]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-throttle.c
blk-throttle: add throtl_qnode for dispatch fairness
[mirror_ubuntu-bionic-kernel.git] / block / blk-throttle.c
CommitLineData
e43473b7
VG
1/*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/blkdev.h>
10#include <linux/bio.h>
11#include <linux/blktrace_api.h>
12#include "blk-cgroup.h"
bc9fcbf9 13#include "blk.h"
e43473b7
VG
14
15/* Max dispatch from a group in 1 round */
16static int throtl_grp_quantum = 8;
17
18/* Total max dispatch from all groups in one round */
19static int throtl_quantum = 32;
20
21/* Throttling is performed over 100ms slice and after that slice is renewed */
22static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
3c798398 24static struct blkcg_policy blkcg_policy_throtl;
0381411e 25
450adcbe
VG
26/* A workqueue to queue throttle related work */
27static struct workqueue_struct *kthrotld_workqueue;
450adcbe 28
c5cc2070
TH
29/*
30 * To implement hierarchical throttling, throtl_grps form a tree and bios
31 * are dispatched upwards level by level until they reach the top and get
32 * issued. When dispatching bios from the children and local group at each
33 * level, if the bios are dispatched into a single bio_list, there's a risk
34 * of a local or child group which can queue many bios at once filling up
35 * the list starving others.
36 *
37 * To avoid such starvation, dispatched bios are queued separately
38 * according to where they came from. When they are again dispatched to
39 * the parent, they're popped in round-robin order so that no single source
40 * hogs the dispatch window.
41 *
42 * throtl_qnode is used to keep the queued bios separated by their sources.
43 * Bios are queued to throtl_qnode which in turn is queued to
44 * throtl_service_queue and then dispatched in round-robin order.
45 *
46 * It's also used to track the reference counts on blkg's. A qnode always
47 * belongs to a throtl_grp and gets queued on itself or the parent, so
48 * incrementing the reference of the associated throtl_grp when a qnode is
49 * queued and decrementing when dequeued is enough to keep the whole blkg
50 * tree pinned while bios are in flight.
51 */
52struct throtl_qnode {
53 struct list_head node; /* service_queue->queued[] */
54 struct bio_list bios; /* queued bios */
55 struct throtl_grp *tg; /* tg this qnode belongs to */
56};
57
c9e0332e 58struct throtl_service_queue {
77216b04
TH
59 struct throtl_service_queue *parent_sq; /* the parent service_queue */
60
73f0d49a
TH
61 /*
62 * Bios queued directly to this service_queue or dispatched from
63 * children throtl_grp's.
64 */
c5cc2070 65 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
73f0d49a
TH
66 unsigned int nr_queued[2]; /* number of queued bios */
67
68 /*
69 * RB tree of active children throtl_grp's, which are sorted by
70 * their ->disptime.
71 */
c9e0332e
TH
72 struct rb_root pending_tree; /* RB tree of active tgs */
73 struct rb_node *first_pending; /* first node in the tree */
74 unsigned int nr_pending; /* # queued in the tree */
75 unsigned long first_pending_disptime; /* disptime of the first tg */
69df0ab0 76 struct timer_list pending_timer; /* fires on first_pending_disptime */
e43473b7
VG
77};
78
5b2c16aa
TH
79enum tg_state_flags {
80 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
0e9f4164 81 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
5b2c16aa
TH
82};
83
e43473b7
VG
84#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
85
8a3d2615
TH
86/* Per-cpu group stats */
87struct tg_stats_cpu {
88 /* total bytes transferred */
89 struct blkg_rwstat service_bytes;
90 /* total IOs serviced, post merge */
91 struct blkg_rwstat serviced;
92};
93
e43473b7 94struct throtl_grp {
f95a04af
TH
95 /* must be the first member */
96 struct blkg_policy_data pd;
97
c9e0332e 98 /* active throtl group service_queue member */
e43473b7
VG
99 struct rb_node rb_node;
100
0f3457f6
TH
101 /* throtl_data this group belongs to */
102 struct throtl_data *td;
103
49a2f1e3
TH
104 /* this group's service queue */
105 struct throtl_service_queue service_queue;
106
c5cc2070
TH
107 /*
108 * qnode_on_self is used when bios are directly queued to this
109 * throtl_grp so that local bios compete fairly with bios
110 * dispatched from children. qnode_on_parent is used when bios are
111 * dispatched from this throtl_grp into its parent and will compete
112 * with the sibling qnode_on_parents and the parent's
113 * qnode_on_self.
114 */
115 struct throtl_qnode qnode_on_self[2];
116 struct throtl_qnode qnode_on_parent[2];
117
e43473b7
VG
118 /*
119 * Dispatch time in jiffies. This is the estimated time when group
120 * will unthrottle and is ready to dispatch more bio. It is used as
121 * key to sort active groups in service tree.
122 */
123 unsigned long disptime;
124
e43473b7
VG
125 unsigned int flags;
126
e43473b7
VG
127 /* bytes per second rate limits */
128 uint64_t bps[2];
129
8e89d13f
VG
130 /* IOPS limits */
131 unsigned int iops[2];
132
e43473b7
VG
133 /* Number of bytes disptached in current slice */
134 uint64_t bytes_disp[2];
8e89d13f
VG
135 /* Number of bio's dispatched in current slice */
136 unsigned int io_disp[2];
e43473b7
VG
137
138 /* When did we start a new slice */
139 unsigned long slice_start[2];
140 unsigned long slice_end[2];
fe071437 141
8a3d2615
TH
142 /* Per cpu stats pointer */
143 struct tg_stats_cpu __percpu *stats_cpu;
144
145 /* List of tgs waiting for per cpu stats memory to be allocated */
146 struct list_head stats_alloc_node;
e43473b7
VG
147};
148
149struct throtl_data
150{
e43473b7 151 /* service tree for active throtl groups */
c9e0332e 152 struct throtl_service_queue service_queue;
e43473b7 153
e43473b7
VG
154 struct request_queue *queue;
155
156 /* Total Number of queued bios on READ and WRITE lists */
157 unsigned int nr_queued[2];
158
159 /*
02977e4a 160 * number of total undestroyed groups
e43473b7
VG
161 */
162 unsigned int nr_undestroyed_grps;
163
164 /* Work for dispatching throttled bios */
69df0ab0 165 struct work_struct dispatch_work;
e43473b7
VG
166};
167
8a3d2615
TH
168/* list and work item to allocate percpu group stats */
169static DEFINE_SPINLOCK(tg_stats_alloc_lock);
170static LIST_HEAD(tg_stats_alloc_list);
171
172static void tg_stats_alloc_fn(struct work_struct *);
173static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
174
69df0ab0
TH
175static void throtl_pending_timer_fn(unsigned long arg);
176
f95a04af
TH
177static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
178{
179 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
180}
181
3c798398 182static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
0381411e 183{
f95a04af 184 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
0381411e
TH
185}
186
3c798398 187static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 188{
f95a04af 189 return pd_to_blkg(&tg->pd);
0381411e
TH
190}
191
03d8e111
TH
192static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
193{
194 return blkg_to_tg(td->queue->root_blkg);
195}
196
fda6f272
TH
197/**
198 * sq_to_tg - return the throl_grp the specified service queue belongs to
199 * @sq: the throtl_service_queue of interest
200 *
201 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
202 * embedded in throtl_data, %NULL is returned.
