]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-throttle.c
blk-throttle: add interface to configure idle time threshold
[mirror_ubuntu-bionic-kernel.git] / block / blk-throttle.c
CommitLineData
e43473b7
VG
1/*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/blkdev.h>
10#include <linux/bio.h>
11#include <linux/blktrace_api.h>
eea8f41c 12#include <linux/blk-cgroup.h>
bc9fcbf9 13#include "blk.h"
e43473b7
VG
14
15/* Max dispatch from a group in 1 round */
16static int throtl_grp_quantum = 8;
17
18/* Total max dispatch from all groups in one round */
19static int throtl_quantum = 32;
20
d61fcfa4
SL
21/* Throttling is performed over a slice and after that slice is renewed */
22#define DFL_THROTL_SLICE_HD (HZ / 10)
23#define DFL_THROTL_SLICE_SSD (HZ / 50)
297e3d85 24#define MAX_THROTL_SLICE (HZ)
9e234eea
SL
25#define DFL_IDLE_THRESHOLD_SSD (1000L) /* 1 ms */
26#define DFL_IDLE_THRESHOLD_HD (100L * 1000) /* 100 ms */
27#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
e43473b7 28
3c798398 29static struct blkcg_policy blkcg_policy_throtl;
0381411e 30
450adcbe
VG
31/* A workqueue to queue throttle related work */
32static struct workqueue_struct *kthrotld_workqueue;
450adcbe 33
c5cc2070
TH
34/*
35 * To implement hierarchical throttling, throtl_grps form a tree and bios
36 * are dispatched upwards level by level until they reach the top and get
37 * issued. When dispatching bios from the children and local group at each
38 * level, if the bios are dispatched into a single bio_list, there's a risk
39 * of a local or child group which can queue many bios at once filling up
40 * the list starving others.
41 *
42 * To avoid such starvation, dispatched bios are queued separately
43 * according to where they came from. When they are again dispatched to
44 * the parent, they're popped in round-robin order so that no single source
45 * hogs the dispatch window.
46 *
47 * throtl_qnode is used to keep the queued bios separated by their sources.
48 * Bios are queued to throtl_qnode which in turn is queued to
49 * throtl_service_queue and then dispatched in round-robin order.
50 *
51 * It's also used to track the reference counts on blkg's. A qnode always
52 * belongs to a throtl_grp and gets queued on itself or the parent, so
53 * incrementing the reference of the associated throtl_grp when a qnode is
54 * queued and decrementing when dequeued is enough to keep the whole blkg
55 * tree pinned while bios are in flight.
56 */
57struct throtl_qnode {
58 struct list_head node; /* service_queue->queued[] */
59 struct bio_list bios; /* queued bios */
60 struct throtl_grp *tg; /* tg this qnode belongs to */
61};
62
c9e0332e 63struct throtl_service_queue {
77216b04
TH
64 struct throtl_service_queue *parent_sq; /* the parent service_queue */
65
73f0d49a
TH
66 /*
67 * Bios queued directly to this service_queue or dispatched from
68 * children throtl_grp's.
69 */
c5cc2070 70 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
73f0d49a
TH
71 unsigned int nr_queued[2]; /* number of queued bios */
72
73 /*
74 * RB tree of active children throtl_grp's, which are sorted by
75 * their ->disptime.
76 */
c9e0332e
TH
77 struct rb_root pending_tree; /* RB tree of active tgs */
78 struct rb_node *first_pending; /* first node in the tree */
79 unsigned int nr_pending; /* # queued in the tree */
80 unsigned long first_pending_disptime; /* disptime of the first tg */
69df0ab0 81 struct timer_list pending_timer; /* fires on first_pending_disptime */
e43473b7
VG
82};
83
5b2c16aa
TH
84enum tg_state_flags {
85 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
0e9f4164 86 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
5b2c16aa
TH
87};
88
e43473b7
VG
89#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
90
9f626e37 91enum {
cd5ab1b0 92 LIMIT_LOW,
9f626e37
SL
93 LIMIT_MAX,
94 LIMIT_CNT,
95};
96
e43473b7 97struct throtl_grp {
f95a04af
TH
98 /* must be the first member */
99 struct blkg_policy_data pd;
100
c9e0332e 101 /* active throtl group service_queue member */
e43473b7
VG
102 struct rb_node rb_node;
103
0f3457f6
TH
104 /* throtl_data this group belongs to */
105 struct throtl_data *td;
106
49a2f1e3
TH
107 /* this group's service queue */
108 struct throtl_service_queue service_queue;
109
c5cc2070
TH
110 /*
111 * qnode_on_self is used when bios are directly queued to this
112 * throtl_grp so that local bios compete fairly with bios
113 * dispatched from children. qnode_on_parent is used when bios are
114 * dispatched from this throtl_grp into its parent and will compete
115 * with the sibling qnode_on_parents and the parent's
116 * qnode_on_self.
117 */
118 struct throtl_qnode qnode_on_self[2];
119 struct throtl_qnode qnode_on_parent[2];
120
e43473b7
VG
121 /*
122 * Dispatch time in jiffies. This is the estimated time when group
123 * will unthrottle and is ready to dispatch more bio. It is used as
124 * key to sort active groups in service tree.
125 */
126 unsigned long disptime;
127
e43473b7
VG
128 unsigned int flags;
129
693e751e
TH
130 /* are there any throtl rules between this group and td? */
131 bool has_rules[2];
132
cd5ab1b0 133 /* internally used bytes per second rate limits */
9f626e37 134 uint64_t bps[2][LIMIT_CNT];
cd5ab1b0
SL
135 /* user configured bps limits */
136 uint64_t bps_conf[2][LIMIT_CNT];
e43473b7 137
cd5ab1b0 138 /* internally used IOPS limits */
9f626e37 139 unsigned int iops[2][LIMIT_CNT];
cd5ab1b0
SL
140 /* user configured IOPS limits */
141 unsigned int iops_conf[2][LIMIT_CNT];
8e89d13f 142
e43473b7
VG
143 /* Number of bytes disptached in current slice */
144 uint64_t bytes_disp[2];
8e89d13f
VG
145 /* Number of bio's dispatched in current slice */
146 unsigned int io_disp[2];
e43473b7 147
3f0abd80
SL
148 unsigned long last_low_overflow_time[2];
149
150 uint64_t last_bytes_disp[2];
151 unsigned int last_io_disp[2];
152
153 unsigned long last_check_time;
154
aec24246
SL
155 unsigned long last_dispatch_time[2];
156
e43473b7
VG
157 /* When did we start a new slice */
158 unsigned long slice_start[2];
159 unsigned long slice_end[2];
9e234eea
SL
160
161 unsigned long last_finish_time; /* ns / 1024 */
162 unsigned long checked_last_finish_time; /* ns / 1024 */
163 unsigned long avg_idletime; /* ns / 1024 */
164 unsigned long idletime_threshold; /* us */
e43473b7
VG
165};
166
167struct throtl_data
168{
e43473b7 169 /* service tree for active throtl groups */
c9e0332e 170 struct throtl_service_queue service_queue;
e43473b7 171
e43473b7
VG
172 struct request_queue *queue;
173
174 /* Total Number of queued bios on READ and WRITE lists */
175 unsigned int nr_queued[2];
176
297e3d85
SL
177 unsigned int throtl_slice;
178
e43473b7 179 /* Work for dispatching throttled bios */
69df0ab0 180 struct work_struct dispatch_work;
9f626e37
SL
181 unsigned int limit_index;
182 bool limit_valid[LIMIT_CNT];
3f0abd80 183
ada75b6e
SL
184 unsigned long dft_idletime_threshold; /* us */
185
3f0abd80
SL
186 unsigned long low_upgrade_time;
187 unsigned long low_downgrade_time;
7394e31f
SL
188
189 unsigned int scale;
e43473b7
VG
190};
191
69df0ab0
TH
192static void throtl_pending_timer_fn(unsigned long arg);
193
f95a04af
TH
194static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
195{
196 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
197}
198
3c798398 199static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
0381411e 200{
f95a04af 201 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
0381411e
TH
202}
203
3c798398 204static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 205{
f95a04af 206 return pd_to_blkg(&tg->pd);
0381411e
TH
207}
208
fda6f272
TH
209/**
210 * sq_to_tg - return the throl_grp the specified service queue belongs to
211 * @sq: the throtl_service_queue of interest
212 *
213 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
214 * embedded in throtl_data, %NULL is returned.
215 */
216static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
217{
218 if (sq && sq->parent_sq)
219 return container_of(sq, struct throtl_grp, service_queue);
220 else
221 return NULL;
222}
223
224/**
225 * sq_to_td - return throtl_data the specified service queue belongs to
226 * @sq: the throtl_service_queue of interest
227 *
b43daedc 228 * A service_queue can be embedded in either a throtl_grp or throtl_data.
fda6f272
TH
229 * Determine the associated throtl_data accordingly and return it.
230 */
231static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
232{
233 struct throtl_grp *tg = sq_to_tg(sq);
234
235 if (tg)
236 return tg->td;
237 else
238 return container_of(sq, struct throtl_data, service_queue);
239}
240
7394e31f
SL
241/*
242 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
243 * make the IO dispatch more smooth.
