]> git.proxmox.com Git - mirror_ubuntu-impish-kernel.git/blame - block/blk-throttle.c
UBUNTU: [Debian] exclude $(DEBIAN)/__abi.current from linux-source
[mirror_ubuntu-impish-kernel.git] / block / blk-throttle.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
e43473b7
VG
2/*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8#include <linux/module.h>
9#include <linux/slab.h>
10#include <linux/blkdev.h>
11#include <linux/bio.h>
12#include <linux/blktrace_api.h>
eea8f41c 13#include <linux/blk-cgroup.h>
bc9fcbf9 14#include "blk.h"
1d156646 15#include "blk-cgroup-rwstat.h"
e43473b7
VG
16
17/* Max dispatch from a group in 1 round */
e675df2a 18#define THROTL_GRP_QUANTUM 8
e43473b7
VG
19
20/* Total max dispatch from all groups in one round */
e675df2a 21#define THROTL_QUANTUM 32
e43473b7 22
d61fcfa4
SL
23/* Throttling is performed over a slice and after that slice is renewed */
24#define DFL_THROTL_SLICE_HD (HZ / 10)
25#define DFL_THROTL_SLICE_SSD (HZ / 50)
297e3d85 26#define MAX_THROTL_SLICE (HZ)
9e234eea 27#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
9bb67aeb
SL
28#define MIN_THROTL_BPS (320 * 1024)
29#define MIN_THROTL_IOPS (10)
b4f428ef
SL
30#define DFL_LATENCY_TARGET (-1L)
31#define DFL_IDLE_THRESHOLD (0)
6679a90c
SL
32#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
33#define LATENCY_FILTERED_SSD (0)
34/*
35 * For HD, very small latency comes from sequential IO. Such IO is helpless to
36 * help determine if its IO is impacted by others, hence we ignore the IO
37 */
38#define LATENCY_FILTERED_HD (1000L) /* 1ms */
e43473b7 39
3c798398 40static struct blkcg_policy blkcg_policy_throtl;
0381411e 41
450adcbe
VG
42/* A workqueue to queue throttle related work */
43static struct workqueue_struct *kthrotld_workqueue;
450adcbe 44
c5cc2070
TH
45/*
46 * To implement hierarchical throttling, throtl_grps form a tree and bios
47 * are dispatched upwards level by level until they reach the top and get
48 * issued. When dispatching bios from the children and local group at each
49 * level, if the bios are dispatched into a single bio_list, there's a risk
50 * of a local or child group which can queue many bios at once filling up
51 * the list starving others.
52 *
53 * To avoid such starvation, dispatched bios are queued separately
54 * according to where they came from. When they are again dispatched to
55 * the parent, they're popped in round-robin order so that no single source
56 * hogs the dispatch window.
57 *
58 * throtl_qnode is used to keep the queued bios separated by their sources.
59 * Bios are queued to throtl_qnode which in turn is queued to
60 * throtl_service_queue and then dispatched in round-robin order.
61 *
62 * It's also used to track the reference counts on blkg's. A qnode always
63 * belongs to a throtl_grp and gets queued on itself or the parent, so
64 * incrementing the reference of the associated throtl_grp when a qnode is
65 * queued and decrementing when dequeued is enough to keep the whole blkg
66 * tree pinned while bios are in flight.
67 */
68struct throtl_qnode {
69 struct list_head node; /* service_queue->queued[] */
70 struct bio_list bios; /* queued bios */
71 struct throtl_grp *tg; /* tg this qnode belongs to */
72};
73
c9e0332e 74struct throtl_service_queue {
77216b04
TH
75 struct throtl_service_queue *parent_sq; /* the parent service_queue */
76
73f0d49a
TH
77 /*
78 * Bios queued directly to this service_queue or dispatched from
79 * children throtl_grp's.
80 */
c5cc2070 81 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
73f0d49a
TH
82 unsigned int nr_queued[2]; /* number of queued bios */
83
84 /*
85 * RB tree of active children throtl_grp's, which are sorted by
86 * their ->disptime.
87 */
9ff01255 88 struct rb_root_cached pending_tree; /* RB tree of active tgs */
c9e0332e
TH
89 unsigned int nr_pending; /* # queued in the tree */
90 unsigned long first_pending_disptime; /* disptime of the first tg */
69df0ab0 91 struct timer_list pending_timer; /* fires on first_pending_disptime */
e43473b7
VG
92};
93
5b2c16aa
TH
94enum tg_state_flags {
95 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
0e9f4164 96 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
5b2c16aa
TH
97};
98
e43473b7
VG
99#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
100
9f626e37 101enum {
cd5ab1b0 102 LIMIT_LOW,
9f626e37
SL
103 LIMIT_MAX,
104 LIMIT_CNT,
105};
106
e43473b7 107struct throtl_grp {
f95a04af
TH
108 /* must be the first member */
109 struct blkg_policy_data pd;
110
c9e0332e 111 /* active throtl group service_queue member */
e43473b7
VG
112 struct rb_node rb_node;
113
0f3457f6
TH
114 /* throtl_data this group belongs to */
115 struct throtl_data *td;
116
49a2f1e3
TH
117 /* this group's service queue */
118 struct throtl_service_queue service_queue;
119
c5cc2070
TH
120 /*
121 * qnode_on_self is used when bios are directly queued to this
122 * throtl_grp so that local bios compete fairly with bios
123 * dispatched from children. qnode_on_parent is used when bios are
124 * dispatched from this throtl_grp into its parent and will compete
125 * with the sibling qnode_on_parents and the parent's
126 * qnode_on_self.
127 */
128 struct throtl_qnode qnode_on_self[2];
129 struct throtl_qnode qnode_on_parent[2];
130
e43473b7
VG
131 /*
132 * Dispatch time in jiffies. This is the estimated time when group
133 * will unthrottle and is ready to dispatch more bio. It is used as
134 * key to sort active groups in service tree.
135 */
136 unsigned long disptime;
137
e43473b7
VG
138 unsigned int flags;
139
693e751e
TH
140 /* are there any throtl rules between this group and td? */
141 bool has_rules[2];
142
cd5ab1b0 143 /* internally used bytes per second rate limits */
9f626e37 144 uint64_t bps[2][LIMIT_CNT];
cd5ab1b0
SL
145 /* user configured bps limits */
146 uint64_t bps_conf[2][LIMIT_CNT];
e43473b7 147
cd5ab1b0 148 /* internally used IOPS limits */
9f626e37 149 unsigned int iops[2][LIMIT_CNT];
cd5ab1b0
SL
150 /* user configured IOPS limits */
151 unsigned int iops_conf[2][LIMIT_CNT];
8e89d13f 152
b53b072c 153 /* Number of bytes dispatched in current slice */
e43473b7 154 uint64_t bytes_disp[2];
8e89d13f
VG
155 /* Number of bio's dispatched in current slice */
156 unsigned int io_disp[2];
e43473b7 157
3f0abd80
SL
158 unsigned long last_low_overflow_time[2];
159
160 uint64_t last_bytes_disp[2];
161 unsigned int last_io_disp[2];
162
163 unsigned long last_check_time;
164
ec80991d 165 unsigned long latency_target; /* us */
5b81fc3c 166 unsigned long latency_target_conf; /* us */
e43473b7
VG
167 /* When did we start a new slice */
168 unsigned long slice_start[2];
169 unsigned long slice_end[2];
9e234eea
SL
170
171 unsigned long last_finish_time; /* ns / 1024 */
172 unsigned long checked_last_finish_time; /* ns / 1024 */
173 unsigned long avg_idletime; /* ns / 1024 */
174 unsigned long idletime_threshold; /* us */
5b81fc3c 175 unsigned long idletime_threshold_conf; /* us */
53696b8d
SL
176
177 unsigned int bio_cnt; /* total bios */
178 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
179 unsigned long bio_cnt_reset_time;
7ca46438
TH
180
181 struct blkg_rwstat stat_bytes;
182 struct blkg_rwstat stat_ios;
e43473b7
VG
183};
184
b9147dd1
SL
185/* We measure latency for request size from <= 4k to >= 1M */
186#define LATENCY_BUCKET_SIZE 9
187
188struct latency_bucket {
189 unsigned long total_latency; /* ns / 1024 */
190 int samples;
191};
192
193struct avg_latency_bucket {
194 unsigned long latency; /* ns / 1024 */
195 bool valid;
196};
197
e43473b7
VG
198struct throtl_data
199{
e43473b7 200 /* service tree for active throtl groups */
c9e0332e 201 struct throtl_service_queue service_queue;
e43473b7 202
e43473b7
VG
203 struct request_queue *queue;
204
205 /* Total Number of queued bios on READ and WRITE lists */
206 unsigned int nr_queued[2];
207
297e3d85
SL
208 unsigned int throtl_slice;
209
e43473b7 210 /* Work for dispatching throttled bios */
69df0ab0 211 struct work_struct dispatch_work;
9f626e37
SL
212 unsigned int limit_index;
213 bool limit_valid[LIMIT_CNT];
3f0abd80
SL
214
215 unsigned long low_upgrade_time;
216 unsigned long low_downgrade_time;
7394e31f
SL
217
218 unsigned int scale;
b9147dd1 219
b889bf66
JQ
220 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
221 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
222 struct latency_bucket __percpu *latency_buckets[2];
b9147dd1 223 unsigned long last_calculate_time;
6679a90c 224 unsigned long filtered_latency;
b9147dd1
SL
225
226 bool track_bio_latency;
e43473b7
VG
227};
228
e99e88a9 229static void throtl_pending_timer_fn(struct timer_list *t);
69df0ab0 230
f95a04af
TH
231static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
232{
233 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
234}
235
3c798398 236static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
0381411e 237{
f95a04af 238 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
0381411e
TH
239}
240
3c798398 241static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 242{
f95a04af 243 return pd_to_blkg(&tg->pd);
0381411e
TH
244}
245
fda6f272
TH
246/**
247 * sq_to_tg - return the throl_grp the specified service queue belongs to
248 * @sq: the throtl_service_queue of interest
249 *
250 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
251 * embedded in throtl_data, %NULL is returned.
252 */
253static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
254{
255 if (sq && sq->parent_sq)
256 return container_of(sq, struct throtl_grp, service_queue);
257 else
258 return NULL;
259}
260
261/**
262 * sq_to_td - return throtl_data the specified service queue belongs to
263 * @sq: the throtl_service_queue of interest
264 *
b43daedc 265 * A service_queue can be embedded in either a throtl_grp or throtl_data.
fda6f272
TH
266 * Determine the associated throtl_data accordingly and return it.
267 */
268static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
269{
270 struct throtl_grp *tg = sq_to_tg(sq);
271
272 if (tg)
273 return tg->td;
274 else
275 return container_of(sq, struct throtl_data, service_queue);
276}
277
7394e31f
SL
278/*
279 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
280 * make the IO dispatch more smooth.
