]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - block/blk-throttle.c
blk-throttle: Remove a meaningless parameter for throtl_downgrade_state()
[mirror_ubuntu-jammy-kernel.git] / block / blk-throttle.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
e43473b7
VG
2/*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8#include <linux/module.h>
9#include <linux/slab.h>
10#include <linux/blkdev.h>
11#include <linux/bio.h>
12#include <linux/blktrace_api.h>
eea8f41c 13#include <linux/blk-cgroup.h>
bc9fcbf9 14#include "blk.h"
1d156646 15#include "blk-cgroup-rwstat.h"
e43473b7
VG
16
17/* Max dispatch from a group in 1 round */
e675df2a 18#define THROTL_GRP_QUANTUM 8
e43473b7
VG
19
20/* Total max dispatch from all groups in one round */
e675df2a 21#define THROTL_QUANTUM 32
e43473b7 22
d61fcfa4
SL
23/* Throttling is performed over a slice and after that slice is renewed */
24#define DFL_THROTL_SLICE_HD (HZ / 10)
25#define DFL_THROTL_SLICE_SSD (HZ / 50)
297e3d85 26#define MAX_THROTL_SLICE (HZ)
9e234eea 27#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
9bb67aeb
SL
28#define MIN_THROTL_BPS (320 * 1024)
29#define MIN_THROTL_IOPS (10)
b4f428ef
SL
30#define DFL_LATENCY_TARGET (-1L)
31#define DFL_IDLE_THRESHOLD (0)
6679a90c
SL
32#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
33#define LATENCY_FILTERED_SSD (0)
34/*
35 * For HD, very small latency comes from sequential IO. Such IO is helpless to
36 * help determine if its IO is impacted by others, hence we ignore the IO
37 */
38#define LATENCY_FILTERED_HD (1000L) /* 1ms */
e43473b7 39
3c798398 40static struct blkcg_policy blkcg_policy_throtl;
0381411e 41
450adcbe
VG
42/* A workqueue to queue throttle related work */
43static struct workqueue_struct *kthrotld_workqueue;
450adcbe 44
c5cc2070
TH
45/*
46 * To implement hierarchical throttling, throtl_grps form a tree and bios
47 * are dispatched upwards level by level until they reach the top and get
48 * issued. When dispatching bios from the children and local group at each
49 * level, if the bios are dispatched into a single bio_list, there's a risk
50 * of a local or child group which can queue many bios at once filling up
51 * the list starving others.
52 *
53 * To avoid such starvation, dispatched bios are queued separately
54 * according to where they came from. When they are again dispatched to
55 * the parent, they're popped in round-robin order so that no single source
56 * hogs the dispatch window.
57 *
58 * throtl_qnode is used to keep the queued bios separated by their sources.
59 * Bios are queued to throtl_qnode which in turn is queued to
60 * throtl_service_queue and then dispatched in round-robin order.
61 *
62 * It's also used to track the reference counts on blkg's. A qnode always
63 * belongs to a throtl_grp and gets queued on itself or the parent, so
64 * incrementing the reference of the associated throtl_grp when a qnode is
65 * queued and decrementing when dequeued is enough to keep the whole blkg
66 * tree pinned while bios are in flight.
67 */
68struct throtl_qnode {
69 struct list_head node; /* service_queue->queued[] */
70 struct bio_list bios; /* queued bios */
71 struct throtl_grp *tg; /* tg this qnode belongs to */
72};
73
c9e0332e 74struct throtl_service_queue {
77216b04
TH
75 struct throtl_service_queue *parent_sq; /* the parent service_queue */
76
73f0d49a
TH
77 /*
78 * Bios queued directly to this service_queue or dispatched from
79 * children throtl_grp's.
80 */
c5cc2070 81 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
73f0d49a
TH
82 unsigned int nr_queued[2]; /* number of queued bios */
83
84 /*
85 * RB tree of active children throtl_grp's, which are sorted by
86 * their ->disptime.
87 */
9ff01255 88 struct rb_root_cached pending_tree; /* RB tree of active tgs */
c9e0332e
TH
89 unsigned int nr_pending; /* # queued in the tree */
90 unsigned long first_pending_disptime; /* disptime of the first tg */
69df0ab0 91 struct timer_list pending_timer; /* fires on first_pending_disptime */
e43473b7
VG
92};
93
5b2c16aa
TH
94enum tg_state_flags {
95 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
0e9f4164 96 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
5b2c16aa
TH
97};
98
e43473b7
VG
99#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
100
9f626e37 101enum {
cd5ab1b0 102 LIMIT_LOW,
9f626e37
SL
103 LIMIT_MAX,
104 LIMIT_CNT,
105};
106
e43473b7 107struct throtl_grp {
f95a04af
TH
108 /* must be the first member */
109 struct blkg_policy_data pd;
110
c9e0332e 111 /* active throtl group service_queue member */
e43473b7
VG
112 struct rb_node rb_node;
113
0f3457f6
TH
114 /* throtl_data this group belongs to */
115 struct throtl_data *td;
116
49a2f1e3
TH
117 /* this group's service queue */
118 struct throtl_service_queue service_queue;
119
c5cc2070
TH
120 /*
121 * qnode_on_self is used when bios are directly queued to this
122 * throtl_grp so that local bios compete fairly with bios
123 * dispatched from children. qnode_on_parent is used when bios are
124 * dispatched from this throtl_grp into its parent and will compete
125 * with the sibling qnode_on_parents and the parent's
126 * qnode_on_self.
127 */
128 struct throtl_qnode qnode_on_self[2];
129 struct throtl_qnode qnode_on_parent[2];
130
e43473b7
VG
131 /*
132 * Dispatch time in jiffies. This is the estimated time when group
133 * will unthrottle and is ready to dispatch more bio. It is used as
134 * key to sort active groups in service tree.
135 */
136 unsigned long disptime;
137
e43473b7
VG
138 unsigned int flags;
139
693e751e
TH
140 /* are there any throtl rules between this group and td? */
141 bool has_rules[2];
142
cd5ab1b0 143 /* internally used bytes per second rate limits */
9f626e37 144 uint64_t bps[2][LIMIT_CNT];
cd5ab1b0
SL
145 /* user configured bps limits */
146 uint64_t bps_conf[2][LIMIT_CNT];
e43473b7 147
cd5ab1b0 148 /* internally used IOPS limits */
9f626e37 149 unsigned int iops[2][LIMIT_CNT];
cd5ab1b0
SL
150 /* user configured IOPS limits */
151 unsigned int iops_conf[2][LIMIT_CNT];
8e89d13f 152
b53b072c 153 /* Number of bytes dispatched in current slice */
e43473b7 154 uint64_t bytes_disp[2];
8e89d13f
VG
155 /* Number of bio's dispatched in current slice */
156 unsigned int io_disp[2];
e43473b7 157
3f0abd80
SL
158 unsigned long last_low_overflow_time[2];
159
160 uint64_t last_bytes_disp[2];
161 unsigned int last_io_disp[2];
162
163 unsigned long last_check_time;
164
ec80991d 165 unsigned long latency_target; /* us */
5b81fc3c 166 unsigned long latency_target_conf; /* us */
e43473b7
VG
167 /* When did we start a new slice */
168 unsigned long slice_start[2];
169 unsigned long slice_end[2];
9e234eea
SL
170
171 unsigned long last_finish_time; /* ns / 1024 */
172 unsigned long checked_last_finish_time; /* ns / 1024 */
173 unsigned long avg_idletime; /* ns / 1024 */
174 unsigned long idletime_threshold; /* us */
5b81fc3c 175 unsigned long idletime_threshold_conf; /* us */
53696b8d
SL
176
177 unsigned int bio_cnt; /* total bios */
178 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
179 unsigned long bio_cnt_reset_time;
7ca46438
TH
180
181 struct blkg_rwstat stat_bytes;
182 struct blkg_rwstat stat_ios;
e43473b7
VG
183};
184
b9147dd1
SL
185/* We measure latency for request size from <= 4k to >= 1M */
186#define LATENCY_BUCKET_SIZE 9
187
188struct latency_bucket {
189 unsigned long total_latency; /* ns / 1024 */
190 int samples;
191};
192
193struct avg_latency_bucket {
194 unsigned long latency; /* ns / 1024 */
195 bool valid;
196};
197
e43473b7
VG
198struct throtl_data
199{
e43473b7 200 /* service tree for active throtl groups */
c9e0332e 201 struct throtl_service_queue service_queue;
e43473b7 202
e43473b7
VG
203 struct request_queue *queue;
204
205 /* Total Number of queued bios on READ and WRITE lists */
206 unsigned int nr_queued[2];
207
297e3d85
SL
208 unsigned int throtl_slice;
209
e43473b7 210 /* Work for dispatching throttled bios */
69df0ab0 211 struct work_struct dispatch_work;
9f626e37
SL
212 unsigned int limit_index;
213 bool limit_valid[LIMIT_CNT];
3f0abd80
SL
214
215 unsigned long low_upgrade_time;
216 unsigned long low_downgrade_time;
7394e31f
SL
217
218 unsigned int scale;
b9147dd1 219
b889bf66
JQ
220 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
221 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
222 struct latency_bucket __percpu *latency_buckets[2];
b9147dd1 223 unsigned long last_calculate_time;
6679a90c 224 unsigned long filtered_latency;
b9147dd1
SL
225
226 bool track_bio_latency;
e43473b7
VG
227};
228
e99e88a9 229static void throtl_pending_timer_fn(struct timer_list *t);
69df0ab0 230
f95a04af
TH
231static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
232{
233 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
234}
235
3c798398 236static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
0381411e 237{
f95a04af 238 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
0381411e
TH
239}
240
3c798398 241static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 242{
f95a04af 243 return pd_to_blkg(&tg->pd);
0381411e
TH
244}
245
fda6f272
TH
246/**
247 * sq_to_tg - return the throl_grp the specified service queue belongs to
248 * @sq: the throtl_service_queue of interest
249 *
250 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
251 * embedded in throtl_data, %NULL is returned.
252 */
253static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
254{
255 if (sq && sq->parent_sq)
256 return container_of(sq, struct throtl_grp, service_queue);
257 else
258 return NULL;
259}
260
261/**
262 * sq_to_td - return throtl_data the specified service queue belongs to
263 * @sq: the throtl_service_queue of interest
264 *
b43daedc 265 * A service_queue can be embedded in either a throtl_grp or throtl_data.
fda6f272
TH
266 * Determine the associated throtl_data accordingly and return it.
267 */
268static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
269{
270 struct throtl_grp *tg = sq_to_tg(sq);
271
272 if (tg)
273 return tg->td;
274 else
275 return container_of(sq, struct throtl_data, service_queue);
276}
277
7394e31f
SL
278/*
279 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
280 * make the IO dispatch more smooth.