244 * Scale up: linearly scale up according to lapsed time since upgrade. For
245 * every throtl_slice, the limit scales up 1/2 .low limit till the
246 * limit hits .max limit
247 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
248 */
249static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
250{
251 /* arbitrary value to avoid too big scale */
252 if (td->scale < 4096 && time_after_eq(jiffies,
253 td->low_upgrade_time + td->scale * td->throtl_slice))
254 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
255
256 return low + (low >> 1) * td->scale;
257}
258
9f626e37
SL
259static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
260{
b22c417c 261 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 262 struct throtl_data *td;
b22c417c
SL
263 uint64_t ret;
264
265 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
266 return U64_MAX;
7394e31f
SL
267
268 td = tg->td;
269 ret = tg->bps[rw][td->limit_index];
270 if (ret == 0 && td->limit_index == LIMIT_LOW)
b22c417c 271 return tg->bps[rw][LIMIT_MAX];
7394e31f
SL
272
273 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
274 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
275 uint64_t adjusted;
276
277 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
278 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
279 }
b22c417c 280 return ret;
9f626e37
SL
281}
282
283static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
284{
b22c417c 285 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 286 struct throtl_data *td;
b22c417c
SL
287 unsigned int ret;
288
289 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
290 return UINT_MAX;
7394e31f
SL
291 td = tg->td;
292 ret = tg->iops[rw][td->limit_index];
b22c417c
SL
293 if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
294 return tg->iops[rw][LIMIT_MAX];
7394e31f
SL
295
296 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
297 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
298 uint64_t adjusted;
299
300 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
301 if (adjusted > UINT_MAX)
302 adjusted = UINT_MAX;
303 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
304 }
b22c417c 305 return ret;
9f626e37
SL
306}
307
fda6f272
TH
308/**
309 * throtl_log - log debug message via blktrace
310 * @sq: the service_queue being reported
311 * @fmt: printf format string
312 * @args: printf args
313 *
314 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
315 * throtl_grp; otherwise, just "throtl".
fda6f272
TH
316 */
317#define throtl_log(sq, fmt, args...) do { \
318 struct throtl_grp *__tg = sq_to_tg((sq)); \
319 struct throtl_data *__td = sq_to_td((sq)); \
320 \
321 (void)__td; \
59fa0224
SL
322 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
323 break; \
fda6f272
TH
324 if ((__tg)) { \
325 char __pbuf[128]; \
54e7ed12 326 \
fda6f272
TH
327 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
328 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
329 } else { \
330 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
331 } \
54e7ed12 332} while (0)
e43473b7 333
c5cc2070
TH
334static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
335{
336 INIT_LIST_HEAD(&qn->node);
337 bio_list_init(&qn->bios);
338 qn->tg = tg;
339}
340
341/**
342 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
343 * @bio: bio being added
344 * @qn: qnode to add bio to
345 * @queued: the service_queue->queued[] list @qn belongs to
346 *
347 * Add @bio to @qn and put @qn on @queued if it's not already on.
348 * @qn->tg's reference count is bumped when @qn is activated. See the
349 * comment on top of throtl_qnode definition for details.
350 */
351static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
352 struct list_head *queued)
353{
354 bio_list_add(&qn->bios, bio);
355 if (list_empty(&qn->node)) {
356 list_add_tail(&qn->node, queued);
357 blkg_get(tg_to_blkg(qn->tg));
358 }
359}
360
361/**
362 * throtl_peek_queued - peek the first bio on a qnode list
363 * @queued: the qnode list to peek
364 */
365static struct bio *throtl_peek_queued(struct list_head *queued)
366{
367 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
368 struct bio *bio;
369
370 if (list_empty(queued))
371 return NULL;
372
373 bio = bio_list_peek(&qn->bios);
374 WARN_ON_ONCE(!bio);
375 return bio;
376}
377
378/**
379 * throtl_pop_queued - pop the first bio form a qnode list
380 * @queued: the qnode list to pop a bio from
381 * @tg_to_put: optional out argument for throtl_grp to put
382 *
383 * Pop the first bio from the qnode list @queued. After popping, the first
384 * qnode is removed from @queued if empty or moved to the end of @queued so
385 * that the popping order is round-robin.
386 *
387 * When the first qnode is removed, its associated throtl_grp should be put
388 * too. If @tg_to_put is NULL, this function automatically puts it;
389 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
390 * responsible for putting it.
391 */
392static struct bio *throtl_pop_queued(struct list_head *queued,
393 struct throtl_grp **tg_to_put)
394{
395 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
396 struct bio *bio;
397
398 if (list_empty(queued))
399 return NULL;
400
401 bio = bio_list_pop(&qn->bios);
402 WARN_ON_ONCE(!bio);
403
404 if (bio_list_empty(&qn->bios)) {
405 list_del_init(&qn->node);
406 if (tg_to_put)
407 *tg_to_put = qn->tg;
408 else
409 blkg_put(tg_to_blkg(qn->tg));
410 } else {
411 list_move_tail(&qn->node, queued);
412 }
413
414 return bio;
415}
416
49a2f1e3 417/* init a service_queue, assumes the caller zeroed it */
b2ce2643 418static void throtl_service_queue_init(struct throtl_service_queue *sq)
49a2f1e3 419{
c5cc2070
TH
420 INIT_LIST_HEAD(&sq->queued[0]);
421 INIT_LIST_HEAD(&sq->queued[1]);
49a2f1e3 422 sq->pending_tree = RB_ROOT;
69df0ab0
TH
423 setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
424 (unsigned long)sq);
425}
426
001bea73
TH
427static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
428{
4fb72036 429 struct throtl_grp *tg;
24bdb8ef 430 int rw;
4fb72036
TH
431
432 tg = kzalloc_node(sizeof(*tg), gfp, node);
433 if (!tg)
77ea7338 434 return NULL;
4fb72036 435
b2ce2643
TH
436 throtl_service_queue_init(&tg->service_queue);
437
438 for (rw = READ; rw <= WRITE; rw++) {
439 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
440 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
441 }
442
443 RB_CLEAR_NODE(&tg->rb_node);
9f626e37
SL
444 tg->bps[READ][LIMIT_MAX] = U64_MAX;
445 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
446 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
447 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
cd5ab1b0
SL
448 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
449 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
450 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
451 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
452 /* LIMIT_LOW will have default value 0 */
b2ce2643 453
4fb72036 454 return &tg->pd;
001bea73
TH
455}
456
a9520cd6 457static void throtl_pd_init(struct blkg_policy_data *pd)
a29a171e 458{
a9520cd6
TH
459 struct throtl_grp *tg = pd_to_tg(pd);
460 struct blkcg_gq *blkg = tg_to_blkg(tg);
77216b04 461 struct throtl_data *td = blkg->q->td;
b2ce2643 462 struct throtl_service_queue *sq = &tg->service_queue;
cd1604fa 463
9138125b 464 /*
aa6ec29b 465 * If on the default hierarchy, we switch to properly hierarchical
9138125b
TH
466 * behavior where limits on a given throtl_grp are applied to the
467 * whole subtree rather than just the group itself. e.g. If 16M
468 * read_bps limit is set on the root group, the whole system can't
469 * exceed 16M for the device.
470 *
aa6ec29b 471 * If not on the default hierarchy, the broken flat hierarchy
9138125b
TH
472 * behavior is retained where all throtl_grps are treated as if
473 * they're all separate root groups right below throtl_data.
474 * Limits of a group don't interact with limits of other groups
475 * regardless of the position of the group in the hierarchy.
476 */
b2ce2643 477 sq->parent_sq = &td->service_queue;
9e10a130 478 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
b2ce2643 479 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
77216b04 480 tg->td = td;
9e234eea 481
ada75b6e 482 tg->idletime_threshold = td->dft_idletime_threshold;
8a3d2615
TH
483}
484
693e751e
TH
485/*
486 * Set has_rules[] if @tg or any of its parents have limits configured.
487 * This doesn't require walking up to the top of the hierarchy as the
488 * parent's has_rules[] is guaranteed to be correct.
489 */
490static void tg_update_has_rules(struct throtl_grp *tg)
491{
492 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
9f626e37 493 struct throtl_data *td = tg->td;
693e751e
TH
494 int rw;
495
496 for (rw = READ; rw <= WRITE; rw++)
497 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
9f626e37
SL
498 (td->limit_valid[td->limit_index] &&
499 (tg_bps_limit(tg, rw) != U64_MAX ||
500 tg_iops_limit(tg, rw) != UINT_MAX));
693e751e
TH
501}
502
a9520cd6 503static void throtl_pd_online(struct blkg_policy_data *pd)
693e751e 504{
aec24246 505 struct throtl_grp *tg = pd_to_tg(pd);
693e751e
TH
506 /*
507 * We don't want new groups to escape the limits of its ancestors.
508 * Update has_rules[] after a new group is brought online.