281 * Scale up: linearly scale up according to lapsed time since upgrade. For
282 * every throtl_slice, the limit scales up 1/2 .low limit till the
283 * limit hits .max limit
284 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
285 */
286static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
287{
288 /* arbitrary value to avoid too big scale */
289 if (td->scale < 4096 && time_after_eq(jiffies,
290 td->low_upgrade_time + td->scale * td->throtl_slice))
291 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
292
293 return low + (low >> 1) * td->scale;
294}
295
9f626e37
SL
296static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
297{
b22c417c 298 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 299 struct throtl_data *td;
b22c417c
SL
300 uint64_t ret;
301
302 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
303 return U64_MAX;
7394e31f
SL
304
305 td = tg->td;
306 ret = tg->bps[rw][td->limit_index];
9bb67aeb
SL
307 if (ret == 0 && td->limit_index == LIMIT_LOW) {
308 /* intermediate node or iops isn't 0 */
309 if (!list_empty(&blkg->blkcg->css.children) ||
310 tg->iops[rw][td->limit_index])
311 return U64_MAX;
312 else
313 return MIN_THROTL_BPS;
314 }
7394e31f
SL
315
316 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
317 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
318 uint64_t adjusted;
319
320 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
321 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
322 }
b22c417c 323 return ret;
9f626e37
SL
324}
325
326static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
327{
b22c417c 328 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 329 struct throtl_data *td;
b22c417c
SL
330 unsigned int ret;
331
332 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
333 return UINT_MAX;
9bb67aeb 334
7394e31f
SL
335 td = tg->td;
336 ret = tg->iops[rw][td->limit_index];
9bb67aeb
SL
337 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
338 /* intermediate node or bps isn't 0 */
339 if (!list_empty(&blkg->blkcg->css.children) ||
340 tg->bps[rw][td->limit_index])
341 return UINT_MAX;
342 else
343 return MIN_THROTL_IOPS;
344 }
7394e31f
SL
345
346 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
347 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
348 uint64_t adjusted;
349
350 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
351 if (adjusted > UINT_MAX)
352 adjusted = UINT_MAX;
353 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
354 }
b22c417c 355 return ret;
9f626e37
SL
356}
357
b9147dd1
SL
358#define request_bucket_index(sectors) \
359 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
360
fda6f272
TH
361/**
362 * throtl_log - log debug message via blktrace
363 * @sq: the service_queue being reported
364 * @fmt: printf format string
365 * @args: printf args
366 *
367 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
368 * throtl_grp; otherwise, just "throtl".
fda6f272
TH
369 */
370#define throtl_log(sq, fmt, args...) do { \
371 struct throtl_grp *__tg = sq_to_tg((sq)); \
372 struct throtl_data *__td = sq_to_td((sq)); \
373 \
374 (void)__td; \
59fa0224
SL
375 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
376 break; \
fda6f272 377 if ((__tg)) { \
35fe6d76
SL
378 blk_add_cgroup_trace_msg(__td->queue, \
379 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
fda6f272
TH
380 } else { \
381 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
382 } \
54e7ed12 383} while (0)
e43473b7 384
ea0ea2bc
SL
385static inline unsigned int throtl_bio_data_size(struct bio *bio)
386{
387 /* assume it's one sector */
388 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
389 return 512;
390 return bio->bi_iter.bi_size;
391}
392
c5cc2070
TH
393static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
394{
395 INIT_LIST_HEAD(&qn->node);
396 bio_list_init(&qn->bios);
397 qn->tg = tg;
398}
399
400/**
401 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
402 * @bio: bio being added
403 * @qn: qnode to add bio to
404 * @queued: the service_queue->queued[] list @qn belongs to
405 *
406 * Add @bio to @qn and put @qn on @queued if it's not already on.
407 * @qn->tg's reference count is bumped when @qn is activated. See the
408 * comment on top of throtl_qnode definition for details.
409 */
410static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
411 struct list_head *queued)
412{
413 bio_list_add(&qn->bios, bio);
414 if (list_empty(&qn->node)) {
415 list_add_tail(&qn->node, queued);
416 blkg_get(tg_to_blkg(qn->tg));
417 }
418}
419
420/**
421 * throtl_peek_queued - peek the first bio on a qnode list
422 * @queued: the qnode list to peek
423 */
424static struct bio *throtl_peek_queued(struct list_head *queued)
425{
b7b609de 426 struct throtl_qnode *qn;
c5cc2070
TH
427 struct bio *bio;
428
429 if (list_empty(queued))
430 return NULL;
431
b7b609de 432 qn = list_first_entry(queued, struct throtl_qnode, node);
c5cc2070
TH
433 bio = bio_list_peek(&qn->bios);
434 WARN_ON_ONCE(!bio);
435 return bio;
436}
437
438/**
439 * throtl_pop_queued - pop the first bio form a qnode list
440 * @queued: the qnode list to pop a bio from
441 * @tg_to_put: optional out argument for throtl_grp to put
442 *
443 * Pop the first bio from the qnode list @queued. After popping, the first
444 * qnode is removed from @queued if empty or moved to the end of @queued so
445 * that the popping order is round-robin.
446 *
447 * When the first qnode is removed, its associated throtl_grp should be put
448 * too. If @tg_to_put is NULL, this function automatically puts it;
449 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
450 * responsible for putting it.
451 */
452static struct bio *throtl_pop_queued(struct list_head *queued,
453 struct throtl_grp **tg_to_put)
454{
b7b609de 455 struct throtl_qnode *qn;
c5cc2070
TH
456 struct bio *bio;
457
458 if (list_empty(queued))
459 return NULL;
460
b7b609de 461 qn = list_first_entry(queued, struct throtl_qnode, node);
c5cc2070
TH
462 bio = bio_list_pop(&qn->bios);
463 WARN_ON_ONCE(!bio);
464
465 if (bio_list_empty(&qn->bios)) {
466 list_del_init(&qn->node);
467 if (tg_to_put)
468 *tg_to_put = qn->tg;
469 else
470 blkg_put(tg_to_blkg(qn->tg));
471 } else {
472 list_move_tail(&qn->node, queued);
473 }
474
475 return bio;
476}
477
49a2f1e3 478/* init a service_queue, assumes the caller zeroed it */
b2ce2643 479static void throtl_service_queue_init(struct throtl_service_queue *sq)
49a2f1e3 480{
c5cc2070
TH
481 INIT_LIST_HEAD(&sq->queued[0]);
482 INIT_LIST_HEAD(&sq->queued[1]);
9ff01255 483 sq->pending_tree = RB_ROOT_CACHED;
e99e88a9 484 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
69df0ab0
TH
485}
486
cf09a8ee
TH
487static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
488 struct request_queue *q,
489 struct blkcg *blkcg)
001bea73 490{
4fb72036 491 struct throtl_grp *tg;
24bdb8ef 492 int rw;
4fb72036 493
cf09a8ee 494 tg = kzalloc_node(sizeof(*tg), gfp, q->node);
4fb72036 495 if (!tg)
77ea7338 496 return NULL;
4fb72036 497
7ca46438
TH
498 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
499 goto err_free_tg;
500
501 if (blkg_rwstat_init(&tg->stat_ios, gfp))
502 goto err_exit_stat_bytes;
503
b2ce2643
TH
504 throtl_service_queue_init(&tg->service_queue);
505
506 for (rw = READ; rw <= WRITE; rw++) {
507 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
508 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
509 }
510
511 RB_CLEAR_NODE(&tg->rb_node);
9f626e37
SL
512 tg->bps[READ][LIMIT_MAX] = U64_MAX;
513 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
514 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
515 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
cd5ab1b0
SL
516 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
517 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
518 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
519 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
520 /* LIMIT_LOW will have default value 0 */
b2ce2643 521
ec80991d 522 tg->latency_target = DFL_LATENCY_TARGET;
5b81fc3c 523 tg->latency_target_conf = DFL_LATENCY_TARGET;
b4f428ef
SL
524 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
525 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
ec80991d 526
4fb72036 527 return &tg->pd;
7ca46438
TH
528
529err_exit_stat_bytes:
530 blkg_rwstat_exit(&tg->stat_bytes);
531err_free_tg:
532 kfree(tg);
533 return NULL;
001bea73
TH
534}
535
a9520cd6 536static void throtl_pd_init(struct blkg_policy_data *pd)
a29a171e 537{
a9520cd6
TH
538 struct throtl_grp *tg = pd_to_tg(pd);
539 struct blkcg_gq *blkg = tg_to_blkg(tg);
77216b04 540 struct throtl_data *td = blkg->q->td;
b2ce2643 541 struct throtl_service_queue *sq = &tg->service_queue;
cd1604fa 542
9138125b 543 /*
aa6ec29b 544 * If on the default hierarchy, we switch to properly hierarchical
9138125b
TH
545 * behavior where limits on a given throtl_grp are applied to the
546 * whole subtree rather than just the group itself. e.g. If 16M
547 * read_bps limit is set on the root group, the whole system can't
548 * exceed 16M for the device.
549 *
aa6ec29b 550 * If not on the default hierarchy, the broken flat hierarchy
9138125b
TH
551 * behavior is retained where all throtl_grps are treated as if
552 * they're all separate root groups right below throtl_data.
553 * Limits of a group don't interact with limits of other groups
554 * regardless of the position of the group in the hierarchy.
555 */
b2ce2643 556 sq->parent_sq = &td->service_queue;
9e10a130 557 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
b2ce2643 558 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
77216b04 559 tg->td = td;
8a3d2615
TH
560}
561
693e751e
TH
562/*
563 * Set has_rules[] if @tg or any of its parents have limits configured.
564 * This doesn't require walking up to the top of the hierarchy as the
565 * parent's has_rules[] is guaranteed to be correct.
566 */
567static void tg_update_has_rules(struct throtl_grp *tg)
568{
569 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
9f626e37 570 struct throtl_data *td = tg->td;
693e751e
TH
571 int rw;
572
573 for (rw = READ; rw <= WRITE; rw++)
574 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
9f626e37
SL
575 (td->limit_valid[td->limit_index] &&
576 (tg_bps_limit(tg, rw) != U64_MAX ||
577 tg_iops_limit(tg, rw) != UINT_MAX));
693e751e
TH
578}
579
a9520cd6 580static void throtl_pd_online(struct blkg_policy_data *pd)
693e751e 581{
aec24246 582 struct throtl_grp *tg = pd_to_tg(pd);
693e751e
TH
583 /*
584 * We don't want new groups to escape the limits of its ancestors.
585 * Update has_rules[] after a new group is brought online.