203 */
204static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
205{
206 if (sq && sq->parent_sq)
207 return container_of(sq, struct throtl_grp, service_queue);
208 else
209 return NULL;
210}
211
212/**
213 * sq_to_td - return throtl_data the specified service queue belongs to
214 * @sq: the throtl_service_queue of interest
215 *
216 * A service_queue can be embeded in either a throtl_grp or throtl_data.
217 * Determine the associated throtl_data accordingly and return it.
218 */
219static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
220{
221 struct throtl_grp *tg = sq_to_tg(sq);
222
223 if (tg)
224 return tg->td;
225 else
226 return container_of(sq, struct throtl_data, service_queue);
227}
228
229/**
230 * throtl_log - log debug message via blktrace
231 * @sq: the service_queue being reported
232 * @fmt: printf format string
233 * @args: printf args
234 *
235 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
236 * throtl_grp; otherwise, just "throtl".
237 *
238 * TODO: this should be made a function and name formatting should happen
239 * after testing whether blktrace is enabled.
240 */
241#define throtl_log(sq, fmt, args...) do { \
242 struct throtl_grp *__tg = sq_to_tg((sq)); \
243 struct throtl_data *__td = sq_to_td((sq)); \
244 \
245 (void)__td; \
246 if ((__tg)) { \
247 char __pbuf[128]; \
54e7ed12 248 \
fda6f272
TH
249 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
250 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
251 } else { \
252 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
253 } \
54e7ed12 254} while (0)
e43473b7 255
8a3d2615
TH
256/*
257 * Worker for allocating per cpu stat for tgs. This is scheduled on the
3b07e9ca 258 * system_wq once there are some groups on the alloc_list waiting for
8a3d2615
TH
259 * allocation.
260 */
261static void tg_stats_alloc_fn(struct work_struct *work)
262{
263 static struct tg_stats_cpu *stats_cpu; /* this fn is non-reentrant */
264 struct delayed_work *dwork = to_delayed_work(work);
265 bool empty = false;
266
267alloc_stats:
268 if (!stats_cpu) {
269 stats_cpu = alloc_percpu(struct tg_stats_cpu);
270 if (!stats_cpu) {
271 /* allocation failed, try again after some time */
3b07e9ca 272 schedule_delayed_work(dwork, msecs_to_jiffies(10));
8a3d2615
TH
273 return;
274 }
275 }
276
277 spin_lock_irq(&tg_stats_alloc_lock);
278
279 if (!list_empty(&tg_stats_alloc_list)) {
280 struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
281 struct throtl_grp,
282 stats_alloc_node);
283 swap(tg->stats_cpu, stats_cpu);
284 list_del_init(&tg->stats_alloc_node);
285 }
286
287 empty = list_empty(&tg_stats_alloc_list);
288 spin_unlock_irq(&tg_stats_alloc_lock);
289 if (!empty)
290 goto alloc_stats;
291}
292
c5cc2070
TH
293static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
294{
295 INIT_LIST_HEAD(&qn->node);
296 bio_list_init(&qn->bios);
297 qn->tg = tg;
298}
299
300/**
301 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
302 * @bio: bio being added
303 * @qn: qnode to add bio to
304 * @queued: the service_queue->queued[] list @qn belongs to
305 *
306 * Add @bio to @qn and put @qn on @queued if it's not already on.
307 * @qn->tg's reference count is bumped when @qn is activated. See the
308 * comment on top of throtl_qnode definition for details.
309 */
310static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
311 struct list_head *queued)
312{
313 bio_list_add(&qn->bios, bio);
314 if (list_empty(&qn->node)) {
315 list_add_tail(&qn->node, queued);
316 blkg_get(tg_to_blkg(qn->tg));
317 }
318}
319
320/**
321 * throtl_peek_queued - peek the first bio on a qnode list
322 * @queued: the qnode list to peek
323 */
324static struct bio *throtl_peek_queued(struct list_head *queued)
325{
326 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
327 struct bio *bio;
328
329 if (list_empty(queued))
330 return NULL;
331
332 bio = bio_list_peek(&qn->bios);
333 WARN_ON_ONCE(!bio);
334 return bio;
335}
336
337/**
338 * throtl_pop_queued - pop the first bio form a qnode list
339 * @queued: the qnode list to pop a bio from
340 * @tg_to_put: optional out argument for throtl_grp to put
341 *
342 * Pop the first bio from the qnode list @queued. After popping, the first
343 * qnode is removed from @queued if empty or moved to the end of @queued so
344 * that the popping order is round-robin.
345 *
346 * When the first qnode is removed, its associated throtl_grp should be put
347 * too. If @tg_to_put is NULL, this function automatically puts it;
348 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
349 * responsible for putting it.
350 */
351static struct bio *throtl_pop_queued(struct list_head *queued,
352 struct throtl_grp **tg_to_put)
353{
354 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
355 struct bio *bio;
356
357 if (list_empty(queued))
358 return NULL;
359
360 bio = bio_list_pop(&qn->bios);
361 WARN_ON_ONCE(!bio);
362
363 if (bio_list_empty(&qn->bios)) {
364 list_del_init(&qn->node);
365 if (tg_to_put)
366 *tg_to_put = qn->tg;
367 else
368 blkg_put(tg_to_blkg(qn->tg));
369 } else {
370 list_move_tail(&qn->node, queued);
371 }
372
373 return bio;
374}
375
49a2f1e3 376/* init a service_queue, assumes the caller zeroed it */
77216b04
TH
377static void throtl_service_queue_init(struct throtl_service_queue *sq,
378 struct throtl_service_queue *parent_sq)
49a2f1e3 379{
c5cc2070
TH
380 INIT_LIST_HEAD(&sq->queued[0]);
381 INIT_LIST_HEAD(&sq->queued[1]);
49a2f1e3 382 sq->pending_tree = RB_ROOT;
77216b04 383 sq->parent_sq = parent_sq;
69df0ab0
TH
384 setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
385 (unsigned long)sq);
386}
387
388static void throtl_service_queue_exit(struct throtl_service_queue *sq)
389{
390 del_timer_sync(&sq->pending_timer);
49a2f1e3
TH
391}
392
3c798398 393static void throtl_pd_init(struct blkcg_gq *blkg)
a29a171e 394{
0381411e 395 struct throtl_grp *tg = blkg_to_tg(blkg);
77216b04 396 struct throtl_data *td = blkg->q->td;
ff26eaad 397 unsigned long flags;
c5cc2070 398 int rw;
cd1604fa 399
77216b04 400 throtl_service_queue_init(&tg->service_queue, &td->service_queue);
c5cc2070
TH
401 for (rw = READ; rw <= WRITE; rw++) {
402 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
403 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
404 }
405
a29a171e 406 RB_CLEAR_NODE(&tg->rb_node);
77216b04 407 tg->td = td;
a29a171e 408
e56da7e2
TH
409 tg->bps[READ] = -1;
410 tg->bps[WRITE] = -1;
411 tg->iops[READ] = -1;
412 tg->iops[WRITE] = -1;
8a3d2615
TH
413
414 /*
415 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
416 * but percpu allocator can't be called from IO path. Queue tg on
417 * tg_stats_alloc_list and allocate from work item.