509 */
aec24246
SL
510 tg_update_has_rules(tg);
511 tg->last_dispatch_time[READ] = jiffies;
512 tg->last_dispatch_time[WRITE] = jiffies;
693e751e
TH
513}
514
cd5ab1b0
SL
515static void blk_throtl_update_limit_valid(struct throtl_data *td)
516{
517 struct cgroup_subsys_state *pos_css;
518 struct blkcg_gq *blkg;
519 bool low_valid = false;
520
521 rcu_read_lock();
522 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
523 struct throtl_grp *tg = blkg_to_tg(blkg);
524
525 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
526 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
527 low_valid = true;
528 }
529 rcu_read_unlock();
530
531 td->limit_valid[LIMIT_LOW] = low_valid;
532}
533
c79892c5 534static void throtl_upgrade_state(struct throtl_data *td);
cd5ab1b0
SL
535static void throtl_pd_offline(struct blkg_policy_data *pd)
536{
537 struct throtl_grp *tg = pd_to_tg(pd);
538
539 tg->bps[READ][LIMIT_LOW] = 0;
540 tg->bps[WRITE][LIMIT_LOW] = 0;
541 tg->iops[READ][LIMIT_LOW] = 0;
542 tg->iops[WRITE][LIMIT_LOW] = 0;
543
544 blk_throtl_update_limit_valid(tg->td);
545
c79892c5
SL
546 if (!tg->td->limit_valid[tg->td->limit_index])
547 throtl_upgrade_state(tg->td);
cd5ab1b0
SL
548}
549
001bea73
TH
550static void throtl_pd_free(struct blkg_policy_data *pd)
551{
4fb72036
TH
552 struct throtl_grp *tg = pd_to_tg(pd);
553
b2ce2643 554 del_timer_sync(&tg->service_queue.pending_timer);
4fb72036 555 kfree(tg);
001bea73
TH
556}
557
0049af73
TH
558static struct throtl_grp *
559throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7
VG
560{
561 /* Service tree is empty */
0049af73 562 if (!parent_sq->nr_pending)
e43473b7
VG
563 return NULL;
564
0049af73
TH
565 if (!parent_sq->first_pending)
566 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
e43473b7 567
0049af73
TH
568 if (parent_sq->first_pending)
569 return rb_entry_tg(parent_sq->first_pending);
e43473b7
VG
570
571 return NULL;
572}
573
574static void rb_erase_init(struct rb_node *n, struct rb_root *root)
575{
576 rb_erase(n, root);
577 RB_CLEAR_NODE(n);
578}
579
0049af73
TH
580static void throtl_rb_erase(struct rb_node *n,
581 struct throtl_service_queue *parent_sq)
e43473b7 582{
0049af73
TH
583 if (parent_sq->first_pending == n)
584 parent_sq->first_pending = NULL;
585 rb_erase_init(n, &parent_sq->pending_tree);
586 --parent_sq->nr_pending;
e43473b7
VG
587}
588
0049af73 589static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
590{
591 struct throtl_grp *tg;
592
0049af73 593 tg = throtl_rb_first(parent_sq);
e43473b7
VG
594 if (!tg)
595 return;
596
0049af73 597 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
598}
599
77216b04 600static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 601{
77216b04 602 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
0049af73 603 struct rb_node **node = &parent_sq->pending_tree.rb_node;
e43473b7
VG
604 struct rb_node *parent = NULL;
605 struct throtl_grp *__tg;
606 unsigned long key = tg->disptime;
607 int left = 1;
608
609 while (*node != NULL) {
610 parent = *node;
611 __tg = rb_entry_tg(parent);
612
613 if (time_before(key, __tg->disptime))
614 node = &parent->rb_left;
615 else {
616 node = &parent->rb_right;
617 left = 0;
618 }
619 }
620
621 if (left)
0049af73 622 parent_sq->first_pending = &tg->rb_node;
e43473b7
VG
623
624 rb_link_node(&tg->rb_node, parent, node);
0049af73 625 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
e43473b7
VG
626}
627
77216b04 628static void __throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 629{
77216b04 630 tg_service_queue_add(tg);
5b2c16aa 631 tg->flags |= THROTL_TG_PENDING;
77216b04 632 tg->service_queue.parent_sq->nr_pending++;
e43473b7
VG
633}
634
77216b04 635static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 636{
5b2c16aa 637 if (!(tg->flags & THROTL_TG_PENDING))
77216b04 638 __throtl_enqueue_tg(tg);
e43473b7
VG
639}
640
77216b04 641static void __throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 642{
77216b04 643 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
5b2c16aa 644 tg->flags &= ~THROTL_TG_PENDING;
e43473b7
VG
645}
646
77216b04 647static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 648{
5b2c16aa 649 if (tg->flags & THROTL_TG_PENDING)
77216b04 650 __throtl_dequeue_tg(tg);
e43473b7
VG
651}
652
a9131a27 653/* Call with queue lock held */
69df0ab0
TH
654static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
655 unsigned long expires)
a9131a27 656{
297e3d85 657 unsigned long max_expire = jiffies + 8 * sq_to_tg(sq)->td->throtl_slice;
06cceedc
SL
658
659 /*
660 * Since we are adjusting the throttle limit dynamically, the sleep
661 * time calculated according to previous limit might be invalid. It's
662 * possible the cgroup sleep time is very long and no other cgroups
663 * have IO running so notify the limit changes. Make sure the cgroup
664 * doesn't sleep too long to avoid the missed notification.
665 */
666 if (time_after(expires, max_expire))
667 expires = max_expire;
69df0ab0
TH
668 mod_timer(&sq->pending_timer, expires);
669 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
670 expires - jiffies, jiffies);
a9131a27
TH
671}
672
7f52f98c
TH
673/**
674 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
675 * @sq: the service_queue to schedule dispatch for
676 * @force: force scheduling
677 *
678 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
679 * dispatch time of the first pending child. Returns %true if either timer
680 * is armed or there's no pending child left. %false if the current
681 * dispatch window is still open and the caller should continue
682 * dispatching.
683 *
684 * If @force is %true, the dispatch timer is always scheduled and this
685 * function is guaranteed to return %true. This is to be used when the
686 * caller can't dispatch itself and needs to invoke pending_timer
687 * unconditionally. Note that forced scheduling is likely to induce short
688 * delay before dispatch starts even if @sq->first_pending_disptime is not
689 * in the future and thus shouldn't be used in hot paths.
690 */
691static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
692 bool force)
e43473b7 693{
6a525600 694 /* any pending children left? */
c9e0332e 695 if (!sq->nr_pending)
7f52f98c 696 return true;
e43473b7 697
c9e0332e 698 update_min_dispatch_time(sq);
e43473b7 699
69df0ab0 700 /* is the next dispatch time in the future? */
7f52f98c 701 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 702 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 703 return true;
69df0ab0
TH
704 }
705
7f52f98c
TH
706 /* tell the caller to continue dispatching */
707 return false;
e43473b7
VG
708}
709
32ee5bc4
VG
710static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
711 bool rw, unsigned long start)
712{
713 tg->bytes_disp[rw] = 0;
714 tg->io_disp[rw] = 0;
715
716 /*
717 * Previous slice has expired. We must have trimmed it after last
718 * bio dispatch. That means since start of last slice, we never used
719 * that bandwidth. Do try to make use of that bandwidth while giving
720 * credit.
721 */
722 if (time_after_eq(start, tg->slice_start[rw]))
723 tg->slice_start[rw] = start;
724
297e3d85 725 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
32ee5bc4
VG
726 throtl_log(&tg->service_queue,
727 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
728 rw == READ ? 'R' : 'W', tg->slice_start[rw],
729 tg->slice_end[rw], jiffies);
730}
731
0f3457f6 732static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
e43473b7
VG
733{
734 tg->bytes_disp[rw] = 0;
8e89d13f 735 tg->io_disp[rw] = 0;
e43473b7 736 tg->slice_start[rw] = jiffies;
297e3d85 737 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
fda6f272
TH
738 throtl_log(&tg->service_queue,
739 "[%c] new slice start=%lu end=%lu jiffies=%lu",
740 rw == READ ? 'R' : 'W', tg->slice_start[rw],
741 tg->slice_end[rw], jiffies);
e43473b7
VG
742}
743
0f3457f6
TH
744static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
745 unsigned long jiffy_end)
d1ae8ffd 746{
297e3d85 747 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
d1ae8ffd
VG
748}
749
0f3457f6
TH
750static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
751 unsigned long jiffy_end)
e43473b7 752{
297e3d85 753 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
fda6f272
TH
754 throtl_log(&tg->service_queue,
755 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
756 rw == READ ? 'R' : 'W', tg->slice_start[rw],
757 tg->slice_end[rw], jiffies);
e43473b7
VG
758}
759
760/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 761static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
762{
763 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
5cf8c227 764 return false;
e43473b7
VG
765
766 return 1;
767}
768
769/* Trim the used slices and adjust slice start accordingly */
0f3457f6 770static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 771{
3aad5d3e
VG
772 unsigned long nr_slices, time_elapsed, io_trim;
773 u64 bytes_trim, tmp;
e43473b7
VG
774
775 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
776
777 /*
778 * If bps are unlimited (-1), then time slice don't get
779 * renewed. Don't try to trim the slice if slice is used. A new
780 * slice will start when appropriate.
781 */
0f3457f6 782 if (throtl_slice_used(tg, rw))
e43473b7
VG
783 return;
784
d1ae8ffd
VG
785 /*
786 * A bio has been dispatched. Also adjust slice_end. It might happen
787 * that initially cgroup limit was very low resulting in high
788 * slice_end, but later limit was bumped up and bio was dispached
789 * sooner, then we need to reduce slice_end. A high bogus slice_end
790 * is bad because it does not allow new slice to start.
791 */
792
297e3d85 793 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
d1ae8ffd 794
e43473b7
VG
795 time_elapsed = jiffies - tg->slice_start[rw];
796
297e3d85 797 nr_slices = time_elapsed / tg->td->throtl_slice;
e43473b7
VG
798
799 if (!nr_slices)
800 return;
297e3d85 801 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
3aad5d3e
VG
802 do_div(tmp, HZ);
803 bytes_trim = tmp;
e43473b7 804
297e3d85
SL
805 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
806 HZ;
e43473b7 807
8e89d13f 808 if (!bytes_trim && !io_trim)
e43473b7
VG
809 return;
810
811 if (tg->bytes_disp[rw] >= bytes_trim)
812 tg->bytes_disp[rw] -= bytes_trim;
813 else
814 tg->bytes_disp[rw] = 0;
815
8e89d13f
VG
816 if (tg->io_disp[rw] >= io_trim)
817 tg->io_disp[rw] -= io_trim;
818 else
819 tg->io_disp[rw] = 0;
820
297e3d85 821 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
e43473b7 822
fda6f272
TH
823 throtl_log(&tg->service_queue,
824 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
825 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
826 tg->slice_start[rw], tg->slice_end[rw], jiffies);
e43473b7
VG
827}
828
0f3457f6
TH
829static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
830 unsigned long *wait)
e43473b7
VG
831{
832 bool rw = bio_data_dir(bio);
8e89d13f 833 unsigned int io_allowed;
e43473b7 834 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
c49c06e4 835 u64 tmp;
e43473b7 836
8e89d13f 837 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
e43473b7 838
8e89d13f
VG
839 /* Slice has just started. Consider one slice interval */
840 if (!jiffy_elapsed)
297e3d85 841 jiffy_elapsed_rnd = tg->td->throtl_slice;
8e89d13f 842
297e3d85 843 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
8e89d13f 844
c49c06e4
VG
845 /*
846 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
847 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
848 * will allow dispatch after 1 second and after that slice should
849 * have been trimmed.