586 */
aec24246 587 tg_update_has_rules(tg);
693e751e
TH
588}
589
acaf523a 590#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
cd5ab1b0
SL
591static void blk_throtl_update_limit_valid(struct throtl_data *td)
592{
593 struct cgroup_subsys_state *pos_css;
594 struct blkcg_gq *blkg;
595 bool low_valid = false;
596
597 rcu_read_lock();
598 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
599 struct throtl_grp *tg = blkg_to_tg(blkg);
600
601 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
43ada787 602 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
cd5ab1b0 603 low_valid = true;
43ada787
LB
604 break;
605 }
cd5ab1b0
SL
606 }
607 rcu_read_unlock();
608
609 td->limit_valid[LIMIT_LOW] = low_valid;
610}
acaf523a
YK
611#else
612static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
613{
614}
615#endif
cd5ab1b0 616
c79892c5 617static void throtl_upgrade_state(struct throtl_data *td);
cd5ab1b0
SL
618static void throtl_pd_offline(struct blkg_policy_data *pd)
619{
620 struct throtl_grp *tg = pd_to_tg(pd);
621
622 tg->bps[READ][LIMIT_LOW] = 0;
623 tg->bps[WRITE][LIMIT_LOW] = 0;
624 tg->iops[READ][LIMIT_LOW] = 0;
625 tg->iops[WRITE][LIMIT_LOW] = 0;
626
627 blk_throtl_update_limit_valid(tg->td);
628
c79892c5
SL
629 if (!tg->td->limit_valid[tg->td->limit_index])
630 throtl_upgrade_state(tg->td);
cd5ab1b0
SL
631}
632
001bea73
TH
633static void throtl_pd_free(struct blkg_policy_data *pd)
634{
4fb72036
TH
635 struct throtl_grp *tg = pd_to_tg(pd);
636
b2ce2643 637 del_timer_sync(&tg->service_queue.pending_timer);
7ca46438
TH
638 blkg_rwstat_exit(&tg->stat_bytes);
639 blkg_rwstat_exit(&tg->stat_ios);
4fb72036 640 kfree(tg);
001bea73
TH
641}
642
0049af73
TH
643static struct throtl_grp *
644throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7 645{
9ff01255 646 struct rb_node *n;
e43473b7 647
9ff01255
LB
648 n = rb_first_cached(&parent_sq->pending_tree);
649 WARN_ON_ONCE(!n);
650 if (!n)
651 return NULL;
652 return rb_entry_tg(n);
e43473b7
VG
653}
654
0049af73
TH
655static void throtl_rb_erase(struct rb_node *n,
656 struct throtl_service_queue *parent_sq)
e43473b7 657{
9ff01255
LB
658 rb_erase_cached(n, &parent_sq->pending_tree);
659 RB_CLEAR_NODE(n);
0049af73 660 --parent_sq->nr_pending;
e43473b7
VG
661}
662
0049af73 663static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
664{
665 struct throtl_grp *tg;
666
0049af73 667 tg = throtl_rb_first(parent_sq);
e43473b7
VG
668 if (!tg)
669 return;
670
0049af73 671 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
672}
673
77216b04 674static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 675{
77216b04 676 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
9ff01255 677 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
e43473b7
VG
678 struct rb_node *parent = NULL;
679 struct throtl_grp *__tg;
680 unsigned long key = tg->disptime;
9ff01255 681 bool leftmost = true;
e43473b7
VG
682
683 while (*node != NULL) {
684 parent = *node;
685 __tg = rb_entry_tg(parent);
686
687 if (time_before(key, __tg->disptime))
688 node = &parent->rb_left;
689 else {
690 node = &parent->rb_right;
9ff01255 691 leftmost = false;
e43473b7
VG
692 }
693 }
694
e43473b7 695 rb_link_node(&tg->rb_node, parent, node);
9ff01255
LB
696 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
697 leftmost);
e43473b7
VG
698}
699
77216b04 700static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 701{
29379674
BW
702 if (!(tg->flags & THROTL_TG_PENDING)) {
703 tg_service_queue_add(tg);
704 tg->flags |= THROTL_TG_PENDING;
705 tg->service_queue.parent_sq->nr_pending++;
706 }
e43473b7
VG
707}
708
77216b04 709static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 710{
29379674
BW
711 if (tg->flags & THROTL_TG_PENDING) {
712 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
713 tg->flags &= ~THROTL_TG_PENDING;
714 }
e43473b7
VG
715}
716
a9131a27 717/* Call with queue lock held */
69df0ab0
TH
718static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
719 unsigned long expires)
a9131a27 720{
a41b816c 721 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
06cceedc
SL
722
723 /*
724 * Since we are adjusting the throttle limit dynamically, the sleep
725 * time calculated according to previous limit might be invalid. It's
726 * possible the cgroup sleep time is very long and no other cgroups
727 * have IO running so notify the limit changes. Make sure the cgroup
728 * doesn't sleep too long to avoid the missed notification.
729 */
730 if (time_after(expires, max_expire))
731 expires = max_expire;
69df0ab0
TH
732 mod_timer(&sq->pending_timer, expires);
733 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
734 expires - jiffies, jiffies);
a9131a27
TH
735}
736
7f52f98c
TH
737/**
738 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
739 * @sq: the service_queue to schedule dispatch for
740 * @force: force scheduling
741 *
742 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
743 * dispatch time of the first pending child. Returns %true if either timer
744 * is armed or there's no pending child left. %false if the current
745 * dispatch window is still open and the caller should continue
746 * dispatching.
747 *
748 * If @force is %true, the dispatch timer is always scheduled and this
749 * function is guaranteed to return %true. This is to be used when the
750 * caller can't dispatch itself and needs to invoke pending_timer
751 * unconditionally. Note that forced scheduling is likely to induce short
752 * delay before dispatch starts even if @sq->first_pending_disptime is not
753 * in the future and thus shouldn't be used in hot paths.
754 */
755static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
756 bool force)
e43473b7 757{
6a525600 758 /* any pending children left? */
c9e0332e 759 if (!sq->nr_pending)
7f52f98c 760 return true;
e43473b7 761
c9e0332e 762 update_min_dispatch_time(sq);
e43473b7 763
69df0ab0 764 /* is the next dispatch time in the future? */
7f52f98c 765 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 766 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 767 return true;
69df0ab0
TH
768 }
769
7f52f98c
TH
770 /* tell the caller to continue dispatching */
771 return false;
e43473b7
VG
772}
773
32ee5bc4
VG
774static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
775 bool rw, unsigned long start)
776{
777 tg->bytes_disp[rw] = 0;
778 tg->io_disp[rw] = 0;
779
780 /*
781 * Previous slice has expired. We must have trimmed it after last
782 * bio dispatch. That means since start of last slice, we never used
783 * that bandwidth. Do try to make use of that bandwidth while giving
784 * credit.
785 */
786 if (time_after_eq(start, tg->slice_start[rw]))
787 tg->slice_start[rw] = start;
788
297e3d85 789 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
32ee5bc4
VG
790 throtl_log(&tg->service_queue,
791 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
792 rw == READ ? 'R' : 'W', tg->slice_start[rw],
793 tg->slice_end[rw], jiffies);
794}
795
0f3457f6 796static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
e43473b7
VG
797{
798 tg->bytes_disp[rw] = 0;
8e89d13f 799 tg->io_disp[rw] = 0;
e43473b7 800 tg->slice_start[rw] = jiffies;
297e3d85 801 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
fda6f272
TH
802 throtl_log(&tg->service_queue,
803 "[%c] new slice start=%lu end=%lu jiffies=%lu",
804 rw == READ ? 'R' : 'W', tg->slice_start[rw],
805 tg->slice_end[rw], jiffies);
e43473b7
VG
806}
807
0f3457f6
TH
808static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
809 unsigned long jiffy_end)
d1ae8ffd 810{
297e3d85 811 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
d1ae8ffd
VG
812}
813
0f3457f6
TH
814static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
815 unsigned long jiffy_end)
e43473b7 816{
1da30f95 817 throtl_set_slice_end(tg, rw, jiffy_end);
fda6f272
TH
818 throtl_log(&tg->service_queue,
819 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
820 rw == READ ? 'R' : 'W', tg->slice_start[rw],
821 tg->slice_end[rw], jiffies);
e43473b7
VG
822}
823
824/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 825static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
826{
827 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
5cf8c227 828 return false;
e43473b7 829
0b6bad7d 830 return true;
e43473b7
VG
831}
832
833/* Trim the used slices and adjust slice start accordingly */
0f3457f6 834static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 835{
3aad5d3e
VG
836 unsigned long nr_slices, time_elapsed, io_trim;
837 u64 bytes_trim, tmp;
e43473b7
VG
838
839 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
840
841 /*
842 * If bps are unlimited (-1), then time slice don't get
843 * renewed. Don't try to trim the slice if slice is used. A new
844 * slice will start when appropriate.
845 */
0f3457f6 846 if (throtl_slice_used(tg, rw))
e43473b7
VG
847 return;
848
d1ae8ffd
VG
849 /*
850 * A bio has been dispatched. Also adjust slice_end. It might happen
851 * that initially cgroup limit was very low resulting in high
b53b072c 852 * slice_end, but later limit was bumped up and bio was dispatched
d1ae8ffd
VG
853 * sooner, then we need to reduce slice_end. A high bogus slice_end
854 * is bad because it does not allow new slice to start.
855 */
856
297e3d85 857 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
d1ae8ffd 858
e43473b7
VG
859 time_elapsed = jiffies - tg->slice_start[rw];
860
297e3d85 861 nr_slices = time_elapsed / tg->td->throtl_slice;
e43473b7
VG
862
863 if (!nr_slices)
864 return;
297e3d85 865 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
3aad5d3e
VG
866 do_div(tmp, HZ);
867 bytes_trim = tmp;
e43473b7 868
297e3d85
SL
869 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
870 HZ;
e43473b7 871
8e89d13f 872 if (!bytes_trim && !io_trim)
e43473b7
VG
873 return;
874
875 if (tg->bytes_disp[rw] >= bytes_trim)
876 tg->bytes_disp[rw] -= bytes_trim;
877 else
878 tg->bytes_disp[rw] = 0;
879
8e89d13f
VG
880 if (tg->io_disp[rw] >= io_trim)
881 tg->io_disp[rw] -= io_trim;
882 else
883 tg->io_disp[rw] = 0;
884
297e3d85 885 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
e43473b7 886
fda6f272
TH
887 throtl_log(&tg->service_queue,
888 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
889 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
890 tg->slice_start[rw], tg->slice_end[rw], jiffies);
e43473b7
VG
891}
892
0f3457f6 893static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
4599ea49 894 u32 iops_limit, unsigned long *wait)
e43473b7
VG
895{
896 bool rw = bio_data_dir(bio);
8e89d13f 897 unsigned int io_allowed;
e43473b7 898 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
c49c06e4 899 u64 tmp;
e43473b7 900
87fbeb88
BW
901 if (iops_limit == UINT_MAX) {
902 if (wait)
903 *wait = 0;
904 return true;
905 }
906
3a10f999 907 jiffy_elapsed = jiffies - tg->slice_start[rw];
e43473b7 908
3a10f999
KK
909 /* Round up to the next throttle slice, wait time must be nonzero */
910 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
8e89d13f 911
c49c06e4
VG
912 /*
913 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
914 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
915 * will allow dispatch after 1 second and after that slice should
916 * have been trimmed.
917 */
918
4599ea49 919 tmp = (u64)iops_limit * jiffy_elapsed_rnd;
c49c06e4
VG
920 do_div(tmp, HZ);
921
922 if (tmp > UINT_MAX)
923 io_allowed = UINT_MAX;
924 else
925 io_allowed = tmp;
8e89d13f
VG
926
927 if (tg->io_disp[rw] + 1 <= io_allowed) {
e43473b7
VG
928 if (wait)
929 *wait = 0;
5cf8c227 930 return true;
e43473b7
VG
931 }
932
8e89d13f 933 /* Calc approx time to dispatch */
991f61fe 934 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
8e89d13f
VG
935
936 if (wait)
937 *wait = jiffy_wait;
0b6bad7d 938 return false;
8e89d13f
VG
939}
940
0f3457f6 941static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
4599ea49 942 u64 bps_limit, unsigned long *wait)
8e89d13f
VG
943{
944 bool rw = bio_data_dir(bio);
3aad5d3e 945 u64 bytes_allowed, extra_bytes, tmp;
8e89d13f 946 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
ea0ea2bc 947 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7 948
87fbeb88
BW
949 if (bps_limit == U64_MAX) {
950 if (wait)
951 *wait = 0;
952 return true;
953 }
954
e43473b7
VG
955 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
956
957 /* Slice has just started. Consider one slice interval */
958 if (!jiffy_elapsed)
297e3d85 959 jiffy_elapsed_rnd = tg->td->throtl_slice;
e43473b7 960
297e3d85 961 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
e43473b7 962
4599ea49 963 tmp = bps_limit * jiffy_elapsed_rnd;
5e901a2b 964 do_div(tmp, HZ);
3aad5d3e 965 bytes_allowed = tmp;
e43473b7 966
ea0ea2bc 967 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
e43473b7
VG
968 if (wait)
969 *wait = 0;
5cf8c227 970 return true;
e43473b7
VG
971 }
972
973 /* Calc approx time to dispatch */
ea0ea2bc 974 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
4599ea49 975 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
e43473b7
VG
976
977 if (!jiffy_wait)
978 jiffy_wait = 1;
979
980 /*
981 * This wait time is without taking into consideration the rounding
982 * up we did. Add that time also.
