
806 if (mask > q->dma_alignment)
807 q->dma_alignment = mask;
808}
86db1e29
JA
809EXPORT_SYMBOL(blk_queue_update_dma_alignment);
810
f3876930 811void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
812{
c888a8f9 813 if (queueable)
8814ce8a 814 blk_queue_flag_clear(QUEUE_FLAG_FLUSH_NQ, q);
c888a8f9 815 else
8814ce8a 816 blk_queue_flag_set(QUEUE_FLAG_FLUSH_NQ, q);
f3876930 817}
818EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
819
d278d4a8
JA
820/**
821 * blk_set_queue_depth - tell the block layer about the device queue depth
822 * @q: the request queue for the device
823 * @depth: queue depth
824 *
825 */
826void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
827{
828 q->queue_depth = depth;
a7905043 829 wbt_set_queue_depth(q, depth);
d278d4a8
JA
830}
831EXPORT_SYMBOL(blk_set_queue_depth);
832
93e9d8e8
JA
833/**
834 * blk_queue_write_cache - configure queue's write cache
835 * @q: the request queue for the device
836 * @wc: write back cache on or off
837 * @fua: device supports FUA writes, if true
838 *
839 * Tell the block layer about the write cache of @q.
840 */
841void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
842{
843 spin_lock_irq(q->queue_lock);
c888a8f9 844 if (wc)
93e9d8e8 845 queue_flag_set(QUEUE_FLAG_WC, q);
c888a8f9 846 else
93e9d8e8 847 queue_flag_clear(QUEUE_FLAG_WC, q);
c888a8f9 848 if (fua)
93e9d8e8 849 queue_flag_set(QUEUE_FLAG_FUA, q);
c888a8f9 850 else
93e9d8e8
JA
851 queue_flag_clear(QUEUE_FLAG_FUA, q);
852 spin_unlock_irq(q->queue_lock);
87760e5e 853
a7905043 854 wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
93e9d8e8
JA
855}
856EXPORT_SYMBOL_GPL(blk_queue_write_cache);
857
aeb3d3a8 858static int __init blk_settings_init(void)
86db1e29
JA
859{
860 blk_max_low_pfn = max_low_pfn - 1;
861 blk_max_pfn = max_pfn - 1;
862 return 0;
863}
864subsys_initcall(blk_settings_init);