]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-throttle.c
blk-throttle: remove asynchrnous percpu stats allocation mechanism
[mirror_ubuntu-artful-kernel.git] / block / blk-throttle.c
CommitLineData
e43473b7
VG
1/*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/blkdev.h>
10#include <linux/bio.h>
11#include <linux/blktrace_api.h>
eea8f41c 12#include <linux/blk-cgroup.h>
bc9fcbf9 13#include "blk.h"
e43473b7
VG
14
15/* Max dispatch from a group in 1 round */
16static int throtl_grp_quantum = 8;
17
18/* Total max dispatch from all groups in one round */
19static int throtl_quantum = 32;
20
21/* Throttling is performed over 100ms slice and after that slice is renewed */
22static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
3c798398 24static struct blkcg_policy blkcg_policy_throtl;
0381411e 25
450adcbe
VG
26/* A workqueue to queue throttle related work */
27static struct workqueue_struct *kthrotld_workqueue;
450adcbe 28
c5cc2070
TH
29/*
30 * To implement hierarchical throttling, throtl_grps form a tree and bios
31 * are dispatched upwards level by level until they reach the top and get
32 * issued. When dispatching bios from the children and local group at each
33 * level, if the bios are dispatched into a single bio_list, there's a risk
34 * of a local or child group which can queue many bios at once filling up
35 * the list starving others.
36 *
37 * To avoid such starvation, dispatched bios are queued separately
38 * according to where they came from. When they are again dispatched to
39 * the parent, they're popped in round-robin order so that no single source
40 * hogs the dispatch window.
41 *
42 * throtl_qnode is used to keep the queued bios separated by their sources.
43 * Bios are queued to throtl_qnode which in turn is queued to
44 * throtl_service_queue and then dispatched in round-robin order.
45 *
46 * It's also used to track the reference counts on blkg's. A qnode always
47 * belongs to a throtl_grp and gets queued on itself or the parent, so
48 * incrementing the reference of the associated throtl_grp when a qnode is
49 * queued and decrementing when dequeued is enough to keep the whole blkg
50 * tree pinned while bios are in flight.
51 */
52struct throtl_qnode {
53 struct list_head node; /* service_queue->queued[] */
54 struct bio_list bios; /* queued bios */
55 struct throtl_grp *tg; /* tg this qnode belongs to */
56};
57
c9e0332e 58struct throtl_service_queue {
77216b04
TH
59 struct throtl_service_queue *parent_sq; /* the parent service_queue */
60
73f0d49a
TH
61 /*
62 * Bios queued directly to this service_queue or dispatched from
63 * children throtl_grp's.
64 */
c5cc2070 65 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
73f0d49a
TH
66 unsigned int nr_queued[2]; /* number of queued bios */
67
68 /*
69 * RB tree of active children throtl_grp's, which are sorted by
70 * their ->disptime.
71 */
c9e0332e
TH
72 struct rb_root pending_tree; /* RB tree of active tgs */
73 struct rb_node *first_pending; /* first node in the tree */
74 unsigned int nr_pending; /* # queued in the tree */
75 unsigned long first_pending_disptime; /* disptime of the first tg */
69df0ab0 76 struct timer_list pending_timer; /* fires on first_pending_disptime */
e43473b7
VG
77};
78
5b2c16aa
TH
79enum tg_state_flags {
80 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
0e9f4164 81 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
5b2c16aa
TH
82};
83
e43473b7
VG
84#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
85
8a3d2615
TH
86/* Per-cpu group stats */
87struct tg_stats_cpu {
88 /* total bytes transferred */
89 struct blkg_rwstat service_bytes;
90 /* total IOs serviced, post merge */
91 struct blkg_rwstat serviced;
92};
93
e43473b7 94struct throtl_grp {
f95a04af
TH
95 /* must be the first member */
96 struct blkg_policy_data pd;
97
c9e0332e 98 /* active throtl group service_queue member */
e43473b7
VG
99 struct rb_node rb_node;
100
0f3457f6
TH
101 /* throtl_data this group belongs to */
102 struct throtl_data *td;
103
49a2f1e3
TH
104 /* this group's service queue */
105 struct throtl_service_queue service_queue;
106
c5cc2070
TH
107 /*
108 * qnode_on_self is used when bios are directly queued to this
109 * throtl_grp so that local bios compete fairly with bios
110 * dispatched from children. qnode_on_parent is used when bios are
111 * dispatched from this throtl_grp into its parent and will compete
112 * with the sibling qnode_on_parents and the parent's
113 * qnode_on_self.
114 */
115 struct throtl_qnode qnode_on_self[2];
116 struct throtl_qnode qnode_on_parent[2];
117
e43473b7
VG
118 /*
119 * Dispatch time in jiffies. This is the estimated time when group
120 * will unthrottle and is ready to dispatch more bio. It is used as
121 * key to sort active groups in service tree.
122 */
123 unsigned long disptime;
124
e43473b7
VG
125 unsigned int flags;
126
693e751e
TH
127 /* are there any throtl rules between this group and td? */
128 bool has_rules[2];
129
e43473b7
VG
130 /* bytes per second rate limits */
131 uint64_t bps[2];
132
8e89d13f
VG
133 /* IOPS limits */
134 unsigned int iops[2];
135
e43473b7
VG
136 /* Number of bytes disptached in current slice */
137 uint64_t bytes_disp[2];
8e89d13f
VG
138 /* Number of bio's dispatched in current slice */
139 unsigned int io_disp[2];
e43473b7
VG
140
141 /* When did we start a new slice */
142 unsigned long slice_start[2];
143 unsigned long slice_end[2];
fe071437 144
8a3d2615
TH
145 /* Per cpu stats pointer */
146 struct tg_stats_cpu __percpu *stats_cpu;
e43473b7
VG
147};
148
149struct throtl_data
150{
e43473b7 151 /* service tree for active throtl groups */
c9e0332e 152 struct throtl_service_queue service_queue;
e43473b7 153
e43473b7
VG
154 struct request_queue *queue;
155
156 /* Total Number of queued bios on READ and WRITE lists */
157 unsigned int nr_queued[2];
158
159 /*
02977e4a 160 * number of total undestroyed groups
e43473b7
VG
161 */
162 unsigned int nr_undestroyed_grps;
163
164 /* Work for dispatching throttled bios */
69df0ab0 165 struct work_struct dispatch_work;
e43473b7
VG
166};
167
69df0ab0
TH
168static void throtl_pending_timer_fn(unsigned long arg);
169
f95a04af
TH
170static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
171{
172 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
173}
174
3c798398 175static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
0381411e 176{
f95a04af 177 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
0381411e
TH
178}
179
3c798398 180static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 181{
f95a04af 182 return pd_to_blkg(&tg->pd);
0381411e
TH
183}
184
03d8e111
TH
185static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
186{
187 return blkg_to_tg(td->queue->root_blkg);
188}
189
fda6f272
TH
190/**
191 * sq_to_tg - return the throl_grp the specified service queue belongs to
192 * @sq: the throtl_service_queue of interest
193 *
194 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
195 * embedded in throtl_data, %NULL is returned.
196 */
197static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
198{
199 if (sq && sq->parent_sq)
200 return container_of(sq, struct throtl_grp, service_queue);
201 else
202 return NULL;
203}
204
205/**
206 * sq_to_td - return throtl_data the specified service queue belongs to
207 * @sq: the throtl_service_queue of interest
208 *
209 * A service_queue can be embeded in either a throtl_grp or throtl_data.