983 */
984 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
e43473b7
VG
985 if (wait)
986 *wait = jiffy_wait;
0b6bad7d 987 return false;
8e89d13f
VG
988}
989
990/*
991 * Returns whether one can dispatch a bio or not. Also returns approx number
992 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
993 */
0f3457f6
TH
994static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
995 unsigned long *wait)
8e89d13f
VG
996{
997 bool rw = bio_data_dir(bio);
998 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
4599ea49
BW
999 u64 bps_limit = tg_bps_limit(tg, rw);
1000 u32 iops_limit = tg_iops_limit(tg, rw);
8e89d13f
VG
1001
1002 /*
1003 * Currently whole state machine of group depends on first bio
1004 * queued in the group bio list. So one should not be calling
1005 * this function with a different bio if there are other bios
1006 * queued.
1007 */
73f0d49a 1008 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 1009 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 1010
8e89d13f 1011 /* If tg->bps = -1, then BW is unlimited */
4599ea49 1012 if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
8e89d13f
VG
1013 if (wait)
1014 *wait = 0;
5cf8c227 1015 return true;
8e89d13f
VG
1016 }
1017
1018 /*
1019 * If previous slice expired, start a new one otherwise renew/extend
1020 * existing slice to make sure it is at least throtl_slice interval
164c80ed
VG
1021 * long since now. New slice is started only for empty throttle group.
1022 * If there is queued bio, that means there should be an active
1023 * slice and it should be extended instead.
8e89d13f 1024 */
164c80ed 1025 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
0f3457f6 1026 throtl_start_new_slice(tg, rw);
8e89d13f 1027 else {
297e3d85
SL
1028 if (time_before(tg->slice_end[rw],
1029 jiffies + tg->td->throtl_slice))
1030 throtl_extend_slice(tg, rw,
1031 jiffies + tg->td->throtl_slice);
8e89d13f
VG
1032 }
1033
4599ea49
BW
1034 if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
1035 tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
8e89d13f
VG
1036 if (wait)
1037 *wait = 0;
0b6bad7d 1038 return true;
8e89d13f
VG
1039 }
1040
1041 max_wait = max(bps_wait, iops_wait);
1042
1043 if (wait)
1044 *wait = max_wait;
1045
1046 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 1047 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7 1048
0b6bad7d 1049 return false;
e43473b7
VG
1050}
1051
1052static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1053{
1054 bool rw = bio_data_dir(bio);
ea0ea2bc 1055 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7
VG
1056
1057 /* Charge the bio to the group */
ea0ea2bc 1058 tg->bytes_disp[rw] += bio_size;
8e89d13f 1059 tg->io_disp[rw]++;
ea0ea2bc 1060 tg->last_bytes_disp[rw] += bio_size;
3f0abd80 1061 tg->last_io_disp[rw]++;
e43473b7 1062
2a0f61e6 1063 /*
8d2bbd4c 1064 * BIO_THROTTLED is used to prevent the same bio to be throttled
2a0f61e6
TH
1065 * more than once as a throttled bio will go through blk-throtl the
1066 * second time when it eventually gets issued. Set it when a bio
1067 * is being charged to a tg.
2a0f61e6 1068 */
8d2bbd4c
CH
1069 if (!bio_flagged(bio, BIO_THROTTLED))
1070 bio_set_flag(bio, BIO_THROTTLED);
e43473b7
VG
1071}
1072
c5cc2070
TH
1073/**
1074 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1075 * @bio: bio to add
1076 * @qn: qnode to use
1077 * @tg: the target throtl_grp
1078 *
1079 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1080 * tg->qnode_on_self[] is used.
1081 */
1082static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1083 struct throtl_grp *tg)
e43473b7 1084{
73f0d49a 1085 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1086 bool rw = bio_data_dir(bio);
1087
c5cc2070
TH
1088 if (!qn)
1089 qn = &tg->qnode_on_self[rw];
1090
0e9f4164
TH
1091 /*
1092 * If @tg doesn't currently have any bios queued in the same
1093 * direction, queueing @bio can change when @tg should be
1094 * dispatched. Mark that @tg was empty. This is automatically
b53b072c 1095 * cleared on the next tg_update_disptime().
0e9f4164
TH
1096 */
1097 if (!sq->nr_queued[rw])
1098 tg->flags |= THROTL_TG_WAS_EMPTY;
1099
c5cc2070
TH
1100 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1101
73f0d49a 1102 sq->nr_queued[rw]++;
77216b04 1103 throtl_enqueue_tg(tg);
e43473b7
VG
1104}
1105
77216b04 1106static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 1107{
73f0d49a 1108 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1109 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1110 struct bio *bio;
1111
d609af3a
ME
1112 bio = throtl_peek_queued(&sq->queued[READ]);
1113 if (bio)
0f3457f6 1114 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 1115
d609af3a
ME
1116 bio = throtl_peek_queued(&sq->queued[WRITE]);
1117 if (bio)
0f3457f6 1118 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
1119
1120 min_wait = min(read_wait, write_wait);
1121 disptime = jiffies + min_wait;
1122
e43473b7 1123 /* Update dispatch time */
77216b04 1124 throtl_dequeue_tg(tg);
e43473b7 1125 tg->disptime = disptime;
77216b04 1126 throtl_enqueue_tg(tg);
0e9f4164
TH
1127
1128 /* see throtl_add_bio_tg() */
1129 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
1130}
1131
32ee5bc4
VG
1132static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1133 struct throtl_grp *parent_tg, bool rw)
1134{
1135 if (throtl_slice_used(parent_tg, rw)) {
1136 throtl_start_new_slice_with_credit(parent_tg, rw,
1137 child_tg->slice_start[rw]);
1138 }
1139
1140}
1141
77216b04 1142static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 1143{
73f0d49a 1144 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
1145 struct throtl_service_queue *parent_sq = sq->parent_sq;
1146 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 1147 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
1148 struct bio *bio;
1149
c5cc2070
TH
1150 /*
1151 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1152 * from @tg may put its reference and @parent_sq might end up
1153 * getting released prematurely. Remember the tg to put and put it
1154 * after @bio is transferred to @parent_sq.
1155 */
1156 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 1157 sq->nr_queued[rw]--;
e43473b7
VG
1158
1159 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
1160
1161 /*
1162 * If our parent is another tg, we just need to transfer @bio to
1163 * the parent using throtl_add_bio_tg(). If our parent is
1164 * @td->service_queue, @bio is ready to be issued. Put it on its
1165 * bio_lists[] and decrease total number queued. The caller is
1166 * responsible for issuing these bios.
1167 */
1168 if (parent_tg) {
c5cc2070 1169 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 1170 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 1171 } else {
c5cc2070
TH
1172 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1173 &parent_sq->queued[rw]);
6bc9c2b4
TH
1174 BUG_ON(tg->td->nr_queued[rw] <= 0);
1175 tg->td->nr_queued[rw]--;
1176 }
e43473b7 1177
0f3457f6 1178 throtl_trim_slice(tg, rw);
6bc9c2b4 1179
c5cc2070
TH
1180 if (tg_to_put)
1181 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1182}
1183
77216b04 1184static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1185{
73f0d49a 1186 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7 1187 unsigned int nr_reads = 0, nr_writes = 0;
e675df2a
BW
1188 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1189 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
e43473b7
VG
1190 struct bio *bio;
1191
1192 /* Try to dispatch 75% READS and 25% WRITES */
1193
c5cc2070 1194 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1195 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1196
77216b04 1197 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1198 nr_reads++;
1199
1200 if (nr_reads >= max_nr_reads)
1201 break;
1202 }
1203
c5cc2070 1204 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1205 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1206
77216b04 1207 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1208 nr_writes++;
1209
1210 if (nr_writes >= max_nr_writes)
1211 break;
1212 }
1213
1214 return nr_reads + nr_writes;
1215}
1216
651930bc 1217static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1218{
1219 unsigned int nr_disp = 0;
e43473b7
VG
1220
1221 while (1) {
2397611a 1222 struct throtl_grp *tg;
2ab74cd2 1223 struct throtl_service_queue *sq;
e43473b7 1224
2397611a
BW
1225 if (!parent_sq->nr_pending)
1226 break;
1227
1228 tg = throtl_rb_first(parent_sq);
e43473b7
VG
1229 if (!tg)
1230 break;
1231
1232 if (time_before(jiffies, tg->disptime))
1233 break;
1234
77216b04 1235 throtl_dequeue_tg(tg);
e43473b7 1236
77216b04 1237 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1238
2ab74cd2 1239 sq = &tg->service_queue;
73f0d49a 1240 if (sq->nr_queued[0] || sq->nr_queued[1])
77216b04 1241 tg_update_disptime(tg);
e43473b7 1242
e675df2a 1243 if (nr_disp >= THROTL_QUANTUM)
e43473b7
VG
1244 break;
1245 }
1246
1247 return nr_disp;
1248}
1249
c79892c5
SL
1250static bool throtl_can_upgrade(struct throtl_data *td,
1251 struct throtl_grp *this_tg);
6e1a5704
TH
1252/**
1253 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
216382dc 1254 * @t: the pending_timer member of the throtl_service_queue being serviced
6e1a5704
TH
1255 *
1256 * This timer is armed when a child throtl_grp with active bio's become
1257 * pending and queued on the service_queue's pending_tree and expires when
1258 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1259 * dispatches bio's from the children throtl_grps to the parent
1260 * service_queue.
1261 *
1262 * If the parent's parent is another throtl_grp, dispatching is propagated
1263 * by either arming its pending_timer or repeating dispatch directly. If
1264 * the top-level service_tree is reached, throtl_data->dispatch_work is
1265 * kicked so that the ready bio's are issued.
