]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-throttle.c
cgroup: always use cgroup_next_child() to walk the children list
[mirror_ubuntu-bionic-kernel.git] / block / blk-throttle.c
CommitLineData
e43473b7
VG
1/*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/blkdev.h>
10#include <linux/bio.h>
11#include <linux/blktrace_api.h>
12#include "blk-cgroup.h"
bc9fcbf9 13#include "blk.h"
e43473b7
VG
14
15/* Max dispatch from a group in 1 round */
16static int throtl_grp_quantum = 8;
17
18/* Total max dispatch from all groups in one round */
19static int throtl_quantum = 32;
20
21/* Throttling is performed over 100ms slice and after that slice is renewed */
22static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
3c798398 24static struct blkcg_policy blkcg_policy_throtl;
0381411e 25
450adcbe
VG
26/* A workqueue to queue throttle related work */
27static struct workqueue_struct *kthrotld_workqueue;
450adcbe 28
c5cc2070
TH
29/*
30 * To implement hierarchical throttling, throtl_grps form a tree and bios
31 * are dispatched upwards level by level until they reach the top and get
32 * issued. When dispatching bios from the children and local group at each
33 * level, if the bios are dispatched into a single bio_list, there's a risk
34 * of a local or child group which can queue many bios at once filling up
35 * the list starving others.
36 *
37 * To avoid such starvation, dispatched bios are queued separately
38 * according to where they came from. When they are again dispatched to
39 * the parent, they're popped in round-robin order so that no single source
40 * hogs the dispatch window.
41 *
42 * throtl_qnode is used to keep the queued bios separated by their sources.
43 * Bios are queued to throtl_qnode which in turn is queued to
44 * throtl_service_queue and then dispatched in round-robin order.
45 *
46 * It's also used to track the reference counts on blkg's. A qnode always
47 * belongs to a throtl_grp and gets queued on itself or the parent, so
48 * incrementing the reference of the associated throtl_grp when a qnode is
49 * queued and decrementing when dequeued is enough to keep the whole blkg
50 * tree pinned while bios are in flight.
51 */
52struct throtl_qnode {
53 struct list_head node; /* service_queue->queued[] */
54 struct bio_list bios; /* queued bios */
55 struct throtl_grp *tg; /* tg this qnode belongs to */
56};
57
c9e0332e 58struct throtl_service_queue {
77216b04
TH
59 struct throtl_service_queue *parent_sq; /* the parent service_queue */
60
73f0d49a
TH
61 /*
62 * Bios queued directly to this service_queue or dispatched from
63 * children throtl_grp's.
64 */
c5cc2070 65 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
73f0d49a
TH
66 unsigned int nr_queued[2]; /* number of queued bios */
67
68 /*
69 * RB tree of active children throtl_grp's, which are sorted by
70 * their ->disptime.
71 */
c9e0332e
TH
72 struct rb_root pending_tree; /* RB tree of active tgs */
73 struct rb_node *first_pending; /* first node in the tree */
74 unsigned int nr_pending; /* # queued in the tree */
75 unsigned long first_pending_disptime; /* disptime of the first tg */
69df0ab0 76 struct timer_list pending_timer; /* fires on first_pending_disptime */
e43473b7
VG
77};
78
5b2c16aa
TH
79enum tg_state_flags {
80 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
0e9f4164 81 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
5b2c16aa
TH
82};
83
e43473b7
VG
84#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
85
8a3d2615
TH
86/* Per-cpu group stats */
87struct tg_stats_cpu {
88 /* total bytes transferred */
89 struct blkg_rwstat service_bytes;
90 /* total IOs serviced, post merge */
91 struct blkg_rwstat serviced;
92};
93
e43473b7 94struct throtl_grp {
f95a04af
TH
95 /* must be the first member */
96 struct blkg_policy_data pd;
97
c9e0332e 98 /* active throtl group service_queue member */
e43473b7
VG
99 struct rb_node rb_node;
100
0f3457f6
TH
101 /* throtl_data this group belongs to */
102 struct throtl_data *td;
103
49a2f1e3
TH
104 /* this group's service queue */
105 struct throtl_service_queue service_queue;
106
c5cc2070
TH
107 /*
108 * qnode_on_self is used when bios are directly queued to this
109 * throtl_grp so that local bios compete fairly with bios
110 * dispatched from children. qnode_on_parent is used when bios are
111 * dispatched from this throtl_grp into its parent and will compete
112 * with the sibling qnode_on_parents and the parent's
113 * qnode_on_self.
