]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-throttle.c
blk-throttle: add hierarchy support for latency target and idle time
[mirror_ubuntu-bionic-kernel.git] / block / blk-throttle.c
CommitLineData
e43473b7
VG
1/*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/blkdev.h>
10#include <linux/bio.h>
11#include <linux/blktrace_api.h>
eea8f41c 12#include <linux/blk-cgroup.h>
bc9fcbf9 13#include "blk.h"
e43473b7
VG
14
15/* Max dispatch from a group in 1 round */
16static int throtl_grp_quantum = 8;
17
18/* Total max dispatch from all groups in one round */
19static int throtl_quantum = 32;
20
d61fcfa4
SL
21/* Throttling is performed over a slice and after that slice is renewed */
22#define DFL_THROTL_SLICE_HD (HZ / 10)
23#define DFL_THROTL_SLICE_SSD (HZ / 50)
297e3d85 24#define MAX_THROTL_SLICE (HZ)
9e234eea
SL
25#define DFL_IDLE_THRESHOLD_SSD (1000L) /* 1 ms */
26#define DFL_IDLE_THRESHOLD_HD (100L * 1000) /* 100 ms */
27#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
ec80991d
SL
28/* default latency target is 0, eg, guarantee IO latency by default */
29#define DFL_LATENCY_TARGET (0)
e43473b7 30
b9147dd1
SL
31#define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT)
32
3c798398 33static struct blkcg_policy blkcg_policy_throtl;
0381411e 34
450adcbe
VG
35/* A workqueue to queue throttle related work */
36static struct workqueue_struct *kthrotld_workqueue;
450adcbe 37
c5cc2070
TH
38/*
39 * To implement hierarchical throttling, throtl_grps form a tree and bios
40 * are dispatched upwards level by level until they reach the top and get
41 * issued. When dispatching bios from the children and local group at each
42 * level, if the bios are dispatched into a single bio_list, there's a risk
43 * of a local or child group which can queue many bios at once filling up
44 * the list starving others.
45 *
46 * To avoid such starvation, dispatched bios are queued separately
47 * according to where they came from. When they are again dispatched to
48 * the parent, they're popped in round-robin order so that no single source
49 * hogs the dispatch window.
50 *
51 * throtl_qnode is used to keep the queued bios separated by their sources.
52 * Bios are queued to throtl_qnode which in turn is queued to
53 * throtl_service_queue and then dispatched in round-robin order.
54 *
55 * It's also used to track the reference counts on blkg's. A qnode always
56 * belongs to a throtl_grp and gets queued on itself or the parent, so
57 * incrementing the reference of the associated throtl_grp when a qnode is
58 * queued and decrementing when dequeued is enough to keep the whole blkg
59 * tree pinned while bios are in flight.
60 */
61struct throtl_qnode {
62 struct list_head node; /* service_queue->queued[] */
63 struct bio_list bios; /* queued bios */
64 struct throtl_grp *tg; /* tg this qnode belongs to */
65};
66
c9e0332e 67struct throtl_service_queue {
77216b04
TH
68 struct throtl_service_queue *parent_sq; /* the parent service_queue */
69
73f0d49a
TH
70 /*
71 * Bios queued directly to this service_queue or dispatched from
72 * children throtl_grp's.
73 */
c5cc2070 74 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
73f0d49a
TH
75 unsigned int nr_queued[2]; /* number of queued bios */
76
77 /*
78 * RB tree of active children throtl_grp's, which are sorted by
79 * their ->disptime.
80 */
c9e0332e
TH
81 struct rb_root pending_tree; /* RB tree of active tgs */
82 struct rb_node *first_pending; /* first node in the tree */
83 unsigned int nr_pending; /* # queued in the tree */
84 unsigned long first_pending_disptime; /* disptime of the first tg */
69df0ab0 85 struct timer_list pending_timer; /* fires on first_pending_disptime */
e43473b7
VG
86};
87
5b2c16aa
TH
88enum tg_state_flags {
89 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
0e9f4164 90 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
5b2c16aa
TH
91};
92
e43473b7
VG
93#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
94
9f626e37 95enum {
cd5ab1b0 96 LIMIT_LOW,
9f626e37
SL
97 LIMIT_MAX,
98 LIMIT_CNT,
99};
100
e43473b7 101struct throtl_grp {
f95a04af
TH
102 /* must be the first member */
103 struct blkg_policy_data pd;
104
c9e0332e 105 /* active throtl group service_queue member */
e43473b7
VG
106 struct rb_node rb_node;
107
0f3457f6
TH
108 /* throtl_data this group belongs to */
109 struct throtl_data *td;
110
49a2f1e3
TH
111 /* this group's service queue */
112 struct throtl_service_queue service_queue;
113
c5cc2070
TH
114 /*
115 * qnode_on_self is used when bios are directly queued to this
116 * throtl_grp so that local bios compete fairly with bios
117 * dispatched from children. qnode_on_parent is used when bios are
118 * dispatched from this throtl_grp into its parent and will compete
119 * with the sibling qnode_on_parents and the parent's
120 * qnode_on_self.
121 */
122 struct throtl_qnode qnode_on_self[2];
123 struct throtl_qnode qnode_on_parent[2];
124
e43473b7
VG
125 /*
126 * Dispatch time in jiffies. This is the estimated time when group
127 * will unthrottle and is ready to dispatch more bio. It is used as
128 * key to sort active groups in service tree.
129 */
130 unsigned long disptime;
131
e43473b7
VG
132 unsigned int flags;
133
693e751e
TH
134 /* are there any throtl rules between this group and td? */
135 bool has_rules[2];
136
cd5ab1b0 137 /* internally used bytes per second rate limits */
9f626e37 138 uint64_t bps[2][LIMIT_CNT];
cd5ab1b0
SL
139 /* user configured bps limits */
140 uint64_t bps_conf[2][LIMIT_CNT];
e43473b7 141
cd5ab1b0 142 /* internally used IOPS limits */
9f626e37 143 unsigned int iops[2][LIMIT_CNT];
cd5ab1b0
SL
144 /* user configured IOPS limits */
145 unsigned int iops_conf[2][LIMIT_CNT];
8e89d13f 146
e43473b7
VG
147 /* Number of bytes disptached in current slice */
148 uint64_t bytes_disp[2];
8e89d13f
VG
149 /* Number of bio's dispatched in current slice */
150 unsigned int io_disp[2];
e43473b7 151
3f0abd80
SL
152 unsigned long last_low_overflow_time[2];
153
154 uint64_t last_bytes_disp[2];
155 unsigned int last_io_disp[2];
156
157 unsigned long last_check_time;
158
ec80991d 159 unsigned long latency_target; /* us */
5b81fc3c 160 unsigned long latency_target_conf; /* us */
e43473b7
VG
161 /* When did we start a new slice */
162 unsigned long slice_start[2];
163 unsigned long slice_end[2];
9e234eea
SL
164
165 unsigned long last_finish_time; /* ns / 1024 */
166 unsigned long checked_last_finish_time; /* ns / 1024 */
167 unsigned long avg_idletime; /* ns / 1024 */
168 unsigned long idletime_threshold; /* us */
5b81fc3c 169 unsigned long idletime_threshold_conf; /* us */
53696b8d
SL
170
171 unsigned int bio_cnt; /* total bios */
172 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
173 unsigned long bio_cnt_reset_time;
e43473b7
VG
174};
175
b9147dd1
SL
176/* We measure latency for request size from <= 4k to >= 1M */
177#define LATENCY_BUCKET_SIZE 9
178
179struct latency_bucket {
180 unsigned long total_latency; /* ns / 1024 */
181 int samples;
182};
183
184struct avg_latency_bucket {
185 unsigned long latency; /* ns / 1024 */
186 bool valid;
187};
188
e43473b7
VG
189struct throtl_data
190{
e43473b7 191 /* service tree for active throtl groups */
c9e0332e 192 struct throtl_service_queue service_queue;
e43473b7 193
e43473b7
VG
194 struct request_queue *queue;
195
196 /* Total Number of queued bios on READ and WRITE lists */
197 unsigned int nr_queued[2];
198
297e3d85
SL
199 unsigned int throtl_slice;
200
e43473b7 201 /* Work for dispatching throttled bios */
69df0ab0 202 struct work_struct dispatch_work;
9f626e37
SL
203 unsigned int limit_index;
204 bool limit_valid[LIMIT_CNT];
3f0abd80 205
ada75b6e
SL
206 unsigned long dft_idletime_threshold; /* us */
207
3f0abd80
SL
208 unsigned long low_upgrade_time;
209 unsigned long low_downgrade_time;
7394e31f
SL
210
211 unsigned int scale;
b9147dd1
SL
212
213 struct latency_bucket tmp_buckets[LATENCY_BUCKET_SIZE];
214 struct avg_latency_bucket avg_buckets[LATENCY_BUCKET_SIZE];
215 struct latency_bucket __percpu *latency_buckets;
216 unsigned long last_calculate_time;
217
218 bool track_bio_latency;
e43473b7
VG
219};
220
69df0ab0
TH
221static void throtl_pending_timer_fn(unsigned long arg);
222
f95a04af
TH
223static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
224{
225 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
226}
227
3c798398 228static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
0381411e 229{
f95a04af 230 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
0381411e
TH
231}
232
3c798398 233static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 234{
f95a04af 235 return pd_to_blkg(&tg->pd);
0381411e
TH
236}
237
fda6f272
TH
238/**
239 * sq_to_tg - return the throl_grp the specified service queue belongs to
240 * @sq: the throtl_service_queue of interest
241 *
242 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
243 * embedded in throtl_data, %NULL is returned.
244 */
245static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
246{
247 if (sq && sq->parent_sq)
248 return container_of(sq, struct throtl_grp, service_queue);
249 else
250 return NULL;
251}
252
253/**
254 * sq_to_td - return throtl_data the specified service queue belongs to
255 * @sq: the throtl_service_queue of interest
256 *
b43daedc 257 * A service_queue can be embedded in either a throtl_grp or throtl_data.
fda6f272
TH
258 * Determine the associated throtl_data accordingly and return it.
259 */
260static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
261{
262 struct throtl_grp *tg = sq_to_tg(sq);
263
264 if (tg)
265 return tg->td;
266 else
267 return container_of(sq, struct throtl_data, service_queue);
268}
269
7394e31f
SL
270/*
271 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
272 * make the IO dispatch more smooth.