281 * Scale up: linearly scale up according to lapsed time since upgrade. For
282 * every throtl_slice, the limit scales up 1/2 .low limit till the
283 * limit hits .max limit
284 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
285 */
286static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
287{
288 /* arbitrary value to avoid too big scale */
289 if (td->scale < 4096 && time_after_eq(jiffies,
290 td->low_upgrade_time + td->scale * td->throtl_slice))
291 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
292
293 return low + (low >> 1) * td->scale;
294}
295
9f626e37
SL
296static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
297{
b22c417c 298 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 299 struct throtl_data *td;
b22c417c
SL
300 uint64_t ret;
301
302 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
303 return U64_MAX;
7394e31f
SL
304
305 td = tg->td;
306 ret = tg->bps[rw][td->limit_index];
9bb67aeb
SL
307 if (ret == 0 && td->limit_index == LIMIT_LOW) {
308 /* intermediate node or iops isn't 0 */
309 if (!list_empty(&blkg->blkcg->css.children) ||
310 tg->iops[rw][td->limit_index])
311 return U64_MAX;
312 else
313 return MIN_THROTL_BPS;
314 }
7394e31f
SL
315
316 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
317 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
318 uint64_t adjusted;
319
320 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
321 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
322 }
b22c417c 323 return ret;
9f626e37
SL
324}
325
326static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
327{
b22c417c 328 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 329 struct throtl_data *td;
b22c417c
SL
330 unsigned int ret;
331
332 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
333 return UINT_MAX;
9bb67aeb 334
7394e31f
SL
335 td = tg->td;
336 ret = tg->iops[rw][td->limit_index];
9bb67aeb
SL
337 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
338 /* intermediate node or bps isn't 0 */
339 if (!list_empty(&blkg->blkcg->css.children) ||
340 tg->bps[rw][td->limit_index])
341 return UINT_MAX;
342 else
343 return MIN_THROTL_IOPS;
344 }
7394e31f
SL
345
346 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
347 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
348 uint64_t adjusted;
349
350 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
351 if (adjusted > UINT_MAX)
352 adjusted = UINT_MAX;
353 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
354 }
b22c417c 355 return ret;
9f626e37
SL
356}
357
b9147dd1
SL
358#define request_bucket_index(sectors) \
359 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
360
fda6f272
TH
361/**
362 * throtl_log - log debug message via blktrace
363 * @sq: the service_queue being reported
364 * @fmt: printf format string
365 * @args: printf args
366 *
367 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
368 * throtl_grp; otherwise, just "throtl".
fda6f272
TH
369 */
370#define throtl_log(sq, fmt, args...) do { \
371 struct throtl_grp *__tg = sq_to_tg((sq)); \
372 struct throtl_data *__td = sq_to_td((sq)); \
373 \
374 (void)__td; \
59fa0224
SL
375 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
376 break; \
fda6f272 377 if ((__tg)) { \
35fe6d76
SL
378 blk_add_cgroup_trace_msg(__td->queue, \
379 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
fda6f272
TH
380 } else { \
381 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
382 } \
54e7ed12 383} while (0)
e43473b7 384
ea0ea2bc
SL
385static inline unsigned int throtl_bio_data_size(struct bio *bio)
386{
387 /* assume it's one sector */
388 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
389 return 512;
390 return bio->bi_iter.bi_size;
391}
392
c5cc2070
TH
393static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
394{
395 INIT_LIST_HEAD(&qn->node);
396 bio_list_init(&qn->bios);
397 qn->tg = tg;
398}
399
400/**
401 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
402 * @bio: bio being added
403 * @qn: qnode to add bio to
404 * @queued: the service_queue->queued[] list @qn belongs to
405 *
406 * Add @bio to @qn and put @qn on @queued if it's not already on.
407 * @qn->tg's reference count is bumped when @qn is activated. See the
408 * comment on top of throtl_qnode definition for details.
409 */
410static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
411 struct list_head *queued)
412{
413 bio_list_add(&qn->bios, bio);
414 if (list_empty(&qn->node)) {
415 list_add_tail(&qn->node, queued);
416 blkg_get(tg_to_blkg(qn->tg));
417 }
418}
419
420/**
421 * throtl_peek_queued - peek the first bio on a qnode list
422 * @queued: the qnode list to peek
423 */
424static struct bio *throtl_peek_queued(struct list_head *queued)
425{
426 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
427 struct bio *bio;
428
429 if (list_empty(queued))
430 return NULL;
431
432 bio = bio_list_peek(&qn->bios);
433 WARN_ON_ONCE(!bio);
434 return bio;
435}
436
437/**
438 * throtl_pop_queued - pop the first bio form a qnode list
439 * @queued: the qnode list to pop a bio from
440 * @tg_to_put: optional out argument for throtl_grp to put
441 *
442 * Pop the first bio from the qnode list @queued. After popping, the first
443 * qnode is removed from @queued if empty or moved to the end of @queued so
444 * that the popping order is round-robin.
445 *
446 * When the first qnode is removed, its associated throtl_grp should be put
447 * too. If @tg_to_put is NULL, this function automatically puts it;
448 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
449 * responsible for putting it.
450 */
451static struct bio *throtl_pop_queued(struct list_head *queued,
452 struct throtl_grp **tg_to_put)
453{
454 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
455 struct bio *bio;
456
457 if (list_empty(queued))
458 return NULL;
459
460 bio = bio_list_pop(&qn->bios);
461 WARN_ON_ONCE(!bio);
462
463 if (bio_list_empty(&qn->bios)) {
464 list_del_init(&qn->node);
465 if (tg_to_put)
466 *tg_to_put = qn->tg;
467 else
468 blkg_put(tg_to_blkg(qn->tg));
469 } else {
470 list_move_tail(&qn->node, queued);
471 }
472
473 return bio;
474}
475
49a2f1e3 476/* init a service_queue, assumes the caller zeroed it */
b2ce2643 477static void throtl_service_queue_init(struct throtl_service_queue *sq)
49a2f1e3 478{
c5cc2070
TH
479 INIT_LIST_HEAD(&sq->queued[0]);
480 INIT_LIST_HEAD(&sq->queued[1]);
9ff01255 481 sq->pending_tree = RB_ROOT_CACHED;
e99e88a9 482 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
69df0ab0
TH
483}
484
cf09a8ee
TH
485static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
486 struct request_queue *q,
487 struct blkcg *blkcg)
001bea73 488{
4fb72036 489 struct throtl_grp *tg;
24bdb8ef 490 int rw;
4fb72036 491
cf09a8ee 492 tg = kzalloc_node(sizeof(*tg), gfp, q->node);
4fb72036 493 if (!tg)
77ea7338 494 return NULL;
4fb72036 495
7ca46438
TH
496 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
497 goto err_free_tg;
498
499 if (blkg_rwstat_init(&tg->stat_ios, gfp))
500 goto err_exit_stat_bytes;
501
b2ce2643
TH
502 throtl_service_queue_init(&tg->service_queue);
503
504 for (rw = READ; rw <= WRITE; rw++) {
505 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
506 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
507 }
508
509 RB_CLEAR_NODE(&tg->rb_node);
9f626e37
SL
510 tg->bps[READ][LIMIT_MAX] = U64_MAX;
511 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
512 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
513 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
cd5ab1b0
SL
514 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
515 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
516 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
517 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
518 /* LIMIT_LOW will have default value 0 */
b2ce2643 519
ec80991d 520 tg->latency_target = DFL_LATENCY_TARGET;
5b81fc3c 521 tg->latency_target_conf = DFL_LATENCY_TARGET;
b4f428ef
SL
522 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
523 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
ec80991d 524
4fb72036 525 return &tg->pd;
7ca46438
TH
526
527err_exit_stat_bytes:
528 blkg_rwstat_exit(&tg->stat_bytes);
529err_free_tg:
530 kfree(tg);
531 return NULL;
001bea73
TH
532}
533
a9520cd6 534static void throtl_pd_init(struct blkg_policy_data *pd)
a29a171e 535{
a9520cd6
TH
536 struct throtl_grp *tg = pd_to_tg(pd);
537 struct blkcg_gq *blkg = tg_to_blkg(tg);
77216b04 538 struct throtl_data *td = blkg->q->td;
b2ce2643 539 struct throtl_service_queue *sq = &tg->service_queue;
cd1604fa 540
9138125b 541 /*
aa6ec29b 542 * If on the default hierarchy, we switch to properly hierarchical
9138125b
TH
543 * behavior where limits on a given throtl_grp are applied to the
544 * whole subtree rather than just the group itself. e.g. If 16M
545 * read_bps limit is set on the root group, the whole system can't
546 * exceed 16M for the device.
547 *
aa6ec29b 548 * If not on the default hierarchy, the broken flat hierarchy
9138125b
TH
549 * behavior is retained where all throtl_grps are treated as if
550 * they're all separate root groups right below throtl_data.
551 * Limits of a group don't interact with limits of other groups
552 * regardless of the position of the group in the hierarchy.
553 */
b2ce2643 554 sq->parent_sq = &td->service_queue;
9e10a130 555 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
b2ce2643 556 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
77216b04 557 tg->td = td;
8a3d2615
TH
558}
559
693e751e
TH
560/*
561 * Set has_rules[] if @tg or any of its parents have limits configured.
562 * This doesn't require walking up to the top of the hierarchy as the
563 * parent's has_rules[] is guaranteed to be correct.
564 */
565static void tg_update_has_rules(struct throtl_grp *tg)
566{
567 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
9f626e37 568 struct throtl_data *td = tg->td;
693e751e
TH
569 int rw;
570
571 for (rw = READ; rw <= WRITE; rw++)
572 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
9f626e37
SL
573 (td->limit_valid[td->limit_index] &&
574 (tg_bps_limit(tg, rw) != U64_MAX ||
575 tg_iops_limit(tg, rw) != UINT_MAX));
693e751e
TH
576}
577
a9520cd6 578static void throtl_pd_online(struct blkg_policy_data *pd)
693e751e 579{
aec24246 580 struct throtl_grp *tg = pd_to_tg(pd);
693e751e
TH
581 /*
582 * We don't want new groups to escape the limits of its ancestors.
583 * Update has_rules[] after a new group is brought online.