114 */
115 struct throtl_qnode qnode_on_self[2];
116 struct throtl_qnode qnode_on_parent[2];
117
e43473b7
VG
118 /*
119 * Dispatch time in jiffies. This is the estimated time when group
120 * will unthrottle and is ready to dispatch more bio. It is used as
121 * key to sort active groups in service tree.
122 */
123 unsigned long disptime;
124
e43473b7
VG
125 unsigned int flags;
126
693e751e
TH
127 /* are there any throtl rules between this group and td? */
128 bool has_rules[2];
129
e43473b7
VG
130 /* bytes per second rate limits */
131 uint64_t bps[2];
132
8e89d13f
VG
133 /* IOPS limits */
134 unsigned int iops[2];
135
e43473b7
VG
136 /* Number of bytes disptached in current slice */
137 uint64_t bytes_disp[2];
8e89d13f
VG
138 /* Number of bio's dispatched in current slice */
139 unsigned int io_disp[2];
e43473b7
VG
140
141 /* When did we start a new slice */
142 unsigned long slice_start[2];
143 unsigned long slice_end[2];
fe071437 144
8a3d2615
TH
145 /* Per cpu stats pointer */
146 struct tg_stats_cpu __percpu *stats_cpu;
147
148 /* List of tgs waiting for per cpu stats memory to be allocated */
149 struct list_head stats_alloc_node;
e43473b7
VG
150};
151
152struct throtl_data
153{
e43473b7 154 /* service tree for active throtl groups */
c9e0332e 155 struct throtl_service_queue service_queue;
e43473b7 156
e43473b7
VG
157 struct request_queue *queue;
158
159 /* Total Number of queued bios on READ and WRITE lists */
160 unsigned int nr_queued[2];
161
162 /*
02977e4a 163 * number of total undestroyed groups
e43473b7
VG
164 */
165 unsigned int nr_undestroyed_grps;
166
167 /* Work for dispatching throttled bios */
69df0ab0 168 struct work_struct dispatch_work;
e43473b7
VG
169};
170
8a3d2615
TH
171/* list and work item to allocate percpu group stats */
172static DEFINE_SPINLOCK(tg_stats_alloc_lock);
173static LIST_HEAD(tg_stats_alloc_list);
174
175static void tg_stats_alloc_fn(struct work_struct *);
176static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
177
69df0ab0
TH
178static void throtl_pending_timer_fn(unsigned long arg);
179
f95a04af
TH
180static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
181{
182 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
183}
184
3c798398 185static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
0381411e 186{
f95a04af 187 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
0381411e
TH
188}
189
3c798398 190static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 191{
f95a04af 192 return pd_to_blkg(&tg->pd);
0381411e
TH
193}
194
03d8e111
TH
195static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
196{
197 return blkg_to_tg(td->queue->root_blkg);
198}
199
fda6f272
TH
200/**
201 * sq_to_tg - return the throl_grp the specified service queue belongs to
202 * @sq: the throtl_service_queue of interest
203 *
204 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
205 * embedded in throtl_data, %NULL is returned.
206 */
207static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
208{
209 if (sq && sq->parent_sq)
210 return container_of(sq, struct throtl_grp, service_queue);
211 else
212 return NULL;
213}
214
215/**
216 * sq_to_td - return throtl_data the specified service queue belongs to
217 * @sq: the throtl_service_queue of interest
218 *
219 * A service_queue can be embeded in either a throtl_grp or throtl_data.
220 * Determine the associated throtl_data accordingly and return it.
221 */
222static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
223{
224 struct throtl_grp *tg = sq_to_tg(sq);
225
226 if (tg)
227 return tg->td;
228 else
229 return container_of(sq, struct throtl_data, service_queue);
230}
231
232/**
233 * throtl_log - log debug message via blktrace
234 * @sq: the service_queue being reported
235 * @fmt: printf format string
236 * @args: printf args
237 *
238 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
239 * throtl_grp; otherwise, just "throtl".