210 * Determine the associated throtl_data accordingly and return it.
211 */
212static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
213{
214 struct throtl_grp *tg = sq_to_tg(sq);
215
216 if (tg)
217 return tg->td;
218 else
219 return container_of(sq, struct throtl_data, service_queue);
220}
221
222/**
223 * throtl_log - log debug message via blktrace
224 * @sq: the service_queue being reported
225 * @fmt: printf format string
226 * @args: printf args
227 *
228 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
229 * throtl_grp; otherwise, just "throtl".
230 *
231 * TODO: this should be made a function and name formatting should happen
232 * after testing whether blktrace is enabled.
233 */
234#define throtl_log(sq, fmt, args...) do { \
235 struct throtl_grp *__tg = sq_to_tg((sq)); \
236 struct throtl_data *__td = sq_to_td((sq)); \
237 \
238 (void)__td; \
239 if ((__tg)) { \
240 char __pbuf[128]; \
54e7ed12 241 \
fda6f272
TH
242 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
243 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
244 } else { \
245 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
246 } \
54e7ed12 247} while (0)
e43473b7 248
c5cc2070
TH
249static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
250{
251 INIT_LIST_HEAD(&qn->node);
252 bio_list_init(&qn->bios);
253 qn->tg = tg;
254}
255
256/**
257 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
258 * @bio: bio being added
259 * @qn: qnode to add bio to
260 * @queued: the service_queue->queued[] list @qn belongs to
261 *
262 * Add @bio to @qn and put @qn on @queued if it's not already on.
263 * @qn->tg's reference count is bumped when @qn is activated. See the
264 * comment on top of throtl_qnode definition for details.
265 */
266static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
267 struct list_head *queued)
268{
269 bio_list_add(&qn->bios, bio);
270 if (list_empty(&qn->node)) {
271 list_add_tail(&qn->node, queued);
272 blkg_get(tg_to_blkg(qn->tg));
273 }
274}
275
276/**
277 * throtl_peek_queued - peek the first bio on a qnode list
278 * @queued: the qnode list to peek
279 */
280static struct bio *throtl_peek_queued(struct list_head *queued)
281{
282 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
283 struct bio *bio;
284
285 if (list_empty(queued))
286 return NULL;
287
288 bio = bio_list_peek(&qn->bios);
289 WARN_ON_ONCE(!bio);
290 return bio;
291}
292
293/**
294 * throtl_pop_queued - pop the first bio form a qnode list
295 * @queued: the qnode list to pop a bio from
296 * @tg_to_put: optional out argument for throtl_grp to put
297 *
298 * Pop the first bio from the qnode list @queued. After popping, the first
299 * qnode is removed from @queued if empty or moved to the end of @queued so
300 * that the popping order is round-robin.
301 *
302 * When the first qnode is removed, its associated throtl_grp should be put
303 * too. If @tg_to_put is NULL, this function automatically puts it;
304 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
305 * responsible for putting it.
306 */
307static struct bio *throtl_pop_queued(struct list_head *queued,
308 struct throtl_grp **tg_to_put)
309{
310 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
311 struct bio *bio;
312
313 if (list_empty(queued))
314 return NULL;
315
316 bio = bio_list_pop(&qn->bios);
317 WARN_ON_ONCE(!bio);
318
319 if (bio_list_empty(&qn->bios)) {
320 list_del_init(&qn->node);
321 if (tg_to_put)
322 *tg_to_put = qn->tg;
323 else
324 blkg_put(tg_to_blkg(qn->tg));
325 } else {
326 list_move_tail(&qn->node, queued);
327 }
328
329 return bio;
330}
331
49a2f1e3 332/* init a service_queue, assumes the caller zeroed it */
77216b04
TH
333static void throtl_service_queue_init(struct throtl_service_queue *sq,
334 struct throtl_service_queue *parent_sq)
49a2f1e3 335{
c5cc2070
TH
336 INIT_LIST_HEAD(&sq->queued[0]);
337 INIT_LIST_HEAD(&sq->queued[1]);
49a2f1e3 338 sq->pending_tree = RB_ROOT;
77216b04 339 sq->parent_sq = parent_sq;
69df0ab0
TH
340 setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
341 (unsigned long)sq);
342}
343
344static void throtl_service_queue_exit(struct throtl_service_queue *sq)
345{
346 del_timer_sync(&sq->pending_timer);
49a2f1e3
TH
347}
348
001bea73
TH
349static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
350{
4fb72036
TH
351 struct throtl_grp *tg;
352 int cpu;
353
354 tg = kzalloc_node(sizeof(*tg), gfp, node);
355 if (!tg)
356 return NULL;
357
358 tg->stats_cpu = alloc_percpu_gfp(struct tg_stats_cpu, gfp);
359 if (!tg->stats_cpu) {
360 kfree(tg);
361 return NULL;
362 }
363
364 for_each_possible_cpu(cpu) {
365 struct tg_stats_cpu *stats_cpu = per_cpu_ptr(tg->stats_cpu, cpu);
366
367 blkg_rwstat_init(&stats_cpu->service_bytes);
368 blkg_rwstat_init(&stats_cpu->serviced);
369 }
370
371 return &tg->pd;
001bea73
TH
372}
373
3c798398 374static void throtl_pd_init(struct blkcg_gq *blkg)
a29a171e 375{
0381411e 376 struct throtl_grp *tg = blkg_to_tg(blkg);
77216b04 377 struct throtl_data *td = blkg->q->td;
9138125b 378 struct throtl_service_queue *parent_sq;
c5cc2070 379 int rw;
cd1604fa 380
9138125b 381 /*
aa6ec29b 382 * If on the default hierarchy, we switch to properly hierarchical
9138125b
TH
383 * behavior where limits on a given throtl_grp are applied to the
384 * whole subtree rather than just the group itself. e.g. If 16M
385 * read_bps limit is set on the root group, the whole system can't
386 * exceed 16M for the device.
387 *
aa6ec29b 388 * If not on the default hierarchy, the broken flat hierarchy
9138125b
TH
389 * behavior is retained where all throtl_grps are treated as if
390 * they're all separate root groups right below throtl_data.
391 * Limits of a group don't interact with limits of other groups
392 * regardless of the position of the group in the hierarchy.
393 */
394 parent_sq = &td->service_queue;
395
aa6ec29b 396 if (cgroup_on_dfl(blkg->blkcg->css.cgroup) && blkg->parent)
9138125b
TH
397 parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
398
399 throtl_service_queue_init(&tg->service_queue, parent_sq);
400
c5cc2070
TH
401 for (rw = READ; rw <= WRITE; rw++) {
402 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
403 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
404 }
405
a29a171e 406 RB_CLEAR_NODE(&tg->rb_node);
77216b04 407 tg->td = td;
a29a171e 408
e56da7e2
TH
409 tg->bps[READ] = -1;
410 tg->bps[WRITE] = -1;
411 tg->iops[READ] = -1;
412 tg->iops[WRITE] = -1;
8a3d2615
TH
413}
414
693e751e
TH
415/*
416 * Set has_rules[] if @tg or any of its parents have limits configured.
417 * This doesn't require walking up to the top of the hierarchy as the
418 * parent's has_rules[] is guaranteed to be correct.