273 * Scale up: linearly scale up according to lapsed time since upgrade. For
274 * every throtl_slice, the limit scales up 1/2 .low limit till the
275 * limit hits .max limit
276 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
277 */
278static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
279{
280 /* arbitrary value to avoid too big scale */
281 if (td->scale < 4096 && time_after_eq(jiffies,
282 td->low_upgrade_time + td->scale * td->throtl_slice))
283 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
284
285 return low + (low >> 1) * td->scale;
286}
287
9f626e37
SL
288static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
289{
b22c417c 290 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 291 struct throtl_data *td;
b22c417c
SL
292 uint64_t ret;
293
294 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
295 return U64_MAX;
7394e31f
SL
296
297 td = tg->td;
298 ret = tg->bps[rw][td->limit_index];
299 if (ret == 0 && td->limit_index == LIMIT_LOW)
b22c417c 300 return tg->bps[rw][LIMIT_MAX];
7394e31f
SL
301
302 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
303 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
304 uint64_t adjusted;
305
306 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
307 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
308 }
b22c417c 309 return ret;
9f626e37
SL
310}
311
312static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
313{
b22c417c 314 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 315 struct throtl_data *td;
b22c417c
SL
316 unsigned int ret;
317
318 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
319 return UINT_MAX;
7394e31f
SL
320 td = tg->td;
321 ret = tg->iops[rw][td->limit_index];
b22c417c
SL
322 if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
323 return tg->iops[rw][LIMIT_MAX];
7394e31f
SL
324
325 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
326 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
327 uint64_t adjusted;
328
329 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
330 if (adjusted > UINT_MAX)
331 adjusted = UINT_MAX;
332 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
333 }
b22c417c 334 return ret;
9f626e37
SL
335}
336
b9147dd1
SL
337#define request_bucket_index(sectors) \
338 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
339
fda6f272
TH
340/**
341 * throtl_log - log debug message via blktrace
342 * @sq: the service_queue being reported
343 * @fmt: printf format string
344 * @args: printf args
345 *
346 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
347 * throtl_grp; otherwise, just "throtl".
fda6f272
TH
348 */
349#define throtl_log(sq, fmt, args...) do { \
350 struct throtl_grp *__tg = sq_to_tg((sq)); \
351 struct throtl_data *__td = sq_to_td((sq)); \
352 \
353 (void)__td; \
59fa0224
SL
354 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
355 break; \
fda6f272
TH
356 if ((__tg)) { \
357 char __pbuf[128]; \
54e7ed12 358 \
fda6f272
TH
359 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
360 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
361 } else { \
362 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
363 } \
54e7ed12 364} while (0)
e43473b7 365
c5cc2070
TH
366static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
367{
368 INIT_LIST_HEAD(&qn->node);
369 bio_list_init(&qn->bios);
370 qn->tg = tg;
371}
372
373/**
374 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
375 * @bio: bio being added
376 * @qn: qnode to add bio to
377 * @queued: the service_queue->queued[] list @qn belongs to
378 *
379 * Add @bio to @qn and put @qn on @queued if it's not already on.
380 * @qn->tg's reference count is bumped when @qn is activated. See the
381 * comment on top of throtl_qnode definition for details.
382 */
383static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
384 struct list_head *queued)
385{
386 bio_list_add(&qn->bios, bio);
387 if (list_empty(&qn->node)) {
388 list_add_tail(&qn->node, queued);
389 blkg_get(tg_to_blkg(qn->tg));
390 }
391}
392
393/**
394 * throtl_peek_queued - peek the first bio on a qnode list
395 * @queued: the qnode list to peek
396 */
397static struct bio *throtl_peek_queued(struct list_head *queued)
398{
399 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
400 struct bio *bio;
401
402 if (list_empty(queued))
403 return NULL;
404
405 bio = bio_list_peek(&qn->bios);
406 WARN_ON_ONCE(!bio);
407 return bio;
408}
409
410/**
411 * throtl_pop_queued - pop the first bio form a qnode list
412 * @queued: the qnode list to pop a bio from
413 * @tg_to_put: optional out argument for throtl_grp to put
414 *
415 * Pop the first bio from the qnode list @queued. After popping, the first
416 * qnode is removed from @queued if empty or moved to the end of @queued so
417 * that the popping order is round-robin.
418 *
419 * When the first qnode is removed, its associated throtl_grp should be put
420 * too. If @tg_to_put is NULL, this function automatically puts it;
421 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
422 * responsible for putting it.
423 */
424static struct bio *throtl_pop_queued(struct list_head *queued,
425 struct throtl_grp **tg_to_put)
426{
427 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
428 struct bio *bio;
429
430 if (list_empty(queued))
431 return NULL;
432
433 bio = bio_list_pop(&qn->bios);
434 WARN_ON_ONCE(!bio);
435
436 if (bio_list_empty(&qn->bios)) {
437 list_del_init(&qn->node);
438 if (tg_to_put)
439 *tg_to_put = qn->tg;
440 else
441 blkg_put(tg_to_blkg(qn->tg));
442 } else {
443 list_move_tail(&qn->node, queued);
444 }
445
446 return bio;
447}
448
49a2f1e3 449/* init a service_queue, assumes the caller zeroed it */
b2ce2643 450static void throtl_service_queue_init(struct throtl_service_queue *sq)
49a2f1e3 451{
c5cc2070
TH
452 INIT_LIST_HEAD(&sq->queued[0]);
453 INIT_LIST_HEAD(&sq->queued[1]);
49a2f1e3 454 sq->pending_tree = RB_ROOT;
69df0ab0
TH
455 setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
456 (unsigned long)sq);
457}
458
001bea73
TH
459static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
460{
4fb72036 461 struct throtl_grp *tg;
24bdb8ef 462 int rw;
4fb72036
TH
463
464 tg = kzalloc_node(sizeof(*tg), gfp, node);
465 if (!tg)
77ea7338 466 return NULL;
4fb72036 467
b2ce2643
TH
468 throtl_service_queue_init(&tg->service_queue);
469
470 for (rw = READ; rw <= WRITE; rw++) {
471 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
472 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
473 }
474
475 RB_CLEAR_NODE(&tg->rb_node);
9f626e37
SL
476 tg->bps[READ][LIMIT_MAX] = U64_MAX;
477 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
478 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
479 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
cd5ab1b0
SL
480 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
481 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
482 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
483 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
484 /* LIMIT_LOW will have default value 0 */
b2ce2643 485
ec80991d 486 tg->latency_target = DFL_LATENCY_TARGET;
5b81fc3c 487 tg->latency_target_conf = DFL_LATENCY_TARGET;
ec80991d 488
4fb72036 489 return &tg->pd;
001bea73
TH
490}
491
a9520cd6 492static void throtl_pd_init(struct blkg_policy_data *pd)
a29a171e 493{
a9520cd6
TH
494 struct throtl_grp *tg = pd_to_tg(pd);
495 struct blkcg_gq *blkg = tg_to_blkg(tg);
77216b04 496 struct throtl_data *td = blkg->q->td;
b2ce2643 497 struct throtl_service_queue *sq = &tg->service_queue;
cd1604fa 498
9138125b 499 /*
aa6ec29b 500 * If on the default hierarchy, we switch to properly hierarchical
9138125b
TH
501 * behavior where limits on a given throtl_grp are applied to the
502 * whole subtree rather than just the group itself. e.g. If 16M
503 * read_bps limit is set on the root group, the whole system can't
504 * exceed 16M for the device.
505 *
aa6ec29b 506 * If not on the default hierarchy, the broken flat hierarchy
9138125b
TH
507 * behavior is retained where all throtl_grps are treated as if
508 * they're all separate root groups right below throtl_data.
509 * Limits of a group don't interact with limits of other groups
510 * regardless of the position of the group in the hierarchy.
511 */
b2ce2643 512 sq->parent_sq = &td->service_queue;
9e10a130 513 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
b2ce2643 514 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
77216b04 515 tg->td = td;
9e234eea 516
ada75b6e 517 tg->idletime_threshold = td->dft_idletime_threshold;
5b81fc3c 518 tg->idletime_threshold_conf = td->dft_idletime_threshold;
8a3d2615
TH
519}
520
693e751e
TH
521/*
522 * Set has_rules[] if @tg or any of its parents have limits configured.
523 * This doesn't require walking up to the top of the hierarchy as the
524 * parent's has_rules[] is guaranteed to be correct.
525 */
526static void tg_update_has_rules(struct throtl_grp *tg)
527{
528 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
9f626e37 529 struct throtl_data *td = tg->td;
693e751e
TH
530 int rw;
531
532 for (rw = READ; rw <= WRITE; rw++)
533 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
9f626e37
SL
534 (td->limit_valid[td->limit_index] &&
535 (tg_bps_limit(tg, rw) != U64_MAX ||
536 tg_iops_limit(tg, rw) != UINT_MAX));
693e751e
TH
537}
538
a9520cd6 539static void throtl_pd_online(struct blkg_policy_data *pd)
693e751e 540{
aec24246 541 struct throtl_grp *tg = pd_to_tg(pd);
693e751e
TH
542 /*
543 * We don't want new groups to escape the limits of its ancestors.
544 * Update has_rules[] after a new group is brought online.