418 */
ff26eaad 419 spin_lock_irqsave(&tg_stats_alloc_lock, flags);
8a3d2615 420 list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
3b07e9ca 421 schedule_delayed_work(&tg_stats_alloc_work, 0);
ff26eaad 422 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
8a3d2615
TH
423}
424
3c798398 425static void throtl_pd_exit(struct blkcg_gq *blkg)
8a3d2615
TH
426{
427 struct throtl_grp *tg = blkg_to_tg(blkg);
ff26eaad 428 unsigned long flags;
8a3d2615 429
ff26eaad 430 spin_lock_irqsave(&tg_stats_alloc_lock, flags);
8a3d2615 431 list_del_init(&tg->stats_alloc_node);
ff26eaad 432 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
8a3d2615
TH
433
434 free_percpu(tg->stats_cpu);
69df0ab0
TH
435
436 throtl_service_queue_exit(&tg->service_queue);
8a3d2615
TH
437}
438
3c798398 439static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
8a3d2615
TH
440{
441 struct throtl_grp *tg = blkg_to_tg(blkg);
442 int cpu;
443
444 if (tg->stats_cpu == NULL)
445 return;
446
447 for_each_possible_cpu(cpu) {
448 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
449
450 blkg_rwstat_reset(&sc->service_bytes);
451 blkg_rwstat_reset(&sc->serviced);
452 }
a29a171e
VG
453}
454
3c798398
TH
455static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
456 struct blkcg *blkcg)
e43473b7 457{
be2c6b19 458 /*
3c798398
TH
459 * This is the common case when there are no blkcgs. Avoid lookup
460 * in this case
cd1604fa 461 */
3c798398 462 if (blkcg == &blkcg_root)
03d8e111 463 return td_root_tg(td);
e43473b7 464
e8989fae 465 return blkg_to_tg(blkg_lookup(blkcg, td->queue));
e43473b7
VG
466}
467
cd1604fa 468static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
3c798398 469 struct blkcg *blkcg)
e43473b7 470{
f469a7b4 471 struct request_queue *q = td->queue;
cd1604fa 472 struct throtl_grp *tg = NULL;
bc16a4f9 473
f469a7b4 474 /*
3c798398
TH
475 * This is the common case when there are no blkcgs. Avoid lookup
476 * in this case
f469a7b4 477 */
3c798398 478 if (blkcg == &blkcg_root) {
03d8e111 479 tg = td_root_tg(td);
cd1604fa 480 } else {
3c798398 481 struct blkcg_gq *blkg;
f469a7b4 482
3c96cb32 483 blkg = blkg_lookup_create(blkcg, q);
f469a7b4 484
cd1604fa
TH
485 /* if %NULL and @q is alive, fall back to root_tg */
486 if (!IS_ERR(blkg))
0381411e 487 tg = blkg_to_tg(blkg);
3f3299d5 488 else if (!blk_queue_dying(q))
03d8e111 489 tg = td_root_tg(td);
f469a7b4
VG
490 }
491
e43473b7
VG
492 return tg;
493}
494
0049af73
TH
495static struct throtl_grp *
496throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7
VG
497{
498 /* Service tree is empty */
0049af73 499 if (!parent_sq->nr_pending)
e43473b7
VG
500 return NULL;
501
0049af73
TH
502 if (!parent_sq->first_pending)
503 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
e43473b7 504
0049af73
TH
505 if (parent_sq->first_pending)
506 return rb_entry_tg(parent_sq->first_pending);
e43473b7
VG
507
508 return NULL;
509}
510
511static void rb_erase_init(struct rb_node *n, struct rb_root *root)
512{
513 rb_erase(n, root);
514 RB_CLEAR_NODE(n);
515}
516
0049af73
TH
517static void throtl_rb_erase(struct rb_node *n,
518 struct throtl_service_queue *parent_sq)
e43473b7 519{
0049af73
TH
520 if (parent_sq->first_pending == n)
521 parent_sq->first_pending = NULL;
522 rb_erase_init(n, &parent_sq->pending_tree);
523 --parent_sq->nr_pending;
e43473b7
VG
524}
525
0049af73 526static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
527{
528 struct throtl_grp *tg;
529
0049af73 530 tg = throtl_rb_first(parent_sq);
e43473b7
VG
531 if (!tg)
532 return;
533
0049af73 534 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
535}
536
77216b04 537static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 538{
77216b04 539 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
0049af73 540 struct rb_node **node = &parent_sq->pending_tree.rb_node;
e43473b7
VG
541 struct rb_node *parent = NULL;
542 struct throtl_grp *__tg;
543 unsigned long key = tg->disptime;
544 int left = 1;
545
546 while (*node != NULL) {
547 parent = *node;
548 __tg = rb_entry_tg(parent);
549
550 if (time_before(key, __tg->disptime))
551 node = &parent->rb_left;
552 else {
553 node = &parent->rb_right;
554 left = 0;
555 }
556 }
557
558 if (left)
0049af73 559 parent_sq->first_pending = &tg->rb_node;
e43473b7
VG
560
561 rb_link_node(&tg->rb_node, parent, node);
0049af73 562 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
e43473b7
VG
563}
564
77216b04 565static void __throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 566{
77216b04 567 tg_service_queue_add(tg);
5b2c16aa 568 tg->flags |= THROTL_TG_PENDING;
77216b04 569 tg->service_queue.parent_sq->nr_pending++;
e43473b7
VG
570}
571
77216b04 572static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 573{
5b2c16aa 574 if (!(tg->flags & THROTL_TG_PENDING))
77216b04 575 __throtl_enqueue_tg(tg);
e43473b7
VG
576}
577
77216b04 578static void __throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 579{
77216b04 580 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
5b2c16aa 581 tg->flags &= ~THROTL_TG_PENDING;
e43473b7
VG
582}
583
77216b04 584static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 585{
5b2c16aa 586 if (tg->flags & THROTL_TG_PENDING)
77216b04 587 __throtl_dequeue_tg(tg);
e43473b7
VG
588}
589
a9131a27 590/* Call with queue lock held */
69df0ab0
TH
591static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
592 unsigned long expires)
a9131a27 593{
69df0ab0
TH
594 mod_timer(&sq->pending_timer, expires);
595 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
596 expires - jiffies, jiffies);
a9131a27
TH
597}
598
7f52f98c
TH
599/**
600 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
601 * @sq: the service_queue to schedule dispatch for
602 * @force: force scheduling
603 *
604 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
605 * dispatch time of the first pending child. Returns %true if either timer
606 * is armed or there's no pending child left. %false if the current
607 * dispatch window is still open and the caller should continue
608 * dispatching.