6e1a5704 1266 */
e99e88a9 1267static void throtl_pending_timer_fn(struct timer_list *t)
69df0ab0 1268{
e99e88a9 1269 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
2e48a530 1270 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1271 struct throtl_data *td = sq_to_td(sq);
cb76199c 1272 struct request_queue *q = td->queue;
2e48a530
TH
1273 struct throtl_service_queue *parent_sq;
1274 bool dispatched;
6e1a5704 1275 int ret;
e43473b7 1276
0d945c1f 1277 spin_lock_irq(&q->queue_lock);
c79892c5
SL
1278 if (throtl_can_upgrade(td, NULL))
1279 throtl_upgrade_state(td);
1280
2e48a530
TH
1281again:
1282 parent_sq = sq->parent_sq;
1283 dispatched = false;
e43473b7 1284
7f52f98c
TH
1285 while (true) {
1286 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1287 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1288 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1289
1290 ret = throtl_select_dispatch(sq);
1291 if (ret) {
7f52f98c
TH
1292 throtl_log(sq, "bios disp=%u", ret);
1293 dispatched = true;
1294 }
e43473b7 1295
7f52f98c
TH
1296 if (throtl_schedule_next_dispatch(sq, false))
1297 break;
e43473b7 1298
7f52f98c 1299 /* this dispatch windows is still open, relax and repeat */
0d945c1f 1300 spin_unlock_irq(&q->queue_lock);
7f52f98c 1301 cpu_relax();
0d945c1f 1302 spin_lock_irq(&q->queue_lock);
651930bc 1303 }
e43473b7 1304
2e48a530
TH
1305 if (!dispatched)
1306 goto out_unlock;
6e1a5704 1307
2e48a530
TH
1308 if (parent_sq) {
1309 /* @parent_sq is another throl_grp, propagate dispatch */
1310 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1311 tg_update_disptime(tg);
1312 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1313 /* window is already open, repeat dispatching */
1314 sq = parent_sq;
1315 tg = sq_to_tg(sq);
1316 goto again;
1317 }
1318 }
1319 } else {
b53b072c 1320 /* reached the top-level, queue issuing */
2e48a530
TH
1321 queue_work(kthrotld_workqueue, &td->dispatch_work);
1322 }
1323out_unlock:
0d945c1f 1324 spin_unlock_irq(&q->queue_lock);
6e1a5704 1325}
e43473b7 1326
6e1a5704
TH
1327/**
1328 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1329 * @work: work item being executed
1330 *
b53b072c
BW
1331 * This function is queued for execution when bios reach the bio_lists[]
1332 * of throtl_data->service_queue. Those bios are ready and issued by this
6e1a5704
TH
1333 * function.
1334 */
8876e140 1335static void blk_throtl_dispatch_work_fn(struct work_struct *work)
6e1a5704
TH
1336{
1337 struct throtl_data *td = container_of(work, struct throtl_data,
1338 dispatch_work);
1339 struct throtl_service_queue *td_sq = &td->service_queue;
1340 struct request_queue *q = td->queue;
1341 struct bio_list bio_list_on_stack;
1342 struct bio *bio;
1343 struct blk_plug plug;
1344 int rw;
1345
1346 bio_list_init(&bio_list_on_stack);
1347
0d945c1f 1348 spin_lock_irq(&q->queue_lock);
c5cc2070
TH
1349 for (rw = READ; rw <= WRITE; rw++)
1350 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1351 bio_list_add(&bio_list_on_stack, bio);
0d945c1f 1352 spin_unlock_irq(&q->queue_lock);
6e1a5704
TH
1353
1354 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1355 blk_start_plug(&plug);
ed00aabd
CH
1356 while ((bio = bio_list_pop(&bio_list_on_stack)))
1357 submit_bio_noacct(bio);
69d60eb9 1358 blk_finish_plug(&plug);
e43473b7 1359 }
e43473b7
VG
1360}
1361
f95a04af
TH
1362static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1363 int off)
60c2bc2d 1364{
f95a04af
TH
1365 struct throtl_grp *tg = pd_to_tg(pd);
1366 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1367
2ab5492d 1368 if (v == U64_MAX)
60c2bc2d 1369 return 0;
f95a04af 1370 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1371}
1372
f95a04af
TH
1373static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1374 int off)
e43473b7 1375{
f95a04af
TH
1376 struct throtl_grp *tg = pd_to_tg(pd);
1377 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1378
2ab5492d 1379 if (v == UINT_MAX)
af133ceb 1380 return 0;
f95a04af 1381 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1382}
1383
2da8ca82 1384static int tg_print_conf_u64(struct seq_file *sf, void *v)
8e89d13f 1385{
2da8ca82
TH
1386 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1387 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1388 return 0;
8e89d13f
VG
1389}
1390
2da8ca82 1391static int tg_print_conf_uint(struct seq_file *sf, void *v)
8e89d13f 1392{
2da8ca82
TH
1393 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1394 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1395 return 0;
60c2bc2d
TH
1396}
1397
9bb67aeb 1398static void tg_conf_updated(struct throtl_grp *tg, bool global)
60c2bc2d 1399{
69948b07 1400 struct throtl_service_queue *sq = &tg->service_queue;
492eb21b 1401 struct cgroup_subsys_state *pos_css;
69948b07 1402 struct blkcg_gq *blkg;
af133ceb 1403
fda6f272
TH
1404 throtl_log(&tg->service_queue,
1405 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
9f626e37
SL
1406 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1407 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
632b4493 1408
693e751e
TH
1409 /*
1410 * Update has_rules[] flags for the updated tg's subtree. A tg is
1411 * considered to have rules if either the tg itself or any of its
1412 * ancestors has rules. This identifies groups without any
1413 * restrictions in the whole hierarchy and allows them to bypass
1414 * blk-throttle.
1415 */
9bb67aeb
SL
1416 blkg_for_each_descendant_pre(blkg, pos_css,
1417 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
5b81fc3c
SL
1418 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1419 struct throtl_grp *parent_tg;
1420
1421 tg_update_has_rules(this_tg);
1422 /* ignore root/second level */
1423 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1424 !blkg->parent->parent)
1425 continue;
1426 parent_tg = blkg_to_tg(blkg->parent);
1427 /*
1428 * make sure all children has lower idle time threshold and
1429 * higher latency target
1430 */
1431 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1432 parent_tg->idletime_threshold);
1433 this_tg->latency_target = max(this_tg->latency_target,
1434 parent_tg->latency_target);
1435 }
693e751e 1436
632b4493
TH
1437 /*
1438 * We're already holding queue_lock and know @tg is valid. Let's
1439 * apply the new config directly.
1440 *
1441 * Restart the slices for both READ and WRITES. It might happen
1442 * that a group's limit are dropped suddenly and we don't want to
1443 * account recently dispatched IO with new low rate.
1444 */
ff8b22c0
BW
1445 throtl_start_new_slice(tg, READ);
1446 throtl_start_new_slice(tg, WRITE);
632b4493 1447
5b2c16aa 1448 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1449 tg_update_disptime(tg);
7f52f98c 1450 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1451 }
69948b07
TH
1452}
1453
1454static ssize_t tg_set_conf(struct kernfs_open_file *of,
1455 char *buf, size_t nbytes, loff_t off, bool is_u64)
1456{
1457 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1458 struct blkg_conf_ctx ctx;
1459 struct throtl_grp *tg;
1460 int ret;
1461 u64 v;
1462
1463 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1464 if (ret)
1465 return ret;
1466
1467 ret = -EINVAL;
1468 if (sscanf(ctx.body, "%llu", &v) != 1)
1469 goto out_finish;
1470 if (!v)
2ab5492d 1471 v = U64_MAX;
69948b07
TH
1472
1473 tg = blkg_to_tg(ctx.blkg);
1474
1475 if (is_u64)
1476 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1477 else
1478 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
60c2bc2d 1479
9bb67aeb 1480 tg_conf_updated(tg, false);
36aa9e5f
TH
1481 ret = 0;
1482out_finish:
60c2bc2d 1483 blkg_conf_finish(&ctx);
36aa9e5f 1484 return ret ?: nbytes;
8e89d13f
VG
1485}
1486
451af504
TH
1487static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1488 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1489{
451af504 1490 return tg_set_conf(of, buf, nbytes, off, true);
60c2bc2d
TH
1491}
1492
451af504
TH
1493static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1494 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1495{
451af504 1496 return tg_set_conf(of, buf, nbytes, off, false);
60c2bc2d
TH
1497}
1498
7ca46438
TH
1499static int tg_print_rwstat(struct seq_file *sf, void *v)
1500{
1501 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1502 blkg_prfill_rwstat, &blkcg_policy_throtl,
1503 seq_cft(sf)->private, true);
1504 return 0;
1505}
1506
1507static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1508 struct blkg_policy_data *pd, int off)
1509{
1510 struct blkg_rwstat_sample sum;
1511
1512 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1513 &sum);
1514 return __blkg_prfill_rwstat(sf, pd, &sum);
1515}
1516
1517static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1518{
1519 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1520 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1521 seq_cft(sf)->private, true);
1522 return 0;
1523}
1524
880f50e2 1525static struct cftype throtl_legacy_files[] = {
60c2bc2d
TH
1526 {
1527 .name = "throttle.read_bps_device",
9f626e37 1528 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
2da8ca82 1529 .seq_show = tg_print_conf_u64,
451af504 1530 .write = tg_set_conf_u64,
60c2bc2d
TH
1531 },
1532 {
1533 .name = "throttle.write_bps_device",
9f626e37 1534 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
2da8ca82 1535 .seq_show = tg_print_conf_u64,
451af504 1536 .write = tg_set_conf_u64,
60c2bc2d
TH
1537 },
1538 {
1539 .name = "throttle.read_iops_device",
9f626e37 1540 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
2da8ca82 1541 .seq_show = tg_print_conf_uint,
451af504 1542 .write = tg_set_conf_uint,
60c2bc2d
TH
1543 },
1544 {
1545 .name = "throttle.write_iops_device",
9f626e37 1546 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
2da8ca82 1547 .seq_show = tg_print_conf_uint,
451af504 1548 .write = tg_set_conf_uint,
60c2bc2d
TH
1549 },
1550 {
1551 .name = "throttle.io_service_bytes",
7ca46438
TH
1552 .private = offsetof(struct throtl_grp, stat_bytes),
1553 .seq_show = tg_print_rwstat,
60c2bc2d 1554 },
17534c6f 1555 {
1556 .name = "throttle.io_service_bytes_recursive",
7ca46438
TH
1557 .private = offsetof(struct throtl_grp, stat_bytes),
1558 .seq_show = tg_print_rwstat_recursive,
17534c6f 1559 },
60c2bc2d
TH
1560 {
1561 .name = "throttle.io_serviced",
7ca46438
TH
1562 .private = offsetof(struct throtl_grp, stat_ios),
1563 .seq_show = tg_print_rwstat,
60c2bc2d 1564 },
17534c6f 1565 {
1566 .name = "throttle.io_serviced_recursive",
7ca46438
TH
1567 .private = offsetof(struct throtl_grp, stat_ios),
1568 .seq_show = tg_print_rwstat_recursive,
17534c6f 1569 },
60c2bc2d
TH
1570 { } /* terminate */
1571};
1572
cd5ab1b0 1573static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
2ee867dc
TH
1574 int off)
1575{
1576 struct throtl_grp *tg = pd_to_tg(pd);
1577 const char *dname = blkg_dev_name(pd->blkg);
1578 char bufs[4][21] = { "max", "max", "max", "max" };
cd5ab1b0
SL
1579 u64 bps_dft;
1580 unsigned int iops_dft;