545 */
aec24246 546 tg_update_has_rules(tg);
693e751e
TH
547}
548
cd5ab1b0
SL
549static void blk_throtl_update_limit_valid(struct throtl_data *td)
550{
551 struct cgroup_subsys_state *pos_css;
552 struct blkcg_gq *blkg;
553 bool low_valid = false;
554
555 rcu_read_lock();
556 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
557 struct throtl_grp *tg = blkg_to_tg(blkg);
558
559 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
560 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
561 low_valid = true;
562 }
563 rcu_read_unlock();
564
565 td->limit_valid[LIMIT_LOW] = low_valid;
566}
567
c79892c5 568static void throtl_upgrade_state(struct throtl_data *td);
cd5ab1b0
SL
569static void throtl_pd_offline(struct blkg_policy_data *pd)
570{
571 struct throtl_grp *tg = pd_to_tg(pd);
572
573 tg->bps[READ][LIMIT_LOW] = 0;
574 tg->bps[WRITE][LIMIT_LOW] = 0;
575 tg->iops[READ][LIMIT_LOW] = 0;
576 tg->iops[WRITE][LIMIT_LOW] = 0;
577
578 blk_throtl_update_limit_valid(tg->td);
579
c79892c5
SL
580 if (!tg->td->limit_valid[tg->td->limit_index])
581 throtl_upgrade_state(tg->td);
cd5ab1b0
SL
582}
583
001bea73
TH
584static void throtl_pd_free(struct blkg_policy_data *pd)
585{
4fb72036
TH
586 struct throtl_grp *tg = pd_to_tg(pd);
587
b2ce2643 588 del_timer_sync(&tg->service_queue.pending_timer);
4fb72036 589 kfree(tg);
001bea73
TH
590}
591
0049af73
TH
592static struct throtl_grp *
593throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7
VG
594{
595 /* Service tree is empty */
0049af73 596 if (!parent_sq->nr_pending)
e43473b7
VG
597 return NULL;
598
0049af73
TH
599 if (!parent_sq->first_pending)
600 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
e43473b7 601
0049af73
TH
602 if (parent_sq->first_pending)
603 return rb_entry_tg(parent_sq->first_pending);
e43473b7
VG
604
605 return NULL;
606}
607
608static void rb_erase_init(struct rb_node *n, struct rb_root *root)
609{
610 rb_erase(n, root);
611 RB_CLEAR_NODE(n);
612}
613
0049af73
TH
614static void throtl_rb_erase(struct rb_node *n,
615 struct throtl_service_queue *parent_sq)
e43473b7 616{
0049af73
TH
617 if (parent_sq->first_pending == n)
618 parent_sq->first_pending = NULL;
619 rb_erase_init(n, &parent_sq->pending_tree);
620 --parent_sq->nr_pending;
e43473b7
VG
621}
622
0049af73 623static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
624{
625 struct throtl_grp *tg;
626
0049af73 627 tg = throtl_rb_first(parent_sq);
e43473b7
VG
628 if (!tg)
629 return;
630
0049af73 631 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
632}
633
77216b04 634static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 635{
77216b04 636 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
0049af73 637 struct rb_node **node = &parent_sq->pending_tree.rb_node;
e43473b7
VG
638 struct rb_node *parent = NULL;
639 struct throtl_grp *__tg;
640 unsigned long key = tg->disptime;
641 int left = 1;
642
643 while (*node != NULL) {
644 parent = *node;
645 __tg = rb_entry_tg(parent);
646
647 if (time_before(key, __tg->disptime))
648 node = &parent->rb_left;
649 else {
650 node = &parent->rb_right;
651 left = 0;
652 }
653 }
654
655 if (left)
0049af73 656 parent_sq->first_pending = &tg->rb_node;
e43473b7
VG
657
658 rb_link_node(&tg->rb_node, parent, node);
0049af73 659 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
e43473b7
VG
660}
661
77216b04 662static void __throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 663{
77216b04 664 tg_service_queue_add(tg);
5b2c16aa 665 tg->flags |= THROTL_TG_PENDING;
77216b04 666 tg->service_queue.parent_sq->nr_pending++;
e43473b7
VG
667}
668
77216b04 669static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 670{
5b2c16aa 671 if (!(tg->flags & THROTL_TG_PENDING))
77216b04 672 __throtl_enqueue_tg(tg);
e43473b7
VG
673}
674
77216b04 675static void __throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 676{
77216b04 677 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
5b2c16aa 678 tg->flags &= ~THROTL_TG_PENDING;
e43473b7
VG
679}
680
77216b04 681static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 682{
5b2c16aa 683 if (tg->flags & THROTL_TG_PENDING)
77216b04 684 __throtl_dequeue_tg(tg);
e43473b7
VG
685}
686
a9131a27 687/* Call with queue lock held */
69df0ab0
TH
688static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
689 unsigned long expires)
a9131a27 690{
297e3d85 691 unsigned long max_expire = jiffies + 8 * sq_to_tg(sq)->td->throtl_slice;
06cceedc
SL
692
693 /*
694 * Since we are adjusting the throttle limit dynamically, the sleep
695 * time calculated according to previous limit might be invalid. It's
696 * possible the cgroup sleep time is very long and no other cgroups
697 * have IO running so notify the limit changes. Make sure the cgroup
698 * doesn't sleep too long to avoid the missed notification.
699 */
700 if (time_after(expires, max_expire))
701 expires = max_expire;
69df0ab0
TH
702 mod_timer(&sq->pending_timer, expires);
703 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
704 expires - jiffies, jiffies);
a9131a27
TH
705}
706
7f52f98c
TH
707/**
708 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
709 * @sq: the service_queue to schedule dispatch for
710 * @force: force scheduling
711 *
712 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
713 * dispatch time of the first pending child. Returns %true if either timer
714 * is armed or there's no pending child left. %false if the current
715 * dispatch window is still open and the caller should continue
716 * dispatching.
717 *
718 * If @force is %true, the dispatch timer is always scheduled and this
719 * function is guaranteed to return %true. This is to be used when the
720 * caller can't dispatch itself and needs to invoke pending_timer
721 * unconditionally. Note that forced scheduling is likely to induce short
722 * delay before dispatch starts even if @sq->first_pending_disptime is not
723 * in the future and thus shouldn't be used in hot paths.
724 */
725static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
726 bool force)
e43473b7 727{
6a525600 728 /* any pending children left? */
c9e0332e 729 if (!sq->nr_pending)
7f52f98c 730 return true;
e43473b7 731
c9e0332e 732 update_min_dispatch_time(sq);
e43473b7 733
69df0ab0 734 /* is the next dispatch time in the future? */
7f52f98c 735 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 736 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 737 return true;
69df0ab0
TH
738 }
739
7f52f98c
TH
740 /* tell the caller to continue dispatching */
741 return false;
e43473b7
VG
742}
743
32ee5bc4
VG
744static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
745 bool rw, unsigned long start)
746{
747 tg->bytes_disp[rw] = 0;
748 tg->io_disp[rw] = 0;
749
750 /*
751 * Previous slice has expired. We must have trimmed it after last
752 * bio dispatch. That means since start of last slice, we never used
753 * that bandwidth. Do try to make use of that bandwidth while giving
754 * credit.
755 */
756 if (time_after_eq(start, tg->slice_start[rw]))
757 tg->slice_start[rw] = start;
758
297e3d85 759 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
32ee5bc4
VG
760 throtl_log(&tg->service_queue,
761 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
762 rw == READ ? 'R' : 'W', tg->slice_start[rw],
763 tg->slice_end[rw], jiffies);
764}
765
0f3457f6 766static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
e43473b7
VG
767{
768 tg->bytes_disp[rw] = 0;
8e89d13f 769 tg->io_disp[rw] = 0;
e43473b7 770 tg->slice_start[rw] = jiffies;
297e3d85 771 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
fda6f272
TH
772 throtl_log(&tg->service_queue,
773 "[%c] new slice start=%lu end=%lu jiffies=%lu",
774 rw == READ ? 'R' : 'W', tg->slice_start[rw],
775 tg->slice_end[rw], jiffies);
e43473b7
VG
776}
777
0f3457f6
TH
778static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
779 unsigned long jiffy_end)
d1ae8ffd 780{
297e3d85 781 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
d1ae8ffd
VG
782}
783
0f3457f6
TH
784static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
785 unsigned long jiffy_end)
e43473b7 786{
297e3d85 787 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
fda6f272
TH
788 throtl_log(&tg->service_queue,
789 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
790 rw == READ ? 'R' : 'W', tg->slice_start[rw],
791 tg->slice_end[rw], jiffies);
e43473b7
VG
792}
793
794/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 795static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
796{
797 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
5cf8c227 798 return false;
e43473b7
VG
799
800 return 1;
801}
802
803/* Trim the used slices and adjust slice start accordingly */
0f3457f6 804static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 805{
3aad5d3e
VG
806 unsigned long nr_slices, time_elapsed, io_trim;
807 u64 bytes_trim, tmp;
e43473b7
VG
808
809 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
810
811 /*
812 * If bps are unlimited (-1), then time slice don't get
813 * renewed. Don't try to trim the slice if slice is used. A new
814 * slice will start when appropriate.
815 */
0f3457f6 816 if (throtl_slice_used(tg, rw))
e43473b7
VG
817 return;
818
d1ae8ffd
VG
819 /*
820 * A bio has been dispatched. Also adjust slice_end. It might happen
821 * that initially cgroup limit was very low resulting in high
822 * slice_end, but later limit was bumped up and bio was dispached
823 * sooner, then we need to reduce slice_end. A high bogus slice_end
824 * is bad because it does not allow new slice to start.
825 */
826
297e3d85 827 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
d1ae8ffd 828
e43473b7
VG
829 time_elapsed = jiffies - tg->slice_start[rw];
830
297e3d85 831 nr_slices = time_elapsed / tg->td->throtl_slice;
e43473b7
VG
832
833 if (!nr_slices)
834 return;
297e3d85 835 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
3aad5d3e
VG
836 do_div(tmp, HZ);
837 bytes_trim = tmp;
e43473b7 838
297e3d85
SL
839 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
840 HZ;
e43473b7 841
8e89d13f 842 if (!bytes_trim && !io_trim)
e43473b7
VG
843 return;
844
845 if (tg->bytes_disp[rw] >= bytes_trim)
846 tg->bytes_disp[rw] -= bytes_trim;
847 else
848 tg->bytes_disp[rw] = 0;
849
8e89d13f
VG
850 if (tg->io_disp[rw] >= io_trim)
851 tg->io_disp[rw] -= io_trim;
852 else
853 tg->io_disp[rw] = 0;
854
297e3d85 855 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
e43473b7 856
fda6f272
TH
857 throtl_log(&tg->service_queue,
858 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
859 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
860 tg->slice_start[rw], tg->slice_end[rw], jiffies);
e43473b7
VG
861}
862
0f3457f6
TH
863static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
864 unsigned long *wait)
e43473b7
VG
865{
866 bool rw = bio_data_dir(bio);
8e89d13f 867 unsigned int io_allowed;
e43473b7 868 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
c49c06e4 869 u64 tmp;
e43473b7 870
8e89d13f 871 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
e43473b7 872
8e89d13f
VG
873 /* Slice has just started. Consider one slice interval */
874 if (!jiffy_elapsed)
297e3d85 875 jiffy_elapsed_rnd = tg->td->throtl_slice;
8e89d13f 876
297e3d85 877 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
8e89d13f 878
c49c06e4
VG
879 /*
880 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
881 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
882 * will allow dispatch after 1 second and after that slice should
883 * have been trimmed.
884 */
885
9f626e37 886 tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
c49c06e4
VG
887 do_div(tmp, HZ);
888
889 if (tmp > UINT_MAX)
890 io_allowed = UINT_MAX;
891 else
892 io_allowed = tmp;
8e89d13f
VG
893
894 if (tg->io_disp[rw] + 1 <= io_allowed) {
e43473b7
VG
895 if (wait)
896 *wait = 0;
5cf8c227 897 return true;
e43473b7
VG
898 }
899
8e89d13f 900 /* Calc approx time to dispatch */
9f626e37 901 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
8e89d13f
VG
902
903 if (jiffy_wait > jiffy_elapsed)
904 jiffy_wait = jiffy_wait - jiffy_elapsed;
905 else
906 jiffy_wait = 1;
907
908 if (wait)
909 *wait = jiffy_wait;
910 return 0;
911}
912
0f3457f6
TH
913static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
914 unsigned long *wait)
8e89d13f
VG
915{
916 bool rw = bio_data_dir(bio);
3aad5d3e 917 u64 bytes_allowed, extra_bytes, tmp;
8e89d13f 918 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
e43473b7
VG
919
920 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
921
922 /* Slice has just started. Consider one slice interval */
923 if (!jiffy_elapsed)
297e3d85 924 jiffy_elapsed_rnd = tg->td->throtl_slice;
e43473b7 925
297e3d85 926 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
e43473b7 927
9f626e37 928 tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
5e901a2b 929 do_div(tmp, HZ);
3aad5d3e 930 bytes_allowed = tmp;
e43473b7 931
4f024f37 932 if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
e43473b7
VG
933 if (wait)
934 *wait = 0;
5cf8c227 935 return true;
e43473b7
VG
936 }
937
938 /* Calc approx time to dispatch */
4f024f37 939 extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
9f626e37 940 jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
e43473b7
VG
941
942 if (!jiffy_wait)
943 jiffy_wait = 1;
944
945 /*
946 * This wait time is without taking into consideration the rounding
947 * up we did. Add that time also.