584 */
aec24246 585 tg_update_has_rules(tg);
693e751e
TH
586}
587
cd5ab1b0
SL
588static void blk_throtl_update_limit_valid(struct throtl_data *td)
589{
590 struct cgroup_subsys_state *pos_css;
591 struct blkcg_gq *blkg;
592 bool low_valid = false;
593
594 rcu_read_lock();
595 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
596 struct throtl_grp *tg = blkg_to_tg(blkg);
597
598 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
43ada787 599 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
cd5ab1b0 600 low_valid = true;
43ada787
LB
601 break;
602 }
cd5ab1b0
SL
603 }
604 rcu_read_unlock();
605
606 td->limit_valid[LIMIT_LOW] = low_valid;
607}
608
c79892c5 609static void throtl_upgrade_state(struct throtl_data *td);
cd5ab1b0
SL
610static void throtl_pd_offline(struct blkg_policy_data *pd)
611{
612 struct throtl_grp *tg = pd_to_tg(pd);
613
614 tg->bps[READ][LIMIT_LOW] = 0;
615 tg->bps[WRITE][LIMIT_LOW] = 0;
616 tg->iops[READ][LIMIT_LOW] = 0;
617 tg->iops[WRITE][LIMIT_LOW] = 0;
618
619 blk_throtl_update_limit_valid(tg->td);
620
c79892c5
SL
621 if (!tg->td->limit_valid[tg->td->limit_index])
622 throtl_upgrade_state(tg->td);
cd5ab1b0
SL
623}
624
001bea73
TH
625static void throtl_pd_free(struct blkg_policy_data *pd)
626{
4fb72036
TH
627 struct throtl_grp *tg = pd_to_tg(pd);
628
b2ce2643 629 del_timer_sync(&tg->service_queue.pending_timer);
7ca46438
TH
630 blkg_rwstat_exit(&tg->stat_bytes);
631 blkg_rwstat_exit(&tg->stat_ios);
4fb72036 632 kfree(tg);
001bea73
TH
633}
634
0049af73
TH
635static struct throtl_grp *
636throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7 637{
9ff01255 638 struct rb_node *n;
e43473b7 639 /* Service tree is empty */
0049af73 640 if (!parent_sq->nr_pending)
e43473b7
VG
641 return NULL;
642
9ff01255
LB
643 n = rb_first_cached(&parent_sq->pending_tree);
644 WARN_ON_ONCE(!n);
645 if (!n)
646 return NULL;
647 return rb_entry_tg(n);
e43473b7
VG
648}
649
0049af73
TH
650static void throtl_rb_erase(struct rb_node *n,
651 struct throtl_service_queue *parent_sq)
e43473b7 652{
9ff01255
LB
653 rb_erase_cached(n, &parent_sq->pending_tree);
654 RB_CLEAR_NODE(n);
0049af73 655 --parent_sq->nr_pending;
e43473b7
VG
656}
657
0049af73 658static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
659{
660 struct throtl_grp *tg;
661
0049af73 662 tg = throtl_rb_first(parent_sq);
e43473b7
VG
663 if (!tg)
664 return;
665
0049af73 666 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
667}
668
77216b04 669static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 670{
77216b04 671 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
9ff01255 672 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
e43473b7
VG
673 struct rb_node *parent = NULL;
674 struct throtl_grp *__tg;
675 unsigned long key = tg->disptime;
9ff01255 676 bool leftmost = true;
e43473b7
VG
677
678 while (*node != NULL) {
679 parent = *node;
680 __tg = rb_entry_tg(parent);
681
682 if (time_before(key, __tg->disptime))
683 node = &parent->rb_left;
684 else {
685 node = &parent->rb_right;
9ff01255 686 leftmost = false;
e43473b7
VG
687 }
688 }
689
e43473b7 690 rb_link_node(&tg->rb_node, parent, node);
9ff01255
LB
691 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
692 leftmost);
e43473b7
VG
693}
694
77216b04 695static void __throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 696{
77216b04 697 tg_service_queue_add(tg);
5b2c16aa 698 tg->flags |= THROTL_TG_PENDING;
77216b04 699 tg->service_queue.parent_sq->nr_pending++;
e43473b7
VG
700}
701
77216b04 702static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 703{
5b2c16aa 704 if (!(tg->flags & THROTL_TG_PENDING))
77216b04 705 __throtl_enqueue_tg(tg);
e43473b7
VG
706}
707
77216b04 708static void __throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 709{
77216b04 710 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
5b2c16aa 711 tg->flags &= ~THROTL_TG_PENDING;
e43473b7
VG
712}
713
77216b04 714static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 715{
5b2c16aa 716 if (tg->flags & THROTL_TG_PENDING)
77216b04 717 __throtl_dequeue_tg(tg);
e43473b7
VG
718}
719
a9131a27 720/* Call with queue lock held */
69df0ab0
TH
721static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
722 unsigned long expires)
a9131a27 723{
a41b816c 724 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
06cceedc
SL
725
726 /*
727 * Since we are adjusting the throttle limit dynamically, the sleep
728 * time calculated according to previous limit might be invalid. It's
729 * possible the cgroup sleep time is very long and no other cgroups
730 * have IO running so notify the limit changes. Make sure the cgroup
731 * doesn't sleep too long to avoid the missed notification.
732 */
733 if (time_after(expires, max_expire))
734 expires = max_expire;
69df0ab0
TH
735 mod_timer(&sq->pending_timer, expires);
736 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
737 expires - jiffies, jiffies);
a9131a27
TH
738}
739
7f52f98c
TH
740/**
741 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
742 * @sq: the service_queue to schedule dispatch for
743 * @force: force scheduling
744 *
745 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
746 * dispatch time of the first pending child. Returns %true if either timer
747 * is armed or there's no pending child left. %false if the current
748 * dispatch window is still open and the caller should continue
749 * dispatching.
750 *
751 * If @force is %true, the dispatch timer is always scheduled and this
752 * function is guaranteed to return %true. This is to be used when the
753 * caller can't dispatch itself and needs to invoke pending_timer
754 * unconditionally. Note that forced scheduling is likely to induce short
755 * delay before dispatch starts even if @sq->first_pending_disptime is not
756 * in the future and thus shouldn't be used in hot paths.
757 */
758static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
759 bool force)
e43473b7 760{
6a525600 761 /* any pending children left? */
c9e0332e 762 if (!sq->nr_pending)
7f52f98c 763 return true;
e43473b7 764
c9e0332e 765 update_min_dispatch_time(sq);
e43473b7 766
69df0ab0 767 /* is the next dispatch time in the future? */
7f52f98c 768 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 769 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 770 return true;
69df0ab0
TH
771 }
772
7f52f98c
TH
773 /* tell the caller to continue dispatching */
774 return false;
e43473b7
VG
775}
776
32ee5bc4
VG
777static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
778 bool rw, unsigned long start)
779{
780 tg->bytes_disp[rw] = 0;
781 tg->io_disp[rw] = 0;
782
783 /*
784 * Previous slice has expired. We must have trimmed it after last
785 * bio dispatch. That means since start of last slice, we never used
786 * that bandwidth. Do try to make use of that bandwidth while giving
787 * credit.
788 */
789 if (time_after_eq(start, tg->slice_start[rw]))
790 tg->slice_start[rw] = start;
791
297e3d85 792 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
32ee5bc4
VG
793 throtl_log(&tg->service_queue,
794 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
795 rw == READ ? 'R' : 'W', tg->slice_start[rw],
796 tg->slice_end[rw], jiffies);
797}
798
0f3457f6 799static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
e43473b7
VG
800{
801 tg->bytes_disp[rw] = 0;
8e89d13f 802 tg->io_disp[rw] = 0;
e43473b7 803 tg->slice_start[rw] = jiffies;
297e3d85 804 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
fda6f272
TH
805 throtl_log(&tg->service_queue,
806 "[%c] new slice start=%lu end=%lu jiffies=%lu",
807 rw == READ ? 'R' : 'W', tg->slice_start[rw],
808 tg->slice_end[rw], jiffies);
e43473b7
VG
809}
810
0f3457f6
TH
811static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
812 unsigned long jiffy_end)
d1ae8ffd 813{
297e3d85 814 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
d1ae8ffd
VG
815}
816
0f3457f6
TH
817static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
818 unsigned long jiffy_end)
e43473b7 819{
297e3d85 820 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
fda6f272
TH
821 throtl_log(&tg->service_queue,
822 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
823 rw == READ ? 'R' : 'W', tg->slice_start[rw],
824 tg->slice_end[rw], jiffies);
e43473b7
VG
825}
826
827/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 828static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
829{
830 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
5cf8c227 831 return false;
e43473b7 832
0b6bad7d 833 return true;
e43473b7
VG
834}
835
836/* Trim the used slices and adjust slice start accordingly */
0f3457f6 837static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 838{
3aad5d3e
VG
839 unsigned long nr_slices, time_elapsed, io_trim;
840 u64 bytes_trim, tmp;
e43473b7
VG
841
842 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
843
844 /*
845 * If bps are unlimited (-1), then time slice don't get
846 * renewed. Don't try to trim the slice if slice is used. A new
847 * slice will start when appropriate.
848 */
0f3457f6 849 if (throtl_slice_used(tg, rw))
e43473b7
VG
850 return;
851
d1ae8ffd
VG
852 /*
853 * A bio has been dispatched. Also adjust slice_end. It might happen
854 * that initially cgroup limit was very low resulting in high
b53b072c 855 * slice_end, but later limit was bumped up and bio was dispatched
d1ae8ffd
VG
856 * sooner, then we need to reduce slice_end. A high bogus slice_end
857 * is bad because it does not allow new slice to start.
858 */
859
297e3d85 860 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
d1ae8ffd 861
e43473b7
VG
862 time_elapsed = jiffies - tg->slice_start[rw];
863
297e3d85 864 nr_slices = time_elapsed / tg->td->throtl_slice;
e43473b7
VG
865
866 if (!nr_slices)
867 return;
297e3d85 868 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
3aad5d3e
VG
869 do_div(tmp, HZ);
870 bytes_trim = tmp;
e43473b7 871
297e3d85
SL
872 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
873 HZ;
e43473b7 874
8e89d13f 875 if (!bytes_trim && !io_trim)
e43473b7
VG
876 return;
877
878 if (tg->bytes_disp[rw] >= bytes_trim)
879 tg->bytes_disp[rw] -= bytes_trim;
880 else
881 tg->bytes_disp[rw] = 0;
882
8e89d13f
VG
883 if (tg->io_disp[rw] >= io_trim)
884 tg->io_disp[rw] -= io_trim;
885 else
886 tg->io_disp[rw] = 0;
887
297e3d85 888 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
e43473b7 889
fda6f272
TH
890 throtl_log(&tg->service_queue,
891 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
892 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
893 tg->slice_start[rw], tg->slice_end[rw], jiffies);
e43473b7
VG
894}
895
0f3457f6 896static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
4599ea49 897 u32 iops_limit, unsigned long *wait)
e43473b7
VG
898{
899 bool rw = bio_data_dir(bio);
8e89d13f 900 unsigned int io_allowed;
e43473b7 901 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
c49c06e4 902 u64 tmp;
e43473b7 903
87fbeb88
BW
904 if (iops_limit == UINT_MAX) {
905 if (wait)
906 *wait = 0;
907 return true;
908 }
909
3a10f999 910 jiffy_elapsed = jiffies - tg->slice_start[rw];
e43473b7 911
3a10f999
KK
912 /* Round up to the next throttle slice, wait time must be nonzero */
913 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
8e89d13f 914
c49c06e4
VG
915 /*
916 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
917 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
918 * will allow dispatch after 1 second and after that slice should
919 * have been trimmed.
920 */
921
4599ea49 922 tmp = (u64)iops_limit * jiffy_elapsed_rnd;
c49c06e4
VG
923 do_div(tmp, HZ);
924
925 if (tmp > UINT_MAX)
926 io_allowed = UINT_MAX;
927 else
928 io_allowed = tmp;
8e89d13f
VG
929
930 if (tg->io_disp[rw] + 1 <= io_allowed) {
e43473b7
VG
931 if (wait)
932 *wait = 0;
5cf8c227 933 return true;
e43473b7
VG
934 }
935
8e89d13f 936 /* Calc approx time to dispatch */
991f61fe 937 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
8e89d13f
VG
938
939 if (wait)
940 *wait = jiffy_wait;
0b6bad7d 941 return false;
8e89d13f
VG
942}
943
0f3457f6 944static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
4599ea49 945 u64 bps_limit, unsigned long *wait)
8e89d13f
VG
946{
947 bool rw = bio_data_dir(bio);
3aad5d3e 948 u64 bytes_allowed, extra_bytes, tmp;
8e89d13f 949 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
ea0ea2bc 950 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7 951
87fbeb88
BW
952 if (bps_limit == U64_MAX) {
953 if (wait)
954 *wait = 0;
955 return true;
956 }
957
e43473b7
VG
958 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
959
960 /* Slice has just started. Consider one slice interval */
961 if (!jiffy_elapsed)
297e3d85 962 jiffy_elapsed_rnd = tg->td->throtl_slice;
e43473b7 963
297e3d85 964 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
e43473b7 965
4599ea49 966 tmp = bps_limit * jiffy_elapsed_rnd;
5e901a2b 967 do_div(tmp, HZ);
3aad5d3e 968 bytes_allowed = tmp;
e43473b7 969
ea0ea2bc 970 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
e43473b7
VG
971 if (wait)
972 *wait = 0;
5cf8c227 973 return true;
e43473b7
VG
974 }
975
976 /* Calc approx time to dispatch */
ea0ea2bc 977 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
4599ea49 978 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
e43473b7
VG
979
980 if (!jiffy_wait)
981 jiffy_wait = 1;
982
983 /*
984 * This wait time is without taking into consideration the rounding
985 * up we did. Add that time also.