419 */
420static void tg_update_has_rules(struct throtl_grp *tg)
421{
422 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
423 int rw;
424
425 for (rw = READ; rw <= WRITE; rw++)
426 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
427 (tg->bps[rw] != -1 || tg->iops[rw] != -1);
428}
429
430static void throtl_pd_online(struct blkcg_gq *blkg)
431{
432 /*
433 * We don't want new groups to escape the limits of its ancestors.
434 * Update has_rules[] after a new group is brought online.
435 */
436 tg_update_has_rules(blkg_to_tg(blkg));
437}
438
3c798398 439static void throtl_pd_exit(struct blkcg_gq *blkg)
8a3d2615
TH
440{
441 struct throtl_grp *tg = blkg_to_tg(blkg);
69df0ab0
TH
442
443 throtl_service_queue_exit(&tg->service_queue);
8a3d2615
TH
444}
445
001bea73
TH
446static void throtl_pd_free(struct blkg_policy_data *pd)
447{
4fb72036
TH
448 struct throtl_grp *tg = pd_to_tg(pd);
449
450 free_percpu(tg->stats_cpu);
451 kfree(tg);
001bea73
TH
452}
453
3c798398 454static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
8a3d2615
TH
455{
456 struct throtl_grp *tg = blkg_to_tg(blkg);
457 int cpu;
458
8a3d2615
TH
459 for_each_possible_cpu(cpu) {
460 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
461
462 blkg_rwstat_reset(&sc->service_bytes);
463 blkg_rwstat_reset(&sc->serviced);
464 }
a29a171e
VG
465}
466
3c798398
TH
467static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
468 struct blkcg *blkcg)
e43473b7 469{
be2c6b19 470 /*
3c798398
TH
471 * This is the common case when there are no blkcgs. Avoid lookup
472 * in this case
cd1604fa 473 */
3c798398 474 if (blkcg == &blkcg_root)
03d8e111 475 return td_root_tg(td);
e43473b7 476
e8989fae 477 return blkg_to_tg(blkg_lookup(blkcg, td->queue));
e43473b7
VG
478}
479
cd1604fa 480static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
3c798398 481 struct blkcg *blkcg)
e43473b7 482{
f469a7b4 483 struct request_queue *q = td->queue;
cd1604fa 484 struct throtl_grp *tg = NULL;
bc16a4f9 485
f469a7b4 486 /*
3c798398
TH
487 * This is the common case when there are no blkcgs. Avoid lookup
488 * in this case
f469a7b4 489 */
3c798398 490 if (blkcg == &blkcg_root) {
03d8e111 491 tg = td_root_tg(td);
cd1604fa 492 } else {
3c798398 493 struct blkcg_gq *blkg;
f469a7b4 494
3c96cb32 495 blkg = blkg_lookup_create(blkcg, q);
f469a7b4 496
cd1604fa
TH
497 /* if %NULL and @q is alive, fall back to root_tg */
498 if (!IS_ERR(blkg))
0381411e 499 tg = blkg_to_tg(blkg);
3f3299d5 500 else if (!blk_queue_dying(q))
03d8e111 501 tg = td_root_tg(td);
f469a7b4
VG
502 }
503
e43473b7
VG
504 return tg;
505}
506
0049af73
TH
507static struct throtl_grp *
508throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7
VG
509{
510 /* Service tree is empty */
0049af73 511 if (!parent_sq->nr_pending)
e43473b7
VG
512 return NULL;
513
0049af73
TH
514 if (!parent_sq->first_pending)
515 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
e43473b7 516
0049af73
TH
517 if (parent_sq->first_pending)
518 return rb_entry_tg(parent_sq->first_pending);
e43473b7
VG
519
520 return NULL;
521}
522
523static void rb_erase_init(struct rb_node *n, struct rb_root *root)
524{
525 rb_erase(n, root);
526 RB_CLEAR_NODE(n);
527}
528
0049af73
TH
529static void throtl_rb_erase(struct rb_node *n,
530 struct throtl_service_queue *parent_sq)
e43473b7 531{
0049af73
TH
532 if (parent_sq->first_pending == n)
533 parent_sq->first_pending = NULL;
534 rb_erase_init(n, &parent_sq->pending_tree);
535 --parent_sq->nr_pending;
e43473b7
VG
536}
537
0049af73 538static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
539{
540 struct throtl_grp *tg;
541
0049af73 542 tg = throtl_rb_first(parent_sq);
e43473b7
VG
543 if (!tg)
544 return;
545
0049af73 546 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
547}
548
77216b04 549static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 550{
77216b04 551 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
0049af73 552 struct rb_node **node = &parent_sq->pending_tree.rb_node;
e43473b7
VG
553 struct rb_node *parent = NULL;
554 struct throtl_grp *__tg;
555 unsigned long key = tg->disptime;
556 int left = 1;
557
558 while (*node != NULL) {
559 parent = *node;
560 __tg = rb_entry_tg(parent);
561
562 if (time_before(key, __tg->disptime))
563 node = &parent->rb_left;
564 else {
565 node = &parent->rb_right;
566 left = 0;
567 }
568 }
569
570 if (left)
0049af73 571 parent_sq->first_pending = &tg->rb_node;
e43473b7
VG
572
573 rb_link_node(&tg->rb_node, parent, node);
0049af73 574 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
e43473b7
VG
575}
576
77216b04 577static void __throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 578{
77216b04 579 tg_service_queue_add(tg);
5b2c16aa 580 tg->flags |= THROTL_TG_PENDING;
77216b04 581 tg->service_queue.parent_sq->nr_pending++;
e43473b7
VG
582}
583
77216b04 584static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 585{
5b2c16aa 586 if (!(tg->flags & THROTL_TG_PENDING))
77216b04 587 __throtl_enqueue_tg(tg);
e43473b7
VG
588}
589
77216b04 590static void __throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 591{
77216b04 592 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
5b2c16aa 593 tg->flags &= ~THROTL_TG_PENDING;
e43473b7
VG
594}
595
77216b04 596static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 597{
5b2c16aa 598 if (tg->flags & THROTL_TG_PENDING)
77216b04 599 __throtl_dequeue_tg(tg);
e43473b7
VG
600}
601
a9131a27 602/* Call with queue lock held */
69df0ab0
TH
603static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
604 unsigned long expires)
a9131a27 605{
69df0ab0
TH
606 mod_timer(&sq->pending_timer, expires);
607 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
608 expires - jiffies, jiffies);
a9131a27
TH
609}
610
7f52f98c
TH
611/**
612 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
613 * @sq: the service_queue to schedule dispatch for
614 * @force: force scheduling
615 *
616 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
617 * dispatch time of the first pending child. Returns %true if either timer
618 * is armed or there's no pending child left. %false if the current
619 * dispatch window is still open and the caller should continue
620 * dispatching.
621 *
622 * If @force is %true, the dispatch timer is always scheduled and this
623 * function is guaranteed to return %true. This is to be used when the
624 * caller can't dispatch itself and needs to invoke pending_timer
625 * unconditionally. Note that forced scheduling is likely to induce short
626 * delay before dispatch starts even if @sq->first_pending_disptime is not
627 * in the future and thus shouldn't be used in hot paths.