948 */
949 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
e43473b7
VG
950 if (wait)
951 *wait = jiffy_wait;
8e89d13f
VG
952 return 0;
953}
954
955/*
956 * Returns whether one can dispatch a bio or not. Also returns approx number
957 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
958 */
0f3457f6
TH
959static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
960 unsigned long *wait)
8e89d13f
VG
961{
962 bool rw = bio_data_dir(bio);
963 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
964
965 /*
966 * Currently whole state machine of group depends on first bio
967 * queued in the group bio list. So one should not be calling
968 * this function with a different bio if there are other bios
969 * queued.
970 */
73f0d49a 971 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 972 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 973
8e89d13f 974 /* If tg->bps = -1, then BW is unlimited */
9f626e37
SL
975 if (tg_bps_limit(tg, rw) == U64_MAX &&
976 tg_iops_limit(tg, rw) == UINT_MAX) {
8e89d13f
VG
977 if (wait)
978 *wait = 0;
5cf8c227 979 return true;
8e89d13f
VG
980 }
981
982 /*
983 * If previous slice expired, start a new one otherwise renew/extend
984 * existing slice to make sure it is at least throtl_slice interval
164c80ed
VG
985 * long since now. New slice is started only for empty throttle group.
986 * If there is queued bio, that means there should be an active
987 * slice and it should be extended instead.
8e89d13f 988 */
164c80ed 989 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
0f3457f6 990 throtl_start_new_slice(tg, rw);
8e89d13f 991 else {
297e3d85
SL
992 if (time_before(tg->slice_end[rw],
993 jiffies + tg->td->throtl_slice))
994 throtl_extend_slice(tg, rw,
995 jiffies + tg->td->throtl_slice);
8e89d13f
VG
996 }
997
0f3457f6
TH
998 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
999 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
8e89d13f
VG
1000 if (wait)
1001 *wait = 0;
1002 return 1;
1003 }
1004
1005 max_wait = max(bps_wait, iops_wait);
1006
1007 if (wait)
1008 *wait = max_wait;
1009
1010 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 1011 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7
VG
1012
1013 return 0;
1014}
1015
1016static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1017{
1018 bool rw = bio_data_dir(bio);
e43473b7
VG
1019
1020 /* Charge the bio to the group */
4f024f37 1021 tg->bytes_disp[rw] += bio->bi_iter.bi_size;
8e89d13f 1022 tg->io_disp[rw]++;
3f0abd80
SL
1023 tg->last_bytes_disp[rw] += bio->bi_iter.bi_size;
1024 tg->last_io_disp[rw]++;
e43473b7 1025
2a0f61e6 1026 /*
8d2bbd4c 1027 * BIO_THROTTLED is used to prevent the same bio to be throttled
2a0f61e6
TH
1028 * more than once as a throttled bio will go through blk-throtl the
1029 * second time when it eventually gets issued. Set it when a bio
1030 * is being charged to a tg.
2a0f61e6 1031 */
8d2bbd4c
CH
1032 if (!bio_flagged(bio, BIO_THROTTLED))
1033 bio_set_flag(bio, BIO_THROTTLED);
e43473b7
VG
1034}
1035
c5cc2070
TH
1036/**
1037 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1038 * @bio: bio to add
1039 * @qn: qnode to use
1040 * @tg: the target throtl_grp
1041 *
1042 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1043 * tg->qnode_on_self[] is used.
1044 */
1045static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1046 struct throtl_grp *tg)
e43473b7 1047{
73f0d49a 1048 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1049 bool rw = bio_data_dir(bio);
1050
c5cc2070
TH
1051 if (!qn)
1052 qn = &tg->qnode_on_self[rw];
1053
0e9f4164
TH
1054 /*
1055 * If @tg doesn't currently have any bios queued in the same
1056 * direction, queueing @bio can change when @tg should be
1057 * dispatched. Mark that @tg was empty. This is automatically
1058 * cleaered on the next tg_update_disptime().
1059 */
1060 if (!sq->nr_queued[rw])
1061 tg->flags |= THROTL_TG_WAS_EMPTY;
1062
c5cc2070
TH
1063 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1064
73f0d49a 1065 sq->nr_queued[rw]++;
77216b04 1066 throtl_enqueue_tg(tg);
e43473b7
VG
1067}
1068
77216b04 1069static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 1070{
73f0d49a 1071 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1072 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1073 struct bio *bio;
1074
d609af3a
ME
1075 bio = throtl_peek_queued(&sq->queued[READ]);
1076 if (bio)
0f3457f6 1077 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 1078
d609af3a
ME
1079 bio = throtl_peek_queued(&sq->queued[WRITE]);
1080 if (bio)
0f3457f6 1081 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
1082
1083 min_wait = min(read_wait, write_wait);
1084 disptime = jiffies + min_wait;
1085
e43473b7 1086 /* Update dispatch time */
77216b04 1087 throtl_dequeue_tg(tg);
e43473b7 1088 tg->disptime = disptime;
77216b04 1089 throtl_enqueue_tg(tg);
0e9f4164
TH
1090
1091 /* see throtl_add_bio_tg() */
1092 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
1093}
1094
32ee5bc4
VG
1095static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1096 struct throtl_grp *parent_tg, bool rw)
1097{
1098 if (throtl_slice_used(parent_tg, rw)) {
1099 throtl_start_new_slice_with_credit(parent_tg, rw,
1100 child_tg->slice_start[rw]);
1101 }
1102
1103}
1104
77216b04 1105static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 1106{
73f0d49a 1107 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
1108 struct throtl_service_queue *parent_sq = sq->parent_sq;
1109 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 1110 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
1111 struct bio *bio;
1112
c5cc2070
TH
1113 /*
1114 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1115 * from @tg may put its reference and @parent_sq might end up
1116 * getting released prematurely. Remember the tg to put and put it
1117 * after @bio is transferred to @parent_sq.
1118 */
1119 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 1120 sq->nr_queued[rw]--;
e43473b7
VG
1121
1122 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
1123
1124 /*
1125 * If our parent is another tg, we just need to transfer @bio to
1126 * the parent using throtl_add_bio_tg(). If our parent is
1127 * @td->service_queue, @bio is ready to be issued. Put it on its
1128 * bio_lists[] and decrease total number queued. The caller is
1129 * responsible for issuing these bios.
1130 */
1131 if (parent_tg) {
c5cc2070 1132 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 1133 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 1134 } else {
c5cc2070
TH
1135 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1136 &parent_sq->queued[rw]);
6bc9c2b4
TH
1137 BUG_ON(tg->td->nr_queued[rw] <= 0);
1138 tg->td->nr_queued[rw]--;
1139 }
e43473b7 1140
0f3457f6 1141 throtl_trim_slice(tg, rw);
6bc9c2b4 1142
c5cc2070
TH
1143 if (tg_to_put)
1144 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1145}
1146
77216b04 1147static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1148{
73f0d49a 1149 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1150 unsigned int nr_reads = 0, nr_writes = 0;
1151 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
c2f6805d 1152 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
e43473b7
VG
1153 struct bio *bio;
1154
1155 /* Try to dispatch 75% READS and 25% WRITES */
1156
c5cc2070 1157 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1158 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1159
77216b04 1160 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1161 nr_reads++;
1162
1163 if (nr_reads >= max_nr_reads)
1164 break;
1165 }
1166
c5cc2070 1167 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1168 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1169
77216b04 1170 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1171 nr_writes++;
1172
1173 if (nr_writes >= max_nr_writes)
1174 break;
1175 }
1176
1177 return nr_reads + nr_writes;
1178}
1179
651930bc 1180static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1181{
1182 unsigned int nr_disp = 0;
e43473b7
VG
1183
1184 while (1) {
73f0d49a
TH
1185 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1186 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1187
1188 if (!tg)
1189 break;
1190
1191 if (time_before(jiffies, tg->disptime))
1192 break;
1193
77216b04 1194 throtl_dequeue_tg(tg);
e43473b7 1195
77216b04 1196 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1197
73f0d49a 1198 if (sq->nr_queued[0] || sq->nr_queued[1])
77216b04 1199 tg_update_disptime(tg);
e43473b7
VG
1200
1201 if (nr_disp >= throtl_quantum)
1202 break;
1203 }
1204
1205 return nr_disp;
1206}
1207
c79892c5
SL
1208static bool throtl_can_upgrade(struct throtl_data *td,
1209 struct throtl_grp *this_tg);
6e1a5704
TH
1210/**
1211 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1212 * @arg: the throtl_service_queue being serviced
1213 *
1214 * This timer is armed when a child throtl_grp with active bio's become
1215 * pending and queued on the service_queue's pending_tree and expires when
1216 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1217 * dispatches bio's from the children throtl_grps to the parent
1218 * service_queue.
1219 *
1220 * If the parent's parent is another throtl_grp, dispatching is propagated
1221 * by either arming its pending_timer or repeating dispatch directly. If
1222 * the top-level service_tree is reached, throtl_data->dispatch_work is
1223 * kicked so that the ready bio's are issued.
6e1a5704 1224 */
69df0ab0
TH
1225static void throtl_pending_timer_fn(unsigned long arg)
1226{
1227 struct throtl_service_queue *sq = (void *)arg;
2e48a530 1228 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1229 struct throtl_data *td = sq_to_td(sq);
cb76199c 1230 struct request_queue *q = td->queue;
2e48a530
TH
1231 struct throtl_service_queue *parent_sq;
1232 bool dispatched;
6e1a5704 1233 int ret;
e43473b7
VG
1234
1235 spin_lock_irq(q->queue_lock);
c79892c5
SL
1236 if (throtl_can_upgrade(td, NULL))
1237 throtl_upgrade_state(td);
1238
2e48a530
TH
1239again:
1240 parent_sq = sq->parent_sq;
1241 dispatched = false;
e43473b7 1242
7f52f98c
TH
1243 while (true) {
1244 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1245 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1246 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1247
1248 ret = throtl_select_dispatch(sq);
1249 if (ret) {
7f52f98c
TH
1250 throtl_log(sq, "bios disp=%u", ret);
1251 dispatched = true;
1252 }
e43473b7 1253
7f52f98c
TH
1254 if (throtl_schedule_next_dispatch(sq, false))
1255 break;
e43473b7 1256
7f52f98c
TH
1257 /* this dispatch windows is still open, relax and repeat */
1258 spin_unlock_irq(q->queue_lock);
1259 cpu_relax();
1260 spin_lock_irq(q->queue_lock);
651930bc 1261 }
e43473b7 1262
2e48a530
TH
1263 if (!dispatched)
1264 goto out_unlock;
6e1a5704 1265
2e48a530
TH
1266 if (parent_sq) {
1267 /* @parent_sq is another throl_grp, propagate dispatch */
1268 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1269 tg_update_disptime(tg);
1270 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1271 /* window is already open, repeat dispatching */
1272 sq = parent_sq;
1273 tg = sq_to_tg(sq);
1274 goto again;
1275 }
1276 }
1277 } else {
1278 /* reached the top-level, queue issueing */
1279 queue_work(kthrotld_workqueue, &td->dispatch_work);
1280 }
1281out_unlock:
e43473b7 1282 spin_unlock_irq(q->queue_lock);
6e1a5704 1283}
e43473b7 1284
6e1a5704
TH
1285/**
1286 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1287 * @work: work item being executed
1288 *
1289 * This function is queued for execution when bio's reach the bio_lists[]
1290 * of throtl_data->service_queue. Those bio's are ready and issued by this
1291 * function.