609 *
610 * If @force is %true, the dispatch timer is always scheduled and this
611 * function is guaranteed to return %true. This is to be used when the
612 * caller can't dispatch itself and needs to invoke pending_timer
613 * unconditionally. Note that forced scheduling is likely to induce short
614 * delay before dispatch starts even if @sq->first_pending_disptime is not
615 * in the future and thus shouldn't be used in hot paths.
616 */
617static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
618 bool force)
e43473b7 619{
6a525600 620 /* any pending children left? */
c9e0332e 621 if (!sq->nr_pending)
7f52f98c 622 return true;
e43473b7 623
c9e0332e 624 update_min_dispatch_time(sq);
e43473b7 625
69df0ab0 626 /* is the next dispatch time in the future? */
7f52f98c 627 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 628 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 629 return true;
69df0ab0
TH
630 }
631
7f52f98c
TH
632 /* tell the caller to continue dispatching */
633 return false;
e43473b7
VG
634}
635
0f3457f6 636static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
e43473b7
VG
637{
638 tg->bytes_disp[rw] = 0;
8e89d13f 639 tg->io_disp[rw] = 0;
e43473b7
VG
640 tg->slice_start[rw] = jiffies;
641 tg->slice_end[rw] = jiffies + throtl_slice;
fda6f272
TH
642 throtl_log(&tg->service_queue,
643 "[%c] new slice start=%lu end=%lu jiffies=%lu",
644 rw == READ ? 'R' : 'W', tg->slice_start[rw],
645 tg->slice_end[rw], jiffies);
e43473b7
VG
646}
647
0f3457f6
TH
648static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
649 unsigned long jiffy_end)
d1ae8ffd
VG
650{
651 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
652}
653
0f3457f6
TH
654static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
655 unsigned long jiffy_end)
e43473b7
VG
656{
657 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
fda6f272
TH
658 throtl_log(&tg->service_queue,
659 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
660 rw == READ ? 'R' : 'W', tg->slice_start[rw],
661 tg->slice_end[rw], jiffies);
e43473b7
VG
662}
663
664/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 665static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
666{
667 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
668 return 0;
669
670 return 1;
671}
672
673/* Trim the used slices and adjust slice start accordingly */
0f3457f6 674static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 675{
3aad5d3e
VG
676 unsigned long nr_slices, time_elapsed, io_trim;
677 u64 bytes_trim, tmp;
e43473b7
VG
678
679 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
680
681 /*
682 * If bps are unlimited (-1), then time slice don't get
683 * renewed. Don't try to trim the slice if slice is used. A new
684 * slice will start when appropriate.
685 */
0f3457f6 686 if (throtl_slice_used(tg, rw))
e43473b7
VG
687 return;
688
d1ae8ffd
VG
689 /*
690 * A bio has been dispatched. Also adjust slice_end. It might happen
691 * that initially cgroup limit was very low resulting in high
692 * slice_end, but later limit was bumped up and bio was dispached
693 * sooner, then we need to reduce slice_end. A high bogus slice_end
694 * is bad because it does not allow new slice to start.
695 */
696
0f3457f6 697 throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
d1ae8ffd 698
e43473b7
VG
699 time_elapsed = jiffies - tg->slice_start[rw];
700
701 nr_slices = time_elapsed / throtl_slice;
702
703 if (!nr_slices)
704 return;
3aad5d3e
VG
705 tmp = tg->bps[rw] * throtl_slice * nr_slices;
706 do_div(tmp, HZ);
707 bytes_trim = tmp;
e43473b7 708
8e89d13f 709 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
e43473b7 710
8e89d13f 711 if (!bytes_trim && !io_trim)
e43473b7
VG
712 return;
713
714 if (tg->bytes_disp[rw] >= bytes_trim)
715 tg->bytes_disp[rw] -= bytes_trim;
716 else
717 tg->bytes_disp[rw] = 0;
718
8e89d13f
VG
719 if (tg->io_disp[rw] >= io_trim)
720 tg->io_disp[rw] -= io_trim;
721 else
722 tg->io_disp[rw] = 0;
723
e43473b7
VG
724 tg->slice_start[rw] += nr_slices * throtl_slice;
725
fda6f272
TH
726 throtl_log(&tg->service_queue,
727 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
728 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
729 tg->slice_start[rw], tg->slice_end[rw], jiffies);
e43473b7
VG
730}
731
0f3457f6
TH
732static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
733 unsigned long *wait)
e43473b7
VG
734{
735 bool rw = bio_data_dir(bio);
8e89d13f 736 unsigned int io_allowed;
e43473b7 737 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
c49c06e4 738 u64 tmp;
e43473b7 739
8e89d13f 740 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
e43473b7 741
8e89d13f
VG
742 /* Slice has just started. Consider one slice interval */
743 if (!jiffy_elapsed)
744 jiffy_elapsed_rnd = throtl_slice;
745
746 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
747
c49c06e4
VG
748 /*
749 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
750 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
751 * will allow dispatch after 1 second and after that slice should
752 * have been trimmed.
753 */
754
755 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
756 do_div(tmp, HZ);
757
758 if (tmp > UINT_MAX)
759 io_allowed = UINT_MAX;
760 else
761 io_allowed = tmp;
8e89d13f
VG
762
763 if (tg->io_disp[rw] + 1 <= io_allowed) {
e43473b7
VG
764 if (wait)
765 *wait = 0;
766 return 1;
767 }
768
8e89d13f
VG
769 /* Calc approx time to dispatch */
770 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
771
772 if (jiffy_wait > jiffy_elapsed)
773 jiffy_wait = jiffy_wait - jiffy_elapsed;
774 else
775 jiffy_wait = 1;
776
777 if (wait)
778 *wait = jiffy_wait;
779 return 0;
780}
781
0f3457f6
TH
782static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
783 unsigned long *wait)
8e89d13f
VG
784{
785 bool rw = bio_data_dir(bio);
3aad5d3e 786 u64 bytes_allowed, extra_bytes, tmp;
8e89d13f 787 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
e43473b7
VG
788
789 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
790
791 /* Slice has just started. Consider one slice interval */
792 if (!jiffy_elapsed)
793 jiffy_elapsed_rnd = throtl_slice;
794
795 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
796
5e901a2b
VG
797 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
798 do_div(tmp, HZ);
3aad5d3e 799 bytes_allowed = tmp;
e43473b7
VG
800
801 if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
802 if (wait)
803 *wait = 0;
804 return 1;
805 }
806
807 /* Calc approx time to dispatch */
808 extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
809 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
810
811 if (!jiffy_wait)
812 jiffy_wait = 1;
813
814 /*
815 * This wait time is without taking into consideration the rounding
816 * up we did. Add that time also.