628 */
629static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
630 bool force)
e43473b7 631{
6a525600 632 /* any pending children left? */
c9e0332e 633 if (!sq->nr_pending)
7f52f98c 634 return true;
e43473b7 635
c9e0332e 636 update_min_dispatch_time(sq);
e43473b7 637
69df0ab0 638 /* is the next dispatch time in the future? */
7f52f98c 639 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 640 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 641 return true;
69df0ab0
TH
642 }
643
7f52f98c
TH
644 /* tell the caller to continue dispatching */
645 return false;
e43473b7
VG
646}
647
32ee5bc4
VG
648static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
649 bool rw, unsigned long start)
650{
651 tg->bytes_disp[rw] = 0;
652 tg->io_disp[rw] = 0;
653
654 /*
655 * Previous slice has expired. We must have trimmed it after last
656 * bio dispatch. That means since start of last slice, we never used
657 * that bandwidth. Do try to make use of that bandwidth while giving
658 * credit.
659 */
660 if (time_after_eq(start, tg->slice_start[rw]))
661 tg->slice_start[rw] = start;
662
663 tg->slice_end[rw] = jiffies + throtl_slice;
664 throtl_log(&tg->service_queue,
665 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
666 rw == READ ? 'R' : 'W', tg->slice_start[rw],
667 tg->slice_end[rw], jiffies);
668}
669
0f3457f6 670static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
e43473b7
VG
671{
672 tg->bytes_disp[rw] = 0;
8e89d13f 673 tg->io_disp[rw] = 0;
e43473b7
VG
674 tg->slice_start[rw] = jiffies;
675 tg->slice_end[rw] = jiffies + throtl_slice;
fda6f272
TH
676 throtl_log(&tg->service_queue,
677 "[%c] new slice start=%lu end=%lu jiffies=%lu",
678 rw == READ ? 'R' : 'W', tg->slice_start[rw],
679 tg->slice_end[rw], jiffies);
e43473b7
VG
680}
681
0f3457f6
TH
682static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
683 unsigned long jiffy_end)
d1ae8ffd
VG
684{
685 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
686}
687
0f3457f6
TH
688static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
689 unsigned long jiffy_end)
e43473b7
VG
690{
691 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
fda6f272
TH
692 throtl_log(&tg->service_queue,
693 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
694 rw == READ ? 'R' : 'W', tg->slice_start[rw],
695 tg->slice_end[rw], jiffies);
e43473b7
VG
696}
697
698/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 699static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
700{
701 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
5cf8c227 702 return false;
e43473b7
VG
703
704 return 1;
705}
706
707/* Trim the used slices and adjust slice start accordingly */
0f3457f6 708static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 709{
3aad5d3e
VG
710 unsigned long nr_slices, time_elapsed, io_trim;
711 u64 bytes_trim, tmp;
e43473b7
VG
712
713 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
714
715 /*
716 * If bps are unlimited (-1), then time slice don't get
717 * renewed. Don't try to trim the slice if slice is used. A new
718 * slice will start when appropriate.
719 */
0f3457f6 720 if (throtl_slice_used(tg, rw))
e43473b7
VG
721 return;
722
d1ae8ffd
VG
723 /*
724 * A bio has been dispatched. Also adjust slice_end. It might happen
725 * that initially cgroup limit was very low resulting in high
726 * slice_end, but later limit was bumped up and bio was dispached
727 * sooner, then we need to reduce slice_end. A high bogus slice_end
728 * is bad because it does not allow new slice to start.
729 */
730
0f3457f6 731 throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
d1ae8ffd 732
e43473b7
VG
733 time_elapsed = jiffies - tg->slice_start[rw];
734
735 nr_slices = time_elapsed / throtl_slice;
736
737 if (!nr_slices)
738 return;
3aad5d3e
VG
739 tmp = tg->bps[rw] * throtl_slice * nr_slices;
740 do_div(tmp, HZ);
741 bytes_trim = tmp;
e43473b7 742
8e89d13f 743 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
e43473b7 744
8e89d13f 745 if (!bytes_trim && !io_trim)
e43473b7
VG
746 return;
747
748 if (tg->bytes_disp[rw] >= bytes_trim)
749 tg->bytes_disp[rw] -= bytes_trim;
750 else
751 tg->bytes_disp[rw] = 0;
752
8e89d13f
VG
753 if (tg->io_disp[rw] >= io_trim)
754 tg->io_disp[rw] -= io_trim;
755 else
756 tg->io_disp[rw] = 0;
757
e43473b7
VG
758 tg->slice_start[rw] += nr_slices * throtl_slice;
759
fda6f272
TH
760 throtl_log(&tg->service_queue,
761 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
762 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
763 tg->slice_start[rw], tg->slice_end[rw], jiffies);
e43473b7
VG
764}
765
0f3457f6
TH
766static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
767 unsigned long *wait)
e43473b7
VG
768{
769 bool rw = bio_data_dir(bio);
8e89d13f 770 unsigned int io_allowed;
e43473b7 771 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
c49c06e4 772 u64 tmp;
e43473b7 773
8e89d13f 774 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
e43473b7 775
8e89d13f
VG
776 /* Slice has just started. Consider one slice interval */
777 if (!jiffy_elapsed)
778 jiffy_elapsed_rnd = throtl_slice;
779
780 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
781
c49c06e4
VG
782 /*
783 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
784 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
785 * will allow dispatch after 1 second and after that slice should
786 * have been trimmed.
787 */
788
789 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
790 do_div(tmp, HZ);
791
792 if (tmp > UINT_MAX)
793 io_allowed = UINT_MAX;
794 else
795 io_allowed = tmp;
8e89d13f
VG
796
797 if (tg->io_disp[rw] + 1 <= io_allowed) {
e43473b7
VG
798 if (wait)
799 *wait = 0;
5cf8c227 800 return true;
e43473b7
VG
801 }
802
8e89d13f
VG
803 /* Calc approx time to dispatch */
804 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
805
806 if (jiffy_wait > jiffy_elapsed)
807 jiffy_wait = jiffy_wait - jiffy_elapsed;
808 else
809 jiffy_wait = 1;
810
811 if (wait)
812 *wait = jiffy_wait;
813 return 0;
814}
815
0f3457f6
TH
816static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
817 unsigned long *wait)
8e89d13f
VG
818{
819 bool rw = bio_data_dir(bio);
3aad5d3e 820 u64 bytes_allowed, extra_bytes, tmp;
8e89d13f 821 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
e43473b7
VG
822
823 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
824
825 /* Slice has just started. Consider one slice interval */
826 if (!jiffy_elapsed)
827 jiffy_elapsed_rnd = throtl_slice;
828
829 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
830
5e901a2b
VG
831 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
832 do_div(tmp, HZ);
3aad5d3e 833 bytes_allowed = tmp;
e43473b7 834
4f024f37 835 if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
e43473b7
VG
836 if (wait)
837 *wait = 0;
5cf8c227 838 return true;
e43473b7
VG
839 }
840
841 /* Calc approx time to dispatch */
4f024f37 842 extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
e43473b7
VG
843 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
844
845 if (!jiffy_wait)
846 jiffy_wait = 1;
847
848 /*
849 * This wait time is without taking into consideration the rounding
850 * up we did. Add that time also.