986 */
987 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
e43473b7
VG
988 if (wait)
989 *wait = jiffy_wait;
0b6bad7d 990 return false;
8e89d13f
VG
991}
992
993/*
994 * Returns whether one can dispatch a bio or not. Also returns approx number
995 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
996 */
0f3457f6
TH
997static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
998 unsigned long *wait)
8e89d13f
VG
999{
1000 bool rw = bio_data_dir(bio);
1001 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
4599ea49
BW
1002 u64 bps_limit = tg_bps_limit(tg, rw);
1003 u32 iops_limit = tg_iops_limit(tg, rw);
8e89d13f
VG
1004
1005 /*
1006 * Currently whole state machine of group depends on first bio
1007 * queued in the group bio list. So one should not be calling
1008 * this function with a different bio if there are other bios
1009 * queued.
1010 */
73f0d49a 1011 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 1012 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 1013
8e89d13f 1014 /* If tg->bps = -1, then BW is unlimited */
4599ea49 1015 if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
8e89d13f
VG
1016 if (wait)
1017 *wait = 0;
5cf8c227 1018 return true;
8e89d13f
VG
1019 }
1020
1021 /*
1022 * If previous slice expired, start a new one otherwise renew/extend
1023 * existing slice to make sure it is at least throtl_slice interval
164c80ed
VG
1024 * long since now. New slice is started only for empty throttle group.
1025 * If there is queued bio, that means there should be an active
1026 * slice and it should be extended instead.
8e89d13f 1027 */
164c80ed 1028 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
0f3457f6 1029 throtl_start_new_slice(tg, rw);
8e89d13f 1030 else {
297e3d85
SL
1031 if (time_before(tg->slice_end[rw],
1032 jiffies + tg->td->throtl_slice))
1033 throtl_extend_slice(tg, rw,
1034 jiffies + tg->td->throtl_slice);
8e89d13f
VG
1035 }
1036
4599ea49
BW
1037 if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
1038 tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
8e89d13f
VG
1039 if (wait)
1040 *wait = 0;
0b6bad7d 1041 return true;
8e89d13f
VG
1042 }
1043
1044 max_wait = max(bps_wait, iops_wait);
1045
1046 if (wait)
1047 *wait = max_wait;
1048
1049 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 1050 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7 1051
0b6bad7d 1052 return false;
e43473b7
VG
1053}
1054
1055static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1056{
1057 bool rw = bio_data_dir(bio);
ea0ea2bc 1058 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7
VG
1059
1060 /* Charge the bio to the group */
ea0ea2bc 1061 tg->bytes_disp[rw] += bio_size;
8e89d13f 1062 tg->io_disp[rw]++;
ea0ea2bc 1063 tg->last_bytes_disp[rw] += bio_size;
3f0abd80 1064 tg->last_io_disp[rw]++;
e43473b7 1065
2a0f61e6 1066 /*
8d2bbd4c 1067 * BIO_THROTTLED is used to prevent the same bio to be throttled
2a0f61e6
TH
1068 * more than once as a throttled bio will go through blk-throtl the
1069 * second time when it eventually gets issued. Set it when a bio
1070 * is being charged to a tg.
2a0f61e6 1071 */
8d2bbd4c
CH
1072 if (!bio_flagged(bio, BIO_THROTTLED))
1073 bio_set_flag(bio, BIO_THROTTLED);
e43473b7
VG
1074}
1075
c5cc2070
TH
1076/**
1077 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1078 * @bio: bio to add
1079 * @qn: qnode to use
1080 * @tg: the target throtl_grp
1081 *
1082 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1083 * tg->qnode_on_self[] is used.
1084 */
1085static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1086 struct throtl_grp *tg)
e43473b7 1087{
73f0d49a 1088 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1089 bool rw = bio_data_dir(bio);
1090
c5cc2070
TH
1091 if (!qn)
1092 qn = &tg->qnode_on_self[rw];
1093
0e9f4164
TH
1094 /*
1095 * If @tg doesn't currently have any bios queued in the same
1096 * direction, queueing @bio can change when @tg should be
1097 * dispatched. Mark that @tg was empty. This is automatically
b53b072c 1098 * cleared on the next tg_update_disptime().
0e9f4164
TH
1099 */
1100 if (!sq->nr_queued[rw])
1101 tg->flags |= THROTL_TG_WAS_EMPTY;
1102
c5cc2070
TH
1103 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1104
73f0d49a 1105 sq->nr_queued[rw]++;
77216b04 1106 throtl_enqueue_tg(tg);
e43473b7
VG
1107}
1108
77216b04 1109static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 1110{
73f0d49a 1111 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1112 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1113 struct bio *bio;
1114
d609af3a
ME
1115 bio = throtl_peek_queued(&sq->queued[READ]);
1116 if (bio)
0f3457f6 1117 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 1118
d609af3a
ME
1119 bio = throtl_peek_queued(&sq->queued[WRITE]);
1120 if (bio)
0f3457f6 1121 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
1122
1123 min_wait = min(read_wait, write_wait);
1124 disptime = jiffies + min_wait;
1125
e43473b7 1126 /* Update dispatch time */
77216b04 1127 throtl_dequeue_tg(tg);
e43473b7 1128 tg->disptime = disptime;
77216b04 1129 throtl_enqueue_tg(tg);
0e9f4164
TH
1130
1131 /* see throtl_add_bio_tg() */
1132 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
1133}
1134
32ee5bc4
VG
1135static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1136 struct throtl_grp *parent_tg, bool rw)
1137{
1138 if (throtl_slice_used(parent_tg, rw)) {
1139 throtl_start_new_slice_with_credit(parent_tg, rw,
1140 child_tg->slice_start[rw]);
1141 }
1142
1143}
1144
77216b04 1145static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 1146{
73f0d49a 1147 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
1148 struct throtl_service_queue *parent_sq = sq->parent_sq;
1149 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 1150 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
1151 struct bio *bio;
1152
c5cc2070
TH
1153 /*
1154 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1155 * from @tg may put its reference and @parent_sq might end up
1156 * getting released prematurely. Remember the tg to put and put it
1157 * after @bio is transferred to @parent_sq.
1158 */
1159 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 1160 sq->nr_queued[rw]--;
e43473b7
VG
1161
1162 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
1163
1164 /*
1165 * If our parent is another tg, we just need to transfer @bio to
1166 * the parent using throtl_add_bio_tg(). If our parent is
1167 * @td->service_queue, @bio is ready to be issued. Put it on its
1168 * bio_lists[] and decrease total number queued. The caller is
1169 * responsible for issuing these bios.
1170 */
1171 if (parent_tg) {
c5cc2070 1172 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 1173 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 1174 } else {
c5cc2070
TH
1175 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1176 &parent_sq->queued[rw]);
6bc9c2b4
TH
1177 BUG_ON(tg->td->nr_queued[rw] <= 0);
1178 tg->td->nr_queued[rw]--;
1179 }
e43473b7 1180
0f3457f6 1181 throtl_trim_slice(tg, rw);
6bc9c2b4 1182
c5cc2070
TH
1183 if (tg_to_put)
1184 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1185}
1186
77216b04 1187static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1188{
73f0d49a 1189 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7 1190 unsigned int nr_reads = 0, nr_writes = 0;
e675df2a
BW
1191 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1192 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
e43473b7
VG
1193 struct bio *bio;
1194
1195 /* Try to dispatch 75% READS and 25% WRITES */
1196
c5cc2070 1197 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1198 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1199
77216b04 1200 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1201 nr_reads++;
1202
1203 if (nr_reads >= max_nr_reads)
1204 break;
1205 }
1206
c5cc2070 1207 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1208 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1209
77216b04 1210 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1211 nr_writes++;
1212
1213 if (nr_writes >= max_nr_writes)
1214 break;
1215 }
1216
1217 return nr_reads + nr_writes;
1218}
1219
651930bc 1220static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1221{
1222 unsigned int nr_disp = 0;
e43473b7
VG
1223
1224 while (1) {
73f0d49a 1225 struct throtl_grp *tg = throtl_rb_first(parent_sq);
2ab74cd2 1226 struct throtl_service_queue *sq;
e43473b7
VG
1227
1228 if (!tg)
1229 break;
1230
1231 if (time_before(jiffies, tg->disptime))
1232 break;
1233
77216b04 1234 throtl_dequeue_tg(tg);
e43473b7 1235
77216b04 1236 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1237
2ab74cd2 1238 sq = &tg->service_queue;
73f0d49a 1239 if (sq->nr_queued[0] || sq->nr_queued[1])
77216b04 1240 tg_update_disptime(tg);
e43473b7 1241
e675df2a 1242 if (nr_disp >= THROTL_QUANTUM)
e43473b7
VG
1243 break;
1244 }
1245
1246 return nr_disp;
1247}
1248
c79892c5
SL
1249static bool throtl_can_upgrade(struct throtl_data *td,
1250 struct throtl_grp *this_tg);
6e1a5704
TH
1251/**
1252 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
216382dc 1253 * @t: the pending_timer member of the throtl_service_queue being serviced
6e1a5704
TH
1254 *
1255 * This timer is armed when a child throtl_grp with active bio's become
1256 * pending and queued on the service_queue's pending_tree and expires when
1257 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1258 * dispatches bio's from the children throtl_grps to the parent
1259 * service_queue.
1260 *
1261 * If the parent's parent is another throtl_grp, dispatching is propagated
1262 * by either arming its pending_timer or repeating dispatch directly. If
1263 * the top-level service_tree is reached, throtl_data->dispatch_work is
1264 * kicked so that the ready bio's are issued.