850 */
851
9f626e37 852 tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
c49c06e4
VG
853 do_div(tmp, HZ);
854
855 if (tmp > UINT_MAX)
856 io_allowed = UINT_MAX;
857 else
858 io_allowed = tmp;
8e89d13f
VG
859
860 if (tg->io_disp[rw] + 1 <= io_allowed) {
e43473b7
VG
861 if (wait)
862 *wait = 0;
5cf8c227 863 return true;
e43473b7
VG
864 }
865
8e89d13f 866 /* Calc approx time to dispatch */
9f626e37 867 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
8e89d13f
VG
868
869 if (jiffy_wait > jiffy_elapsed)
870 jiffy_wait = jiffy_wait - jiffy_elapsed;
871 else
872 jiffy_wait = 1;
873
874 if (wait)
875 *wait = jiffy_wait;
876 return 0;
877}
878
0f3457f6
TH
879static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
880 unsigned long *wait)
8e89d13f
VG
881{
882 bool rw = bio_data_dir(bio);
3aad5d3e 883 u64 bytes_allowed, extra_bytes, tmp;
8e89d13f 884 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
e43473b7
VG
885
886 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
887
888 /* Slice has just started. Consider one slice interval */
889 if (!jiffy_elapsed)
297e3d85 890 jiffy_elapsed_rnd = tg->td->throtl_slice;
e43473b7 891
297e3d85 892 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
e43473b7 893
9f626e37 894 tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
5e901a2b 895 do_div(tmp, HZ);
3aad5d3e 896 bytes_allowed = tmp;
e43473b7 897
4f024f37 898 if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
e43473b7
VG
899 if (wait)
900 *wait = 0;
5cf8c227 901 return true;
e43473b7
VG
902 }
903
904 /* Calc approx time to dispatch */
4f024f37 905 extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
9f626e37 906 jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
e43473b7
VG
907
908 if (!jiffy_wait)
909 jiffy_wait = 1;
910
911 /*
912 * This wait time is without taking into consideration the rounding
913 * up we did. Add that time also.
914 */
915 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
e43473b7
VG
916 if (wait)
917 *wait = jiffy_wait;
8e89d13f
VG
918 return 0;
919}
920
921/*
922 * Returns whether one can dispatch a bio or not. Also returns approx number
923 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
924 */
0f3457f6
TH
925static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
926 unsigned long *wait)
8e89d13f
VG
927{
928 bool rw = bio_data_dir(bio);
929 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
930
931 /*
932 * Currently whole state machine of group depends on first bio
933 * queued in the group bio list. So one should not be calling
934 * this function with a different bio if there are other bios
935 * queued.
936 */
73f0d49a 937 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 938 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 939
8e89d13f 940 /* If tg->bps = -1, then BW is unlimited */
9f626e37
SL
941 if (tg_bps_limit(tg, rw) == U64_MAX &&
942 tg_iops_limit(tg, rw) == UINT_MAX) {
8e89d13f
VG
943 if (wait)
944 *wait = 0;
5cf8c227 945 return true;
8e89d13f
VG
946 }
947
948 /*
949 * If previous slice expired, start a new one otherwise renew/extend
950 * existing slice to make sure it is at least throtl_slice interval
164c80ed
VG
951 * long since now. New slice is started only for empty throttle group.
952 * If there is queued bio, that means there should be an active
953 * slice and it should be extended instead.
8e89d13f 954 */
164c80ed 955 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
0f3457f6 956 throtl_start_new_slice(tg, rw);
8e89d13f 957 else {
297e3d85
SL
958 if (time_before(tg->slice_end[rw],
959 jiffies + tg->td->throtl_slice))
960 throtl_extend_slice(tg, rw,
961 jiffies + tg->td->throtl_slice);
8e89d13f
VG
962 }
963
0f3457f6
TH
964 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
965 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
8e89d13f
VG
966 if (wait)
967 *wait = 0;
968 return 1;
969 }
970
971 max_wait = max(bps_wait, iops_wait);
972
973 if (wait)
974 *wait = max_wait;
975
976 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 977 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7
VG
978
979 return 0;
980}
981
982static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
983{
984 bool rw = bio_data_dir(bio);
e43473b7
VG
985
986 /* Charge the bio to the group */
4f024f37 987 tg->bytes_disp[rw] += bio->bi_iter.bi_size;
8e89d13f 988 tg->io_disp[rw]++;
3f0abd80
SL
989 tg->last_bytes_disp[rw] += bio->bi_iter.bi_size;
990 tg->last_io_disp[rw]++;
e43473b7 991
2a0f61e6 992 /*
8d2bbd4c 993 * BIO_THROTTLED is used to prevent the same bio to be throttled
2a0f61e6
TH
994 * more than once as a throttled bio will go through blk-throtl the
995 * second time when it eventually gets issued. Set it when a bio
996 * is being charged to a tg.
2a0f61e6 997 */
8d2bbd4c
CH
998 if (!bio_flagged(bio, BIO_THROTTLED))
999 bio_set_flag(bio, BIO_THROTTLED);
e43473b7
VG
1000}
1001
c5cc2070
TH
1002/**
1003 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1004 * @bio: bio to add
1005 * @qn: qnode to use
1006 * @tg: the target throtl_grp
1007 *
1008 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1009 * tg->qnode_on_self[] is used.
1010 */
1011static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1012 struct throtl_grp *tg)
e43473b7 1013{
73f0d49a 1014 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1015 bool rw = bio_data_dir(bio);
1016
c5cc2070
TH
1017 if (!qn)
1018 qn = &tg->qnode_on_self[rw];
1019
0e9f4164
TH
1020 /*
1021 * If @tg doesn't currently have any bios queued in the same
1022 * direction, queueing @bio can change when @tg should be
1023 * dispatched. Mark that @tg was empty. This is automatically
1024 * cleaered on the next tg_update_disptime().
1025 */
1026 if (!sq->nr_queued[rw])
1027 tg->flags |= THROTL_TG_WAS_EMPTY;
1028
c5cc2070
TH
1029 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1030
73f0d49a 1031 sq->nr_queued[rw]++;
77216b04 1032 throtl_enqueue_tg(tg);
e43473b7
VG
1033}
1034
77216b04 1035static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 1036{
73f0d49a 1037 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1038 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1039 struct bio *bio;
1040
d609af3a
ME
1041 bio = throtl_peek_queued(&sq->queued[READ]);
1042 if (bio)
0f3457f6 1043 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 1044
d609af3a
ME
1045 bio = throtl_peek_queued(&sq->queued[WRITE]);
1046 if (bio)
0f3457f6 1047 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
1048
1049 min_wait = min(read_wait, write_wait);
1050 disptime = jiffies + min_wait;
1051
e43473b7 1052 /* Update dispatch time */
77216b04 1053 throtl_dequeue_tg(tg);
e43473b7 1054 tg->disptime = disptime;
77216b04 1055 throtl_enqueue_tg(tg);
0e9f4164
TH
1056
1057 /* see throtl_add_bio_tg() */
1058 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
1059}
1060
32ee5bc4
VG
1061static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1062 struct throtl_grp *parent_tg, bool rw)
1063{
1064 if (throtl_slice_used(parent_tg, rw)) {
1065 throtl_start_new_slice_with_credit(parent_tg, rw,
1066 child_tg->slice_start[rw]);
1067 }
1068
1069}
1070
77216b04 1071static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 1072{
73f0d49a 1073 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
1074 struct throtl_service_queue *parent_sq = sq->parent_sq;
1075 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 1076 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
1077 struct bio *bio;
1078
c5cc2070
TH
1079 /*
1080 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1081 * from @tg may put its reference and @parent_sq might end up
1082 * getting released prematurely. Remember the tg to put and put it
1083 * after @bio is transferred to @parent_sq.
1084 */
1085 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 1086 sq->nr_queued[rw]--;
e43473b7
VG
1087
1088 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
1089
1090 /*
1091 * If our parent is another tg, we just need to transfer @bio to
1092 * the parent using throtl_add_bio_tg(). If our parent is
1093 * @td->service_queue, @bio is ready to be issued. Put it on its
1094 * bio_lists[] and decrease total number queued. The caller is
1095 * responsible for issuing these bios.
1096 */
1097 if (parent_tg) {
c5cc2070 1098 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 1099 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 1100 } else {
c5cc2070
TH
1101 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1102 &parent_sq->queued[rw]);
6bc9c2b4
TH
1103 BUG_ON(tg->td->nr_queued[rw] <= 0);
1104 tg->td->nr_queued[rw]--;
1105 }
e43473b7 1106
0f3457f6 1107 throtl_trim_slice(tg, rw);
6bc9c2b4 1108
c5cc2070
TH
1109 if (tg_to_put)
1110 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1111}
1112
77216b04 1113static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1114{
73f0d49a 1115 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1116 unsigned int nr_reads = 0, nr_writes = 0;
1117 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
c2f6805d 1118 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
e43473b7
VG
1119 struct bio *bio;
1120
1121 /* Try to dispatch 75% READS and 25% WRITES */
1122
c5cc2070 1123 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1124 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1125
77216b04 1126 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1127 nr_reads++;
1128
1129 if (nr_reads >= max_nr_reads)
1130 break;
1131 }
1132
c5cc2070 1133 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1134 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1135
77216b04 1136 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1137 nr_writes++;
1138
1139 if (nr_writes >= max_nr_writes)
1140 break;
1141 }
1142
1143 return nr_reads + nr_writes;
1144}
1145
651930bc 1146static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1147{
1148 unsigned int nr_disp = 0;
e43473b7
VG
1149
1150 while (1) {
73f0d49a
TH
1151 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1152 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1153
1154 if (!tg)
1155 break;
1156
1157 if (time_before(jiffies, tg->disptime))
1158 break;
1159
77216b04 1160 throtl_dequeue_tg(tg);
e43473b7 1161
77216b04 1162 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1163
73f0d49a 1164 if (sq->nr_queued[0] || sq->nr_queued[1])
77216b04 1165 tg_update_disptime(tg);
e43473b7
VG
1166
1167 if (nr_disp >= throtl_quantum)
1168 break;
1169 }
1170
1171 return nr_disp;
1172}
1173
c79892c5
SL
1174static bool throtl_can_upgrade(struct throtl_data *td,
1175 struct throtl_grp *this_tg);
6e1a5704
TH
1176/**
1177 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1178 * @arg: the throtl_service_queue being serviced
1179 *
1180 * This timer is armed when a child throtl_grp with active bio's become
1181 * pending and queued on the service_queue's pending_tree and expires when
1182 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1183 * dispatches bio's from the children throtl_grps to the parent
1184 * service_queue.