851 */
852 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
e43473b7
VG
853 if (wait)
854 *wait = jiffy_wait;
8e89d13f
VG
855 return 0;
856}
857
858/*
859 * Returns whether one can dispatch a bio or not. Also returns approx number
860 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
861 */
0f3457f6
TH
862static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
863 unsigned long *wait)
8e89d13f
VG
864{
865 bool rw = bio_data_dir(bio);
866 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
867
868 /*
869 * Currently whole state machine of group depends on first bio
870 * queued in the group bio list. So one should not be calling
871 * this function with a different bio if there are other bios
872 * queued.
873 */
73f0d49a 874 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 875 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 876
8e89d13f
VG
877 /* If tg->bps = -1, then BW is unlimited */
878 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
879 if (wait)
880 *wait = 0;
5cf8c227 881 return true;
8e89d13f
VG
882 }
883
884 /*
885 * If previous slice expired, start a new one otherwise renew/extend
886 * existing slice to make sure it is at least throtl_slice interval
887 * long since now.
888 */
0f3457f6
TH
889 if (throtl_slice_used(tg, rw))
890 throtl_start_new_slice(tg, rw);
8e89d13f
VG
891 else {
892 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
0f3457f6 893 throtl_extend_slice(tg, rw, jiffies + throtl_slice);
8e89d13f
VG
894 }
895
0f3457f6
TH
896 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
897 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
8e89d13f
VG
898 if (wait)
899 *wait = 0;
900 return 1;
901 }
902
903 max_wait = max(bps_wait, iops_wait);
904
905 if (wait)
906 *wait = max_wait;
907
908 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 909 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7
VG
910
911 return 0;
912}
913
3c798398 914static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
629ed0b1
TH
915 int rw)
916{
8a3d2615
TH
917 struct throtl_grp *tg = blkg_to_tg(blkg);
918 struct tg_stats_cpu *stats_cpu;
629ed0b1
TH
919 unsigned long flags;
920
629ed0b1
TH
921 /*
922 * Disabling interrupts to provide mutual exclusion between two
923 * writes on same cpu. It probably is not needed for 64bit. Not
924 * optimizing that case yet.
925 */
926 local_irq_save(flags);
927
8a3d2615 928 stats_cpu = this_cpu_ptr(tg->stats_cpu);
629ed0b1 929
629ed0b1
TH
930 blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
931 blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
932
933 local_irq_restore(flags);
934}
935
e43473b7
VG
936static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
937{
938 bool rw = bio_data_dir(bio);
e43473b7
VG
939
940 /* Charge the bio to the group */
4f024f37 941 tg->bytes_disp[rw] += bio->bi_iter.bi_size;
8e89d13f 942 tg->io_disp[rw]++;
e43473b7 943
2a0f61e6
TH
944 /*
945 * REQ_THROTTLED is used to prevent the same bio to be throttled
946 * more than once as a throttled bio will go through blk-throtl the
947 * second time when it eventually gets issued. Set it when a bio
948 * is being charged to a tg.
949 *
950 * Dispatch stats aren't recursive and each @bio should only be
951 * accounted by the @tg it was originally associated with. Let's
952 * update the stats when setting REQ_THROTTLED for the first time
953 * which is guaranteed to be for the @bio's original tg.
954 */
955 if (!(bio->bi_rw & REQ_THROTTLED)) {
956 bio->bi_rw |= REQ_THROTTLED;
4f024f37
KO
957 throtl_update_dispatch_stats(tg_to_blkg(tg),
958 bio->bi_iter.bi_size, bio->bi_rw);
2a0f61e6 959 }
e43473b7
VG
960}
961
c5cc2070
TH
962/**
963 * throtl_add_bio_tg - add a bio to the specified throtl_grp
964 * @bio: bio to add
965 * @qn: qnode to use
966 * @tg: the target throtl_grp
967 *
968 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
969 * tg->qnode_on_self[] is used.
970 */
971static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
972 struct throtl_grp *tg)
e43473b7 973{
73f0d49a 974 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
975 bool rw = bio_data_dir(bio);
976
c5cc2070
TH
977 if (!qn)
978 qn = &tg->qnode_on_self[rw];
979
0e9f4164
TH
980 /*
981 * If @tg doesn't currently have any bios queued in the same
982 * direction, queueing @bio can change when @tg should be
983 * dispatched. Mark that @tg was empty. This is automatically
984 * cleaered on the next tg_update_disptime().
985 */
986 if (!sq->nr_queued[rw])
987 tg->flags |= THROTL_TG_WAS_EMPTY;
988
c5cc2070
TH
989 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
990
73f0d49a 991 sq->nr_queued[rw]++;
77216b04 992 throtl_enqueue_tg(tg);
e43473b7
VG
993}
994
77216b04 995static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 996{
73f0d49a 997 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
998 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
999 struct bio *bio;
1000
c5cc2070 1001 if ((bio = throtl_peek_queued(&sq->queued[READ])))
0f3457f6 1002 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 1003
c5cc2070 1004 if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
0f3457f6 1005 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
1006
1007 min_wait = min(read_wait, write_wait);
1008 disptime = jiffies + min_wait;
1009
e43473b7 1010 /* Update dispatch time */
77216b04 1011 throtl_dequeue_tg(tg);
e43473b7 1012 tg->disptime = disptime;
77216b04 1013 throtl_enqueue_tg(tg);
0e9f4164
TH
1014
1015 /* see throtl_add_bio_tg() */
1016 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
1017}
1018
32ee5bc4
VG
1019static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1020 struct throtl_grp *parent_tg, bool rw)
1021{
1022 if (throtl_slice_used(parent_tg, rw)) {
1023 throtl_start_new_slice_with_credit(parent_tg, rw,
1024 child_tg->slice_start[rw]);
1025 }
1026
1027}
1028
77216b04 1029static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 1030{
73f0d49a 1031 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
1032 struct throtl_service_queue *parent_sq = sq->parent_sq;
1033 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 1034 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
1035 struct bio *bio;
1036
c5cc2070
TH
1037 /*
1038 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1039 * from @tg may put its reference and @parent_sq might end up
1040 * getting released prematurely. Remember the tg to put and put it
1041 * after @bio is transferred to @parent_sq.
1042 */
1043 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 1044 sq->nr_queued[rw]--;
e43473b7
VG
1045
1046 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
1047
1048 /*
1049 * If our parent is another tg, we just need to transfer @bio to
1050 * the parent using throtl_add_bio_tg(). If our parent is
1051 * @td->service_queue, @bio is ready to be issued. Put it on its
1052 * bio_lists[] and decrease total number queued. The caller is
1053 * responsible for issuing these bios.