817 */
818 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
e43473b7
VG
819 if (wait)
820 *wait = jiffy_wait;
8e89d13f
VG
821 return 0;
822}
823
af75cd3c
VG
824static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
825 if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
826 return 1;
827 return 0;
828}
829
8e89d13f
VG
830/*
831 * Returns whether one can dispatch a bio or not. Also returns approx number
832 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
833 */
0f3457f6
TH
834static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
835 unsigned long *wait)
8e89d13f
VG
836{
837 bool rw = bio_data_dir(bio);
838 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
839
840 /*
841 * Currently whole state machine of group depends on first bio
842 * queued in the group bio list. So one should not be calling
843 * this function with a different bio if there are other bios
844 * queued.
845 */
73f0d49a 846 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 847 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 848
8e89d13f
VG
849 /* If tg->bps = -1, then BW is unlimited */
850 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
851 if (wait)
852 *wait = 0;
853 return 1;
854 }
855
856 /*
857 * If previous slice expired, start a new one otherwise renew/extend
858 * existing slice to make sure it is at least throtl_slice interval
859 * long since now.
860 */
0f3457f6
TH
861 if (throtl_slice_used(tg, rw))
862 throtl_start_new_slice(tg, rw);
8e89d13f
VG
863 else {
864 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
0f3457f6 865 throtl_extend_slice(tg, rw, jiffies + throtl_slice);
8e89d13f
VG
866 }
867
0f3457f6
TH
868 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
869 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
8e89d13f
VG
870 if (wait)
871 *wait = 0;
872 return 1;
873 }
874
875 max_wait = max(bps_wait, iops_wait);
876
877 if (wait)
878 *wait = max_wait;
879
880 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 881 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7
VG
882
883 return 0;
884}
885
3c798398 886static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
629ed0b1
TH
887 int rw)
888{
8a3d2615
TH
889 struct throtl_grp *tg = blkg_to_tg(blkg);
890 struct tg_stats_cpu *stats_cpu;
629ed0b1
TH
891 unsigned long flags;
892
893 /* If per cpu stats are not allocated yet, don't do any accounting. */
8a3d2615 894 if (tg->stats_cpu == NULL)
629ed0b1
TH
895 return;
896
897 /*
898 * Disabling interrupts to provide mutual exclusion between two
899 * writes on same cpu. It probably is not needed for 64bit. Not
900 * optimizing that case yet.
901 */
902 local_irq_save(flags);
903
8a3d2615 904 stats_cpu = this_cpu_ptr(tg->stats_cpu);
629ed0b1 905
629ed0b1
TH
906 blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
907 blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
908
909 local_irq_restore(flags);
910}
911
e43473b7
VG
912static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
913{
914 bool rw = bio_data_dir(bio);
e43473b7
VG
915
916 /* Charge the bio to the group */
917 tg->bytes_disp[rw] += bio->bi_size;
8e89d13f 918 tg->io_disp[rw]++;
e43473b7 919
2a0f61e6
TH
920 /*
921 * REQ_THROTTLED is used to prevent the same bio to be throttled
922 * more than once as a throttled bio will go through blk-throtl the
923 * second time when it eventually gets issued. Set it when a bio
924 * is being charged to a tg.
925 *
926 * Dispatch stats aren't recursive and each @bio should only be
927 * accounted by the @tg it was originally associated with. Let's
928 * update the stats when setting REQ_THROTTLED for the first time
929 * which is guaranteed to be for the @bio's original tg.
930 */
931 if (!(bio->bi_rw & REQ_THROTTLED)) {
932 bio->bi_rw |= REQ_THROTTLED;
933 throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size,
934 bio->bi_rw);
935 }
e43473b7
VG
936}
937
c5cc2070
TH
938/**
939 * throtl_add_bio_tg - add a bio to the specified throtl_grp
940 * @bio: bio to add
941 * @qn: qnode to use
942 * @tg: the target throtl_grp
943 *
944 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
945 * tg->qnode_on_self[] is used.
946 */
947static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
948 struct throtl_grp *tg)
e43473b7 949{
73f0d49a 950 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
951 bool rw = bio_data_dir(bio);
952
c5cc2070
TH
953 if (!qn)
954 qn = &tg->qnode_on_self[rw];
955
0e9f4164
TH
956 /*
957 * If @tg doesn't currently have any bios queued in the same
958 * direction, queueing @bio can change when @tg should be
959 * dispatched. Mark that @tg was empty. This is automatically
960 * cleaered on the next tg_update_disptime().
961 */
962 if (!sq->nr_queued[rw])
963 tg->flags |= THROTL_TG_WAS_EMPTY;
964
c5cc2070
TH
965 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
966
73f0d49a 967 sq->nr_queued[rw]++;
77216b04 968 throtl_enqueue_tg(tg);
e43473b7
VG
969}
970
77216b04 971static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 972{
73f0d49a 973 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
974 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
975 struct bio *bio;
976
c5cc2070 977 if ((bio = throtl_peek_queued(&sq->queued[READ])))
0f3457f6 978 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 979
c5cc2070 980 if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
0f3457f6 981 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
982
983 min_wait = min(read_wait, write_wait);
984 disptime = jiffies + min_wait;
985
e43473b7 986 /* Update dispatch time */
77216b04 987 throtl_dequeue_tg(tg);
e43473b7 988 tg->disptime = disptime;
77216b04 989 throtl_enqueue_tg(tg);
0e9f4164
TH
990
991 /* see throtl_add_bio_tg() */
992 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
993}
994
77216b04 995static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 996{
73f0d49a 997 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
998 struct throtl_service_queue *parent_sq = sq->parent_sq;
999 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 1000 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
1001 struct bio *bio;
1002
c5cc2070
TH
1003 /*
1004 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1005 * from @tg may put its reference and @parent_sq might end up
1006 * getting released prematurely. Remember the tg to put and put it
1007 * after @bio is transferred to @parent_sq.
1008 */
1009 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 1010 sq->nr_queued[rw]--;
e43473b7
VG
1011
1012 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
1013
1014 /*
1015 * If our parent is another tg, we just need to transfer @bio to
1016 * the parent using throtl_add_bio_tg(). If our parent is
1017 * @td->service_queue, @bio is ready to be issued. Put it on its
1018 * bio_lists[] and decrease total number queued. The caller is
1019 * responsible for issuing these bios.