ada75b6e 1581 char idle_time[26] = "";
ec80991d 1582 char latency_time[26] = "";
2ee867dc
TH
1583
1584 if (!dname)
1585 return 0;
9f626e37 1586
cd5ab1b0
SL
1587 if (off == LIMIT_LOW) {
1588 bps_dft = 0;
1589 iops_dft = 0;
1590 } else {
1591 bps_dft = U64_MAX;
1592 iops_dft = UINT_MAX;
1593 }
1594
1595 if (tg->bps_conf[READ][off] == bps_dft &&
1596 tg->bps_conf[WRITE][off] == bps_dft &&
1597 tg->iops_conf[READ][off] == iops_dft &&
ada75b6e 1598 tg->iops_conf[WRITE][off] == iops_dft &&
ec80991d 1599 (off != LIMIT_LOW ||
b4f428ef 1600 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
5b81fc3c 1601 tg->latency_target_conf == DFL_LATENCY_TARGET)))
2ee867dc
TH
1602 return 0;
1603
9bb67aeb 1604 if (tg->bps_conf[READ][off] != U64_MAX)
9f626e37 1605 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
cd5ab1b0 1606 tg->bps_conf[READ][off]);
9bb67aeb 1607 if (tg->bps_conf[WRITE][off] != U64_MAX)
9f626e37 1608 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
cd5ab1b0 1609 tg->bps_conf[WRITE][off]);
9bb67aeb 1610 if (tg->iops_conf[READ][off] != UINT_MAX)
9f626e37 1611 snprintf(bufs[2], sizeof(bufs[2]), "%u",
cd5ab1b0 1612 tg->iops_conf[READ][off]);
9bb67aeb 1613 if (tg->iops_conf[WRITE][off] != UINT_MAX)
9f626e37 1614 snprintf(bufs[3], sizeof(bufs[3]), "%u",
cd5ab1b0 1615 tg->iops_conf[WRITE][off]);
ada75b6e 1616 if (off == LIMIT_LOW) {
5b81fc3c 1617 if (tg->idletime_threshold_conf == ULONG_MAX)
ada75b6e
SL
1618 strcpy(idle_time, " idle=max");
1619 else
1620 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
5b81fc3c 1621 tg->idletime_threshold_conf);
ec80991d 1622
5b81fc3c 1623 if (tg->latency_target_conf == ULONG_MAX)
ec80991d
SL
1624 strcpy(latency_time, " latency=max");
1625 else
1626 snprintf(latency_time, sizeof(latency_time),
5b81fc3c 1627 " latency=%lu", tg->latency_target_conf);
ada75b6e 1628 }
2ee867dc 1629
ec80991d
SL
1630 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1631 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1632 latency_time);
2ee867dc
TH
1633 return 0;
1634}
1635
cd5ab1b0 1636static int tg_print_limit(struct seq_file *sf, void *v)
2ee867dc 1637{
cd5ab1b0 1638 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
2ee867dc
TH
1639 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1640 return 0;
1641}
1642
cd5ab1b0 1643static ssize_t tg_set_limit(struct kernfs_open_file *of,
2ee867dc
TH
1644 char *buf, size_t nbytes, loff_t off)
1645{
1646 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1647 struct blkg_conf_ctx ctx;
1648 struct throtl_grp *tg;
1649 u64 v[4];
ada75b6e 1650 unsigned long idle_time;
ec80991d 1651 unsigned long latency_time;
2ee867dc 1652 int ret;
cd5ab1b0 1653 int index = of_cft(of)->private;
2ee867dc
TH
1654
1655 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1656 if (ret)
1657 return ret;
1658
1659 tg = blkg_to_tg(ctx.blkg);
1660
cd5ab1b0
SL
1661 v[0] = tg->bps_conf[READ][index];
1662 v[1] = tg->bps_conf[WRITE][index];
1663 v[2] = tg->iops_conf[READ][index];
1664 v[3] = tg->iops_conf[WRITE][index];
2ee867dc 1665
5b81fc3c
SL
1666 idle_time = tg->idletime_threshold_conf;
1667 latency_time = tg->latency_target_conf;
2ee867dc
TH
1668 while (true) {
1669 char tok[27]; /* wiops=18446744073709551616 */
1670 char *p;
2ab5492d 1671 u64 val = U64_MAX;
2ee867dc
TH
1672 int len;
1673
1674 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1675 break;
1676 if (tok[0] == '\0')
1677 break;
1678 ctx.body += len;
1679
1680 ret = -EINVAL;
1681 p = tok;
1682 strsep(&p, "=");
1683 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1684 goto out_finish;
1685
1686 ret = -ERANGE;
1687 if (!val)
1688 goto out_finish;
1689
1690 ret = -EINVAL;
5b7048b8 1691 if (!strcmp(tok, "rbps") && val > 1)
2ee867dc 1692 v[0] = val;
5b7048b8 1693 else if (!strcmp(tok, "wbps") && val > 1)
2ee867dc 1694 v[1] = val;
5b7048b8 1695 else if (!strcmp(tok, "riops") && val > 1)
2ee867dc 1696 v[2] = min_t(u64, val, UINT_MAX);
5b7048b8 1697 else if (!strcmp(tok, "wiops") && val > 1)
2ee867dc 1698 v[3] = min_t(u64, val, UINT_MAX);
ada75b6e
SL
1699 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1700 idle_time = val;
ec80991d
SL
1701 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1702 latency_time = val;
2ee867dc
TH
1703 else
1704 goto out_finish;
1705 }
1706
cd5ab1b0
SL
1707 tg->bps_conf[READ][index] = v[0];
1708 tg->bps_conf[WRITE][index] = v[1];
1709 tg->iops_conf[READ][index] = v[2];
1710 tg->iops_conf[WRITE][index] = v[3];
2ee867dc 1711
cd5ab1b0
SL
1712 if (index == LIMIT_MAX) {
1713 tg->bps[READ][index] = v[0];
1714 tg->bps[WRITE][index] = v[1];
1715 tg->iops[READ][index] = v[2];
1716 tg->iops[WRITE][index] = v[3];
1717 }
1718 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1719 tg->bps_conf[READ][LIMIT_MAX]);
1720 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1721 tg->bps_conf[WRITE][LIMIT_MAX]);
1722 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1723 tg->iops_conf[READ][LIMIT_MAX]);
1724 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1725 tg->iops_conf[WRITE][LIMIT_MAX]);
b4f428ef
SL
1726 tg->idletime_threshold_conf = idle_time;
1727 tg->latency_target_conf = latency_time;
1728
1729 /* force user to configure all settings for low limit */
1730 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1731 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1732 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1733 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1734 tg->bps[READ][LIMIT_LOW] = 0;
1735 tg->bps[WRITE][LIMIT_LOW] = 0;
1736 tg->iops[READ][LIMIT_LOW] = 0;
1737 tg->iops[WRITE][LIMIT_LOW] = 0;
1738 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1739 tg->latency_target = DFL_LATENCY_TARGET;
1740 } else if (index == LIMIT_LOW) {
5b81fc3c 1741 tg->idletime_threshold = tg->idletime_threshold_conf;
5b81fc3c 1742 tg->latency_target = tg->latency_target_conf;
cd5ab1b0 1743 }
b4f428ef
SL
1744
1745 blk_throtl_update_limit_valid(tg->td);
1746 if (tg->td->limit_valid[LIMIT_LOW]) {
1747 if (index == LIMIT_LOW)
1748 tg->td->limit_index = LIMIT_LOW;
1749 } else
1750 tg->td->limit_index = LIMIT_MAX;
9bb67aeb
SL
1751 tg_conf_updated(tg, index == LIMIT_LOW &&
1752 tg->td->limit_valid[LIMIT_LOW]);
2ee867dc
TH
1753 ret = 0;
1754out_finish:
1755 blkg_conf_finish(&ctx);
1756 return ret ?: nbytes;
1757}
1758
1759static struct cftype throtl_files[] = {
cd5ab1b0
SL
1760#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1761 {
1762 .name = "low",
1763 .flags = CFTYPE_NOT_ON_ROOT,
1764 .seq_show = tg_print_limit,
1765 .write = tg_set_limit,
1766 .private = LIMIT_LOW,
1767 },
1768#endif
2ee867dc
TH
1769 {
1770 .name = "max",
1771 .flags = CFTYPE_NOT_ON_ROOT,
cd5ab1b0
SL
1772 .seq_show = tg_print_limit,
1773 .write = tg_set_limit,
1774 .private = LIMIT_MAX,
2ee867dc
TH
1775 },
1776 { } /* terminate */
1777};
1778
da527770 1779static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1780{
1781 struct throtl_data *td = q->td;
1782
69df0ab0 1783 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1784}
1785
3c798398 1786static struct blkcg_policy blkcg_policy_throtl = {
2ee867dc 1787 .dfl_cftypes = throtl_files,
880f50e2 1788 .legacy_cftypes = throtl_legacy_files,
f9fcc2d3 1789
001bea73 1790 .pd_alloc_fn = throtl_pd_alloc,
f9fcc2d3 1791 .pd_init_fn = throtl_pd_init,
693e751e 1792 .pd_online_fn = throtl_pd_online,
cd5ab1b0 1793 .pd_offline_fn = throtl_pd_offline,
001bea73 1794 .pd_free_fn = throtl_pd_free,
e43473b7
VG
1795};
1796
3f0abd80
SL
1797static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1798{
1799 unsigned long rtime = jiffies, wtime = jiffies;
1800
1801 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1802 rtime = tg->last_low_overflow_time[READ];
1803 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1804 wtime = tg->last_low_overflow_time[WRITE];
1805 return min(rtime, wtime);
1806}
1807
1808/* tg should not be an intermediate node */
1809static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1810{
1811 struct throtl_service_queue *parent_sq;
1812 struct throtl_grp *parent = tg;
1813 unsigned long ret = __tg_last_low_overflow_time(tg);
1814
1815 while (true) {
1816 parent_sq = parent->service_queue.parent_sq;
1817 parent = sq_to_tg(parent_sq);
1818 if (!parent)
1819 break;
1820
1821 /*
1822 * The parent doesn't have low limit, it always reaches low
1823 * limit. Its overflow time is useless for children
1824 */
1825 if (!parent->bps[READ][LIMIT_LOW] &&
1826 !parent->iops[READ][LIMIT_LOW] &&
1827 !parent->bps[WRITE][LIMIT_LOW] &&
1828 !parent->iops[WRITE][LIMIT_LOW])
1829 continue;
1830 if (time_after(__tg_last_low_overflow_time(parent), ret))
1831 ret = __tg_last_low_overflow_time(parent);
1832 }
1833 return ret;
1834}
1835
9e234eea
SL
1836static bool throtl_tg_is_idle(struct throtl_grp *tg)
1837{
1838 /*
1839 * cgroup is idle if:
1840 * - single idle is too long, longer than a fixed value (in case user
b4f428ef 1841 * configure a too big threshold) or 4 times of idletime threshold
9e234eea 1842 * - average think time is more than threshold
53696b8d 1843 * - IO latency is largely below threshold
9e234eea 1844 */
b4f428ef 1845 unsigned long time;
4cff729f 1846 bool ret;
9e234eea 1847
b4f428ef
SL
1848 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1849 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1850 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1851 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1852 tg->avg_idletime > tg->idletime_threshold ||
1853 (tg->latency_target && tg->bio_cnt &&
53696b8d 1854 tg->bad_bio_cnt * 5 < tg->bio_cnt);
4cff729f
SL
1855 throtl_log(&tg->service_queue,
1856 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1857 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1858 tg->bio_cnt, ret, tg->td->scale);
1859 return ret;
9e234eea
SL
1860}
1861
c79892c5
SL
1862static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1863{
1864 struct throtl_service_queue *sq = &tg->service_queue;
1865 bool read_limit, write_limit;
1866
1867 /*
1868 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1869 * reaches), it's ok to upgrade to next limit
1870 */
1871 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1872 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1873 if (!read_limit && !write_limit)
1874 return true;
1875 if (read_limit && sq->nr_queued[READ] &&
1876 (!write_limit || sq->nr_queued[WRITE]))
1877 return true;
1878 if (write_limit && sq->nr_queued[WRITE] &&
1879 (!read_limit || sq->nr_queued[READ]))
1880 return true;
aec24246
SL
1881
1882 if (time_after_eq(jiffies,
fa6fb5aa
SL
1883 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1884 throtl_tg_is_idle(tg))
aec24246 1885 return true;
c79892c5
SL
1886 return false;
1887}
1888
1889static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1890{
1891 while (true) {
1892 if (throtl_tg_can_upgrade(tg))
1893 return true;
1894 tg = sq_to_tg(tg->service_queue.parent_sq);
1895 if (!tg || !tg_to_blkg(tg)->parent)
1896 return false;
1897 }
1898 return false;