1292 */
8876e140 1293static void blk_throtl_dispatch_work_fn(struct work_struct *work)
6e1a5704
TH
1294{
1295 struct throtl_data *td = container_of(work, struct throtl_data,
1296 dispatch_work);
1297 struct throtl_service_queue *td_sq = &td->service_queue;
1298 struct request_queue *q = td->queue;
1299 struct bio_list bio_list_on_stack;
1300 struct bio *bio;
1301 struct blk_plug plug;
1302 int rw;
1303
1304 bio_list_init(&bio_list_on_stack);
1305
1306 spin_lock_irq(q->queue_lock);
c5cc2070
TH
1307 for (rw = READ; rw <= WRITE; rw++)
1308 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1309 bio_list_add(&bio_list_on_stack, bio);
6e1a5704
TH
1310 spin_unlock_irq(q->queue_lock);
1311
1312 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1313 blk_start_plug(&plug);
e43473b7
VG
1314 while((bio = bio_list_pop(&bio_list_on_stack)))
1315 generic_make_request(bio);
69d60eb9 1316 blk_finish_plug(&plug);
e43473b7 1317 }
e43473b7
VG
1318}
1319
f95a04af
TH
1320static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1321 int off)
60c2bc2d 1322{
f95a04af
TH
1323 struct throtl_grp *tg = pd_to_tg(pd);
1324 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1325
2ab5492d 1326 if (v == U64_MAX)
60c2bc2d 1327 return 0;
f95a04af 1328 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1329}
1330
f95a04af
TH
1331static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1332 int off)
e43473b7 1333{
f95a04af
TH
1334 struct throtl_grp *tg = pd_to_tg(pd);
1335 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1336
2ab5492d 1337 if (v == UINT_MAX)
af133ceb 1338 return 0;
f95a04af 1339 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1340}
1341
2da8ca82 1342static int tg_print_conf_u64(struct seq_file *sf, void *v)
8e89d13f 1343{
2da8ca82
TH
1344 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1345 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1346 return 0;
8e89d13f
VG
1347}
1348
2da8ca82 1349static int tg_print_conf_uint(struct seq_file *sf, void *v)
8e89d13f 1350{
2da8ca82
TH
1351 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1352 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1353 return 0;
60c2bc2d
TH
1354}
1355
69948b07 1356static void tg_conf_updated(struct throtl_grp *tg)
60c2bc2d 1357{
69948b07 1358 struct throtl_service_queue *sq = &tg->service_queue;
492eb21b 1359 struct cgroup_subsys_state *pos_css;
69948b07 1360 struct blkcg_gq *blkg;
af133ceb 1361
fda6f272
TH
1362 throtl_log(&tg->service_queue,
1363 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
9f626e37
SL
1364 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1365 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
632b4493 1366
693e751e
TH
1367 /*
1368 * Update has_rules[] flags for the updated tg's subtree. A tg is
1369 * considered to have rules if either the tg itself or any of its
1370 * ancestors has rules. This identifies groups without any
1371 * restrictions in the whole hierarchy and allows them to bypass
1372 * blk-throttle.
1373 */
5b81fc3c
SL
1374 blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg)) {
1375 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1376 struct throtl_grp *parent_tg;
1377
1378 tg_update_has_rules(this_tg);
1379 /* ignore root/second level */
1380 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1381 !blkg->parent->parent)
1382 continue;
1383 parent_tg = blkg_to_tg(blkg->parent);
1384 /*
1385 * make sure all children has lower idle time threshold and
1386 * higher latency target
1387 */
1388 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1389 parent_tg->idletime_threshold);
1390 this_tg->latency_target = max(this_tg->latency_target,
1391 parent_tg->latency_target);
1392 }
693e751e 1393
632b4493
TH
1394 /*
1395 * We're already holding queue_lock and know @tg is valid. Let's
1396 * apply the new config directly.
1397 *
1398 * Restart the slices for both READ and WRITES. It might happen
1399 * that a group's limit are dropped suddenly and we don't want to
1400 * account recently dispatched IO with new low rate.
1401 */
0f3457f6
TH
1402 throtl_start_new_slice(tg, 0);
1403 throtl_start_new_slice(tg, 1);
632b4493 1404
5b2c16aa 1405 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1406 tg_update_disptime(tg);
7f52f98c 1407 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1408 }
69948b07
TH
1409}
1410
1411static ssize_t tg_set_conf(struct kernfs_open_file *of,
1412 char *buf, size_t nbytes, loff_t off, bool is_u64)
1413{
1414 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1415 struct blkg_conf_ctx ctx;
1416 struct throtl_grp *tg;
1417 int ret;
1418 u64 v;
1419
1420 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1421 if (ret)
1422 return ret;
1423
1424 ret = -EINVAL;
1425 if (sscanf(ctx.body, "%llu", &v) != 1)
1426 goto out_finish;
1427 if (!v)
2ab5492d 1428 v = U64_MAX;
69948b07
TH
1429
1430 tg = blkg_to_tg(ctx.blkg);
1431
1432 if (is_u64)
1433 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1434 else
1435 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
60c2bc2d 1436
69948b07 1437 tg_conf_updated(tg);
36aa9e5f
TH
1438 ret = 0;
1439out_finish:
60c2bc2d 1440 blkg_conf_finish(&ctx);
36aa9e5f 1441 return ret ?: nbytes;
8e89d13f
VG
1442}
1443
451af504
TH
1444static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1445 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1446{
451af504 1447 return tg_set_conf(of, buf, nbytes, off, true);
60c2bc2d
TH
1448}
1449
451af504
TH
1450static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1451 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1452{
451af504 1453 return tg_set_conf(of, buf, nbytes, off, false);
60c2bc2d
TH
1454}
1455
880f50e2 1456static struct cftype throtl_legacy_files[] = {
60c2bc2d
TH
1457 {
1458 .name = "throttle.read_bps_device",
9f626e37 1459 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
2da8ca82 1460 .seq_show = tg_print_conf_u64,
451af504 1461 .write = tg_set_conf_u64,
60c2bc2d
TH
1462 },
1463 {
1464 .name = "throttle.write_bps_device",
9f626e37 1465 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
2da8ca82 1466 .seq_show = tg_print_conf_u64,
451af504 1467 .write = tg_set_conf_u64,
60c2bc2d
TH
1468 },
1469 {
1470 .name = "throttle.read_iops_device",
9f626e37 1471 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
2da8ca82 1472 .seq_show = tg_print_conf_uint,
451af504 1473 .write = tg_set_conf_uint,
60c2bc2d
TH
1474 },
1475 {
1476 .name = "throttle.write_iops_device",
9f626e37 1477 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
2da8ca82 1478 .seq_show = tg_print_conf_uint,
451af504 1479 .write = tg_set_conf_uint,
60c2bc2d
TH
1480 },
1481 {
1482 .name = "throttle.io_service_bytes",
77ea7338
TH
1483 .private = (unsigned long)&blkcg_policy_throtl,
1484 .seq_show = blkg_print_stat_bytes,
60c2bc2d
TH
1485 },
1486 {
1487 .name = "throttle.io_serviced",
77ea7338
TH
1488 .private = (unsigned long)&blkcg_policy_throtl,
1489 .seq_show = blkg_print_stat_ios,
60c2bc2d
TH
1490 },
1491 { } /* terminate */
1492};
1493
cd5ab1b0 1494static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
2ee867dc
TH
1495 int off)
1496{
1497 struct throtl_grp *tg = pd_to_tg(pd);
1498 const char *dname = blkg_dev_name(pd->blkg);
1499 char bufs[4][21] = { "max", "max", "max", "max" };
cd5ab1b0
SL
1500 u64 bps_dft;
1501 unsigned int iops_dft;
ada75b6e 1502 char idle_time[26] = "";
ec80991d 1503 char latency_time[26] = "";
2ee867dc
TH
1504
1505 if (!dname)
1506 return 0;
9f626e37 1507
cd5ab1b0
SL
1508 if (off == LIMIT_LOW) {
1509 bps_dft = 0;
1510 iops_dft = 0;
1511 } else {
1512 bps_dft = U64_MAX;
1513 iops_dft = UINT_MAX;
1514 }
1515
1516 if (tg->bps_conf[READ][off] == bps_dft &&
1517 tg->bps_conf[WRITE][off] == bps_dft &&
1518 tg->iops_conf[READ][off] == iops_dft &&
ada75b6e 1519 tg->iops_conf[WRITE][off] == iops_dft &&
ec80991d 1520 (off != LIMIT_LOW ||
5b81fc3c
SL
1521 (tg->idletime_threshold_conf == tg->td->dft_idletime_threshold &&
1522 tg->latency_target_conf == DFL_LATENCY_TARGET)))
2ee867dc
TH
1523 return 0;
1524
cd5ab1b0 1525 if (tg->bps_conf[READ][off] != bps_dft)
9f626e37 1526 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
cd5ab1b0
SL
1527 tg->bps_conf[READ][off]);
1528 if (tg->bps_conf[WRITE][off] != bps_dft)
9f626e37 1529 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
cd5ab1b0
SL
1530 tg->bps_conf[WRITE][off]);
1531 if (tg->iops_conf[READ][off] != iops_dft)
9f626e37 1532 snprintf(bufs[2], sizeof(bufs[2]), "%u",
cd5ab1b0
SL
1533 tg->iops_conf[READ][off]);
1534 if (tg->iops_conf[WRITE][off] != iops_dft)
9f626e37 1535 snprintf(bufs[3], sizeof(bufs[3]), "%u",
cd5ab1b0 1536 tg->iops_conf[WRITE][off]);
ada75b6e 1537 if (off == LIMIT_LOW) {
5b81fc3c 1538 if (tg->idletime_threshold_conf == ULONG_MAX)
ada75b6e
SL
1539 strcpy(idle_time, " idle=max");
1540 else
1541 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
5b81fc3c 1542 tg->idletime_threshold_conf);
ec80991d 1543
5b81fc3c 1544 if (tg->latency_target_conf == ULONG_MAX)
ec80991d
SL
1545 strcpy(latency_time, " latency=max");
1546 else
1547 snprintf(latency_time, sizeof(latency_time),
5b81fc3c 1548 " latency=%lu", tg->latency_target_conf);
ada75b6e 1549 }
2ee867dc 1550
ec80991d
SL
1551 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1552 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1553 latency_time);
2ee867dc
TH
1554 return 0;
1555}
1556
cd5ab1b0 1557static int tg_print_limit(struct seq_file *sf, void *v)
2ee867dc 1558{
cd5ab1b0 1559 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