1054 */
1055 if (parent_tg) {
c5cc2070 1056 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 1057 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 1058 } else {
c5cc2070
TH
1059 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1060 &parent_sq->queued[rw]);
6bc9c2b4
TH
1061 BUG_ON(tg->td->nr_queued[rw] <= 0);
1062 tg->td->nr_queued[rw]--;
1063 }
e43473b7 1064
0f3457f6 1065 throtl_trim_slice(tg, rw);
6bc9c2b4 1066
c5cc2070
TH
1067 if (tg_to_put)
1068 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1069}
1070
77216b04 1071static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1072{
73f0d49a 1073 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1074 unsigned int nr_reads = 0, nr_writes = 0;
1075 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
c2f6805d 1076 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
e43473b7
VG
1077 struct bio *bio;
1078
1079 /* Try to dispatch 75% READS and 25% WRITES */
1080
c5cc2070 1081 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1082 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1083
77216b04 1084 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1085 nr_reads++;
1086
1087 if (nr_reads >= max_nr_reads)
1088 break;
1089 }
1090
c5cc2070 1091 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1092 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1093
77216b04 1094 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1095 nr_writes++;
1096
1097 if (nr_writes >= max_nr_writes)
1098 break;
1099 }
1100
1101 return nr_reads + nr_writes;
1102}
1103
651930bc 1104static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1105{
1106 unsigned int nr_disp = 0;
e43473b7
VG
1107
1108 while (1) {
73f0d49a
TH
1109 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1110 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1111
1112 if (!tg)
1113 break;
1114
1115 if (time_before(jiffies, tg->disptime))
1116 break;
1117
77216b04 1118 throtl_dequeue_tg(tg);
e43473b7 1119
77216b04 1120 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1121
73f0d49a 1122 if (sq->nr_queued[0] || sq->nr_queued[1])
77216b04 1123 tg_update_disptime(tg);
e43473b7
VG
1124
1125 if (nr_disp >= throtl_quantum)
1126 break;
1127 }
1128
1129 return nr_disp;
1130}
1131
6e1a5704
TH
1132/**
1133 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1134 * @arg: the throtl_service_queue being serviced
1135 *
1136 * This timer is armed when a child throtl_grp with active bio's become
1137 * pending and queued on the service_queue's pending_tree and expires when
1138 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1139 * dispatches bio's from the children throtl_grps to the parent
1140 * service_queue.
1141 *
1142 * If the parent's parent is another throtl_grp, dispatching is propagated
1143 * by either arming its pending_timer or repeating dispatch directly. If
1144 * the top-level service_tree is reached, throtl_data->dispatch_work is
1145 * kicked so that the ready bio's are issued.
6e1a5704 1146 */
69df0ab0
TH
1147static void throtl_pending_timer_fn(unsigned long arg)
1148{
1149 struct throtl_service_queue *sq = (void *)arg;
2e48a530 1150 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1151 struct throtl_data *td = sq_to_td(sq);
cb76199c 1152 struct request_queue *q = td->queue;
2e48a530
TH
1153 struct throtl_service_queue *parent_sq;
1154 bool dispatched;
6e1a5704 1155 int ret;
e43473b7
VG
1156
1157 spin_lock_irq(q->queue_lock);
2e48a530
TH
1158again:
1159 parent_sq = sq->parent_sq;
1160 dispatched = false;
e43473b7 1161
7f52f98c
TH
1162 while (true) {
1163 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1164 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1165 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1166
1167 ret = throtl_select_dispatch(sq);
1168 if (ret) {
7f52f98c
TH
1169 throtl_log(sq, "bios disp=%u", ret);
1170 dispatched = true;
1171 }
e43473b7 1172
7f52f98c
TH
1173 if (throtl_schedule_next_dispatch(sq, false))
1174 break;
e43473b7 1175
7f52f98c
TH
1176 /* this dispatch windows is still open, relax and repeat */
1177 spin_unlock_irq(q->queue_lock);
1178 cpu_relax();
1179 spin_lock_irq(q->queue_lock);
651930bc 1180 }
e43473b7 1181
2e48a530
TH
1182 if (!dispatched)
1183 goto out_unlock;
6e1a5704 1184
2e48a530
TH
1185 if (parent_sq) {
1186 /* @parent_sq is another throl_grp, propagate dispatch */
1187 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1188 tg_update_disptime(tg);
1189 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1190 /* window is already open, repeat dispatching */
1191 sq = parent_sq;
1192 tg = sq_to_tg(sq);
1193 goto again;
1194 }
1195 }
1196 } else {
1197 /* reached the top-level, queue issueing */
1198 queue_work(kthrotld_workqueue, &td->dispatch_work);
1199 }
1200out_unlock:
e43473b7 1201 spin_unlock_irq(q->queue_lock);
6e1a5704 1202}
e43473b7 1203
6e1a5704
TH
1204/**
1205 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1206 * @work: work item being executed
1207 *
1208 * This function is queued for execution when bio's reach the bio_lists[]
1209 * of throtl_data->service_queue. Those bio's are ready and issued by this
1210 * function.
1211 */
8876e140 1212static void blk_throtl_dispatch_work_fn(struct work_struct *work)
6e1a5704
TH
1213{
1214 struct throtl_data *td = container_of(work, struct throtl_data,
1215 dispatch_work);
1216 struct throtl_service_queue *td_sq = &td->service_queue;
1217 struct request_queue *q = td->queue;
1218 struct bio_list bio_list_on_stack;
1219 struct bio *bio;
1220 struct blk_plug plug;
1221 int rw;
1222
1223 bio_list_init(&bio_list_on_stack);
1224
1225 spin_lock_irq(q->queue_lock);
c5cc2070
TH
1226 for (rw = READ; rw <= WRITE; rw++)
1227 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1228 bio_list_add(&bio_list_on_stack, bio);
6e1a5704
TH
1229 spin_unlock_irq(q->queue_lock);
1230
1231 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1232 blk_start_plug(&plug);
e43473b7
VG
1233 while((bio = bio_list_pop(&bio_list_on_stack)))
1234 generic_make_request(bio);
69d60eb9 1235 blk_finish_plug(&plug);
e43473b7 1236 }
e43473b7
VG
1237}
1238
f95a04af
TH
1239static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
1240 struct blkg_policy_data *pd, int off)
41b38b6d 1241{
f95a04af 1242 struct throtl_grp *tg = pd_to_tg(pd);
41b38b6d
TH
1243 struct blkg_rwstat rwstat = { }, tmp;
1244 int i, cpu;
1245
1246 for_each_possible_cpu(cpu) {
8a3d2615 1247 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
41b38b6d
TH
1248
1249 tmp = blkg_rwstat_read((void *)sc + off);
1250 for (i = 0; i < BLKG_RWSTAT_NR; i++)
1251 rwstat.cnt[i] += tmp.cnt[i];
1252 }
1253
f95a04af 1254 return __blkg_prfill_rwstat(sf, pd, &rwstat);
41b38b6d
TH
1255}
1256
2da8ca82 1257static int tg_print_cpu_rwstat(struct seq_file *sf, void *v)
41b38b6d 1258{
2da8ca82
TH
1259 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_cpu_rwstat,
1260 &blkcg_policy_throtl, seq_cft(sf)->private, true);
41b38b6d
TH
1261 return 0;
1262}
1263
f95a04af
TH
1264static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1265 int off)
60c2bc2d 1266{
f95a04af
TH
1267 struct throtl_grp *tg = pd_to_tg(pd);
1268 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1269
af133ceb 1270 if (v == -1)
60c2bc2d 1271 return 0;
f95a04af 1272 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1273}
1274
f95a04af
TH
1275static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1276 int off)
e43473b7 1277{
f95a04af
TH
1278 struct throtl_grp *tg = pd_to_tg(pd);
1279 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1280
af133ceb
TH
1281 if (v == -1)
1282 return 0;
f95a04af 1283 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1284}
1285
2da8ca82 1286static int tg_print_conf_u64(struct seq_file *sf, void *v)
8e89d13f 1287{
2da8ca82
TH
1288 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1289 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1290 return 0;
8e89d13f
VG
1291}
1292
2da8ca82 1293static int tg_print_conf_uint(struct seq_file *sf, void *v)
8e89d13f 1294{
2da8ca82
TH
1295 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1296 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1297 return 0;
60c2bc2d
TH
1298}
1299
451af504
TH
1300static ssize_t tg_set_conf(struct kernfs_open_file *of,
1301 char *buf, size_t nbytes, loff_t off, bool is_u64)
60c2bc2d 1302{
451af504 1303 struct blkcg *blkcg = css_to_blkcg(of_css(of));
60c2bc2d 1304 struct blkg_conf_ctx ctx;
af133ceb 1305 struct throtl_grp *tg;
69df0ab0 1306 struct throtl_service_queue *sq;
693e751e 1307 struct blkcg_gq *blkg;
492eb21b 1308 struct cgroup_subsys_state *pos_css;
60c2bc2d
TH
1309 int ret;
1310
3c798398 1311 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
60c2bc2d
TH
1312 if (ret)
1313 return ret;
1314
af133ceb 1315 tg = blkg_to_tg(ctx.blkg);
69df0ab0 1316 sq = &tg->service_queue;
af133ceb 1317
a2b1693b
TH
1318 if (!ctx.v)
1319 ctx.v = -1;
af133ceb 1320
a2b1693b 1321 if (is_u64)
451af504 1322 *(u64 *)((void *)tg + of_cft(of)->private) = ctx.v;
a2b1693b 1323 else
451af504 1324 *(unsigned int *)((void *)tg + of_cft(of)->private) = ctx.v;
af133ceb 1325
fda6f272
TH
1326 throtl_log(&tg->service_queue,
1327 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1328 tg->bps[READ], tg->bps[WRITE],
1329 tg->iops[READ], tg->iops[WRITE]);
632b4493 1330
693e751e
TH
1331 /*
1332 * Update has_rules[] flags for the updated tg's subtree. A tg is
1333 * considered to have rules if either the tg itself or any of its
1334 * ancestors has rules. This identifies groups without any
1335 * restrictions in the whole hierarchy and allows them to bypass
1336 * blk-throttle.