1020 */
1021 if (parent_tg) {
c5cc2070 1022 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
6bc9c2b4 1023 } else {
c5cc2070
TH
1024 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1025 &parent_sq->queued[rw]);
6bc9c2b4
TH
1026 BUG_ON(tg->td->nr_queued[rw] <= 0);
1027 tg->td->nr_queued[rw]--;
1028 }
e43473b7 1029
0f3457f6 1030 throtl_trim_slice(tg, rw);
6bc9c2b4 1031
c5cc2070
TH
1032 if (tg_to_put)
1033 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1034}
1035
77216b04 1036static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1037{
73f0d49a 1038 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1039 unsigned int nr_reads = 0, nr_writes = 0;
1040 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
c2f6805d 1041 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
e43473b7
VG
1042 struct bio *bio;
1043
1044 /* Try to dispatch 75% READS and 25% WRITES */
1045
c5cc2070 1046 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1047 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1048
77216b04 1049 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1050 nr_reads++;
1051
1052 if (nr_reads >= max_nr_reads)
1053 break;
1054 }
1055
c5cc2070 1056 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1057 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1058
77216b04 1059 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1060 nr_writes++;
1061
1062 if (nr_writes >= max_nr_writes)
1063 break;
1064 }
1065
1066 return nr_reads + nr_writes;
1067}
1068
651930bc 1069static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1070{
1071 unsigned int nr_disp = 0;
e43473b7
VG
1072
1073 while (1) {
73f0d49a
TH
1074 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1075 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1076
1077 if (!tg)
1078 break;
1079
1080 if (time_before(jiffies, tg->disptime))
1081 break;
1082
77216b04 1083 throtl_dequeue_tg(tg);
e43473b7 1084
77216b04 1085 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1086
73f0d49a 1087 if (sq->nr_queued[0] || sq->nr_queued[1])
77216b04 1088 tg_update_disptime(tg);
e43473b7
VG
1089
1090 if (nr_disp >= throtl_quantum)
1091 break;
1092 }
1093
1094 return nr_disp;
1095}
1096
6e1a5704
TH
1097/**
1098 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1099 * @arg: the throtl_service_queue being serviced
1100 *
1101 * This timer is armed when a child throtl_grp with active bio's become
1102 * pending and queued on the service_queue's pending_tree and expires when
1103 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1104 * dispatches bio's from the children throtl_grps to the parent
1105 * service_queue.
1106 *
1107 * If the parent's parent is another throtl_grp, dispatching is propagated
1108 * by either arming its pending_timer or repeating dispatch directly. If
1109 * the top-level service_tree is reached, throtl_data->dispatch_work is
1110 * kicked so that the ready bio's are issued.
6e1a5704 1111 */
69df0ab0
TH
1112static void throtl_pending_timer_fn(unsigned long arg)
1113{
1114 struct throtl_service_queue *sq = (void *)arg;
2e48a530 1115 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1116 struct throtl_data *td = sq_to_td(sq);
cb76199c 1117 struct request_queue *q = td->queue;
2e48a530
TH
1118 struct throtl_service_queue *parent_sq;
1119 bool dispatched;
6e1a5704 1120 int ret;
e43473b7
VG
1121
1122 spin_lock_irq(q->queue_lock);
2e48a530
TH
1123again:
1124 parent_sq = sq->parent_sq;
1125 dispatched = false;
e43473b7 1126
7f52f98c
TH
1127 while (true) {
1128 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1129 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1130 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1131
1132 ret = throtl_select_dispatch(sq);
1133 if (ret) {
7f52f98c
TH
1134 throtl_log(sq, "bios disp=%u", ret);
1135 dispatched = true;
1136 }
e43473b7 1137
7f52f98c
TH
1138 if (throtl_schedule_next_dispatch(sq, false))
1139 break;
e43473b7 1140
7f52f98c
TH
1141 /* this dispatch windows is still open, relax and repeat */
1142 spin_unlock_irq(q->queue_lock);
1143 cpu_relax();
1144 spin_lock_irq(q->queue_lock);
651930bc 1145 }
e43473b7 1146
2e48a530
TH
1147 if (!dispatched)
1148 goto out_unlock;
6e1a5704 1149
2e48a530
TH
1150 if (parent_sq) {
1151 /* @parent_sq is another throl_grp, propagate dispatch */
1152 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1153 tg_update_disptime(tg);
1154 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1155 /* window is already open, repeat dispatching */
1156 sq = parent_sq;
1157 tg = sq_to_tg(sq);
1158 goto again;
1159 }
1160 }
1161 } else {
1162 /* reached the top-level, queue issueing */
1163 queue_work(kthrotld_workqueue, &td->dispatch_work);
1164 }
1165out_unlock:
e43473b7 1166 spin_unlock_irq(q->queue_lock);
6e1a5704 1167}
e43473b7 1168
6e1a5704
TH
1169/**
1170 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1171 * @work: work item being executed
1172 *
1173 * This function is queued for execution when bio's reach the bio_lists[]
1174 * of throtl_data->service_queue. Those bio's are ready and issued by this
1175 * function.
1176 */
1177void blk_throtl_dispatch_work_fn(struct work_struct *work)
1178{
1179 struct throtl_data *td = container_of(work, struct throtl_data,
1180 dispatch_work);
1181 struct throtl_service_queue *td_sq = &td->service_queue;
1182 struct request_queue *q = td->queue;
1183 struct bio_list bio_list_on_stack;
1184 struct bio *bio;
1185 struct blk_plug plug;
1186 int rw;
1187
1188 bio_list_init(&bio_list_on_stack);
1189
1190 spin_lock_irq(q->queue_lock);
c5cc2070
TH
1191 for (rw = READ; rw <= WRITE; rw++)
1192 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1193 bio_list_add(&bio_list_on_stack, bio);
6e1a5704
TH
1194 spin_unlock_irq(q->queue_lock);
1195
1196 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1197 blk_start_plug(&plug);
e43473b7
VG
1198 while((bio = bio_list_pop(&bio_list_on_stack)))
1199 generic_make_request(bio);
69d60eb9 1200 blk_finish_plug(&plug);
e43473b7 1201 }
e43473b7
VG
1202}
1203
f95a04af
TH
1204static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
1205 struct blkg_policy_data *pd, int off)
41b38b6d 1206{
f95a04af 1207 struct throtl_grp *tg = pd_to_tg(pd);
41b38b6d
TH
1208 struct blkg_rwstat rwstat = { }, tmp;
1209 int i, cpu;
1210
1211 for_each_possible_cpu(cpu) {
8a3d2615 1212 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
41b38b6d
TH
1213
1214 tmp = blkg_rwstat_read((void *)sc + off);
1215 for (i = 0; i < BLKG_RWSTAT_NR; i++)
1216 rwstat.cnt[i] += tmp.cnt[i];
1217 }
1218
f95a04af 1219 return __blkg_prfill_rwstat(sf, pd, &rwstat);
41b38b6d
TH
1220}
1221
8a3d2615
TH
1222static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft,
1223 struct seq_file *sf)
41b38b6d 1224{
3c798398 1225 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
41b38b6d 1226
3c798398 1227 blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl,
5bc4afb1 1228 cft->private, true);
41b38b6d
TH
1229 return 0;
1230}
1231
f95a04af
TH
1232static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1233 int off)
60c2bc2d 1234{
f95a04af
TH
1235 struct throtl_grp *tg = pd_to_tg(pd);
1236 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1237
af133ceb 1238 if (v == -1)
60c2bc2d 1239 return 0;
f95a04af 1240 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1241}
1242
f95a04af
TH
1243static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1244 int off)
e43473b7 1245{
f95a04af
TH
1246 struct throtl_grp *tg = pd_to_tg(pd);
1247 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1248
af133ceb
TH
1249 if (v == -1)
1250 return 0;
f95a04af 1251 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1252}
1253
af133ceb
TH
1254static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft,
1255 struct seq_file *sf)
8e89d13f 1256{
3c798398
TH
1257 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_u64,
1258 &blkcg_policy_throtl, cft->private, false);
af133ceb 1259 return 0;
8e89d13f
VG
1260}
1261
af133ceb
TH
1262static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft,
1263 struct seq_file *sf)
8e89d13f 1264{
3c798398
TH
1265 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_uint,
1266 &blkcg_policy_throtl, cft->private, false);
af133ceb 1267 return 0;
60c2bc2d
TH
1268}
1269
af133ceb
TH
1270static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf,
1271 bool is_u64)
60c2bc2d 1272{
3c798398 1273 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
60c2bc2d 1274 struct blkg_conf_ctx ctx;
af133ceb 1275 struct throtl_grp *tg;
69df0ab0 1276 struct throtl_service_queue *sq;
60c2bc2d
TH
1277 int ret;
1278
3c798398 1279 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
60c2bc2d
TH
1280 if (ret)
1281 return ret;
1282
af133ceb 1283 tg = blkg_to_tg(ctx.blkg);
69df0ab0 1284 sq = &tg->service_queue;
af133ceb 1285
a2b1693b
TH
1286 if (!ctx.v)
1287 ctx.v = -1;
af133ceb 1288
a2b1693b
TH
1289 if (is_u64)
1290 *(u64 *)((void *)tg + cft->private) = ctx.v;
1291 else
1292 *(unsigned int *)((void *)tg + cft->private) = ctx.v;
af133ceb 1293
fda6f272
TH
1294 throtl_log(&tg->service_queue,
1295 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1296 tg->bps[READ], tg->bps[WRITE],
1297 tg->iops[READ], tg->iops[WRITE]);
632b4493
TH
1298
1299 /*
1300 * We're already holding queue_lock and know @tg is valid. Let's
1301 * apply the new config directly.