6e1a5704 1265 */
e99e88a9 1266static void throtl_pending_timer_fn(struct timer_list *t)
69df0ab0 1267{
e99e88a9 1268 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
2e48a530 1269 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1270 struct throtl_data *td = sq_to_td(sq);
cb76199c 1271 struct request_queue *q = td->queue;
2e48a530
TH
1272 struct throtl_service_queue *parent_sq;
1273 bool dispatched;
6e1a5704 1274 int ret;
e43473b7 1275
0d945c1f 1276 spin_lock_irq(&q->queue_lock);
c79892c5
SL
1277 if (throtl_can_upgrade(td, NULL))
1278 throtl_upgrade_state(td);
1279
2e48a530
TH
1280again:
1281 parent_sq = sq->parent_sq;
1282 dispatched = false;
e43473b7 1283
7f52f98c
TH
1284 while (true) {
1285 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1286 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1287 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1288
1289 ret = throtl_select_dispatch(sq);
1290 if (ret) {
7f52f98c
TH
1291 throtl_log(sq, "bios disp=%u", ret);
1292 dispatched = true;
1293 }
e43473b7 1294
7f52f98c
TH
1295 if (throtl_schedule_next_dispatch(sq, false))
1296 break;
e43473b7 1297
7f52f98c 1298 /* this dispatch windows is still open, relax and repeat */
0d945c1f 1299 spin_unlock_irq(&q->queue_lock);
7f52f98c 1300 cpu_relax();
0d945c1f 1301 spin_lock_irq(&q->queue_lock);
651930bc 1302 }
e43473b7 1303
2e48a530
TH
1304 if (!dispatched)
1305 goto out_unlock;
6e1a5704 1306
2e48a530
TH
1307 if (parent_sq) {
1308 /* @parent_sq is another throl_grp, propagate dispatch */
1309 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1310 tg_update_disptime(tg);
1311 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1312 /* window is already open, repeat dispatching */
1313 sq = parent_sq;
1314 tg = sq_to_tg(sq);
1315 goto again;
1316 }
1317 }
1318 } else {
b53b072c 1319 /* reached the top-level, queue issuing */
2e48a530
TH
1320 queue_work(kthrotld_workqueue, &td->dispatch_work);
1321 }
1322out_unlock:
0d945c1f 1323 spin_unlock_irq(&q->queue_lock);
6e1a5704 1324}
e43473b7 1325
6e1a5704
TH
1326/**
1327 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1328 * @work: work item being executed
1329 *
b53b072c
BW
1330 * This function is queued for execution when bios reach the bio_lists[]
1331 * of throtl_data->service_queue. Those bios are ready and issued by this
6e1a5704
TH
1332 * function.
1333 */
8876e140 1334static void blk_throtl_dispatch_work_fn(struct work_struct *work)
6e1a5704
TH
1335{
1336 struct throtl_data *td = container_of(work, struct throtl_data,
1337 dispatch_work);
1338 struct throtl_service_queue *td_sq = &td->service_queue;
1339 struct request_queue *q = td->queue;
1340 struct bio_list bio_list_on_stack;
1341 struct bio *bio;
1342 struct blk_plug plug;
1343 int rw;
1344
1345 bio_list_init(&bio_list_on_stack);
1346
0d945c1f 1347 spin_lock_irq(&q->queue_lock);
c5cc2070
TH
1348 for (rw = READ; rw <= WRITE; rw++)
1349 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1350 bio_list_add(&bio_list_on_stack, bio);
0d945c1f 1351 spin_unlock_irq(&q->queue_lock);
6e1a5704
TH
1352
1353 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1354 blk_start_plug(&plug);
ed00aabd
CH
1355 while ((bio = bio_list_pop(&bio_list_on_stack)))
1356 submit_bio_noacct(bio);
69d60eb9 1357 blk_finish_plug(&plug);
e43473b7 1358 }
e43473b7
VG
1359}
1360
f95a04af
TH
1361static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1362 int off)
60c2bc2d 1363{
f95a04af
TH
1364 struct throtl_grp *tg = pd_to_tg(pd);
1365 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1366
2ab5492d 1367 if (v == U64_MAX)
60c2bc2d 1368 return 0;
f95a04af 1369 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1370}
1371
f95a04af
TH
1372static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1373 int off)
e43473b7 1374{
f95a04af
TH
1375 struct throtl_grp *tg = pd_to_tg(pd);
1376 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1377
2ab5492d 1378 if (v == UINT_MAX)
af133ceb 1379 return 0;
f95a04af 1380 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1381}
1382
2da8ca82 1383static int tg_print_conf_u64(struct seq_file *sf, void *v)
8e89d13f 1384{
2da8ca82
TH
1385 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1386 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1387 return 0;
8e89d13f
VG
1388}
1389
2da8ca82 1390static int tg_print_conf_uint(struct seq_file *sf, void *v)
8e89d13f 1391{
2da8ca82
TH
1392 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1393 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1394 return 0;
60c2bc2d
TH
1395}
1396
9bb67aeb 1397static void tg_conf_updated(struct throtl_grp *tg, bool global)
60c2bc2d 1398{
69948b07 1399 struct throtl_service_queue *sq = &tg->service_queue;
492eb21b 1400 struct cgroup_subsys_state *pos_css;
69948b07 1401 struct blkcg_gq *blkg;
af133ceb 1402
fda6f272
TH
1403 throtl_log(&tg->service_queue,
1404 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
9f626e37
SL
1405 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1406 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
632b4493 1407
693e751e
TH
1408 /*
1409 * Update has_rules[] flags for the updated tg's subtree. A tg is
1410 * considered to have rules if either the tg itself or any of its
1411 * ancestors has rules. This identifies groups without any
1412 * restrictions in the whole hierarchy and allows them to bypass
1413 * blk-throttle.
1414 */
9bb67aeb
SL
1415 blkg_for_each_descendant_pre(blkg, pos_css,
1416 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
5b81fc3c
SL
1417 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1418 struct throtl_grp *parent_tg;
1419
1420 tg_update_has_rules(this_tg);
1421 /* ignore root/second level */
1422 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1423 !blkg->parent->parent)
1424 continue;
1425 parent_tg = blkg_to_tg(blkg->parent);
1426 /*
1427 * make sure all children has lower idle time threshold and
1428 * higher latency target
1429 */
1430 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1431 parent_tg->idletime_threshold);
1432 this_tg->latency_target = max(this_tg->latency_target,
1433 parent_tg->latency_target);
1434 }
693e751e 1435
632b4493
TH
1436 /*
1437 * We're already holding queue_lock and know @tg is valid. Let's
1438 * apply the new config directly.
1439 *
1440 * Restart the slices for both READ and WRITES. It might happen
1441 * that a group's limit are dropped suddenly and we don't want to
1442 * account recently dispatched IO with new low rate.
1443 */
ff8b22c0
BW
1444 throtl_start_new_slice(tg, READ);
1445 throtl_start_new_slice(tg, WRITE);
632b4493 1446
5b2c16aa 1447 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1448 tg_update_disptime(tg);
7f52f98c 1449 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1450 }
69948b07
TH
1451}
1452
1453static ssize_t tg_set_conf(struct kernfs_open_file *of,
1454 char *buf, size_t nbytes, loff_t off, bool is_u64)
1455{
1456 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1457 struct blkg_conf_ctx ctx;
1458 struct throtl_grp *tg;
1459 int ret;
1460 u64 v;
1461
1462 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1463 if (ret)
1464 return ret;
1465
1466 ret = -EINVAL;
1467 if (sscanf(ctx.body, "%llu", &v) != 1)
1468 goto out_finish;
1469 if (!v)
2ab5492d 1470 v = U64_MAX;
69948b07
TH
1471
1472 tg = blkg_to_tg(ctx.blkg);
1473
1474 if (is_u64)
1475 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1476 else
1477 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
60c2bc2d 1478
9bb67aeb 1479 tg_conf_updated(tg, false);
36aa9e5f
TH
1480 ret = 0;
1481out_finish:
60c2bc2d 1482 blkg_conf_finish(&ctx);
36aa9e5f 1483 return ret ?: nbytes;
8e89d13f
VG
1484}
1485
451af504
TH
1486static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1487 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1488{
451af504 1489 return tg_set_conf(of, buf, nbytes, off, true);
60c2bc2d
TH
1490}
1491
451af504
TH
1492static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1493 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1494{
451af504 1495 return tg_set_conf(of, buf, nbytes, off, false);
60c2bc2d
TH
1496}
1497
7ca46438
TH
1498static int tg_print_rwstat(struct seq_file *sf, void *v)
1499{
1500 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1501 blkg_prfill_rwstat, &blkcg_policy_throtl,
1502 seq_cft(sf)->private, true);
1503 return 0;
1504}
1505
1506static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1507 struct blkg_policy_data *pd, int off)
1508{
1509 struct blkg_rwstat_sample sum;
1510
1511 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1512 &sum);
1513 return __blkg_prfill_rwstat(sf, pd, &sum);
1514}
1515
1516static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1517{
1518 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1519 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1520 seq_cft(sf)->private, true);
1521 return 0;
1522}
1523
880f50e2 1524static struct cftype throtl_legacy_files[] = {
60c2bc2d
TH
1525 {
1526 .name = "throttle.read_bps_device",
9f626e37 1527 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
2da8ca82 1528 .seq_show = tg_print_conf_u64,
451af504 1529 .write = tg_set_conf_u64,
60c2bc2d
TH
1530 },
1531 {
1532 .name = "throttle.write_bps_device",
9f626e37 1533 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
2da8ca82 1534 .seq_show = tg_print_conf_u64,
451af504 1535 .write = tg_set_conf_u64,
60c2bc2d
TH
1536 },
1537 {
1538 .name = "throttle.read_iops_device",
9f626e37 1539 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
2da8ca82 1540 .seq_show = tg_print_conf_uint,
451af504 1541 .write = tg_set_conf_uint,
60c2bc2d
TH
1542 },
1543 {
1544 .name = "throttle.write_iops_device",
9f626e37 1545 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
2da8ca82 1546 .seq_show = tg_print_conf_uint,
451af504 1547 .write = tg_set_conf_uint,
60c2bc2d
TH
1548 },
1549 {
1550 .name = "throttle.io_service_bytes",
7ca46438
TH
1551 .private = offsetof(struct throtl_grp, stat_bytes),
1552 .seq_show = tg_print_rwstat,
60c2bc2d 1553 },
17534c6f 1554 {
1555 .name = "throttle.io_service_bytes_recursive",
7ca46438
TH
1556 .private = offsetof(struct throtl_grp, stat_bytes),
1557 .seq_show = tg_print_rwstat_recursive,
17534c6f 1558 },
60c2bc2d
TH
1559 {
1560 .name = "throttle.io_serviced",
7ca46438
TH
1561 .private = offsetof(struct throtl_grp, stat_ios),
1562 .seq_show = tg_print_rwstat,
60c2bc2d 1563 },
17534c6f 1564 {
1565 .name = "throttle.io_serviced_recursive",
7ca46438
TH
1566 .private = offsetof(struct throtl_grp, stat_ios),
1567 .seq_show = tg_print_rwstat_recursive,
17534c6f 1568 },
60c2bc2d
TH
1569 { } /* terminate */
1570};
1571
cd5ab1b0 1572static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
2ee867dc
TH
1573 int off)
1574{
1575 struct throtl_grp *tg = pd_to_tg(pd);
1576 const char *dname = blkg_dev_name(pd->blkg);
1577 char bufs[4][21] = { "max", "max", "max", "max" };