2ee867dc
TH
1560 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1561 return 0;
1562}
1563
cd5ab1b0 1564static ssize_t tg_set_limit(struct kernfs_open_file *of,
2ee867dc
TH
1565 char *buf, size_t nbytes, loff_t off)
1566{
1567 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1568 struct blkg_conf_ctx ctx;
1569 struct throtl_grp *tg;
1570 u64 v[4];
ada75b6e 1571 unsigned long idle_time;
ec80991d 1572 unsigned long latency_time;
2ee867dc 1573 int ret;
cd5ab1b0 1574 int index = of_cft(of)->private;
2ee867dc
TH
1575
1576 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1577 if (ret)
1578 return ret;
1579
1580 tg = blkg_to_tg(ctx.blkg);
1581
cd5ab1b0
SL
1582 v[0] = tg->bps_conf[READ][index];
1583 v[1] = tg->bps_conf[WRITE][index];
1584 v[2] = tg->iops_conf[READ][index];
1585 v[3] = tg->iops_conf[WRITE][index];
2ee867dc 1586
5b81fc3c
SL
1587 idle_time = tg->idletime_threshold_conf;
1588 latency_time = tg->latency_target_conf;
2ee867dc
TH
1589 while (true) {
1590 char tok[27]; /* wiops=18446744073709551616 */
1591 char *p;
2ab5492d 1592 u64 val = U64_MAX;
2ee867dc
TH
1593 int len;
1594
1595 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1596 break;
1597 if (tok[0] == '\0')
1598 break;
1599 ctx.body += len;
1600
1601 ret = -EINVAL;
1602 p = tok;
1603 strsep(&p, "=");
1604 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1605 goto out_finish;
1606
1607 ret = -ERANGE;
1608 if (!val)
1609 goto out_finish;
1610
1611 ret = -EINVAL;
1612 if (!strcmp(tok, "rbps"))
1613 v[0] = val;
1614 else if (!strcmp(tok, "wbps"))
1615 v[1] = val;
1616 else if (!strcmp(tok, "riops"))
1617 v[2] = min_t(u64, val, UINT_MAX);
1618 else if (!strcmp(tok, "wiops"))
1619 v[3] = min_t(u64, val, UINT_MAX);
ada75b6e
SL
1620 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1621 idle_time = val;
ec80991d
SL
1622 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1623 latency_time = val;
2ee867dc
TH
1624 else
1625 goto out_finish;
1626 }
1627
cd5ab1b0
SL
1628 tg->bps_conf[READ][index] = v[0];
1629 tg->bps_conf[WRITE][index] = v[1];
1630 tg->iops_conf[READ][index] = v[2];
1631 tg->iops_conf[WRITE][index] = v[3];
2ee867dc 1632
cd5ab1b0
SL
1633 if (index == LIMIT_MAX) {
1634 tg->bps[READ][index] = v[0];
1635 tg->bps[WRITE][index] = v[1];
1636 tg->iops[READ][index] = v[2];
1637 tg->iops[WRITE][index] = v[3];
1638 }
1639 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1640 tg->bps_conf[READ][LIMIT_MAX]);
1641 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1642 tg->bps_conf[WRITE][LIMIT_MAX]);
1643 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1644 tg->iops_conf[READ][LIMIT_MAX]);
1645 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1646 tg->iops_conf[WRITE][LIMIT_MAX]);
1647
1648 if (index == LIMIT_LOW) {
1649 blk_throtl_update_limit_valid(tg->td);
1650 if (tg->td->limit_valid[LIMIT_LOW])
1651 tg->td->limit_index = LIMIT_LOW;
5b81fc3c
SL
1652 tg->idletime_threshold_conf = idle_time;
1653 tg->idletime_threshold = tg->idletime_threshold_conf;
1654 tg->latency_target_conf = latency_time;
1655 tg->latency_target = tg->latency_target_conf;
cd5ab1b0 1656 }
2ee867dc
TH
1657 tg_conf_updated(tg);
1658 ret = 0;
1659out_finish:
1660 blkg_conf_finish(&ctx);
1661 return ret ?: nbytes;
1662}
1663
1664static struct cftype throtl_files[] = {
cd5ab1b0
SL
1665#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1666 {
1667 .name = "low",
1668 .flags = CFTYPE_NOT_ON_ROOT,
1669 .seq_show = tg_print_limit,
1670 .write = tg_set_limit,
1671 .private = LIMIT_LOW,
1672 },
1673#endif
2ee867dc
TH
1674 {
1675 .name = "max",
1676 .flags = CFTYPE_NOT_ON_ROOT,
cd5ab1b0
SL
1677 .seq_show = tg_print_limit,
1678 .write = tg_set_limit,
1679 .private = LIMIT_MAX,
2ee867dc
TH
1680 },
1681 { } /* terminate */
1682};
1683
da527770 1684static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1685{
1686 struct throtl_data *td = q->td;
1687
69df0ab0 1688 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1689}
1690
3c798398 1691static struct blkcg_policy blkcg_policy_throtl = {
2ee867dc 1692 .dfl_cftypes = throtl_files,
880f50e2 1693 .legacy_cftypes = throtl_legacy_files,
f9fcc2d3 1694
001bea73 1695 .pd_alloc_fn = throtl_pd_alloc,
f9fcc2d3 1696 .pd_init_fn = throtl_pd_init,
693e751e 1697 .pd_online_fn = throtl_pd_online,
cd5ab1b0 1698 .pd_offline_fn = throtl_pd_offline,
001bea73 1699 .pd_free_fn = throtl_pd_free,
e43473b7
VG
1700};
1701
3f0abd80
SL
1702static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1703{
1704 unsigned long rtime = jiffies, wtime = jiffies;
1705
1706 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1707 rtime = tg->last_low_overflow_time[READ];
1708 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1709 wtime = tg->last_low_overflow_time[WRITE];
1710 return min(rtime, wtime);
1711}
1712
1713/* tg should not be an intermediate node */
1714static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1715{
1716 struct throtl_service_queue *parent_sq;
1717 struct throtl_grp *parent = tg;
1718 unsigned long ret = __tg_last_low_overflow_time(tg);
1719
1720 while (true) {
1721 parent_sq = parent->service_queue.parent_sq;
1722 parent = sq_to_tg(parent_sq);
1723 if (!parent)
1724 break;
1725
1726 /*
1727 * The parent doesn't have low limit, it always reaches low
1728 * limit. Its overflow time is useless for children
1729 */
1730 if (!parent->bps[READ][LIMIT_LOW] &&
1731 !parent->iops[READ][LIMIT_LOW] &&
1732 !parent->bps[WRITE][LIMIT_LOW] &&
1733 !parent->iops[WRITE][LIMIT_LOW])
1734 continue;
1735 if (time_after(__tg_last_low_overflow_time(parent), ret))
1736 ret = __tg_last_low_overflow_time(parent);
1737 }
1738 return ret;
1739}
1740
9e234eea
SL
1741static bool throtl_tg_is_idle(struct throtl_grp *tg)
1742{
1743 /*
1744 * cgroup is idle if:
1745 * - single idle is too long, longer than a fixed value (in case user
1746 * configure a too big threshold) or 4 times of slice
1747 * - average think time is more than threshold
53696b8d 1748 * - IO latency is largely below threshold
9e234eea
SL
1749 */
1750 unsigned long time = jiffies_to_usecs(4 * tg->td->throtl_slice);
1751
1752 time = min_t(unsigned long, MAX_IDLE_TIME, time);
1753 return (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
53696b8d
SL
1754 tg->avg_idletime > tg->idletime_threshold ||
1755 (tg->latency_target && tg->bio_cnt &&
1756 tg->bad_bio_cnt * 5 < tg->bio_cnt);
9e234eea
SL
1757}
1758
c79892c5
SL
1759static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1760{
1761 struct throtl_service_queue *sq = &tg->service_queue;
1762 bool read_limit, write_limit;
1763
1764 /*
1765 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1766 * reaches), it's ok to upgrade to next limit
1767 */
1768 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1769 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1770 if (!read_limit && !write_limit)
1771 return true;
1772 if (read_limit && sq->nr_queued[READ] &&
1773 (!write_limit || sq->nr_queued[WRITE]))
1774 return true;
1775 if (write_limit && sq->nr_queued[WRITE] &&
1776 (!read_limit || sq->nr_queued[READ]))
1777 return true;
aec24246
SL
1778
1779 if (time_after_eq(jiffies,
fa6fb5aa
SL
1780 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1781 throtl_tg_is_idle(tg))
aec24246 1782 return true;
c79892c5
SL
1783 return false;
1784}
1785
1786static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1787{
1788 while (true) {
1789 if (throtl_tg_can_upgrade(tg))
1790 return true;
1791 tg = sq_to_tg(tg->service_queue.parent_sq);
1792 if (!tg || !tg_to_blkg(tg)->parent)
1793 return false;
1794 }
1795 return false;
1796}
1797
1798static bool throtl_can_upgrade(struct throtl_data *td,
1799 struct throtl_grp *this_tg)
1800{
1801 struct cgroup_subsys_state *pos_css;
1802 struct blkcg_gq *blkg;
1803
1804 if (td->limit_index != LIMIT_LOW)
1805 return false;
1806
297e3d85 1807 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
3f0abd80
SL
1808 return false;
1809
c79892c5
SL
1810 rcu_read_lock();
1811 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1812 struct throtl_grp *tg = blkg_to_tg(blkg);
1813
1814 if (tg == this_tg)
1815 continue;
1816 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1817 continue;
1818 if (!throtl_hierarchy_can_upgrade(tg)) {
1819 rcu_read_unlock();
1820 return false;
1821 }
1822 }
1823 rcu_read_unlock();
1824 return true;
1825}
1826
fa6fb5aa
SL
1827static void throtl_upgrade_check(struct throtl_grp *tg)
1828{
1829 unsigned long now = jiffies;
1830
1831 if (tg->td->limit_index != LIMIT_LOW)
1832 return;
1833
1834 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1835 return;
1836
1837 tg->last_check_time = now;
1838
1839 if (!time_after_eq(now,
1840 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1841 return;
1842
1843 if (throtl_can_upgrade(tg->td, NULL))
1844 throtl_upgrade_state(tg->td);
1845}
1846
c79892c5
SL
1847static void throtl_upgrade_state(struct throtl_data *td)
1848{
1849 struct cgroup_subsys_state *pos_css;
1850 struct blkcg_gq *blkg;
1851
1852 td->limit_index = LIMIT_MAX;
3f0abd80 1853 td->low_upgrade_time = jiffies;
7394e31f 1854 td->scale = 0;
c79892c5
SL
1855 rcu_read_lock();
1856 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1857 struct throtl_grp *tg = blkg_to_tg(blkg);
1858 struct throtl_service_queue *sq = &tg->service_queue;
1859
1860 tg->disptime = jiffies - 1;
1861 throtl_select_dispatch(sq);
1862 throtl_schedule_next_dispatch(sq, false);
1863 }
1864 rcu_read_unlock();
1865 throtl_select_dispatch(&td->service_queue);