1185 *
1186 * If the parent's parent is another throtl_grp, dispatching is propagated
1187 * by either arming its pending_timer or repeating dispatch directly. If
1188 * the top-level service_tree is reached, throtl_data->dispatch_work is
1189 * kicked so that the ready bio's are issued.
6e1a5704 1190 */
69df0ab0
TH
1191static void throtl_pending_timer_fn(unsigned long arg)
1192{
1193 struct throtl_service_queue *sq = (void *)arg;
2e48a530 1194 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1195 struct throtl_data *td = sq_to_td(sq);
cb76199c 1196 struct request_queue *q = td->queue;
2e48a530
TH
1197 struct throtl_service_queue *parent_sq;
1198 bool dispatched;
6e1a5704 1199 int ret;
e43473b7
VG
1200
1201 spin_lock_irq(q->queue_lock);
c79892c5
SL
1202 if (throtl_can_upgrade(td, NULL))
1203 throtl_upgrade_state(td);
1204
2e48a530
TH
1205again:
1206 parent_sq = sq->parent_sq;
1207 dispatched = false;
e43473b7 1208
7f52f98c
TH
1209 while (true) {
1210 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1211 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1212 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1213
1214 ret = throtl_select_dispatch(sq);
1215 if (ret) {
7f52f98c
TH
1216 throtl_log(sq, "bios disp=%u", ret);
1217 dispatched = true;
1218 }
e43473b7 1219
7f52f98c
TH
1220 if (throtl_schedule_next_dispatch(sq, false))
1221 break;
e43473b7 1222
7f52f98c
TH
1223 /* this dispatch windows is still open, relax and repeat */
1224 spin_unlock_irq(q->queue_lock);
1225 cpu_relax();
1226 spin_lock_irq(q->queue_lock);
651930bc 1227 }
e43473b7 1228
2e48a530
TH
1229 if (!dispatched)
1230 goto out_unlock;
6e1a5704 1231
2e48a530
TH
1232 if (parent_sq) {
1233 /* @parent_sq is another throl_grp, propagate dispatch */
1234 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1235 tg_update_disptime(tg);
1236 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1237 /* window is already open, repeat dispatching */
1238 sq = parent_sq;
1239 tg = sq_to_tg(sq);
1240 goto again;
1241 }
1242 }
1243 } else {
1244 /* reached the top-level, queue issueing */
1245 queue_work(kthrotld_workqueue, &td->dispatch_work);
1246 }
1247out_unlock:
e43473b7 1248 spin_unlock_irq(q->queue_lock);
6e1a5704 1249}
e43473b7 1250
6e1a5704
TH
1251/**
1252 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1253 * @work: work item being executed
1254 *
1255 * This function is queued for execution when bio's reach the bio_lists[]
1256 * of throtl_data->service_queue. Those bio's are ready and issued by this
1257 * function.
1258 */
8876e140 1259static void blk_throtl_dispatch_work_fn(struct work_struct *work)
6e1a5704
TH
1260{
1261 struct throtl_data *td = container_of(work, struct throtl_data,
1262 dispatch_work);
1263 struct throtl_service_queue *td_sq = &td->service_queue;
1264 struct request_queue *q = td->queue;
1265 struct bio_list bio_list_on_stack;
1266 struct bio *bio;
1267 struct blk_plug plug;
1268 int rw;
1269
1270 bio_list_init(&bio_list_on_stack);
1271
1272 spin_lock_irq(q->queue_lock);
c5cc2070
TH
1273 for (rw = READ; rw <= WRITE; rw++)
1274 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1275 bio_list_add(&bio_list_on_stack, bio);
6e1a5704
TH
1276 spin_unlock_irq(q->queue_lock);
1277
1278 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1279 blk_start_plug(&plug);
e43473b7
VG
1280 while((bio = bio_list_pop(&bio_list_on_stack)))
1281 generic_make_request(bio);
69d60eb9 1282 blk_finish_plug(&plug);
e43473b7 1283 }
e43473b7
VG
1284}
1285
f95a04af
TH
1286static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1287 int off)
60c2bc2d 1288{
f95a04af
TH
1289 struct throtl_grp *tg = pd_to_tg(pd);
1290 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1291
2ab5492d 1292 if (v == U64_MAX)
60c2bc2d 1293 return 0;
f95a04af 1294 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1295}
1296
f95a04af
TH
1297static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1298 int off)
e43473b7 1299{
f95a04af
TH
1300 struct throtl_grp *tg = pd_to_tg(pd);
1301 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1302
2ab5492d 1303 if (v == UINT_MAX)
af133ceb 1304 return 0;
f95a04af 1305 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1306}
1307
2da8ca82 1308static int tg_print_conf_u64(struct seq_file *sf, void *v)
8e89d13f 1309{
2da8ca82
TH
1310 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1311 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1312 return 0;
8e89d13f
VG
1313}
1314
2da8ca82 1315static int tg_print_conf_uint(struct seq_file *sf, void *v)
8e89d13f 1316{
2da8ca82
TH
1317 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1318 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1319 return 0;
60c2bc2d
TH
1320}
1321
69948b07 1322static void tg_conf_updated(struct throtl_grp *tg)
60c2bc2d 1323{
69948b07 1324 struct throtl_service_queue *sq = &tg->service_queue;
492eb21b 1325 struct cgroup_subsys_state *pos_css;
69948b07 1326 struct blkcg_gq *blkg;
af133ceb 1327
fda6f272
TH
1328 throtl_log(&tg->service_queue,
1329 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
9f626e37
SL
1330 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1331 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
632b4493 1332
693e751e
TH
1333 /*
1334 * Update has_rules[] flags for the updated tg's subtree. A tg is
1335 * considered to have rules if either the tg itself or any of its
1336 * ancestors has rules. This identifies groups without any
1337 * restrictions in the whole hierarchy and allows them to bypass
1338 * blk-throttle.
1339 */
69948b07 1340 blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
693e751e
TH
1341 tg_update_has_rules(blkg_to_tg(blkg));
1342
632b4493
TH
1343 /*
1344 * We're already holding queue_lock and know @tg is valid. Let's
1345 * apply the new config directly.
1346 *
1347 * Restart the slices for both READ and WRITES. It might happen
1348 * that a group's limit are dropped suddenly and we don't want to
1349 * account recently dispatched IO with new low rate.