1899}
1900
1901static bool throtl_can_upgrade(struct throtl_data *td,
1902 struct throtl_grp *this_tg)
1903{
1904 struct cgroup_subsys_state *pos_css;
1905 struct blkcg_gq *blkg;
1906
1907 if (td->limit_index != LIMIT_LOW)
1908 return false;
1909
297e3d85 1910 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
3f0abd80
SL
1911 return false;
1912
c79892c5
SL
1913 rcu_read_lock();
1914 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1915 struct throtl_grp *tg = blkg_to_tg(blkg);
1916
1917 if (tg == this_tg)
1918 continue;
1919 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1920 continue;
1921 if (!throtl_hierarchy_can_upgrade(tg)) {
1922 rcu_read_unlock();
1923 return false;
1924 }
1925 }
1926 rcu_read_unlock();
1927 return true;
1928}
1929
fa6fb5aa
SL
1930static void throtl_upgrade_check(struct throtl_grp *tg)
1931{
1932 unsigned long now = jiffies;
1933
1934 if (tg->td->limit_index != LIMIT_LOW)
1935 return;
1936
1937 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1938 return;
1939
1940 tg->last_check_time = now;
1941
1942 if (!time_after_eq(now,
1943 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1944 return;
1945
1946 if (throtl_can_upgrade(tg->td, NULL))
1947 throtl_upgrade_state(tg->td);
1948}
1949
c79892c5
SL
1950static void throtl_upgrade_state(struct throtl_data *td)
1951{
1952 struct cgroup_subsys_state *pos_css;
1953 struct blkcg_gq *blkg;
1954
4cff729f 1955 throtl_log(&td->service_queue, "upgrade to max");
c79892c5 1956 td->limit_index = LIMIT_MAX;
3f0abd80 1957 td->low_upgrade_time = jiffies;
7394e31f 1958 td->scale = 0;
c79892c5
SL
1959 rcu_read_lock();
1960 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1961 struct throtl_grp *tg = blkg_to_tg(blkg);
1962 struct throtl_service_queue *sq = &tg->service_queue;
1963
1964 tg->disptime = jiffies - 1;
1965 throtl_select_dispatch(sq);
4f02fb76 1966 throtl_schedule_next_dispatch(sq, true);
c79892c5
SL
1967 }
1968 rcu_read_unlock();
1969 throtl_select_dispatch(&td->service_queue);
4f02fb76 1970 throtl_schedule_next_dispatch(&td->service_queue, true);
c79892c5
SL
1971 queue_work(kthrotld_workqueue, &td->dispatch_work);
1972}
1973
4247d9c8 1974static void throtl_downgrade_state(struct throtl_data *td)
3f0abd80 1975{
7394e31f
SL
1976 td->scale /= 2;
1977
4cff729f 1978 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
7394e31f
SL
1979 if (td->scale) {
1980 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1981 return;
1982 }
1983
4247d9c8 1984 td->limit_index = LIMIT_LOW;
3f0abd80
SL
1985 td->low_downgrade_time = jiffies;
1986}
1987
1988static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1989{
1990 struct throtl_data *td = tg->td;
1991 unsigned long now = jiffies;
1992
1993 /*
1994 * If cgroup is below low limit, consider downgrade and throttle other
1995 * cgroups
1996 */
297e3d85
SL
1997 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1998 time_after_eq(now, tg_last_low_overflow_time(tg) +
fa6fb5aa
SL
1999 td->throtl_slice) &&
2000 (!throtl_tg_is_idle(tg) ||
2001 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
3f0abd80
SL
2002 return true;
2003 return false;
2004}
2005
2006static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
2007{
2008 while (true) {
2009 if (!throtl_tg_can_downgrade(tg))
2010 return false;
2011 tg = sq_to_tg(tg->service_queue.parent_sq);
2012 if (!tg || !tg_to_blkg(tg)->parent)
2013 break;
2014 }
2015 return true;
2016}
2017
2018static void throtl_downgrade_check(struct throtl_grp *tg)
2019{
2020 uint64_t bps;
2021 unsigned int iops;
2022 unsigned long elapsed_time;
2023 unsigned long now = jiffies;
2024
2025 if (tg->td->limit_index != LIMIT_MAX ||
2026 !tg->td->limit_valid[LIMIT_LOW])
2027 return;
2028 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2029 return;
297e3d85 2030 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
3f0abd80
SL
2031 return;
2032
2033 elapsed_time = now - tg->last_check_time;
2034 tg->last_check_time = now;
2035
297e3d85
SL
2036 if (time_before(now, tg_last_low_overflow_time(tg) +
2037 tg->td->throtl_slice))
3f0abd80
SL
2038 return;
2039
2040 if (tg->bps[READ][LIMIT_LOW]) {
2041 bps = tg->last_bytes_disp[READ] * HZ;
2042 do_div(bps, elapsed_time);
2043 if (bps >= tg->bps[READ][LIMIT_LOW])
2044 tg->last_low_overflow_time[READ] = now;
2045 }
2046
2047 if (tg->bps[WRITE][LIMIT_LOW]) {
2048 bps = tg->last_bytes_disp[WRITE] * HZ;
2049 do_div(bps, elapsed_time);
2050 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2051 tg->last_low_overflow_time[WRITE] = now;
2052 }
2053
2054 if (tg->iops[READ][LIMIT_LOW]) {
2055 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2056 if (iops >= tg->iops[READ][LIMIT_LOW])
2057 tg->last_low_overflow_time[READ] = now;
2058 }
2059
2060 if (tg->iops[WRITE][LIMIT_LOW]) {
2061 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2062 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2063 tg->last_low_overflow_time[WRITE] = now;
2064 }
2065
2066 /*
2067 * If cgroup is below low limit, consider downgrade and throttle other
2068 * cgroups
2069 */
2070 if (throtl_hierarchy_can_downgrade(tg))
4247d9c8 2071 throtl_downgrade_state(tg->td);
3f0abd80
SL
2072
2073 tg->last_bytes_disp[READ] = 0;
2074 tg->last_bytes_disp[WRITE] = 0;
2075 tg->last_io_disp[READ] = 0;
2076 tg->last_io_disp[WRITE] = 0;
2077}
2078
9e234eea
SL
2079static void blk_throtl_update_idletime(struct throtl_grp *tg)
2080{
7901601a 2081 unsigned long now;
9e234eea
SL
2082 unsigned long last_finish_time = tg->last_finish_time;
2083
7901601a
BW
2084 if (last_finish_time == 0)
2085 return;
2086
2087 now = ktime_get_ns() >> 10;
2088 if (now <= last_finish_time ||
9e234eea
SL
2089 last_finish_time == tg->checked_last_finish_time)
2090 return;
2091
2092 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2093 tg->checked_last_finish_time = last_finish_time;
2094}
2095
b9147dd1
SL
2096#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2097static void throtl_update_latency_buckets(struct throtl_data *td)
2098{
b889bf66
JQ
2099 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2100 int i, cpu, rw;
2101 unsigned long last_latency[2] = { 0 };
2102 unsigned long latency[2];
b9147dd1 2103
b185efa7 2104 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
b9147dd1
SL
2105 return;
2106 if (time_before(jiffies, td->last_calculate_time + HZ))
2107 return;
2108 td->last_calculate_time = jiffies;
2109
2110 memset(avg_latency, 0, sizeof(avg_latency));
b889bf66
JQ
2111 for (rw = READ; rw <= WRITE; rw++) {
2112 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2113 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2114
2115 for_each_possible_cpu(cpu) {
2116 struct latency_bucket *bucket;
2117
2118 /* this isn't race free, but ok in practice */
2119 bucket = per_cpu_ptr(td->latency_buckets[rw],
2120 cpu);
2121 tmp->total_latency += bucket[i].total_latency;
2122 tmp->samples += bucket[i].samples;
2123 bucket[i].total_latency = 0;
2124 bucket[i].samples = 0;
2125 }
b9147dd1 2126
b889bf66
JQ
2127 if (tmp->samples >= 32) {
2128 int samples = tmp->samples;
b9147dd1 2129
b889bf66 2130 latency[rw] = tmp->total_latency;
b9147dd1 2131
b889bf66
JQ
2132 tmp->total_latency = 0;
2133 tmp->samples = 0;
2134 latency[rw] /= samples;
2135 if (latency[rw] == 0)
2136 continue;
2137 avg_latency[rw][i].latency = latency[rw];
2138 }
b9147dd1
SL
2139 }
2140 }
2141
b889bf66
JQ
2142 for (rw = READ; rw <= WRITE; rw++) {
2143 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2144 if (!avg_latency[rw][i].latency) {
2145 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2146 td->avg_buckets[rw][i].latency =
2147 last_latency[rw];
2148 continue;
2149 }
b9147dd1 2150
b889bf66
JQ
2151 if (!td->avg_buckets[rw][i].valid)
2152 latency[rw] = avg_latency[rw][i].latency;
2153 else
2154 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2155 avg_latency[rw][i].latency) >> 3;
b9147dd1 2156
b889bf66
JQ
2157 td->avg_buckets[rw][i].latency = max(latency[rw],
2158 last_latency[rw]);
2159 td->avg_buckets[rw][i].valid = true;
2160 last_latency[rw] = td->avg_buckets[rw][i].latency;
2161 }
b9147dd1 2162 }
4cff729f
SL
2163
2164 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2165 throtl_log(&td->service_queue,
b889bf66
JQ
2166 "Latency bucket %d: read latency=%ld, read valid=%d, "
2167 "write latency=%ld, write valid=%d", i,
2168 td->avg_buckets[READ][i].latency,
2169 td->avg_buckets[READ][i].valid,
2170 td->avg_buckets[WRITE][i].latency,
2171 td->avg_buckets[WRITE][i].valid);
b9147dd1
SL
2172}
2173#else
2174static inline void throtl_update_latency_buckets(struct throtl_data *td)
2175{
2176}
2177#endif
2178
db18a53e 2179bool blk_throtl_bio(struct bio *bio)
e43473b7 2180{
309dca30 2181 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
db18a53e 2182 struct blkcg_gq *blkg = bio->bi_blkg;
c5cc2070 2183 struct throtl_qnode *qn = NULL;
a2e83ef9 2184 struct throtl_grp *tg = blkg_to_tg(blkg);
73f0d49a 2185 struct throtl_service_queue *sq;
0e9f4164 2186 bool rw = bio_data_dir(bio);
bc16a4f9 2187 bool throttled = false;
b9147dd1 2188 struct throtl_data *td = tg->td;
e43473b7 2189
93b80638 2190 rcu_read_lock();
ae118896 2191
2a0f61e6 2192 /* see throtl_charge_bio() */
7ca46438
TH
2193 if (bio_flagged(bio, BIO_THROTTLED))
2194 goto out;
2195
2196 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2197 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2198 bio->bi_iter.bi_size);
2199 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2200 }
2201
2202 if (!tg->has_rules[rw])
bc16a4f9 2203 goto out;
e43473b7 2204
0d945c1f 2205 spin_lock_irq(&q->queue_lock);
c9589f03 2206
b9147dd1
SL
2207 throtl_update_latency_buckets(td);
2208
9e234eea
SL
2209 blk_throtl_update_idletime(tg);
2210
73f0d49a
TH
2211 sq = &tg->service_queue;
2212
c79892c5 2213again:
9e660acf 2214 while (true) {
3f0abd80
SL
2215 if (tg->last_low_overflow_time[rw] == 0)
2216 tg->last_low_overflow_time[rw] = jiffies;
2217 throtl_downgrade_check(tg);
fa6fb5aa 2218 throtl_upgrade_check(tg);
9e660acf
TH
2219 /* throtl is FIFO - if bios are already queued, should queue */
2220 if (sq->nr_queued[rw])
2221 break;
de701c74 2222
9e660acf 2223 /* if above limits, break to queue */
c79892c5 2224 if (!tg_may_dispatch(tg, bio, NULL)) {
3f0abd80 2225 tg->last_low_overflow_time[rw] = jiffies;
b9147dd1
SL
2226 if (throtl_can_upgrade(td, tg)) {
2227 throtl_upgrade_state(td);
c79892c5
SL
2228 goto again;
2229 }
9e660acf 2230 break;
c79892c5 2231 }
9e660acf
TH
2232
2233 /* within limits, let's charge and dispatch directly */
e43473b7 2234 throtl_charge_bio(tg, bio);
04521db0
VG
2235
2236 /*
2237 * We need to trim slice even when bios are not being queued
2238 * otherwise it might happen that a bio is not queued for
2239 * a long time and slice keeps on extending and trim is not
2240 * called for a long time. Now if limits are reduced suddenly
2241 * we take into account all the IO dispatched so far at new
2242 * low rate and * newly queued IO gets a really long dispatch
2243 * time.