1866 throtl_schedule_next_dispatch(&td->service_queue, false);
1867 queue_work(kthrotld_workqueue, &td->dispatch_work);
1868}
1869
3f0abd80
SL
1870static void throtl_downgrade_state(struct throtl_data *td, int new)
1871{
7394e31f
SL
1872 td->scale /= 2;
1873
1874 if (td->scale) {
1875 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1876 return;
1877 }
1878
3f0abd80
SL
1879 td->limit_index = new;
1880 td->low_downgrade_time = jiffies;
1881}
1882
1883static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1884{
1885 struct throtl_data *td = tg->td;
1886 unsigned long now = jiffies;
1887
1888 /*
1889 * If cgroup is below low limit, consider downgrade and throttle other
1890 * cgroups
1891 */
297e3d85
SL
1892 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1893 time_after_eq(now, tg_last_low_overflow_time(tg) +
fa6fb5aa
SL
1894 td->throtl_slice) &&
1895 (!throtl_tg_is_idle(tg) ||
1896 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
3f0abd80
SL
1897 return true;
1898 return false;
1899}
1900
1901static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1902{
1903 while (true) {
1904 if (!throtl_tg_can_downgrade(tg))
1905 return false;
1906 tg = sq_to_tg(tg->service_queue.parent_sq);
1907 if (!tg || !tg_to_blkg(tg)->parent)
1908 break;
1909 }
1910 return true;
1911}
1912
1913static void throtl_downgrade_check(struct throtl_grp *tg)
1914{
1915 uint64_t bps;
1916 unsigned int iops;
1917 unsigned long elapsed_time;
1918 unsigned long now = jiffies;
1919
1920 if (tg->td->limit_index != LIMIT_MAX ||
1921 !tg->td->limit_valid[LIMIT_LOW])
1922 return;
1923 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1924 return;
297e3d85 1925 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
3f0abd80
SL
1926 return;
1927
1928 elapsed_time = now - tg->last_check_time;
1929 tg->last_check_time = now;
1930
297e3d85
SL
1931 if (time_before(now, tg_last_low_overflow_time(tg) +
1932 tg->td->throtl_slice))
3f0abd80
SL
1933 return;
1934
1935 if (tg->bps[READ][LIMIT_LOW]) {
1936 bps = tg->last_bytes_disp[READ] * HZ;
1937 do_div(bps, elapsed_time);
1938 if (bps >= tg->bps[READ][LIMIT_LOW])
1939 tg->last_low_overflow_time[READ] = now;
1940 }
1941
1942 if (tg->bps[WRITE][LIMIT_LOW]) {
1943 bps = tg->last_bytes_disp[WRITE] * HZ;
1944 do_div(bps, elapsed_time);
1945 if (bps >= tg->bps[WRITE][LIMIT_LOW])
1946 tg->last_low_overflow_time[WRITE] = now;
1947 }
1948
1949 if (tg->iops[READ][LIMIT_LOW]) {
1950 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1951 if (iops >= tg->iops[READ][LIMIT_LOW])
1952 tg->last_low_overflow_time[READ] = now;
1953 }
1954
1955 if (tg->iops[WRITE][LIMIT_LOW]) {
1956 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
1957 if (iops >= tg->iops[WRITE][LIMIT_LOW])
1958 tg->last_low_overflow_time[WRITE] = now;
1959 }
1960
1961 /*
1962 * If cgroup is below low limit, consider downgrade and throttle other
1963 * cgroups
1964 */
1965 if (throtl_hierarchy_can_downgrade(tg))
1966 throtl_downgrade_state(tg->td, LIMIT_LOW);
1967
1968 tg->last_bytes_disp[READ] = 0;
1969 tg->last_bytes_disp[WRITE] = 0;
1970 tg->last_io_disp[READ] = 0;
1971 tg->last_io_disp[WRITE] = 0;
1972}
1973
9e234eea
SL
1974static void blk_throtl_update_idletime(struct throtl_grp *tg)
1975{
1976 unsigned long now = ktime_get_ns() >> 10;
1977 unsigned long last_finish_time = tg->last_finish_time;
1978
1979 if (now <= last_finish_time || last_finish_time == 0 ||
1980 last_finish_time == tg->checked_last_finish_time)
1981 return;
1982
1983 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
1984 tg->checked_last_finish_time = last_finish_time;
1985}
1986
b9147dd1
SL
1987#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1988static void throtl_update_latency_buckets(struct throtl_data *td)
1989{
1990 struct avg_latency_bucket avg_latency[LATENCY_BUCKET_SIZE];
1991 int i, cpu;
1992 unsigned long last_latency = 0;
1993 unsigned long latency;
1994
1995 if (!blk_queue_nonrot(td->queue))
1996 return;
1997 if (time_before(jiffies, td->last_calculate_time + HZ))
1998 return;
1999 td->last_calculate_time = jiffies;
2000
2001 memset(avg_latency, 0, sizeof(avg_latency));
2002 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2003 struct latency_bucket *tmp = &td->tmp_buckets[i];
2004
2005 for_each_possible_cpu(cpu) {
2006 struct latency_bucket *bucket;
2007
2008 /* this isn't race free, but ok in practice */
2009 bucket = per_cpu_ptr(td->latency_buckets, cpu);
2010 tmp->total_latency += bucket[i].total_latency;
2011 tmp->samples += bucket[i].samples;
2012 bucket[i].total_latency = 0;
2013 bucket[i].samples = 0;
2014 }
2015
2016 if (tmp->samples >= 32) {
2017 int samples = tmp->samples;
2018
2019 latency = tmp->total_latency;
2020
2021 tmp->total_latency = 0;
2022 tmp->samples = 0;
2023 latency /= samples;
2024 if (latency == 0)
2025 continue;
2026 avg_latency[i].latency = latency;
2027 }
2028 }
2029
2030 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2031 if (!avg_latency[i].latency) {
2032 if (td->avg_buckets[i].latency < last_latency)
2033 td->avg_buckets[i].latency = last_latency;
2034 continue;
2035 }
2036
2037 if (!td->avg_buckets[i].valid)
2038 latency = avg_latency[i].latency;
2039 else
2040 latency = (td->avg_buckets[i].latency * 7 +
2041 avg_latency[i].latency) >> 3;
2042
2043 td->avg_buckets[i].latency = max(latency, last_latency);
2044 td->avg_buckets[i].valid = true;
2045 last_latency = td->avg_buckets[i].latency;
2046 }
2047}
2048#else
2049static inline void throtl_update_latency_buckets(struct throtl_data *td)
2050{
2051}
2052#endif
2053
2bc19cd5
JA
2054static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
2055{
2056#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2057 int ret;
2058
2059 ret = bio_associate_current(bio);
2060 if (ret == 0 || ret == -EBUSY)
2061 bio->bi_cg_private = tg;
2062 blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio));
2063#else
2064 bio_associate_current(bio);
2065#endif
2066}
2067
ae118896
TH
2068bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2069 struct bio *bio)
e43473b7 2070{
c5cc2070 2071 struct throtl_qnode *qn = NULL;
ae118896 2072 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
73f0d49a 2073 struct throtl_service_queue *sq;
0e9f4164 2074 bool rw = bio_data_dir(bio);
bc16a4f9 2075 bool throttled = false;
b9147dd1 2076 struct throtl_data *td = tg->td;
e43473b7 2077
ae118896
TH
2078 WARN_ON_ONCE(!rcu_read_lock_held());
2079
2a0f61e6 2080 /* see throtl_charge_bio() */
8d2bbd4c 2081 if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
bc16a4f9 2082 goto out;
e43473b7
VG
2083
2084 spin_lock_irq(q->queue_lock);
c9589f03 2085
b9147dd1
SL
2086 throtl_update_latency_buckets(td);
2087
c9589f03 2088 if (unlikely(blk_queue_bypass(q)))
bc16a4f9 2089 goto out_unlock;
f469a7b4 2090
2bc19cd5 2091 blk_throtl_assoc_bio(tg, bio);
9e234eea
SL
2092 blk_throtl_update_idletime(tg);
2093
73f0d49a
TH
2094 sq = &tg->service_queue;
2095
c79892c5 2096again:
9e660acf 2097 while (true) {
3f0abd80
SL
2098 if (tg->last_low_overflow_time[rw] == 0)
2099 tg->last_low_overflow_time[rw] = jiffies;
2100 throtl_downgrade_check(tg);
fa6fb5aa 2101 throtl_upgrade_check(tg);
9e660acf
TH
2102 /* throtl is FIFO - if bios are already queued, should queue */
2103 if (sq->nr_queued[rw])
2104 break;
de701c74 2105
9e660acf 2106 /* if above limits, break to queue */
c79892c5 2107 if (!tg_may_dispatch(tg, bio, NULL)) {
3f0abd80 2108 tg->last_low_overflow_time[rw] = jiffies;
b9147dd1
SL
2109 if (throtl_can_upgrade(td, tg)) {
2110 throtl_upgrade_state(td);
c79892c5
SL
2111 goto again;
2112 }
9e660acf 2113 break;
c79892c5 2114 }
9e660acf
TH
2115
2116 /* within limits, let's charge and dispatch directly */
e43473b7 2117 throtl_charge_bio(tg, bio);
04521db0
VG
2118
2119 /*
2120 * We need to trim slice even when bios are not being queued
2121 * otherwise it might happen that a bio is not queued for
2122 * a long time and slice keeps on extending and trim is not
2123 * called for a long time. Now if limits are reduced suddenly
2124 * we take into account all the IO dispatched so far at new
2125 * low rate and * newly queued IO gets a really long dispatch
2126 * time.
2127 *
2128 * So keep on trimming slice even if bio is not queued.
2129 */
0f3457f6 2130 throtl_trim_slice(tg, rw);
9e660acf
TH
2131
2132 /*
2133 * @bio passed through this layer without being throttled.
2134 * Climb up the ladder. If we''re already at the top, it
2135 * can be executed directly.
2136 */
c5cc2070 2137 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
2138 sq = sq->parent_sq;
2139 tg = sq_to_tg(sq);
2140 if (!tg)
2141 goto out_unlock;
e43473b7
VG
2142 }
2143
9e660acf 2144 /* out-of-limit, queue to @tg */
fda6f272
TH
2145 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2146 rw == READ ? 'R' : 'W',
9f626e37
SL
2147 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2148 tg_bps_limit(tg, rw),
2149 tg->io_disp[rw], tg_iops_limit(tg, rw),
fda6f272 2150 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 2151
3f0abd80
SL
2152 tg->last_low_overflow_time[rw] = jiffies;
2153
b9147dd1 2154 td->nr_queued[rw]++;
c5cc2070 2155 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 2156 throttled = true;
e43473b7 2157
7f52f98c
TH
2158 /*
2159 * Update @tg's dispatch time and force schedule dispatch if @tg
2160 * was empty before @bio. The forced scheduling isn't likely to
2161 * cause undue delay as @bio is likely to be dispatched directly if
2162 * its @tg's disptime is not in the future.