cd5ab1b0
SL
1578 u64 bps_dft;
1579 unsigned int iops_dft;
ada75b6e 1580 char idle_time[26] = "";
ec80991d 1581 char latency_time[26] = "";
2ee867dc
TH
1582
1583 if (!dname)
1584 return 0;
9f626e37 1585
cd5ab1b0
SL
1586 if (off == LIMIT_LOW) {
1587 bps_dft = 0;
1588 iops_dft = 0;
1589 } else {
1590 bps_dft = U64_MAX;
1591 iops_dft = UINT_MAX;
1592 }
1593
1594 if (tg->bps_conf[READ][off] == bps_dft &&
1595 tg->bps_conf[WRITE][off] == bps_dft &&
1596 tg->iops_conf[READ][off] == iops_dft &&
ada75b6e 1597 tg->iops_conf[WRITE][off] == iops_dft &&
ec80991d 1598 (off != LIMIT_LOW ||
b4f428ef 1599 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
5b81fc3c 1600 tg->latency_target_conf == DFL_LATENCY_TARGET)))
2ee867dc
TH
1601 return 0;
1602
9bb67aeb 1603 if (tg->bps_conf[READ][off] != U64_MAX)
9f626e37 1604 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
cd5ab1b0 1605 tg->bps_conf[READ][off]);
9bb67aeb 1606 if (tg->bps_conf[WRITE][off] != U64_MAX)
9f626e37 1607 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
cd5ab1b0 1608 tg->bps_conf[WRITE][off]);
9bb67aeb 1609 if (tg->iops_conf[READ][off] != UINT_MAX)
9f626e37 1610 snprintf(bufs[2], sizeof(bufs[2]), "%u",
cd5ab1b0 1611 tg->iops_conf[READ][off]);
9bb67aeb 1612 if (tg->iops_conf[WRITE][off] != UINT_MAX)
9f626e37 1613 snprintf(bufs[3], sizeof(bufs[3]), "%u",
cd5ab1b0 1614 tg->iops_conf[WRITE][off]);
ada75b6e 1615 if (off == LIMIT_LOW) {
5b81fc3c 1616 if (tg->idletime_threshold_conf == ULONG_MAX)
ada75b6e
SL
1617 strcpy(idle_time, " idle=max");
1618 else
1619 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
5b81fc3c 1620 tg->idletime_threshold_conf);
ec80991d 1621
5b81fc3c 1622 if (tg->latency_target_conf == ULONG_MAX)
ec80991d
SL
1623 strcpy(latency_time, " latency=max");
1624 else
1625 snprintf(latency_time, sizeof(latency_time),
5b81fc3c 1626 " latency=%lu", tg->latency_target_conf);
ada75b6e 1627 }
2ee867dc 1628
ec80991d
SL
1629 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1630 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1631 latency_time);
2ee867dc
TH
1632 return 0;
1633}
1634
cd5ab1b0 1635static int tg_print_limit(struct seq_file *sf, void *v)
2ee867dc 1636{
cd5ab1b0 1637 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
2ee867dc
TH
1638 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1639 return 0;
1640}
1641
cd5ab1b0 1642static ssize_t tg_set_limit(struct kernfs_open_file *of,
2ee867dc
TH
1643 char *buf, size_t nbytes, loff_t off)
1644{
1645 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1646 struct blkg_conf_ctx ctx;
1647 struct throtl_grp *tg;
1648 u64 v[4];
ada75b6e 1649 unsigned long idle_time;
ec80991d 1650 unsigned long latency_time;
2ee867dc 1651 int ret;
cd5ab1b0 1652 int index = of_cft(of)->private;
2ee867dc
TH
1653
1654 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1655 if (ret)
1656 return ret;
1657
1658 tg = blkg_to_tg(ctx.blkg);
1659
cd5ab1b0
SL
1660 v[0] = tg->bps_conf[READ][index];
1661 v[1] = tg->bps_conf[WRITE][index];
1662 v[2] = tg->iops_conf[READ][index];
1663 v[3] = tg->iops_conf[WRITE][index];
2ee867dc 1664
5b81fc3c
SL
1665 idle_time = tg->idletime_threshold_conf;
1666 latency_time = tg->latency_target_conf;
2ee867dc
TH
1667 while (true) {
1668 char tok[27]; /* wiops=18446744073709551616 */
1669 char *p;
2ab5492d 1670 u64 val = U64_MAX;
2ee867dc
TH
1671 int len;
1672
1673 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1674 break;
1675 if (tok[0] == '\0')
1676 break;
1677 ctx.body += len;
1678
1679 ret = -EINVAL;
1680 p = tok;
1681 strsep(&p, "=");
1682 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1683 goto out_finish;
1684
1685 ret = -ERANGE;
1686 if (!val)
1687 goto out_finish;
1688
1689 ret = -EINVAL;
1690 if (!strcmp(tok, "rbps"))
1691 v[0] = val;
1692 else if (!strcmp(tok, "wbps"))
1693 v[1] = val;
1694 else if (!strcmp(tok, "riops"))
1695 v[2] = min_t(u64, val, UINT_MAX);
1696 else if (!strcmp(tok, "wiops"))
1697 v[3] = min_t(u64, val, UINT_MAX);
ada75b6e
SL
1698 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1699 idle_time = val;
ec80991d
SL
1700 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1701 latency_time = val;
2ee867dc
TH
1702 else
1703 goto out_finish;
1704 }
1705
cd5ab1b0
SL
1706 tg->bps_conf[READ][index] = v[0];
1707 tg->bps_conf[WRITE][index] = v[1];
1708 tg->iops_conf[READ][index] = v[2];
1709 tg->iops_conf[WRITE][index] = v[3];
2ee867dc 1710
cd5ab1b0
SL
1711 if (index == LIMIT_MAX) {
1712 tg->bps[READ][index] = v[0];
1713 tg->bps[WRITE][index] = v[1];
1714 tg->iops[READ][index] = v[2];
1715 tg->iops[WRITE][index] = v[3];
1716 }
1717 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1718 tg->bps_conf[READ][LIMIT_MAX]);
1719 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1720 tg->bps_conf[WRITE][LIMIT_MAX]);
1721 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1722 tg->iops_conf[READ][LIMIT_MAX]);
1723 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1724 tg->iops_conf[WRITE][LIMIT_MAX]);
b4f428ef
SL
1725 tg->idletime_threshold_conf = idle_time;
1726 tg->latency_target_conf = latency_time;
1727
1728 /* force user to configure all settings for low limit */
1729 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1730 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1731 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1732 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1733 tg->bps[READ][LIMIT_LOW] = 0;
1734 tg->bps[WRITE][LIMIT_LOW] = 0;
1735 tg->iops[READ][LIMIT_LOW] = 0;
1736 tg->iops[WRITE][LIMIT_LOW] = 0;
1737 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1738 tg->latency_target = DFL_LATENCY_TARGET;
1739 } else if (index == LIMIT_LOW) {
5b81fc3c 1740 tg->idletime_threshold = tg->idletime_threshold_conf;
5b81fc3c 1741 tg->latency_target = tg->latency_target_conf;
cd5ab1b0 1742 }
b4f428ef
SL
1743
1744 blk_throtl_update_limit_valid(tg->td);
1745 if (tg->td->limit_valid[LIMIT_LOW]) {
1746 if (index == LIMIT_LOW)
1747 tg->td->limit_index = LIMIT_LOW;
1748 } else
1749 tg->td->limit_index = LIMIT_MAX;
9bb67aeb
SL
1750 tg_conf_updated(tg, index == LIMIT_LOW &&
1751 tg->td->limit_valid[LIMIT_LOW]);
2ee867dc
TH
1752 ret = 0;
1753out_finish:
1754 blkg_conf_finish(&ctx);
1755 return ret ?: nbytes;
1756}
1757
1758static struct cftype throtl_files[] = {
cd5ab1b0
SL
1759#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1760 {
1761 .name = "low",
1762 .flags = CFTYPE_NOT_ON_ROOT,
1763 .seq_show = tg_print_limit,
1764 .write = tg_set_limit,
1765 .private = LIMIT_LOW,
1766 },
1767#endif
2ee867dc
TH
1768 {
1769 .name = "max",
1770 .flags = CFTYPE_NOT_ON_ROOT,
cd5ab1b0
SL
1771 .seq_show = tg_print_limit,
1772 .write = tg_set_limit,
1773 .private = LIMIT_MAX,
2ee867dc
TH
1774 },
1775 { } /* terminate */
1776};
1777
da527770 1778static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1779{
1780 struct throtl_data *td = q->td;
1781
69df0ab0 1782 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1783}
1784
3c798398 1785static struct blkcg_policy blkcg_policy_throtl = {
2ee867dc 1786 .dfl_cftypes = throtl_files,
880f50e2 1787 .legacy_cftypes = throtl_legacy_files,
f9fcc2d3 1788
001bea73 1789 .pd_alloc_fn = throtl_pd_alloc,
f9fcc2d3 1790 .pd_init_fn = throtl_pd_init,
693e751e 1791 .pd_online_fn = throtl_pd_online,
cd5ab1b0 1792 .pd_offline_fn = throtl_pd_offline,
001bea73 1793 .pd_free_fn = throtl_pd_free,
e43473b7
VG
1794};
1795
3f0abd80
SL
1796static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1797{
1798 unsigned long rtime = jiffies, wtime = jiffies;
1799
1800 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1801 rtime = tg->last_low_overflow_time[READ];
1802 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1803 wtime = tg->last_low_overflow_time[WRITE];
1804 return min(rtime, wtime);
1805}
1806
1807/* tg should not be an intermediate node */
1808static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1809{
1810 struct throtl_service_queue *parent_sq;
1811 struct throtl_grp *parent = tg;
1812 unsigned long ret = __tg_last_low_overflow_time(tg);
1813
1814 while (true) {
1815 parent_sq = parent->service_queue.parent_sq;
1816 parent = sq_to_tg(parent_sq);
1817 if (!parent)
1818 break;
1819
1820 /*
1821 * The parent doesn't have low limit, it always reaches low
1822 * limit. Its overflow time is useless for children
1823 */
1824 if (!parent->bps[READ][LIMIT_LOW] &&
1825 !parent->iops[READ][LIMIT_LOW] &&
1826 !parent->bps[WRITE][LIMIT_LOW] &&
1827 !parent->iops[WRITE][LIMIT_LOW])
1828 continue;
1829 if (time_after(__tg_last_low_overflow_time(parent), ret))
1830 ret = __tg_last_low_overflow_time(parent);
1831 }
1832 return ret;
1833}
1834
9e234eea
SL
1835static bool throtl_tg_is_idle(struct throtl_grp *tg)
1836{
1837 /*
1838 * cgroup is idle if:
1839 * - single idle is too long, longer than a fixed value (in case user
b4f428ef 1840 * configure a too big threshold) or 4 times of idletime threshold
9e234eea 1841 * - average think time is more than threshold
53696b8d 1842 * - IO latency is largely below threshold
9e234eea 1843 */
b4f428ef 1844 unsigned long time;
4cff729f 1845 bool ret;
9e234eea 1846
b4f428ef
SL
1847 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1848 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1849 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1850 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1851 tg->avg_idletime > tg->idletime_threshold ||
1852 (tg->latency_target && tg->bio_cnt &&
53696b8d 1853 tg->bad_bio_cnt * 5 < tg->bio_cnt);
4cff729f
SL
1854 throtl_log(&tg->service_queue,
1855 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1856 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1857 tg->bio_cnt, ret, tg->td->scale);
1858 return ret;
9e234eea
SL
1859}
1860
c79892c5
SL
1861static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1862{
1863 struct throtl_service_queue *sq = &tg->service_queue;
1864 bool read_limit, write_limit;
1865
1866 /*
1867 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1868 * reaches), it's ok to upgrade to next limit
1869 */
1870 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1871 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1872 if (!read_limit && !write_limit)
1873 return true;
1874 if (read_limit && sq->nr_queued[READ] &&
1875 (!write_limit || sq->nr_queued[WRITE]))
1876 return true;
1877 if (write_limit && sq->nr_queued[WRITE] &&
1878 (!read_limit || sq->nr_queued[READ]))
1879 return true;
aec24246
SL
1880
1881 if (time_after_eq(jiffies,
fa6fb5aa
SL
1882 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1883 throtl_tg_is_idle(tg))
aec24246 1884 return true;
c79892c5
SL
1885 return false;
1886}
1887
1888static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1889{
1890 while (true) {
1891 if (throtl_tg_can_upgrade(tg))
1892 return true;
1893 tg = sq_to_tg(tg->service_queue.parent_sq);
1894 if (!tg || !tg_to_blkg(tg)->parent)