1302 *
1303 * Restart the slices for both READ and WRITES. It might happen
1304 * that a group's limit are dropped suddenly and we don't want to
1305 * account recently dispatched IO with new low rate.
1306 */
0f3457f6
TH
1307 throtl_start_new_slice(tg, 0);
1308 throtl_start_new_slice(tg, 1);
632b4493 1309
5b2c16aa 1310 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1311 tg_update_disptime(tg);
7f52f98c 1312 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1313 }
60c2bc2d
TH
1314
1315 blkg_conf_finish(&ctx);
a2b1693b 1316 return 0;
8e89d13f
VG
1317}
1318
af133ceb
TH
1319static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft,
1320 const char *buf)
60c2bc2d 1321{
af133ceb 1322 return tg_set_conf(cgrp, cft, buf, true);
60c2bc2d
TH
1323}
1324
af133ceb
TH
1325static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft,
1326 const char *buf)
60c2bc2d 1327{
af133ceb 1328 return tg_set_conf(cgrp, cft, buf, false);
60c2bc2d
TH
1329}
1330
1331static struct cftype throtl_files[] = {
1332 {
1333 .name = "throttle.read_bps_device",
af133ceb
TH
1334 .private = offsetof(struct throtl_grp, bps[READ]),
1335 .read_seq_string = tg_print_conf_u64,
1336 .write_string = tg_set_conf_u64,
60c2bc2d
TH
1337 .max_write_len = 256,
1338 },
1339 {
1340 .name = "throttle.write_bps_device",
af133ceb
TH
1341 .private = offsetof(struct throtl_grp, bps[WRITE]),
1342 .read_seq_string = tg_print_conf_u64,
1343 .write_string = tg_set_conf_u64,
60c2bc2d
TH
1344 .max_write_len = 256,
1345 },
1346 {
1347 .name = "throttle.read_iops_device",
af133ceb
TH
1348 .private = offsetof(struct throtl_grp, iops[READ]),
1349 .read_seq_string = tg_print_conf_uint,
1350 .write_string = tg_set_conf_uint,
60c2bc2d
TH
1351 .max_write_len = 256,
1352 },
1353 {
1354 .name = "throttle.write_iops_device",
af133ceb
TH
1355 .private = offsetof(struct throtl_grp, iops[WRITE]),
1356 .read_seq_string = tg_print_conf_uint,
1357 .write_string = tg_set_conf_uint,
60c2bc2d
TH
1358 .max_write_len = 256,
1359 },
1360 {
1361 .name = "throttle.io_service_bytes",
5bc4afb1 1362 .private = offsetof(struct tg_stats_cpu, service_bytes),
8a3d2615 1363 .read_seq_string = tg_print_cpu_rwstat,
60c2bc2d
TH
1364 },
1365 {
1366 .name = "throttle.io_serviced",
5bc4afb1 1367 .private = offsetof(struct tg_stats_cpu, serviced),
8a3d2615 1368 .read_seq_string = tg_print_cpu_rwstat,
60c2bc2d
TH
1369 },
1370 { } /* terminate */
1371};
1372
da527770 1373static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1374{
1375 struct throtl_data *td = q->td;
1376
69df0ab0 1377 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1378}
1379
3c798398 1380static struct blkcg_policy blkcg_policy_throtl = {
f9fcc2d3
TH
1381 .pd_size = sizeof(struct throtl_grp),
1382 .cftypes = throtl_files,
1383
1384 .pd_init_fn = throtl_pd_init,
1385 .pd_exit_fn = throtl_pd_exit,
1386 .pd_reset_stats_fn = throtl_pd_reset_stats,
e43473b7
VG
1387};
1388
bc16a4f9 1389bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
e43473b7
VG
1390{
1391 struct throtl_data *td = q->td;
c5cc2070 1392 struct throtl_qnode *qn = NULL;
e43473b7 1393 struct throtl_grp *tg;
73f0d49a 1394 struct throtl_service_queue *sq;
0e9f4164 1395 bool rw = bio_data_dir(bio);
3c798398 1396 struct blkcg *blkcg;
bc16a4f9 1397 bool throttled = false;
e43473b7 1398
2a0f61e6
TH
1399 /* see throtl_charge_bio() */
1400 if (bio->bi_rw & REQ_THROTTLED)
bc16a4f9 1401 goto out;
e43473b7 1402
af75cd3c
VG
1403 /*
1404 * A throtl_grp pointer retrieved under rcu can be used to access
1405 * basic fields like stats and io rates. If a group has no rules,
1406 * just update the dispatch stats in lockless manner and return.