1350 */
0f3457f6
TH
1351 throtl_start_new_slice(tg, 0);
1352 throtl_start_new_slice(tg, 1);
632b4493 1353
5b2c16aa 1354 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1355 tg_update_disptime(tg);
7f52f98c 1356 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1357 }
69948b07
TH
1358}
1359
1360static ssize_t tg_set_conf(struct kernfs_open_file *of,
1361 char *buf, size_t nbytes, loff_t off, bool is_u64)
1362{
1363 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1364 struct blkg_conf_ctx ctx;
1365 struct throtl_grp *tg;
1366 int ret;
1367 u64 v;
1368
1369 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1370 if (ret)
1371 return ret;
1372
1373 ret = -EINVAL;
1374 if (sscanf(ctx.body, "%llu", &v) != 1)
1375 goto out_finish;
1376 if (!v)
2ab5492d 1377 v = U64_MAX;
69948b07
TH
1378
1379 tg = blkg_to_tg(ctx.blkg);
1380
1381 if (is_u64)
1382 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1383 else
1384 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
60c2bc2d 1385
69948b07 1386 tg_conf_updated(tg);
36aa9e5f
TH
1387 ret = 0;
1388out_finish:
60c2bc2d 1389 blkg_conf_finish(&ctx);
36aa9e5f 1390 return ret ?: nbytes;
8e89d13f
VG
1391}
1392
451af504
TH
1393static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1394 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1395{
451af504 1396 return tg_set_conf(of, buf, nbytes, off, true);
60c2bc2d
TH
1397}
1398
451af504
TH
1399static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1400 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1401{
451af504 1402 return tg_set_conf(of, buf, nbytes, off, false);
60c2bc2d
TH
1403}
1404
880f50e2 1405static struct cftype throtl_legacy_files[] = {
60c2bc2d
TH
1406 {
1407 .name = "throttle.read_bps_device",
9f626e37 1408 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
2da8ca82 1409 .seq_show = tg_print_conf_u64,
451af504 1410 .write = tg_set_conf_u64,
60c2bc2d
TH
1411 },
1412 {
1413 .name = "throttle.write_bps_device",
9f626e37 1414 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
2da8ca82 1415 .seq_show = tg_print_conf_u64,
451af504 1416 .write = tg_set_conf_u64,
60c2bc2d
TH
1417 },
1418 {
1419 .name = "throttle.read_iops_device",
9f626e37 1420 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
2da8ca82 1421 .seq_show = tg_print_conf_uint,
451af504 1422 .write = tg_set_conf_uint,
60c2bc2d
TH
1423 },
1424 {
1425 .name = "throttle.write_iops_device",
9f626e37 1426 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
2da8ca82 1427 .seq_show = tg_print_conf_uint,
451af504 1428 .write = tg_set_conf_uint,
60c2bc2d
TH
1429 },
1430 {
1431 .name = "throttle.io_service_bytes",
77ea7338
TH
1432 .private = (unsigned long)&blkcg_policy_throtl,
1433 .seq_show = blkg_print_stat_bytes,
60c2bc2d
TH
1434 },
1435 {
1436 .name = "throttle.io_serviced",
77ea7338
TH
1437 .private = (unsigned long)&blkcg_policy_throtl,
1438 .seq_show = blkg_print_stat_ios,
60c2bc2d
TH
1439 },
1440 { } /* terminate */
1441};
1442
cd5ab1b0 1443static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
2ee867dc
TH
1444 int off)
1445{
1446 struct throtl_grp *tg = pd_to_tg(pd);
1447 const char *dname = blkg_dev_name(pd->blkg);
1448 char bufs[4][21] = { "max", "max", "max", "max" };
cd5ab1b0
SL
1449 u64 bps_dft;
1450 unsigned int iops_dft;
ada75b6e 1451 char idle_time[26] = "";
2ee867dc
TH
1452
1453 if (!dname)
1454 return 0;
9f626e37 1455
cd5ab1b0
SL
1456 if (off == LIMIT_LOW) {
1457 bps_dft = 0;
1458 iops_dft = 0;
1459 } else {
1460 bps_dft = U64_MAX;
1461 iops_dft = UINT_MAX;
1462 }
1463
1464 if (tg->bps_conf[READ][off] == bps_dft &&
1465 tg->bps_conf[WRITE][off] == bps_dft &&
1466 tg->iops_conf[READ][off] == iops_dft &&
ada75b6e
SL
1467 tg->iops_conf[WRITE][off] == iops_dft &&
1468 (off != LIMIT_LOW || tg->idletime_threshold ==
1469 tg->td->dft_idletime_threshold))
2ee867dc
TH
1470 return 0;
1471
cd5ab1b0 1472 if (tg->bps_conf[READ][off] != bps_dft)
9f626e37 1473 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
cd5ab1b0
SL
1474 tg->bps_conf[READ][off]);
1475 if (tg->bps_conf[WRITE][off] != bps_dft)
9f626e37 1476 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
cd5ab1b0
SL
1477 tg->bps_conf[WRITE][off]);
1478 if (tg->iops_conf[READ][off] != iops_dft)
9f626e37 1479 snprintf(bufs[2], sizeof(bufs[2]), "%u",
cd5ab1b0
SL
1480 tg->iops_conf[READ][off]);
1481 if (tg->iops_conf[WRITE][off] != iops_dft)
9f626e37 1482 snprintf(bufs[3], sizeof(bufs[3]), "%u",
cd5ab1b0 1483 tg->iops_conf[WRITE][off]);
ada75b6e
SL
1484 if (off == LIMIT_LOW) {
1485 if (tg->idletime_threshold == ULONG_MAX)
1486 strcpy(idle_time, " idle=max");
1487 else
1488 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1489 tg->idletime_threshold);
1490 }
2ee867dc 1491
ada75b6e
SL
1492 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s\n",
1493 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time);
2ee867dc
TH
1494 return 0;
1495}
1496
cd5ab1b0 1497static int tg_print_limit(struct seq_file *sf, void *v)
2ee867dc 1498{
cd5ab1b0 1499 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
2ee867dc
TH
1500 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1501 return 0;
1502}
1503
cd5ab1b0 1504static ssize_t tg_set_limit(struct kernfs_open_file *of,
2ee867dc
TH
1505 char *buf, size_t nbytes, loff_t off)
1506{
1507 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1508 struct blkg_conf_ctx ctx;
1509 struct throtl_grp *tg;
1510 u64 v[4];
ada75b6e 1511 unsigned long idle_time;
2ee867dc 1512 int ret;
cd5ab1b0 1513 int index = of_cft(of)->private;
2ee867dc
TH
1514
1515 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1516 if (ret)
1517 return ret;
1518
1519 tg = blkg_to_tg(ctx.blkg);
1520
cd5ab1b0
SL
1521 v[0] = tg->bps_conf[READ][index];
1522 v[1] = tg->bps_conf[WRITE][index];
1523 v[2] = tg->iops_conf[READ][index];
1524 v[3] = tg->iops_conf[WRITE][index];
2ee867dc 1525
ada75b6e 1526 idle_time = tg->idletime_threshold;
2ee867dc
TH
1527 while (true) {
1528 char tok[27]; /* wiops=18446744073709551616 */
1529 char *p;
2ab5492d 1530 u64 val = U64_MAX;
2ee867dc
TH
1531 int len;
1532
1533 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1534 break;
1535 if (tok[0] == '\0')
1536 break;
1537 ctx.body += len;
1538
1539 ret = -EINVAL;
1540 p = tok;
1541 strsep(&p, "=");
1542 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1543 goto out_finish;
1544
1545 ret = -ERANGE;
1546 if (!val)
1547 goto out_finish;
1548
1549 ret = -EINVAL;
1550 if (!strcmp(tok, "rbps"))
1551 v[0] = val;
1552 else if (!strcmp(tok, "wbps"))
1553 v[1] = val;
1554 else if (!strcmp(tok, "riops"))
1555 v[2] = min_t(u64, val, UINT_MAX);
1556 else if (!strcmp(tok, "wiops"))
1557 v[3] = min_t(u64, val, UINT_MAX);
ada75b6e
SL
1558 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1559 idle_time = val;
2ee867dc
TH
1560 else
1561 goto out_finish;
1562 }
1563
cd5ab1b0
SL
1564 tg->bps_conf[READ][index] = v[0];
1565 tg->bps_conf[WRITE][index] = v[1];
1566 tg->iops_conf[READ][index] = v[2];
1567 tg->iops_conf[WRITE][index] = v[3];
2ee867dc 1568
cd5ab1b0
SL
1569 if (index == LIMIT_MAX) {
1570 tg->bps[READ][index] = v[0];
1571 tg->bps[WRITE][index] = v[1];
1572 tg->iops[READ][index] = v[2];
1573 tg->iops[WRITE][index] = v[3];
1574 }
1575 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1576 tg->bps_conf[READ][LIMIT_MAX]);
1577 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1578 tg->bps_conf[WRITE][LIMIT_MAX]);
1579 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1580 tg->iops_conf[READ][LIMIT_MAX]);
1581 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1582 tg->iops_conf[WRITE][LIMIT_MAX]);
1583
1584 if (index == LIMIT_LOW) {
1585 blk_throtl_update_limit_valid(tg->td);
1586 if (tg->td->limit_valid[LIMIT_LOW])
1587 tg->td->limit_index = LIMIT_LOW;
ada75b6e
SL
1588 tg->idletime_threshold = (idle_time == ULONG_MAX) ?
1589 ULONG_MAX : idle_time;
cd5ab1b0 1590 }
2ee867dc
TH
1591 tg_conf_updated(tg);
1592 ret = 0;
1593out_finish:
1594 blkg_conf_finish(&ctx);
1595 return ret ?: nbytes;
1596}
1597
1598static struct cftype throtl_files[] = {
cd5ab1b0
SL
1599#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1600 {
1601 .name = "low",
1602 .flags = CFTYPE_NOT_ON_ROOT,
1603 .seq_show = tg_print_limit,
1604 .write = tg_set_limit,
1605 .private = LIMIT_LOW,
1606 },
1607#endif
2ee867dc
TH
1608 {
1609 .name = "max",
1610 .flags = CFTYPE_NOT_ON_ROOT,
cd5ab1b0
SL
1611 .seq_show = tg_print_limit,
1612 .write = tg_set_limit,
1613 .private = LIMIT_MAX,
2ee867dc
TH
1614 },
1615 { } /* terminate */
1616};
1617
da527770 1618static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1619{
1620 struct throtl_data *td = q->td;
1621
69df0ab0 1622 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1623}
1624
3c798398 1625static struct blkcg_policy blkcg_policy_throtl = {
2ee867dc 1626 .dfl_cftypes = throtl_files,
880f50e2 1627 .legacy_cftypes = throtl_legacy_files,
f9fcc2d3 1628
001bea73 1629 .pd_alloc_fn = throtl_pd_alloc,
f9fcc2d3 1630 .pd_init_fn = throtl_pd_init,
693e751e 1631 .pd_online_fn = throtl_pd_online,
cd5ab1b0 1632 .pd_offline_fn = throtl_pd_offline,
001bea73 1633 .pd_free_fn = throtl_pd_free,
e43473b7
VG
1634};
1635
3f0abd80
SL
1636static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1637{
1638 unsigned long rtime = jiffies, wtime = jiffies;
1639
1640 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1641 rtime = tg->last_low_overflow_time[READ];
1642 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1643 wtime = tg->last_low_overflow_time[WRITE];
1644 return min(rtime, wtime);
1645}
1646
1647/* tg should not be an intermediate node */
1648static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1649{
1650 struct throtl_service_queue *parent_sq;
1651 struct throtl_grp *parent = tg;
1652 unsigned long ret = __tg_last_low_overflow_time(tg);