240 *
241 * TODO: this should be made a function and name formatting should happen
242 * after testing whether blktrace is enabled.
243 */
244#define throtl_log(sq, fmt, args...) do { \
245 struct throtl_grp *__tg = sq_to_tg((sq)); \
246 struct throtl_data *__td = sq_to_td((sq)); \
247 \
248 (void)__td; \
249 if ((__tg)) { \
250 char __pbuf[128]; \
54e7ed12 251 \
fda6f272
TH
252 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
253 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
254 } else { \
255 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
256 } \
54e7ed12 257} while (0)
e43473b7 258
8a3d2615
TH
259/*
260 * Worker for allocating per cpu stat for tgs. This is scheduled on the
3b07e9ca 261 * system_wq once there are some groups on the alloc_list waiting for
8a3d2615
TH
262 * allocation.
263 */
264static void tg_stats_alloc_fn(struct work_struct *work)
265{
266 static struct tg_stats_cpu *stats_cpu; /* this fn is non-reentrant */
267 struct delayed_work *dwork = to_delayed_work(work);
268 bool empty = false;
269
270alloc_stats:
271 if (!stats_cpu) {
272 stats_cpu = alloc_percpu(struct tg_stats_cpu);
273 if (!stats_cpu) {
274 /* allocation failed, try again after some time */
3b07e9ca 275 schedule_delayed_work(dwork, msecs_to_jiffies(10));
8a3d2615
TH
276 return;
277 }
278 }
279
280 spin_lock_irq(&tg_stats_alloc_lock);
281
282 if (!list_empty(&tg_stats_alloc_list)) {
283 struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
284 struct throtl_grp,
285 stats_alloc_node);
286 swap(tg->stats_cpu, stats_cpu);
287 list_del_init(&tg->stats_alloc_node);
288 }
289
290 empty = list_empty(&tg_stats_alloc_list);
291 spin_unlock_irq(&tg_stats_alloc_lock);
292 if (!empty)
293 goto alloc_stats;
294}
295
c5cc2070
TH
296static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
297{
298 INIT_LIST_HEAD(&qn->node);
299 bio_list_init(&qn->bios);
300 qn->tg = tg;
301}
302
303/**
304 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
305 * @bio: bio being added
306 * @qn: qnode to add bio to
307 * @queued: the service_queue->queued[] list @qn belongs to
308 *
309 * Add @bio to @qn and put @qn on @queued if it's not already on.
310 * @qn->tg's reference count is bumped when @qn is activated. See the
311 * comment on top of throtl_qnode definition for details.
312 */
313static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
314 struct list_head *queued)
315{
316 bio_list_add(&qn->bios, bio);
317 if (list_empty(&qn->node)) {
318 list_add_tail(&qn->node, queued);
319 blkg_get(tg_to_blkg(qn->tg));
320 }
321}
322
323/**
324 * throtl_peek_queued - peek the first bio on a qnode list
325 * @queued: the qnode list to peek
326 */
327static struct bio *throtl_peek_queued(struct list_head *queued)
328{
329 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
330 struct bio *bio;
331
332 if (list_empty(queued))
333 return NULL;
334
335 bio = bio_list_peek(&qn->bios);
336 WARN_ON_ONCE(!bio);
337 return bio;
338}
339
340/**
341 * throtl_pop_queued - pop the first bio form a qnode list
342 * @queued: the qnode list to pop a bio from
343 * @tg_to_put: optional out argument for throtl_grp to put
344 *
345 * Pop the first bio from the qnode list @queued. After popping, the first
346 * qnode is removed from @queued if empty or moved to the end of @queued so
347 * that the popping order is round-robin.
348 *
349 * When the first qnode is removed, its associated throtl_grp should be put
350 * too. If @tg_to_put is NULL, this function automatically puts it;
351 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
352 * responsible for putting it.