1895 return false;
1896 }
1897 return false;
1898}
1899
1900static bool throtl_can_upgrade(struct throtl_data *td,
1901 struct throtl_grp *this_tg)
1902{
1903 struct cgroup_subsys_state *pos_css;
1904 struct blkcg_gq *blkg;
1905
1906 if (td->limit_index != LIMIT_LOW)
1907 return false;
1908
297e3d85 1909 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
3f0abd80
SL
1910 return false;
1911
c79892c5
SL
1912 rcu_read_lock();
1913 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1914 struct throtl_grp *tg = blkg_to_tg(blkg);
1915
1916 if (tg == this_tg)
1917 continue;
1918 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1919 continue;
1920 if (!throtl_hierarchy_can_upgrade(tg)) {
1921 rcu_read_unlock();
1922 return false;
1923 }
1924 }
1925 rcu_read_unlock();
1926 return true;
1927}
1928
fa6fb5aa
SL
1929static void throtl_upgrade_check(struct throtl_grp *tg)
1930{
1931 unsigned long now = jiffies;
1932
1933 if (tg->td->limit_index != LIMIT_LOW)
1934 return;
1935
1936 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1937 return;
1938
1939 tg->last_check_time = now;
1940
1941 if (!time_after_eq(now,
1942 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1943 return;
1944
1945 if (throtl_can_upgrade(tg->td, NULL))
1946 throtl_upgrade_state(tg->td);
1947}
1948
c79892c5
SL
1949static void throtl_upgrade_state(struct throtl_data *td)
1950{
1951 struct cgroup_subsys_state *pos_css;
1952 struct blkcg_gq *blkg;
1953
4cff729f 1954 throtl_log(&td->service_queue, "upgrade to max");
c79892c5 1955 td->limit_index = LIMIT_MAX;
3f0abd80 1956 td->low_upgrade_time = jiffies;
7394e31f 1957 td->scale = 0;
c79892c5
SL
1958 rcu_read_lock();
1959 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1960 struct throtl_grp *tg = blkg_to_tg(blkg);
1961 struct throtl_service_queue *sq = &tg->service_queue;
1962
1963 tg->disptime = jiffies - 1;
1964 throtl_select_dispatch(sq);
4f02fb76 1965 throtl_schedule_next_dispatch(sq, true);
c79892c5
SL
1966 }
1967 rcu_read_unlock();
1968 throtl_select_dispatch(&td->service_queue);
4f02fb76 1969 throtl_schedule_next_dispatch(&td->service_queue, true);
c79892c5
SL
1970 queue_work(kthrotld_workqueue, &td->dispatch_work);
1971}
1972
4247d9c8 1973static void throtl_downgrade_state(struct throtl_data *td)
3f0abd80 1974{
7394e31f
SL
1975 td->scale /= 2;
1976
4cff729f 1977 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
7394e31f
SL
1978 if (td->scale) {
1979 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1980 return;
1981 }
1982
4247d9c8 1983 td->limit_index = LIMIT_LOW;
3f0abd80
SL
1984 td->low_downgrade_time = jiffies;
1985}
1986
1987static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1988{
1989 struct throtl_data *td = tg->td;
1990 unsigned long now = jiffies;
1991
1992 /*
1993 * If cgroup is below low limit, consider downgrade and throttle other
1994 * cgroups
1995 */
297e3d85
SL
1996 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1997 time_after_eq(now, tg_last_low_overflow_time(tg) +
fa6fb5aa
SL
1998 td->throtl_slice) &&
1999 (!throtl_tg_is_idle(tg) ||
2000 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
3f0abd80
SL
2001 return true;
2002 return false;
2003}
2004
2005static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
2006{
2007 while (true) {
2008 if (!throtl_tg_can_downgrade(tg))
2009 return false;
2010 tg = sq_to_tg(tg->service_queue.parent_sq);
2011 if (!tg || !tg_to_blkg(tg)->parent)
2012 break;
2013 }
2014 return true;
2015}
2016
2017static void throtl_downgrade_check(struct throtl_grp *tg)
2018{
2019 uint64_t bps;
2020 unsigned int iops;
2021 unsigned long elapsed_time;
2022 unsigned long now = jiffies;
2023
2024 if (tg->td->limit_index != LIMIT_MAX ||
2025 !tg->td->limit_valid[LIMIT_LOW])
2026 return;
2027 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2028 return;
297e3d85 2029 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
3f0abd80
SL
2030 return;
2031
2032 elapsed_time = now - tg->last_check_time;
2033 tg->last_check_time = now;
2034
297e3d85
SL
2035 if (time_before(now, tg_last_low_overflow_time(tg) +
2036 tg->td->throtl_slice))
3f0abd80
SL
2037 return;
2038
2039 if (tg->bps[READ][LIMIT_LOW]) {
2040 bps = tg->last_bytes_disp[READ] * HZ;
2041 do_div(bps, elapsed_time);
2042 if (bps >= tg->bps[READ][LIMIT_LOW])
2043 tg->last_low_overflow_time[READ] = now;
2044 }
2045
2046 if (tg->bps[WRITE][LIMIT_LOW]) {
2047 bps = tg->last_bytes_disp[WRITE] * HZ;
2048 do_div(bps, elapsed_time);
2049 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2050 tg->last_low_overflow_time[WRITE] = now;
2051 }
2052
2053 if (tg->iops[READ][LIMIT_LOW]) {
2054 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2055 if (iops >= tg->iops[READ][LIMIT_LOW])
2056 tg->last_low_overflow_time[READ] = now;
2057 }
2058
2059 if (tg->iops[WRITE][LIMIT_LOW]) {
2060 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2061 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2062 tg->last_low_overflow_time[WRITE] = now;
2063 }
2064
2065 /*
2066 * If cgroup is below low limit, consider downgrade and throttle other
2067 * cgroups
2068 */
2069 if (throtl_hierarchy_can_downgrade(tg))
4247d9c8 2070 throtl_downgrade_state(tg->td);
3f0abd80
SL
2071
2072 tg->last_bytes_disp[READ] = 0;
2073 tg->last_bytes_disp[WRITE] = 0;
2074 tg->last_io_disp[READ] = 0;
2075 tg->last_io_disp[WRITE] = 0;
2076}
2077
9e234eea
SL
2078static void blk_throtl_update_idletime(struct throtl_grp *tg)
2079{
2080 unsigned long now = ktime_get_ns() >> 10;
2081 unsigned long last_finish_time = tg->last_finish_time;
2082
2083 if (now <= last_finish_time || last_finish_time == 0 ||
2084 last_finish_time == tg->checked_last_finish_time)
2085 return;
2086
2087 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2088 tg->checked_last_finish_time = last_finish_time;
2089}
2090
b9147dd1
SL
2091#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2092static void throtl_update_latency_buckets(struct throtl_data *td)
2093{
b889bf66
JQ
2094 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2095 int i, cpu, rw;
2096 unsigned long last_latency[2] = { 0 };
2097 unsigned long latency[2];
b9147dd1
SL
2098
2099 if (!blk_queue_nonrot(td->queue))
2100 return;
2101 if (time_before(jiffies, td->last_calculate_time + HZ))
2102 return;
2103 td->last_calculate_time = jiffies;
2104
2105 memset(avg_latency, 0, sizeof(avg_latency));
b889bf66
JQ
2106 for (rw = READ; rw <= WRITE; rw++) {
2107 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2108 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2109
2110 for_each_possible_cpu(cpu) {
2111 struct latency_bucket *bucket;
2112
2113 /* this isn't race free, but ok in practice */
2114 bucket = per_cpu_ptr(td->latency_buckets[rw],
2115 cpu);
2116 tmp->total_latency += bucket[i].total_latency;
2117 tmp->samples += bucket[i].samples;
2118 bucket[i].total_latency = 0;
2119 bucket[i].samples = 0;
2120 }
b9147dd1 2121
b889bf66
JQ
2122 if (tmp->samples >= 32) {
2123 int samples = tmp->samples;
b9147dd1 2124
b889bf66 2125 latency[rw] = tmp->total_latency;
b9147dd1 2126
b889bf66
JQ
2127 tmp->total_latency = 0;
2128 tmp->samples = 0;
2129 latency[rw] /= samples;
2130 if (latency[rw] == 0)
2131 continue;
2132 avg_latency[rw][i].latency = latency[rw];
2133 }
b9147dd1
SL
2134 }
2135 }
2136
b889bf66
JQ
2137 for (rw = READ; rw <= WRITE; rw++) {
2138 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2139 if (!avg_latency[rw][i].latency) {
2140 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2141 td->avg_buckets[rw][i].latency =
2142 last_latency[rw];
2143 continue;
2144 }
b9147dd1 2145
b889bf66
JQ
2146 if (!td->avg_buckets[rw][i].valid)
2147 latency[rw] = avg_latency[rw][i].latency;
2148 else
2149 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2150 avg_latency[rw][i].latency) >> 3;
b9147dd1 2151
b889bf66
JQ
2152 td->avg_buckets[rw][i].latency = max(latency[rw],
2153 last_latency[rw]);
2154 td->avg_buckets[rw][i].valid = true;
2155 last_latency[rw] = td->avg_buckets[rw][i].latency;
2156 }
b9147dd1 2157 }
4cff729f
SL
2158
2159 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2160 throtl_log(&td->service_queue,
b889bf66
JQ
2161 "Latency bucket %d: read latency=%ld, read valid=%d, "
2162 "write latency=%ld, write valid=%d", i,
2163 td->avg_buckets[READ][i].latency,
2164 td->avg_buckets[READ][i].valid,
2165 td->avg_buckets[WRITE][i].latency,
2166 td->avg_buckets[WRITE][i].valid);
b9147dd1
SL
2167}
2168#else
2169static inline void throtl_update_latency_buckets(struct throtl_data *td)
2170{
2171}
2172#endif
2173
db18a53e 2174bool blk_throtl_bio(struct bio *bio)
e43473b7 2175{
db18a53e
CH
2176 struct request_queue *q = bio->bi_disk->queue;
2177 struct blkcg_gq *blkg = bio->bi_blkg;
c5cc2070 2178 struct throtl_qnode *qn = NULL;
a2e83ef9 2179 struct throtl_grp *tg = blkg_to_tg(blkg);
73f0d49a 2180 struct throtl_service_queue *sq;
0e9f4164 2181 bool rw = bio_data_dir(bio);
bc16a4f9 2182 bool throttled = false;
b9147dd1 2183 struct throtl_data *td = tg->td;
e43473b7 2184
93b80638 2185 rcu_read_lock();
ae118896 2186
2a0f61e6 2187 /* see throtl_charge_bio() */
7ca46438
TH
2188 if (bio_flagged(bio, BIO_THROTTLED))
2189 goto out;
2190
2191 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2192 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2193 bio->bi_iter.bi_size);
2194 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2195 }
2196
2197 if (!tg->has_rules[rw])
bc16a4f9 2198 goto out;
e43473b7 2199
0d945c1f 2200 spin_lock_irq(&q->queue_lock);
c9589f03 2201
b9147dd1
SL
2202 throtl_update_latency_buckets(td);
2203
9e234eea
SL
2204 blk_throtl_update_idletime(tg);
2205
73f0d49a
TH
2206 sq = &tg->service_queue;
2207
c79892c5 2208again:
9e660acf 2209 while (true) {
3f0abd80
SL
2210 if (tg->last_low_overflow_time[rw] == 0)
2211 tg->last_low_overflow_time[rw] = jiffies;
2212 throtl_downgrade_check(tg);
fa6fb5aa 2213 throtl_upgrade_check(tg);
9e660acf
TH
2214 /* throtl is FIFO - if bios are already queued, should queue */
2215 if (sq->nr_queued[rw])
2216 break;
de701c74 2217
9e660acf 2218 /* if above limits, break to queue */
c79892c5 2219 if (!tg_may_dispatch(tg, bio, NULL)) {
3f0abd80 2220 tg->last_low_overflow_time[rw] = jiffies;
b9147dd1
SL
2221 if (throtl_can_upgrade(td, tg)) {
2222 throtl_upgrade_state(td);
c79892c5
SL
2223 goto again;
2224 }
9e660acf 2225 break;
c79892c5 2226 }
9e660acf
TH
2227
2228 /* within limits, let's charge and dispatch directly */
e43473b7 2229 throtl_charge_bio(tg, bio);
04521db0
VG
2230
2231 /*
2232 * We need to trim slice even when bios are not being queued
2233 * otherwise it might happen that a bio is not queued for
2234 * a long time and slice keeps on extending and trim is not
2235 * called for a long time. Now if limits are reduced suddenly
2236 * we take into account all the IO dispatched so far at new
2237 * low rate and * newly queued IO gets a really long dispatch
2238 * time.