1653
1654 while (true) {
1655 parent_sq = parent->service_queue.parent_sq;
1656 parent = sq_to_tg(parent_sq);
1657 if (!parent)
1658 break;
1659
1660 /*
1661 * The parent doesn't have low limit, it always reaches low
1662 * limit. Its overflow time is useless for children
1663 */
1664 if (!parent->bps[READ][LIMIT_LOW] &&
1665 !parent->iops[READ][LIMIT_LOW] &&
1666 !parent->bps[WRITE][LIMIT_LOW] &&
1667 !parent->iops[WRITE][LIMIT_LOW])
1668 continue;
1669 if (time_after(__tg_last_low_overflow_time(parent), ret))
1670 ret = __tg_last_low_overflow_time(parent);
1671 }
1672 return ret;
1673}
1674
9e234eea
SL
1675static bool throtl_tg_is_idle(struct throtl_grp *tg)
1676{
1677 /*
1678 * cgroup is idle if:
1679 * - single idle is too long, longer than a fixed value (in case user
1680 * configure a too big threshold) or 4 times of slice
1681 * - average think time is more than threshold
1682 */
1683 unsigned long time = jiffies_to_usecs(4 * tg->td->throtl_slice);
1684
1685 time = min_t(unsigned long, MAX_IDLE_TIME, time);
1686 return (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1687 tg->avg_idletime > tg->idletime_threshold;
1688}
1689
c79892c5
SL
1690static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1691{
1692 struct throtl_service_queue *sq = &tg->service_queue;
1693 bool read_limit, write_limit;
1694
1695 /*
1696 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1697 * reaches), it's ok to upgrade to next limit
1698 */
1699 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1700 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1701 if (!read_limit && !write_limit)
1702 return true;
1703 if (read_limit && sq->nr_queued[READ] &&
1704 (!write_limit || sq->nr_queued[WRITE]))
1705 return true;
1706 if (write_limit && sq->nr_queued[WRITE] &&
1707 (!read_limit || sq->nr_queued[READ]))
1708 return true;
aec24246
SL
1709
1710 if (time_after_eq(jiffies,
1711 tg->last_dispatch_time[READ] + tg->td->throtl_slice) &&
1712 time_after_eq(jiffies,
1713 tg->last_dispatch_time[WRITE] + tg->td->throtl_slice))
1714 return true;
c79892c5
SL
1715 return false;
1716}
1717
1718static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1719{
1720 while (true) {
1721 if (throtl_tg_can_upgrade(tg))
1722 return true;
1723 tg = sq_to_tg(tg->service_queue.parent_sq);
1724 if (!tg || !tg_to_blkg(tg)->parent)
1725 return false;
1726 }
1727 return false;
1728}
1729
1730static bool throtl_can_upgrade(struct throtl_data *td,
1731 struct throtl_grp *this_tg)
1732{
1733 struct cgroup_subsys_state *pos_css;
1734 struct blkcg_gq *blkg;
1735
1736 if (td->limit_index != LIMIT_LOW)
1737 return false;
1738
297e3d85 1739 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
3f0abd80
SL
1740 return false;
1741
c79892c5
SL
1742 rcu_read_lock();
1743 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1744 struct throtl_grp *tg = blkg_to_tg(blkg);
1745
1746 if (tg == this_tg)
1747 continue;
1748 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1749 continue;
1750 if (!throtl_hierarchy_can_upgrade(tg)) {
1751 rcu_read_unlock();
1752 return false;
1753 }
1754 }
1755 rcu_read_unlock();
1756 return true;
1757}
1758
1759static void throtl_upgrade_state(struct throtl_data *td)
1760{
1761 struct cgroup_subsys_state *pos_css;
1762 struct blkcg_gq *blkg;
1763
1764 td->limit_index = LIMIT_MAX;
3f0abd80 1765 td->low_upgrade_time = jiffies;
7394e31f 1766 td->scale = 0;
c79892c5
SL
1767 rcu_read_lock();
1768 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1769 struct throtl_grp *tg = blkg_to_tg(blkg);
1770 struct throtl_service_queue *sq = &tg->service_queue;
1771
1772 tg->disptime = jiffies - 1;
1773 throtl_select_dispatch(sq);
1774 throtl_schedule_next_dispatch(sq, false);
1775 }
1776 rcu_read_unlock();
1777 throtl_select_dispatch(&td->service_queue);
1778 throtl_schedule_next_dispatch(&td->service_queue, false);
1779 queue_work(kthrotld_workqueue, &td->dispatch_work);
1780}
1781
3f0abd80
SL
1782static void throtl_downgrade_state(struct throtl_data *td, int new)
1783{
7394e31f
SL
1784 td->scale /= 2;
1785
1786 if (td->scale) {
1787 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1788 return;
1789 }
1790
3f0abd80
SL
1791 td->limit_index = new;
1792 td->low_downgrade_time = jiffies;
1793}
1794
1795static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1796{
1797 struct throtl_data *td = tg->td;
1798 unsigned long now = jiffies;
1799
aec24246
SL
1800 if (time_after_eq(now, tg->last_dispatch_time[READ] +
1801 td->throtl_slice) &&
1802 time_after_eq(now, tg->last_dispatch_time[WRITE] +
1803 td->throtl_slice))
1804 return false;
3f0abd80
SL
1805 /*
1806 * If cgroup is below low limit, consider downgrade and throttle other
1807 * cgroups
1808 */
297e3d85
SL
1809 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1810 time_after_eq(now, tg_last_low_overflow_time(tg) +
1811 td->throtl_slice))
3f0abd80
SL
1812 return true;
1813 return false;
1814}
1815
1816static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1817{
1818 while (true) {
1819 if (!throtl_tg_can_downgrade(tg))
1820 return false;
1821 tg = sq_to_tg(tg->service_queue.parent_sq);
1822 if (!tg || !tg_to_blkg(tg)->parent)
1823 break;
1824 }
1825 return true;
1826}
1827
1828static void throtl_downgrade_check(struct throtl_grp *tg)
1829{
1830 uint64_t bps;
1831 unsigned int iops;
1832 unsigned long elapsed_time;
1833 unsigned long now = jiffies;
1834
1835 if (tg->td->limit_index != LIMIT_MAX ||
1836 !tg->td->limit_valid[LIMIT_LOW])
1837 return;
1838 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1839 return;
297e3d85 1840 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
3f0abd80
SL
1841 return;
1842
1843 elapsed_time = now - tg->last_check_time;
1844 tg->last_check_time = now;
1845
297e3d85
SL
1846 if (time_before(now, tg_last_low_overflow_time(tg) +
1847 tg->td->throtl_slice))
3f0abd80
SL
1848 return;
1849
1850 if (tg->bps[READ][LIMIT_LOW]) {
1851 bps = tg->last_bytes_disp[READ] * HZ;
1852 do_div(bps, elapsed_time);
1853 if (bps >= tg->bps[READ][LIMIT_LOW])
1854 tg->last_low_overflow_time[READ] = now;
1855 }
1856
1857 if (tg->bps[WRITE][LIMIT_LOW]) {
1858 bps = tg->last_bytes_disp[WRITE] * HZ;
1859 do_div(bps, elapsed_time);
1860 if (bps >= tg->bps[WRITE][LIMIT_LOW])
1861 tg->last_low_overflow_time[WRITE] = now;
1862 }
1863
1864 if (tg->iops[READ][LIMIT_LOW]) {
1865 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1866 if (iops >= tg->iops[READ][LIMIT_LOW])
1867 tg->last_low_overflow_time[READ] = now;
1868 }
1869
1870 if (tg->iops[WRITE][LIMIT_LOW]) {
1871 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
1872 if (iops >= tg->iops[WRITE][LIMIT_LOW])
1873 tg->last_low_overflow_time[WRITE] = now;
1874 }
1875
1876 /*
1877 * If cgroup is below low limit, consider downgrade and throttle other
1878 * cgroups
1879 */
1880 if (throtl_hierarchy_can_downgrade(tg))
1881 throtl_downgrade_state(tg->td, LIMIT_LOW);
1882
1883 tg->last_bytes_disp[READ] = 0;
1884 tg->last_bytes_disp[WRITE] = 0;
1885 tg->last_io_disp[READ] = 0;
1886 tg->last_io_disp[WRITE] = 0;
1887}
1888
9e234eea
SL
1889static void blk_throtl_update_idletime(struct throtl_grp *tg)
1890{
1891 unsigned long now = ktime_get_ns() >> 10;
1892 unsigned long last_finish_time = tg->last_finish_time;
1893
1894 if (now <= last_finish_time || last_finish_time == 0 ||
1895 last_finish_time == tg->checked_last_finish_time)
1896 return;
1897
1898 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
1899 tg->checked_last_finish_time = last_finish_time;
1900}
1901
ae118896
TH
1902bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
1903 struct bio *bio)
e43473b7 1904{
c5cc2070 1905 struct throtl_qnode *qn = NULL;
ae118896 1906 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
73f0d49a 1907 struct throtl_service_queue *sq;
0e9f4164 1908 bool rw = bio_data_dir(bio);
bc16a4f9 1909 bool throttled = false;
9e234eea 1910 int ret;
e43473b7 1911
ae118896
TH
1912 WARN_ON_ONCE(!rcu_read_lock_held());
1913
2a0f61e6 1914 /* see throtl_charge_bio() */
8d2bbd4c 1915 if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
bc16a4f9 1916 goto out;
e43473b7
VG
1917
1918 spin_lock_irq(q->queue_lock);
c9589f03
TH
1919
1920 if (unlikely(blk_queue_bypass(q)))
bc16a4f9 1921 goto out_unlock;
f469a7b4 1922
9e234eea
SL
1923 ret = bio_associate_current(bio);
1924#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1925 if (ret == 0 || ret == -EBUSY)
1926 bio->bi_cg_private = tg;
1927#endif
1928 blk_throtl_update_idletime(tg);
1929
73f0d49a
TH
1930 sq = &tg->service_queue;
1931
c79892c5 1932again:
9e660acf 1933 while (true) {
aec24246 1934 tg->last_dispatch_time[rw] = jiffies;
3f0abd80
SL
1935 if (tg->last_low_overflow_time[rw] == 0)
1936 tg->last_low_overflow_time[rw] = jiffies;
1937 throtl_downgrade_check(tg);
9e660acf
TH
1938 /* throtl is FIFO - if bios are already queued, should queue */
1939 if (sq->nr_queued[rw])
1940 break;
de701c74 1941
9e660acf 1942 /* if above limits, break to queue */
c79892c5 1943 if (!tg_may_dispatch(tg, bio, NULL)) {
3f0abd80 1944 tg->last_low_overflow_time[rw] = jiffies;
c79892c5
SL
1945 if (throtl_can_upgrade(tg->td, tg)) {
1946 throtl_upgrade_state(tg->td);
1947 goto again;
1948 }
9e660acf 1949 break;
c79892c5 1950 }
9e660acf
TH
1951
1952 /* within limits, let's charge and dispatch directly */
e43473b7 1953 throtl_charge_bio(tg, bio);
04521db0
VG
1954
1955 /*
1956 * We need to trim slice even when bios are not being queued
1957 * otherwise it might happen that a bio is not queued for
1958 * a long time and slice keeps on extending and trim is not
1959 * called for a long time. Now if limits are reduced suddenly
1960 * we take into account all the IO dispatched so far at new
1961 * low rate and * newly queued IO gets a really long dispatch
1962 * time.