1407 */
af75cd3c 1408 rcu_read_lock();
3c798398 1409 blkcg = bio_blkcg(bio);
cd1604fa 1410 tg = throtl_lookup_tg(td, blkcg);
af75cd3c 1411 if (tg) {
af75cd3c 1412 if (tg_no_rule_group(tg, rw)) {
629ed0b1
TH
1413 throtl_update_dispatch_stats(tg_to_blkg(tg),
1414 bio->bi_size, bio->bi_rw);
2a7f1244 1415 goto out_unlock_rcu;
af75cd3c
VG
1416 }
1417 }
af75cd3c
VG
1418
1419 /*
1420 * Either group has not been allocated yet or it is not an unlimited
1421 * IO group
1422 */
e43473b7 1423 spin_lock_irq(q->queue_lock);
cd1604fa 1424 tg = throtl_lookup_create_tg(td, blkcg);
bc16a4f9
TH
1425 if (unlikely(!tg))
1426 goto out_unlock;
f469a7b4 1427
73f0d49a
TH
1428 sq = &tg->service_queue;
1429
9e660acf
TH
1430 while (true) {
1431 /* throtl is FIFO - if bios are already queued, should queue */
1432 if (sq->nr_queued[rw])
1433 break;
de701c74 1434
9e660acf
TH
1435 /* if above limits, break to queue */
1436 if (!tg_may_dispatch(tg, bio, NULL))
1437 break;
1438
1439 /* within limits, let's charge and dispatch directly */
e43473b7 1440 throtl_charge_bio(tg, bio);
04521db0
VG
1441
1442 /*
1443 * We need to trim slice even when bios are not being queued
1444 * otherwise it might happen that a bio is not queued for
1445 * a long time and slice keeps on extending and trim is not
1446 * called for a long time. Now if limits are reduced suddenly
1447 * we take into account all the IO dispatched so far at new
1448 * low rate and * newly queued IO gets a really long dispatch
1449 * time.
1450 *
1451 * So keep on trimming slice even if bio is not queued.
1452 */
0f3457f6 1453 throtl_trim_slice(tg, rw);
9e660acf
TH
1454
1455 /*
1456 * @bio passed through this layer without being throttled.
1457 * Climb up the ladder. If we''re already at the top, it
1458 * can be executed directly.
1459 */
c5cc2070 1460 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
1461 sq = sq->parent_sq;
1462 tg = sq_to_tg(sq);
1463 if (!tg)
1464 goto out_unlock;
e43473b7
VG
1465 }
1466
9e660acf 1467 /* out-of-limit, queue to @tg */
fda6f272
TH
1468 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1469 rw == READ ? 'R' : 'W',
1470 tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1471 tg->io_disp[rw], tg->iops[rw],
1472 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 1473
671058fb 1474 bio_associate_current(bio);
6bc9c2b4 1475 tg->td->nr_queued[rw]++;
c5cc2070 1476 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 1477 throttled = true;
e43473b7 1478
7f52f98c
TH
1479 /*
1480 * Update @tg's dispatch time and force schedule dispatch if @tg
1481 * was empty before @bio. The forced scheduling isn't likely to
1482 * cause undue delay as @bio is likely to be dispatched directly if
1483 * its @tg's disptime is not in the future.
1484 */
0e9f4164 1485 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 1486 tg_update_disptime(tg);
7f52f98c 1487 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
1488 }
1489
bc16a4f9 1490out_unlock:
e43473b7 1491 spin_unlock_irq(q->queue_lock);
2a7f1244
TH
1492out_unlock_rcu:
1493 rcu_read_unlock();
bc16a4f9 1494out:
2a0f61e6
TH
1495 /*
1496 * As multiple blk-throtls may stack in the same issue path, we
1497 * don't want bios to leave with the flag set. Clear the flag if
1498 * being issued.
1499 */
1500 if (!throttled)
1501 bio->bi_rw &= ~REQ_THROTTLED;
bc16a4f9 1502 return throttled;
e43473b7
VG
1503}
1504
2a12f0dc
TH
1505/*
1506 * Dispatch all bios from all children tg's queued on @parent_sq. On
1507 * return, @parent_sq is guaranteed to not have any active children tg's
1508 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1509 */
1510static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1511{
1512 struct throtl_grp *tg;
1513
1514 while ((tg = throtl_rb_first(parent_sq))) {
1515 struct throtl_service_queue *sq = &tg->service_queue;
1516 struct bio *bio;
1517
1518 throtl_dequeue_tg(tg);
1519
c5cc2070 1520 while ((bio = throtl_peek_queued(&sq->queued[READ])))
2a12f0dc 1521 tg_dispatch_one_bio(tg, bio_data_dir(bio));
c5cc2070 1522 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2a12f0dc
TH
1523 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1524 }
1525}
1526
c9a929dd
TH
1527/**
1528 * blk_throtl_drain - drain throttled bios
1529 * @q: request_queue to drain throttled bios for
1530 *
1531 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1532 */
1533void blk_throtl_drain(struct request_queue *q)
1534 __releases(q->queue_lock) __acquires(q->queue_lock)
1535{
1536 struct throtl_data *td = q->td;
2a12f0dc
TH
1537 struct blkcg_gq *blkg;
1538 struct cgroup *pos_cgrp;
c9a929dd 1539 struct bio *bio;
651930bc 1540 int rw;
c9a929dd 1541
8bcb6c7d 1542 queue_lockdep_assert_held(q);
2a12f0dc 1543 rcu_read_lock();
c9a929dd 1544
2a12f0dc
TH
1545 /*
1546 * Drain each tg while doing post-order walk on the blkg tree, so
1547 * that all bios are propagated to td->service_queue. It'd be
1548 * better to walk service_queue tree directly but blkg walk is
1549 * easier.
1550 */
1551 blkg_for_each_descendant_post(blkg, pos_cgrp, td->queue->root_blkg)
1552 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
73f0d49a 1553
2a12f0dc 1554 tg_drain_bios(&td_root_tg(td)->service_queue);
c9a929dd 1555
2a12f0dc
TH
1556 /* finally, transfer bios from top-level tg's into the td */
1557 tg_drain_bios(&td->service_queue);
1558
1559 rcu_read_unlock();
c9a929dd
TH
1560 spin_unlock_irq(q->queue_lock);
1561
2a12f0dc 1562 /* all bios now should be in td->service_queue, issue them */
651930bc 1563 for (rw = READ; rw <= WRITE; rw++)
c5cc2070
TH
1564 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1565 NULL)))
651930bc 1566 generic_make_request(bio);
c9a929dd
TH
1567
1568 spin_lock_irq(q->queue_lock);
1569}
1570
e43473b7
VG
1571int blk_throtl_init(struct request_queue *q)
1572{
1573 struct throtl_data *td;
a2b1693b 1574 int ret;
e43473b7
VG
1575
1576 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1577 if (!td)
1578 return -ENOMEM;
1579
69df0ab0 1580 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
77216b04 1581 throtl_service_queue_init(&td->service_queue, NULL);
e43473b7 1582
cd1604fa 1583 q->td = td;
29b12589 1584 td->queue = q;
02977e4a 1585
a2b1693b 1586 /* activate policy */
3c798398 1587 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
a2b1693b 1588 if (ret)
f51b802c 1589 kfree(td);
a2b1693b 1590 return ret;
e43473b7
VG
1591}
1592
1593void blk_throtl_exit(struct request_queue *q)
1594{
c875f4d0 1595 BUG_ON(!q->td);
da527770 1596 throtl_shutdown_wq(q);
3c798398 1597 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
c9a929dd 1598 kfree(q->td);
e43473b7
VG
1599}
1600
1601static int __init throtl_init(void)
1602{
450adcbe
VG
1603 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1604 if (!kthrotld_workqueue)
1605 panic("Failed to create kthrotld\n");
1606
3c798398 1607 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
1608}
1609
1610module_init(throtl_init);