1337 */
492eb21b 1338 blkg_for_each_descendant_pre(blkg, pos_css, ctx.blkg)
693e751e
TH
1339 tg_update_has_rules(blkg_to_tg(blkg));
1340
632b4493
TH
1341 /*
1342 * We're already holding queue_lock and know @tg is valid. Let's
1343 * apply the new config directly.
1344 *
1345 * Restart the slices for both READ and WRITES. It might happen
1346 * that a group's limit are dropped suddenly and we don't want to
1347 * account recently dispatched IO with new low rate.
1348 */
0f3457f6
TH
1349 throtl_start_new_slice(tg, 0);
1350 throtl_start_new_slice(tg, 1);
632b4493 1351
5b2c16aa 1352 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1353 tg_update_disptime(tg);
7f52f98c 1354 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1355 }
60c2bc2d
TH
1356
1357 blkg_conf_finish(&ctx);
451af504 1358 return nbytes;
8e89d13f
VG
1359}
1360
451af504
TH
1361static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1362 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1363{
451af504 1364 return tg_set_conf(of, buf, nbytes, off, true);
60c2bc2d
TH
1365}
1366
451af504
TH
1367static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1368 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1369{
451af504 1370 return tg_set_conf(of, buf, nbytes, off, false);
60c2bc2d
TH
1371}
1372
1373static struct cftype throtl_files[] = {
1374 {
1375 .name = "throttle.read_bps_device",
af133ceb 1376 .private = offsetof(struct throtl_grp, bps[READ]),
2da8ca82 1377 .seq_show = tg_print_conf_u64,
451af504 1378 .write = tg_set_conf_u64,
60c2bc2d
TH
1379 },
1380 {
1381 .name = "throttle.write_bps_device",
af133ceb 1382 .private = offsetof(struct throtl_grp, bps[WRITE]),
2da8ca82 1383 .seq_show = tg_print_conf_u64,
451af504 1384 .write = tg_set_conf_u64,
60c2bc2d
TH
1385 },
1386 {
1387 .name = "throttle.read_iops_device",
af133ceb 1388 .private = offsetof(struct throtl_grp, iops[READ]),
2da8ca82 1389 .seq_show = tg_print_conf_uint,
451af504 1390 .write = tg_set_conf_uint,
60c2bc2d
TH
1391 },
1392 {
1393 .name = "throttle.write_iops_device",
af133ceb 1394 .private = offsetof(struct throtl_grp, iops[WRITE]),
2da8ca82 1395 .seq_show = tg_print_conf_uint,
451af504 1396 .write = tg_set_conf_uint,
60c2bc2d
TH
1397 },
1398 {
1399 .name = "throttle.io_service_bytes",
5bc4afb1 1400 .private = offsetof(struct tg_stats_cpu, service_bytes),
2da8ca82 1401 .seq_show = tg_print_cpu_rwstat,
60c2bc2d
TH
1402 },
1403 {
1404 .name = "throttle.io_serviced",
5bc4afb1 1405 .private = offsetof(struct tg_stats_cpu, serviced),
2da8ca82 1406 .seq_show = tg_print_cpu_rwstat,
60c2bc2d
TH
1407 },
1408 { } /* terminate */
1409};
1410
da527770 1411static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1412{
1413 struct throtl_data *td = q->td;
1414
69df0ab0 1415 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1416}
1417
3c798398 1418static struct blkcg_policy blkcg_policy_throtl = {
f9fcc2d3
TH
1419 .cftypes = throtl_files,
1420
001bea73 1421 .pd_alloc_fn = throtl_pd_alloc,
f9fcc2d3 1422 .pd_init_fn = throtl_pd_init,
693e751e 1423 .pd_online_fn = throtl_pd_online,
f9fcc2d3 1424 .pd_exit_fn = throtl_pd_exit,
001bea73 1425 .pd_free_fn = throtl_pd_free,
f9fcc2d3 1426 .pd_reset_stats_fn = throtl_pd_reset_stats,
e43473b7
VG
1427};
1428
bc16a4f9 1429bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
e43473b7
VG
1430{
1431 struct throtl_data *td = q->td;
c5cc2070 1432 struct throtl_qnode *qn = NULL;
e43473b7 1433 struct throtl_grp *tg;
73f0d49a 1434 struct throtl_service_queue *sq;
0e9f4164 1435 bool rw = bio_data_dir(bio);
3c798398 1436 struct blkcg *blkcg;
bc16a4f9 1437 bool throttled = false;
e43473b7 1438
2a0f61e6
TH
1439 /* see throtl_charge_bio() */
1440 if (bio->bi_rw & REQ_THROTTLED)
bc16a4f9 1441 goto out;
e43473b7 1442
af75cd3c
VG
1443 /*
1444 * A throtl_grp pointer retrieved under rcu can be used to access
1445 * basic fields like stats and io rates. If a group has no rules,
1446 * just update the dispatch stats in lockless manner and return.