2244 *
2245 * So keep on trimming slice even if bio is not queued.
2246 */
0f3457f6 2247 throtl_trim_slice(tg, rw);
9e660acf
TH
2248
2249 /*
2250 * @bio passed through this layer without being throttled.
b53b072c 2251 * Climb up the ladder. If we're already at the top, it
9e660acf
TH
2252 * can be executed directly.
2253 */
c5cc2070 2254 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
2255 sq = sq->parent_sq;
2256 tg = sq_to_tg(sq);
2257 if (!tg)
2258 goto out_unlock;
e43473b7
VG
2259 }
2260
9e660acf 2261 /* out-of-limit, queue to @tg */
fda6f272
TH
2262 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2263 rw == READ ? 'R' : 'W',
9f626e37
SL
2264 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2265 tg_bps_limit(tg, rw),
2266 tg->io_disp[rw], tg_iops_limit(tg, rw),
fda6f272 2267 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 2268
3f0abd80
SL
2269 tg->last_low_overflow_time[rw] = jiffies;
2270
b9147dd1 2271 td->nr_queued[rw]++;
c5cc2070 2272 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 2273 throttled = true;
e43473b7 2274
7f52f98c
TH
2275 /*
2276 * Update @tg's dispatch time and force schedule dispatch if @tg
2277 * was empty before @bio. The forced scheduling isn't likely to
2278 * cause undue delay as @bio is likely to be dispatched directly if
2279 * its @tg's disptime is not in the future.
2280 */
0e9f4164 2281 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 2282 tg_update_disptime(tg);
7f52f98c 2283 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
2284 }
2285
bc16a4f9 2286out_unlock:
0d945c1f 2287 spin_unlock_irq(&q->queue_lock);
bc16a4f9 2288out:
111be883 2289 bio_set_flag(bio, BIO_THROTTLED);
b9147dd1
SL
2290
2291#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2292 if (throttled || !td->track_bio_latency)
5238dcf4 2293 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
b9147dd1 2294#endif
93b80638 2295 rcu_read_unlock();
bc16a4f9 2296 return throttled;
e43473b7
VG
2297}
2298
9e234eea 2299#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
b9147dd1
SL
2300static void throtl_track_latency(struct throtl_data *td, sector_t size,
2301 int op, unsigned long time)
2302{
2303 struct latency_bucket *latency;
2304 int index;
2305
b889bf66
JQ
2306 if (!td || td->limit_index != LIMIT_LOW ||
2307 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
b9147dd1
SL
2308 !blk_queue_nonrot(td->queue))
2309 return;
2310
2311 index = request_bucket_index(size);
2312
b889bf66 2313 latency = get_cpu_ptr(td->latency_buckets[op]);
b9147dd1
SL
2314 latency[index].total_latency += time;
2315 latency[index].samples++;
b889bf66 2316 put_cpu_ptr(td->latency_buckets[op]);
b9147dd1
SL
2317}
2318
2319void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2320{
2321 struct request_queue *q = rq->q;
2322 struct throtl_data *td = q->td;
2323
3d244306
HT
2324 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2325 time_ns >> 10);
b9147dd1
SL
2326}
2327
9e234eea
SL
2328void blk_throtl_bio_endio(struct bio *bio)
2329{
08e18eab 2330 struct blkcg_gq *blkg;
9e234eea 2331 struct throtl_grp *tg;
b9147dd1
SL
2332 u64 finish_time_ns;
2333 unsigned long finish_time;
2334 unsigned long start_time;
2335 unsigned long lat;
b889bf66 2336 int rw = bio_data_dir(bio);
9e234eea 2337
08e18eab
JB
2338 blkg = bio->bi_blkg;
2339 if (!blkg)
9e234eea 2340 return;
08e18eab 2341 tg = blkg_to_tg(blkg);
b185efa7
BW
2342 if (!tg->td->limit_valid[LIMIT_LOW])
2343 return;
9e234eea 2344
b9147dd1
SL
2345 finish_time_ns = ktime_get_ns();
2346 tg->last_finish_time = finish_time_ns >> 10;
2347
5238dcf4
OS
2348 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2349 finish_time = __bio_issue_time(finish_time_ns) >> 10;
08e18eab 2350 if (!start_time || finish_time <= start_time)
53696b8d
SL
2351 return;
2352
2353 lat = finish_time - start_time;
b9147dd1 2354 /* this is only for bio based driver */
5238dcf4
OS
2355 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2356 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2357 bio_op(bio), lat);
53696b8d 2358
6679a90c 2359 if (tg->latency_target && lat >= tg->td->filtered_latency) {
53696b8d
SL
2360 int bucket;
2361 unsigned int threshold;
2362
5238dcf4 2363 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
b889bf66 2364 threshold = tg->td->avg_buckets[rw][bucket].latency +
53696b8d
SL
2365 tg->latency_target;
2366 if (lat > threshold)
2367 tg->bad_bio_cnt++;
2368 /*
2369 * Not race free, could get wrong count, which means cgroups
2370 * will be throttled
2371 */
2372 tg->bio_cnt++;
2373 }
2374
2375 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2376 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2377 tg->bio_cnt /= 2;
2378 tg->bad_bio_cnt /= 2;
b9147dd1 2379 }
9e234eea
SL
2380}
2381#endif
2382
e43473b7
VG
2383int blk_throtl_init(struct request_queue *q)
2384{
2385 struct throtl_data *td;
a2b1693b 2386 int ret;
e43473b7
VG
2387
2388 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2389 if (!td)
2390 return -ENOMEM;
b889bf66 2391 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2392 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2393 if (!td->latency_buckets[READ]) {
2394 kfree(td);
2395 return -ENOMEM;
2396 }
2397 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2398 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2399 if (!td->latency_buckets[WRITE]) {
2400 free_percpu(td->latency_buckets[READ]);
b9147dd1
SL
2401 kfree(td);
2402 return -ENOMEM;
2403 }
e43473b7 2404
69df0ab0 2405 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
b2ce2643 2406 throtl_service_queue_init(&td->service_queue);
e43473b7 2407
cd1604fa 2408 q->td = td;
29b12589 2409 td->queue = q;
02977e4a 2410
9f626e37 2411 td->limit_valid[LIMIT_MAX] = true;
cd5ab1b0 2412 td->limit_index = LIMIT_MAX;
3f0abd80
SL
2413 td->low_upgrade_time = jiffies;
2414 td->low_downgrade_time = jiffies;
9e234eea 2415
a2b1693b 2416 /* activate policy */
3c798398 2417 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
b9147dd1 2418 if (ret) {
b889bf66
JQ
2419 free_percpu(td->latency_buckets[READ]);
2420 free_percpu(td->latency_buckets[WRITE]);
f51b802c 2421 kfree(td);
b9147dd1 2422 }
a2b1693b 2423 return ret;
e43473b7
VG
2424}
2425
2426void blk_throtl_exit(struct request_queue *q)
2427{
c875f4d0 2428 BUG_ON(!q->td);
da527770 2429 throtl_shutdown_wq(q);
3c798398 2430 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
b889bf66
JQ
2431 free_percpu(q->td->latency_buckets[READ]);
2432 free_percpu(q->td->latency_buckets[WRITE]);
c9a929dd 2433 kfree(q->td);
e43473b7
VG
2434}
2435
d61fcfa4
SL
2436void blk_throtl_register_queue(struct request_queue *q)
2437{
2438 struct throtl_data *td;
6679a90c 2439 int i;
d61fcfa4
SL
2440
2441 td = q->td;
2442 BUG_ON(!td);
2443
6679a90c 2444 if (blk_queue_nonrot(q)) {
d61fcfa4 2445 td->throtl_slice = DFL_THROTL_SLICE_SSD;
6679a90c
SL
2446 td->filtered_latency = LATENCY_FILTERED_SSD;
2447 } else {
d61fcfa4 2448 td->throtl_slice = DFL_THROTL_SLICE_HD;
6679a90c 2449 td->filtered_latency = LATENCY_FILTERED_HD;
b889bf66
JQ
2450 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2451 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2452 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2453 }
6679a90c 2454 }
d61fcfa4
SL
2455#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2456 /* if no low limit, use previous default */
2457 td->throtl_slice = DFL_THROTL_SLICE_HD;
2458#endif
9e234eea 2459
344e9ffc 2460 td->track_bio_latency = !queue_is_mq(q);
b9147dd1
SL
2461 if (!td->track_bio_latency)
2462 blk_stat_enable_accounting(q);
d61fcfa4
SL
2463}
2464
297e3d85
SL
2465#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2466ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2467{
2468 if (!q->td)
2469 return -EINVAL;
2470 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2471}
2472
2473ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2474 const char *page, size_t count)
2475{
2476 unsigned long v;
2477 unsigned long t;
2478
2479 if (!q->td)
2480 return -EINVAL;
2481 if (kstrtoul(page, 10, &v))
2482 return -EINVAL;
2483 t = msecs_to_jiffies(v);
2484 if (t == 0 || t > MAX_THROTL_SLICE)
2485 return -EINVAL;
2486 q->td->throtl_slice = t;
2487 return count;
2488}
2489#endif
2490
e43473b7
VG
2491static int __init throtl_init(void)
2492{
450adcbe
VG
2493 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2494 if (!kthrotld_workqueue)
2495 panic("Failed to create kthrotld\n");
2496
3c798398 2497 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
2498}
2499
2500module_init(throtl_init);