2239 *
2240 * So keep on trimming slice even if bio is not queued.
2241 */
0f3457f6 2242 throtl_trim_slice(tg, rw);
9e660acf
TH
2243
2244 /*
2245 * @bio passed through this layer without being throttled.
b53b072c 2246 * Climb up the ladder. If we're already at the top, it
9e660acf
TH
2247 * can be executed directly.
2248 */
c5cc2070 2249 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
2250 sq = sq->parent_sq;
2251 tg = sq_to_tg(sq);
2252 if (!tg)
2253 goto out_unlock;
e43473b7
VG
2254 }
2255
9e660acf 2256 /* out-of-limit, queue to @tg */
fda6f272
TH
2257 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2258 rw == READ ? 'R' : 'W',
9f626e37
SL
2259 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2260 tg_bps_limit(tg, rw),
2261 tg->io_disp[rw], tg_iops_limit(tg, rw),
fda6f272 2262 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 2263
3f0abd80
SL
2264 tg->last_low_overflow_time[rw] = jiffies;
2265
b9147dd1 2266 td->nr_queued[rw]++;
c5cc2070 2267 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 2268 throttled = true;
e43473b7 2269
7f52f98c
TH
2270 /*
2271 * Update @tg's dispatch time and force schedule dispatch if @tg
2272 * was empty before @bio. The forced scheduling isn't likely to
2273 * cause undue delay as @bio is likely to be dispatched directly if
2274 * its @tg's disptime is not in the future.
2275 */
0e9f4164 2276 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 2277 tg_update_disptime(tg);
7f52f98c 2278 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
2279 }
2280
bc16a4f9 2281out_unlock:
0d945c1f 2282 spin_unlock_irq(&q->queue_lock);
bc16a4f9 2283out:
111be883 2284 bio_set_flag(bio, BIO_THROTTLED);
b9147dd1
SL
2285
2286#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2287 if (throttled || !td->track_bio_latency)
5238dcf4 2288 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
b9147dd1 2289#endif
93b80638 2290 rcu_read_unlock();
bc16a4f9 2291 return throttled;
e43473b7
VG
2292}
2293
9e234eea 2294#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
b9147dd1
SL
2295static void throtl_track_latency(struct throtl_data *td, sector_t size,
2296 int op, unsigned long time)
2297{
2298 struct latency_bucket *latency;
2299 int index;
2300
b889bf66
JQ
2301 if (!td || td->limit_index != LIMIT_LOW ||
2302 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
b9147dd1
SL
2303 !blk_queue_nonrot(td->queue))
2304 return;
2305
2306 index = request_bucket_index(size);
2307
b889bf66 2308 latency = get_cpu_ptr(td->latency_buckets[op]);
b9147dd1
SL
2309 latency[index].total_latency += time;
2310 latency[index].samples++;
b889bf66 2311 put_cpu_ptr(td->latency_buckets[op]);
b9147dd1
SL
2312}
2313
2314void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2315{
2316 struct request_queue *q = rq->q;
2317 struct throtl_data *td = q->td;
2318
3d244306
HT
2319 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2320 time_ns >> 10);
b9147dd1
SL
2321}
2322
9e234eea
SL
2323void blk_throtl_bio_endio(struct bio *bio)
2324{
08e18eab 2325 struct blkcg_gq *blkg;
9e234eea 2326 struct throtl_grp *tg;
b9147dd1
SL
2327 u64 finish_time_ns;
2328 unsigned long finish_time;
2329 unsigned long start_time;
2330 unsigned long lat;
b889bf66 2331 int rw = bio_data_dir(bio);
9e234eea 2332
08e18eab
JB
2333 blkg = bio->bi_blkg;
2334 if (!blkg)
9e234eea 2335 return;
08e18eab 2336 tg = blkg_to_tg(blkg);
9e234eea 2337
b9147dd1
SL
2338 finish_time_ns = ktime_get_ns();
2339 tg->last_finish_time = finish_time_ns >> 10;
2340
5238dcf4
OS
2341 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2342 finish_time = __bio_issue_time(finish_time_ns) >> 10;
08e18eab 2343 if (!start_time || finish_time <= start_time)
53696b8d
SL
2344 return;
2345
2346 lat = finish_time - start_time;
b9147dd1 2347 /* this is only for bio based driver */
5238dcf4
OS
2348 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2349 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2350 bio_op(bio), lat);
53696b8d 2351
6679a90c 2352 if (tg->latency_target && lat >= tg->td->filtered_latency) {
53696b8d
SL
2353 int bucket;
2354 unsigned int threshold;
2355
5238dcf4 2356 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
b889bf66 2357 threshold = tg->td->avg_buckets[rw][bucket].latency +
53696b8d
SL
2358 tg->latency_target;
2359 if (lat > threshold)
2360 tg->bad_bio_cnt++;
2361 /*
2362 * Not race free, could get wrong count, which means cgroups
2363 * will be throttled
2364 */
2365 tg->bio_cnt++;
2366 }
2367
2368 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2369 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2370 tg->bio_cnt /= 2;
2371 tg->bad_bio_cnt /= 2;
b9147dd1 2372 }
9e234eea
SL
2373}
2374#endif
2375
e43473b7
VG
2376int blk_throtl_init(struct request_queue *q)
2377{
2378 struct throtl_data *td;
a2b1693b 2379 int ret;
e43473b7
VG
2380
2381 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2382 if (!td)
2383 return -ENOMEM;
b889bf66 2384 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2385 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2386 if (!td->latency_buckets[READ]) {
2387 kfree(td);
2388 return -ENOMEM;
2389 }
2390 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2391 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2392 if (!td->latency_buckets[WRITE]) {
2393 free_percpu(td->latency_buckets[READ]);
b9147dd1
SL
2394 kfree(td);
2395 return -ENOMEM;
2396 }
e43473b7 2397
69df0ab0 2398 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
b2ce2643 2399 throtl_service_queue_init(&td->service_queue);
e43473b7 2400
cd1604fa 2401 q->td = td;
29b12589 2402 td->queue = q;
02977e4a 2403
9f626e37 2404 td->limit_valid[LIMIT_MAX] = true;
cd5ab1b0 2405 td->limit_index = LIMIT_MAX;
3f0abd80
SL
2406 td->low_upgrade_time = jiffies;
2407 td->low_downgrade_time = jiffies;
9e234eea 2408
a2b1693b 2409 /* activate policy */
3c798398 2410 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
b9147dd1 2411 if (ret) {
b889bf66
JQ
2412 free_percpu(td->latency_buckets[READ]);
2413 free_percpu(td->latency_buckets[WRITE]);
f51b802c 2414 kfree(td);
b9147dd1 2415 }
a2b1693b 2416 return ret;
e43473b7
VG
2417}
2418
2419void blk_throtl_exit(struct request_queue *q)
2420{
c875f4d0 2421 BUG_ON(!q->td);
da527770 2422 throtl_shutdown_wq(q);
3c798398 2423 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
b889bf66
JQ
2424 free_percpu(q->td->latency_buckets[READ]);
2425 free_percpu(q->td->latency_buckets[WRITE]);
c9a929dd 2426 kfree(q->td);
e43473b7
VG
2427}
2428
d61fcfa4
SL
2429void blk_throtl_register_queue(struct request_queue *q)
2430{
2431 struct throtl_data *td;
6679a90c 2432 int i;
d61fcfa4
SL
2433
2434 td = q->td;
2435 BUG_ON(!td);
2436
6679a90c 2437 if (blk_queue_nonrot(q)) {
d61fcfa4 2438 td->throtl_slice = DFL_THROTL_SLICE_SSD;
6679a90c
SL
2439 td->filtered_latency = LATENCY_FILTERED_SSD;
2440 } else {
d61fcfa4 2441 td->throtl_slice = DFL_THROTL_SLICE_HD;
6679a90c 2442 td->filtered_latency = LATENCY_FILTERED_HD;
b889bf66
JQ
2443 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2444 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2445 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2446 }
6679a90c 2447 }
d61fcfa4
SL
2448#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2449 /* if no low limit, use previous default */
2450 td->throtl_slice = DFL_THROTL_SLICE_HD;
2451#endif
9e234eea 2452
344e9ffc 2453 td->track_bio_latency = !queue_is_mq(q);
b9147dd1
SL
2454 if (!td->track_bio_latency)
2455 blk_stat_enable_accounting(q);
d61fcfa4
SL
2456}
2457
297e3d85
SL
2458#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2459ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2460{
2461 if (!q->td)
2462 return -EINVAL;
2463 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2464}
2465
2466ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2467 const char *page, size_t count)
2468{
2469 unsigned long v;
2470 unsigned long t;
2471
2472 if (!q->td)
2473 return -EINVAL;
2474 if (kstrtoul(page, 10, &v))
2475 return -EINVAL;
2476 t = msecs_to_jiffies(v);
2477 if (t == 0 || t > MAX_THROTL_SLICE)
2478 return -EINVAL;
2479 q->td->throtl_slice = t;
2480 return count;
2481}
2482#endif
2483
e43473b7
VG
2484static int __init throtl_init(void)
2485{
450adcbe
VG
2486 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2487 if (!kthrotld_workqueue)
2488 panic("Failed to create kthrotld\n");
2489
3c798398 2490 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
2491}
2492
2493module_init(throtl_init);