1447 */
af75cd3c 1448 rcu_read_lock();
3c798398 1449 blkcg = bio_blkcg(bio);
cd1604fa 1450 tg = throtl_lookup_tg(td, blkcg);
af75cd3c 1451 if (tg) {
693e751e 1452 if (!tg->has_rules[rw]) {
629ed0b1 1453 throtl_update_dispatch_stats(tg_to_blkg(tg),
4f024f37 1454 bio->bi_iter.bi_size, bio->bi_rw);
2a7f1244 1455 goto out_unlock_rcu;
af75cd3c
VG
1456 }
1457 }
af75cd3c
VG
1458
1459 /*
1460 * Either group has not been allocated yet or it is not an unlimited
1461 * IO group
1462 */
e43473b7 1463 spin_lock_irq(q->queue_lock);
cd1604fa 1464 tg = throtl_lookup_create_tg(td, blkcg);
bc16a4f9
TH
1465 if (unlikely(!tg))
1466 goto out_unlock;
f469a7b4 1467
73f0d49a
TH
1468 sq = &tg->service_queue;
1469
9e660acf
TH
1470 while (true) {
1471 /* throtl is FIFO - if bios are already queued, should queue */
1472 if (sq->nr_queued[rw])
1473 break;
de701c74 1474
9e660acf
TH
1475 /* if above limits, break to queue */
1476 if (!tg_may_dispatch(tg, bio, NULL))
1477 break;
1478
1479 /* within limits, let's charge and dispatch directly */
e43473b7 1480 throtl_charge_bio(tg, bio);
04521db0
VG
1481
1482 /*
1483 * We need to trim slice even when bios are not being queued
1484 * otherwise it might happen that a bio is not queued for
1485 * a long time and slice keeps on extending and trim is not
1486 * called for a long time. Now if limits are reduced suddenly
1487 * we take into account all the IO dispatched so far at new
1488 * low rate and * newly queued IO gets a really long dispatch
1489 * time.
1490 *
1491 * So keep on trimming slice even if bio is not queued.
1492 */
0f3457f6 1493 throtl_trim_slice(tg, rw);
9e660acf
TH
1494
1495 /*
1496 * @bio passed through this layer without being throttled.
1497 * Climb up the ladder. If we''re already at the top, it
1498 * can be executed directly.
1499 */
c5cc2070 1500 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
1501 sq = sq->parent_sq;
1502 tg = sq_to_tg(sq);
1503 if (!tg)
1504 goto out_unlock;
e43473b7
VG
1505 }
1506
9e660acf 1507 /* out-of-limit, queue to @tg */
fda6f272
TH
1508 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1509 rw == READ ? 'R' : 'W',
4f024f37 1510 tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
fda6f272
TH
1511 tg->io_disp[rw], tg->iops[rw],
1512 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 1513
671058fb 1514 bio_associate_current(bio);
6bc9c2b4 1515 tg->td->nr_queued[rw]++;
c5cc2070 1516 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 1517 throttled = true;
e43473b7 1518
7f52f98c
TH
1519 /*
1520 * Update @tg's dispatch time and force schedule dispatch if @tg
1521 * was empty before @bio. The forced scheduling isn't likely to
1522 * cause undue delay as @bio is likely to be dispatched directly if
1523 * its @tg's disptime is not in the future.
1524 */
0e9f4164 1525 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 1526 tg_update_disptime(tg);
7f52f98c 1527 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
1528 }
1529
bc16a4f9 1530out_unlock:
e43473b7 1531 spin_unlock_irq(q->queue_lock);
2a7f1244
TH
1532out_unlock_rcu:
1533 rcu_read_unlock();
bc16a4f9 1534out:
2a0f61e6
TH
1535 /*
1536 * As multiple blk-throtls may stack in the same issue path, we
1537 * don't want bios to leave with the flag set. Clear the flag if
1538 * being issued.
1539 */
1540 if (!throttled)
1541 bio->bi_rw &= ~REQ_THROTTLED;
bc16a4f9 1542 return throttled;
e43473b7
VG
1543}
1544
2a12f0dc
TH
1545/*
1546 * Dispatch all bios from all children tg's queued on @parent_sq. On
1547 * return, @parent_sq is guaranteed to not have any active children tg's
1548 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1549 */
1550static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1551{
1552 struct throtl_grp *tg;
1553
1554 while ((tg = throtl_rb_first(parent_sq))) {
1555 struct throtl_service_queue *sq = &tg->service_queue;
1556 struct bio *bio;
1557
1558 throtl_dequeue_tg(tg);
1559
c5cc2070 1560 while ((bio = throtl_peek_queued(&sq->queued[READ])))
2a12f0dc 1561 tg_dispatch_one_bio(tg, bio_data_dir(bio));
c5cc2070 1562 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2a12f0dc
TH
1563 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1564 }
1565}
1566
c9a929dd
TH
1567/**
1568 * blk_throtl_drain - drain throttled bios
1569 * @q: request_queue to drain throttled bios for
1570 *
1571 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1572 */
1573void blk_throtl_drain(struct request_queue *q)
1574 __releases(q->queue_lock) __acquires(q->queue_lock)
1575{
1576 struct throtl_data *td = q->td;
2a12f0dc 1577 struct blkcg_gq *blkg;
492eb21b 1578 struct cgroup_subsys_state *pos_css;
c9a929dd 1579 struct bio *bio;
651930bc 1580 int rw;
c9a929dd 1581
8bcb6c7d 1582 queue_lockdep_assert_held(q);
2a12f0dc 1583 rcu_read_lock();
c9a929dd 1584
2a12f0dc
TH
1585 /*
1586 * Drain each tg while doing post-order walk on the blkg tree, so
1587 * that all bios are propagated to td->service_queue. It'd be
1588 * better to walk service_queue tree directly but blkg walk is
1589 * easier.
1590 */
492eb21b 1591 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2a12f0dc 1592 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
73f0d49a 1593
2a12f0dc
TH
1594 /* finally, transfer bios from top-level tg's into the td */
1595 tg_drain_bios(&td->service_queue);
1596
1597 rcu_read_unlock();
c9a929dd
TH
1598 spin_unlock_irq(q->queue_lock);
1599
2a12f0dc 1600 /* all bios now should be in td->service_queue, issue them */
651930bc 1601 for (rw = READ; rw <= WRITE; rw++)
c5cc2070
TH
1602 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1603 NULL)))
651930bc 1604 generic_make_request(bio);
c9a929dd
TH
1605
1606 spin_lock_irq(q->queue_lock);
1607}
1608
e43473b7
VG
1609int blk_throtl_init(struct request_queue *q)
1610{
1611 struct throtl_data *td;
a2b1693b 1612 int ret;
e43473b7
VG
1613
1614 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1615 if (!td)
1616 return -ENOMEM;
1617
69df0ab0 1618 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
77216b04 1619 throtl_service_queue_init(&td->service_queue, NULL);
e43473b7 1620
cd1604fa 1621 q->td = td;
29b12589 1622 td->queue = q;
02977e4a 1623
a2b1693b 1624 /* activate policy */
3c798398 1625 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
a2b1693b 1626 if (ret)
f51b802c 1627 kfree(td);
a2b1693b 1628 return ret;
e43473b7
VG
1629}
1630
1631void blk_throtl_exit(struct request_queue *q)
1632{
c875f4d0 1633 BUG_ON(!q->td);
da527770 1634 throtl_shutdown_wq(q);
3c798398 1635 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
c9a929dd 1636 kfree(q->td);
e43473b7
VG
1637}
1638
1639static int __init throtl_init(void)
1640{
450adcbe
VG
1641 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1642 if (!kthrotld_workqueue)
1643 panic("Failed to create kthrotld\n");
1644
3c798398 1645 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
1646}
1647
1648module_init(throtl_init);