2163 */
0e9f4164 2164 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 2165 tg_update_disptime(tg);
7f52f98c 2166 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
2167 }
2168
bc16a4f9 2169out_unlock:
e43473b7 2170 spin_unlock_irq(q->queue_lock);
bc16a4f9 2171out:
2a0f61e6
TH
2172 /*
2173 * As multiple blk-throtls may stack in the same issue path, we
2174 * don't want bios to leave with the flag set. Clear the flag if
2175 * being issued.
2176 */
2177 if (!throttled)
8d2bbd4c 2178 bio_clear_flag(bio, BIO_THROTTLED);
b9147dd1
SL
2179
2180#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2181 if (throttled || !td->track_bio_latency)
2182 bio->bi_issue_stat.stat |= SKIP_LATENCY;
2183#endif
bc16a4f9 2184 return throttled;
e43473b7
VG
2185}
2186
9e234eea 2187#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
b9147dd1
SL
2188static void throtl_track_latency(struct throtl_data *td, sector_t size,
2189 int op, unsigned long time)
2190{
2191 struct latency_bucket *latency;
2192 int index;
2193
2194 if (!td || td->limit_index != LIMIT_LOW || op != REQ_OP_READ ||
2195 !blk_queue_nonrot(td->queue))
2196 return;
2197
2198 index = request_bucket_index(size);
2199
2200 latency = get_cpu_ptr(td->latency_buckets);
2201 latency[index].total_latency += time;
2202 latency[index].samples++;
2203 put_cpu_ptr(td->latency_buckets);
2204}
2205
2206void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2207{
2208 struct request_queue *q = rq->q;
2209 struct throtl_data *td = q->td;
2210
2211 throtl_track_latency(td, blk_stat_size(&rq->issue_stat),
2212 req_op(rq), time_ns >> 10);
2213}
2214
9e234eea
SL
2215void blk_throtl_bio_endio(struct bio *bio)
2216{
2217 struct throtl_grp *tg;
b9147dd1
SL
2218 u64 finish_time_ns;
2219 unsigned long finish_time;
2220 unsigned long start_time;
2221 unsigned long lat;
9e234eea
SL
2222
2223 tg = bio->bi_cg_private;
2224 if (!tg)
2225 return;
2226 bio->bi_cg_private = NULL;
2227
b9147dd1
SL
2228 finish_time_ns = ktime_get_ns();
2229 tg->last_finish_time = finish_time_ns >> 10;
2230
2231 start_time = blk_stat_time(&bio->bi_issue_stat) >> 10;
2232 finish_time = __blk_stat_time(finish_time_ns) >> 10;
53696b8d
SL
2233 if (!start_time || finish_time <= start_time)
2234 return;
2235
2236 lat = finish_time - start_time;
b9147dd1 2237 /* this is only for bio based driver */
53696b8d 2238 if (!(bio->bi_issue_stat.stat & SKIP_LATENCY))
b9147dd1
SL
2239 throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat),
2240 bio_op(bio), lat);
53696b8d
SL
2241
2242 if (tg->latency_target) {
2243 int bucket;
2244 unsigned int threshold;
2245
2246 bucket = request_bucket_index(
2247 blk_stat_size(&bio->bi_issue_stat));
2248 threshold = tg->td->avg_buckets[bucket].latency +
2249 tg->latency_target;
2250 if (lat > threshold)
2251 tg->bad_bio_cnt++;
2252 /*
2253 * Not race free, could get wrong count, which means cgroups
2254 * will be throttled
2255 */
2256 tg->bio_cnt++;
2257 }
2258
2259 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2260 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2261 tg->bio_cnt /= 2;
2262 tg->bad_bio_cnt /= 2;
b9147dd1 2263 }
9e234eea
SL
2264}
2265#endif
2266
2a12f0dc
TH
2267/*
2268 * Dispatch all bios from all children tg's queued on @parent_sq. On
2269 * return, @parent_sq is guaranteed to not have any active children tg's
2270 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2271 */
2272static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2273{
2274 struct throtl_grp *tg;
2275
2276 while ((tg = throtl_rb_first(parent_sq))) {
2277 struct throtl_service_queue *sq = &tg->service_queue;
2278 struct bio *bio;
2279
2280 throtl_dequeue_tg(tg);
2281
c5cc2070 2282 while ((bio = throtl_peek_queued(&sq->queued[READ])))
2a12f0dc 2283 tg_dispatch_one_bio(tg, bio_data_dir(bio));
c5cc2070 2284 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2a12f0dc
TH
2285 tg_dispatch_one_bio(tg, bio_data_dir(bio));
2286 }
2287}
2288
c9a929dd
TH
2289/**
2290 * blk_throtl_drain - drain throttled bios
2291 * @q: request_queue to drain throttled bios for
2292 *
2293 * Dispatch all currently throttled bios on @q through ->make_request_fn().
2294 */
2295void blk_throtl_drain(struct request_queue *q)
2296 __releases(q->queue_lock) __acquires(q->queue_lock)
2297{
2298 struct throtl_data *td = q->td;
2a12f0dc 2299 struct blkcg_gq *blkg;
492eb21b 2300 struct cgroup_subsys_state *pos_css;
c9a929dd 2301 struct bio *bio;
651930bc 2302 int rw;
c9a929dd 2303
8bcb6c7d 2304 queue_lockdep_assert_held(q);
2a12f0dc 2305 rcu_read_lock();
c9a929dd 2306
2a12f0dc
TH
2307 /*
2308 * Drain each tg while doing post-order walk on the blkg tree, so
2309 * that all bios are propagated to td->service_queue. It'd be
2310 * better to walk service_queue tree directly but blkg walk is
2311 * easier.
2312 */
492eb21b 2313 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2a12f0dc 2314 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
73f0d49a 2315
2a12f0dc
TH
2316 /* finally, transfer bios from top-level tg's into the td */
2317 tg_drain_bios(&td->service_queue);
2318
2319 rcu_read_unlock();
c9a929dd
TH
2320 spin_unlock_irq(q->queue_lock);
2321
2a12f0dc 2322 /* all bios now should be in td->service_queue, issue them */
651930bc 2323 for (rw = READ; rw <= WRITE; rw++)
c5cc2070
TH
2324 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2325 NULL)))
651930bc 2326 generic_make_request(bio);
c9a929dd
TH
2327
2328 spin_lock_irq(q->queue_lock);
2329}
2330
e43473b7
VG
2331int blk_throtl_init(struct request_queue *q)
2332{
2333 struct throtl_data *td;
a2b1693b 2334 int ret;
e43473b7
VG
2335
2336 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2337 if (!td)
2338 return -ENOMEM;
b9147dd1
SL
2339 td->latency_buckets = __alloc_percpu(sizeof(struct latency_bucket) *
2340 LATENCY_BUCKET_SIZE, __alignof__(u64));
2341 if (!td->latency_buckets) {
2342 kfree(td);
2343 return -ENOMEM;
2344 }
e43473b7 2345
69df0ab0 2346 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
b2ce2643 2347 throtl_service_queue_init(&td->service_queue);
e43473b7 2348
cd1604fa 2349 q->td = td;
29b12589 2350 td->queue = q;
02977e4a 2351
9f626e37 2352 td->limit_valid[LIMIT_MAX] = true;
cd5ab1b0 2353 td->limit_index = LIMIT_MAX;
3f0abd80
SL
2354 td->low_upgrade_time = jiffies;
2355 td->low_downgrade_time = jiffies;
9e234eea 2356
a2b1693b 2357 /* activate policy */
3c798398 2358 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
b9147dd1
SL
2359 if (ret) {
2360 free_percpu(td->latency_buckets);
f51b802c 2361 kfree(td);
b9147dd1 2362 }
a2b1693b 2363 return ret;
e43473b7
VG
2364}
2365
2366void blk_throtl_exit(struct request_queue *q)
2367{
c875f4d0 2368 BUG_ON(!q->td);
da527770 2369 throtl_shutdown_wq(q);
3c798398 2370 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
b9147dd1 2371 free_percpu(q->td->latency_buckets);
c9a929dd 2372 kfree(q->td);
e43473b7
VG
2373}
2374
d61fcfa4
SL
2375void blk_throtl_register_queue(struct request_queue *q)
2376{
2377 struct throtl_data *td;
9e234eea
SL
2378 struct cgroup_subsys_state *pos_css;
2379 struct blkcg_gq *blkg;
d61fcfa4
SL
2380
2381 td = q->td;
2382 BUG_ON(!td);
2383
ada75b6e 2384 if (blk_queue_nonrot(q)) {
d61fcfa4 2385 td->throtl_slice = DFL_THROTL_SLICE_SSD;
ada75b6e
SL
2386 td->dft_idletime_threshold = DFL_IDLE_THRESHOLD_SSD;
2387 } else {
d61fcfa4 2388 td->throtl_slice = DFL_THROTL_SLICE_HD;
ada75b6e
SL
2389 td->dft_idletime_threshold = DFL_IDLE_THRESHOLD_HD;
2390 }
d61fcfa4
SL
2391#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2392 /* if no low limit, use previous default */
2393 td->throtl_slice = DFL_THROTL_SLICE_HD;
2394#endif
9e234eea 2395
b9147dd1
SL
2396 td->track_bio_latency = !q->mq_ops && !q->request_fn;
2397 if (!td->track_bio_latency)
2398 blk_stat_enable_accounting(q);
2399
9e234eea
SL
2400 /*
2401 * some tg are created before queue is fully initialized, eg, nonrot
2402 * isn't initialized yet
2403 */
2404 rcu_read_lock();
2405 blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
2406 struct throtl_grp *tg = blkg_to_tg(blkg);
2407
ada75b6e 2408 tg->idletime_threshold = td->dft_idletime_threshold;
5b81fc3c 2409 tg->idletime_threshold_conf = td->dft_idletime_threshold;
9e234eea
SL
2410 }
2411 rcu_read_unlock();
d61fcfa4
SL
2412}
2413
297e3d85
SL
2414#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2415ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2416{
2417 if (!q->td)
2418 return -EINVAL;
2419 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2420}
2421
2422ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2423 const char *page, size_t count)
2424{
2425 unsigned long v;
2426 unsigned long t;
2427
2428 if (!q->td)
2429 return -EINVAL;
2430 if (kstrtoul(page, 10, &v))
2431 return -EINVAL;
2432 t = msecs_to_jiffies(v);
2433 if (t == 0 || t > MAX_THROTL_SLICE)
2434 return -EINVAL;
2435 q->td->throtl_slice = t;
2436 return count;
2437}
2438#endif
2439
e43473b7
VG
2440static int __init throtl_init(void)
2441{
450adcbe
VG
2442 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2443 if (!kthrotld_workqueue)
2444 panic("Failed to create kthrotld\n");
2445
3c798398 2446 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
2447}
2448
2449module_init(throtl_init);