353 */
354static struct bio *throtl_pop_queued(struct list_head *queued,
355 struct throtl_grp **tg_to_put)
356{
357 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
358 struct bio *bio;
359
360 if (list_empty(queued))
361 return NULL;
362
363 bio = bio_list_pop(&qn->bios);
364 WARN_ON_ONCE(!bio);
365
366 if (bio_list_empty(&qn->bios)) {
367 list_del_init(&qn->node);
368 if (tg_to_put)
369 *tg_to_put = qn->tg;
370 else
371 blkg_put(tg_to_blkg(qn->tg));
372 } else {
373 list_move_tail(&qn->node, queued);
374 }
375
376 return bio;
377}
378
49a2f1e3 379/* init a service_queue, assumes the caller zeroed it */
77216b04
TH
380static void throtl_service_queue_init(struct throtl_service_queue *sq,
381 struct throtl_service_queue *parent_sq)
49a2f1e3 382{
c5cc2070
TH
383 INIT_LIST_HEAD(&sq->queued[0]);
384 INIT_LIST_HEAD(&sq->queued[1]);
49a2f1e3 385 sq->pending_tree = RB_ROOT;
77216b04 386 sq->parent_sq = parent_sq;
69df0ab0
TH
387 setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
388 (unsigned long)sq);
389}
390
391static void throtl_service_queue_exit(struct throtl_service_queue *sq)
392{
393 del_timer_sync(&sq->pending_timer);
49a2f1e3
TH
394}
395
3c798398 396static void throtl_pd_init(struct blkcg_gq *blkg)
a29a171e 397{
0381411e 398 struct throtl_grp *tg = blkg_to_tg(blkg);
77216b04 399 struct throtl_data *td = blkg->q->td;
9138125b 400 struct throtl_service_queue *parent_sq;
ff26eaad 401 unsigned long flags;
c5cc2070 402 int rw;
cd1604fa 403
9138125b
TH
404 /*
405 * If sane_hierarchy is enabled, we switch to properly hierarchical
406 * behavior where limits on a given throtl_grp are applied to the
407 * whole subtree rather than just the group itself. e.g. If 16M
408 * read_bps limit is set on the root group, the whole system can't
409 * exceed 16M for the device.
410 *
411 * If sane_hierarchy is not enabled, the broken flat hierarchy
412 * behavior is retained where all throtl_grps are treated as if
413 * they're all separate root groups right below throtl_data.
414 * Limits of a group don't interact with limits of other groups
415 * regardless of the position of the group in the hierarchy.
416 */
417 parent_sq = &td->service_queue;
418
419 if (cgroup_sane_behavior(blkg->blkcg->css.cgroup) && blkg->parent)
420 parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
421
422 throtl_service_queue_init(&tg->service_queue, parent_sq);
423
c5cc2070
TH
424 for (rw = READ; rw <= WRITE; rw++) {
425 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
426 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
427 }
428
a29a171e 429 RB_CLEAR_NODE(&tg->rb_node);
77216b04 430 tg->td = td;
a29a171e 431
e56da7e2
TH
432 tg->bps[READ] = -1;
433 tg->bps[WRITE] = -1;
434 tg->iops[READ] = -1;
435 tg->iops[WRITE] = -1;
8a3d2615
TH
436
437 /*
438 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
439 * but percpu allocator can't be called from IO path. Queue tg on
440 * tg_stats_alloc_list and allocate from work item.
441 */
ff26eaad 442 spin_lock_irqsave(&tg_stats_alloc_lock, flags);
8a3d2615 443 list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
3b07e9ca 444 schedule_delayed_work(&tg_stats_alloc_work, 0);
ff26eaad 445 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
8a3d2615
TH
446}
447
693e751e
TH
448/*
449 * Set has_rules[] if @tg or any of its parents have limits configured.
450 * This doesn't require walking up to the top of the hierarchy as the
451 * parent's has_rules[] is guaranteed to be correct.
452 */
453static void tg_update_has_rules(struct throtl_grp *tg)
454{
455 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
456 int rw;
457
458 for (rw = READ; rw <= WRITE; rw++)
459 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
460 (tg->bps[rw] != -1 || tg->iops[rw] != -1);
461}
462
463static void throtl_pd_online(struct blkcg_gq *blkg)
464{
465 /*
466 * We don't want new groups to escape the limits of its ancestors.