1963 *
1964 * So keep on trimming slice even if bio is not queued.
1965 */
0f3457f6 1966 throtl_trim_slice(tg, rw);
9e660acf
TH
1967
1968 /*
1969 * @bio passed through this layer without being throttled.
1970 * Climb up the ladder. If we''re already at the top, it
1971 * can be executed directly.
1972 */
c5cc2070 1973 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
1974 sq = sq->parent_sq;
1975 tg = sq_to_tg(sq);
1976 if (!tg)
1977 goto out_unlock;
e43473b7
VG
1978 }
1979
9e660acf 1980 /* out-of-limit, queue to @tg */
fda6f272
TH
1981 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1982 rw == READ ? 'R' : 'W',
9f626e37
SL
1983 tg->bytes_disp[rw], bio->bi_iter.bi_size,
1984 tg_bps_limit(tg, rw),
1985 tg->io_disp[rw], tg_iops_limit(tg, rw),
fda6f272 1986 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 1987
3f0abd80
SL
1988 tg->last_low_overflow_time[rw] = jiffies;
1989
6bc9c2b4 1990 tg->td->nr_queued[rw]++;
c5cc2070 1991 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 1992 throttled = true;
e43473b7 1993
7f52f98c
TH
1994 /*
1995 * Update @tg's dispatch time and force schedule dispatch if @tg
1996 * was empty before @bio. The forced scheduling isn't likely to
1997 * cause undue delay as @bio is likely to be dispatched directly if
1998 * its @tg's disptime is not in the future.
1999 */
0e9f4164 2000 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 2001 tg_update_disptime(tg);
7f52f98c 2002 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
2003 }
2004
bc16a4f9 2005out_unlock:
e43473b7 2006 spin_unlock_irq(q->queue_lock);
bc16a4f9 2007out:
2a0f61e6
TH
2008 /*
2009 * As multiple blk-throtls may stack in the same issue path, we
2010 * don't want bios to leave with the flag set. Clear the flag if
2011 * being issued.
2012 */
2013 if (!throttled)
8d2bbd4c 2014 bio_clear_flag(bio, BIO_THROTTLED);
bc16a4f9 2015 return throttled;
e43473b7
VG
2016}
2017
9e234eea
SL
2018#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2019void blk_throtl_bio_endio(struct bio *bio)
2020{
2021 struct throtl_grp *tg;
2022
2023 tg = bio->bi_cg_private;
2024 if (!tg)
2025 return;
2026 bio->bi_cg_private = NULL;
2027
2028 tg->last_finish_time = ktime_get_ns() >> 10;
2029}
2030#endif
2031
2a12f0dc
TH
2032/*
2033 * Dispatch all bios from all children tg's queued on @parent_sq. On
2034 * return, @parent_sq is guaranteed to not have any active children tg's
2035 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2036 */
2037static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2038{
2039 struct throtl_grp *tg;
2040
2041 while ((tg = throtl_rb_first(parent_sq))) {
2042 struct throtl_service_queue *sq = &tg->service_queue;
2043 struct bio *bio;
2044
2045 throtl_dequeue_tg(tg);
2046
c5cc2070 2047 while ((bio = throtl_peek_queued(&sq->queued[READ])))
2a12f0dc 2048 tg_dispatch_one_bio(tg, bio_data_dir(bio));
c5cc2070 2049 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2a12f0dc
TH
2050 tg_dispatch_one_bio(tg, bio_data_dir(bio));
2051 }
2052}
2053
c9a929dd
TH
2054/**
2055 * blk_throtl_drain - drain throttled bios
2056 * @q: request_queue to drain throttled bios for
2057 *
2058 * Dispatch all currently throttled bios on @q through ->make_request_fn().
2059 */
2060void blk_throtl_drain(struct request_queue *q)
2061 __releases(q->queue_lock) __acquires(q->queue_lock)
2062{
2063 struct throtl_data *td = q->td;
2a12f0dc 2064 struct blkcg_gq *blkg;
492eb21b 2065 struct cgroup_subsys_state *pos_css;
c9a929dd 2066 struct bio *bio;
651930bc 2067 int rw;
c9a929dd 2068
8bcb6c7d 2069 queue_lockdep_assert_held(q);
2a12f0dc 2070 rcu_read_lock();
c9a929dd 2071
2a12f0dc
TH
2072 /*
2073 * Drain each tg while doing post-order walk on the blkg tree, so
2074 * that all bios are propagated to td->service_queue. It'd be
2075 * better to walk service_queue tree directly but blkg walk is
2076 * easier.
2077 */
492eb21b 2078 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2a12f0dc 2079 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
73f0d49a 2080
2a12f0dc
TH
2081 /* finally, transfer bios from top-level tg's into the td */
2082 tg_drain_bios(&td->service_queue);
2083
2084 rcu_read_unlock();
c9a929dd
TH
2085 spin_unlock_irq(q->queue_lock);
2086
2a12f0dc 2087 /* all bios now should be in td->service_queue, issue them */
651930bc 2088 for (rw = READ; rw <= WRITE; rw++)
c5cc2070
TH
2089 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2090 NULL)))
651930bc 2091 generic_make_request(bio);
c9a929dd
TH
2092
2093 spin_lock_irq(q->queue_lock);
2094}
2095
e43473b7
VG
2096int blk_throtl_init(struct request_queue *q)
2097{
2098 struct throtl_data *td;
a2b1693b 2099 int ret;
e43473b7
VG
2100
2101 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2102 if (!td)
2103 return -ENOMEM;
2104
69df0ab0 2105 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
b2ce2643 2106 throtl_service_queue_init(&td->service_queue);
e43473b7 2107
cd1604fa 2108 q->td = td;
29b12589 2109 td->queue = q;
02977e4a 2110
9f626e37 2111 td->limit_valid[LIMIT_MAX] = true;
cd5ab1b0 2112 td->limit_index = LIMIT_MAX;
3f0abd80
SL
2113 td->low_upgrade_time = jiffies;
2114 td->low_downgrade_time = jiffies;
9e234eea 2115
a2b1693b 2116 /* activate policy */
3c798398 2117 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
a2b1693b 2118 if (ret)
f51b802c 2119 kfree(td);
a2b1693b 2120 return ret;
e43473b7
VG
2121}
2122
2123void blk_throtl_exit(struct request_queue *q)
2124{
c875f4d0 2125 BUG_ON(!q->td);
da527770 2126 throtl_shutdown_wq(q);
3c798398 2127 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
c9a929dd 2128 kfree(q->td);
e43473b7
VG
2129}
2130
d61fcfa4
SL
2131void blk_throtl_register_queue(struct request_queue *q)
2132{
2133 struct throtl_data *td;
9e234eea
SL
2134 struct cgroup_subsys_state *pos_css;
2135 struct blkcg_gq *blkg;
d61fcfa4
SL
2136
2137 td = q->td;
2138 BUG_ON(!td);
2139
ada75b6e 2140 if (blk_queue_nonrot(q)) {
d61fcfa4 2141 td->throtl_slice = DFL_THROTL_SLICE_SSD;
ada75b6e
SL
2142 td->dft_idletime_threshold = DFL_IDLE_THRESHOLD_SSD;
2143 } else {
d61fcfa4 2144 td->throtl_slice = DFL_THROTL_SLICE_HD;
ada75b6e
SL
2145 td->dft_idletime_threshold = DFL_IDLE_THRESHOLD_HD;
2146 }
d61fcfa4
SL
2147#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2148 /* if no low limit, use previous default */
2149 td->throtl_slice = DFL_THROTL_SLICE_HD;
2150#endif
9e234eea
SL
2151
2152 /*
2153 * some tg are created before queue is fully initialized, eg, nonrot
2154 * isn't initialized yet
2155 */
2156 rcu_read_lock();
2157 blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
2158 struct throtl_grp *tg = blkg_to_tg(blkg);
2159
ada75b6e 2160 tg->idletime_threshold = td->dft_idletime_threshold;
9e234eea
SL
2161 }
2162 rcu_read_unlock();
d61fcfa4
SL
2163}
2164
297e3d85
SL
2165#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2166ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2167{
2168 if (!q->td)
2169 return -EINVAL;
2170 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2171}
2172
2173ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2174 const char *page, size_t count)
2175{
2176 unsigned long v;
2177 unsigned long t;
2178
2179 if (!q->td)
2180 return -EINVAL;
2181 if (kstrtoul(page, 10, &v))
2182 return -EINVAL;
2183 t = msecs_to_jiffies(v);
2184 if (t == 0 || t > MAX_THROTL_SLICE)
2185 return -EINVAL;
2186 q->td->throtl_slice = t;
2187 return count;
2188}
2189#endif
2190
e43473b7
VG
2191static int __init throtl_init(void)
2192{
450adcbe
VG
2193 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2194 if (!kthrotld_workqueue)
2195 panic("Failed to create kthrotld\n");
2196
3c798398 2197 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
2198}
2199
2200module_init(throtl_init);