467 * Update has_rules[] after a new group is brought online.
468 */
469 tg_update_has_rules(blkg_to_tg(blkg));
470}
471
3c798398 472static void throtl_pd_exit(struct blkcg_gq *blkg)
8a3d2615
TH
473{
474 struct throtl_grp *tg = blkg_to_tg(blkg);
ff26eaad 475 unsigned long flags;
8a3d2615 476
ff26eaad 477 spin_lock_irqsave(&tg_stats_alloc_lock, flags);
8a3d2615 478 list_del_init(&tg->stats_alloc_node);
ff26eaad 479 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
8a3d2615
TH
480
481 free_percpu(tg->stats_cpu);
69df0ab0
TH
482
483 throtl_service_queue_exit(&tg->service_queue);
8a3d2615
TH
484}
485
3c798398 486static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
8a3d2615
TH
487{
488 struct throtl_grp *tg = blkg_to_tg(blkg);
489 int cpu;
490
491 if (tg->stats_cpu == NULL)
492 return;
493
494 for_each_possible_cpu(cpu) {
495 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
496
497 blkg_rwstat_reset(&sc->service_bytes);
498 blkg_rwstat_reset(&sc->serviced);
499 }
a29a171e
VG
500}
501
3c798398
TH
502static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
503 struct blkcg *blkcg)
e43473b7 504{
be2c6b19 505 /*
3c798398
TH
506 * This is the common case when there are no blkcgs. Avoid lookup
507 * in this case
cd1604fa 508 */
3c798398 509 if (blkcg == &blkcg_root)
03d8e111 510 return td_root_tg(td);
e43473b7 511
e8989fae 512 return blkg_to_tg(blkg_lookup(blkcg, td->queue));
e43473b7
VG
513}
514
cd1604fa 515static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
3c798398 516 struct blkcg *blkcg)
e43473b7 517{
f469a7b4 518 struct request_queue *q = td->queue;
cd1604fa 519 struct throtl_grp *tg = NULL;
bc16a4f9 520
f469a7b4 521 /*
3c798398
TH
522 * This is the common case when there are no blkcgs. Avoid lookup
523 * in this case
f469a7b4 524 */
3c798398 525 if (blkcg == &blkcg_root) {
03d8e111 526 tg = td_root_tg(td);
cd1604fa 527 } else {
3c798398 528 struct blkcg_gq *blkg;
f469a7b4 529
3c96cb32 530 blkg = blkg_lookup_create(blkcg, q);
f469a7b4 531
cd1604fa
TH
532 /* if %NULL and @q is alive, fall back to root_tg */
533 if (!IS_ERR(blkg))
0381411e 534 tg = blkg_to_tg(blkg);
3f3299d5 535 else if (!blk_queue_dying(q))
03d8e111 536 tg = td_root_tg(td);
f469a7b4
VG
537 }
538
e43473b7
VG
539 return tg;
540}
541
0049af73
TH
542static struct throtl_grp *
543throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7
VG
544{
545 /* Service tree is empty */
0049af73 546 if (!parent_sq->nr_pending)
e43473b7
VG
547 return NULL;
548
0049af73
TH
549 if (!parent_sq->first_pending)
550 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
e43473b7 551
0049af73
TH
552 if (parent_sq->first_pending)
553 return rb_entry_tg(parent_sq->first_pending);
e43473b7
VG
554
555 return NULL;
556}
557
558static void rb_erase_init(struct rb_node *n, struct rb_root *root)
559{
560 rb_erase(n, root);
561 RB_CLEAR_NODE(n);
562}
563
0049af73
TH
564static void throtl_rb_erase(struct rb_node *n,
565 struct throtl_service_queue *parent_sq)
e43473b7 566{
0049af73
TH
567 if (parent_sq->first_pending == n)
568 parent_sq->first_pending = NULL;
569 rb_erase_init(n, &parent_sq->pending_tree);
570 --parent_sq->nr_pending;
e43473b7
VG
571}
572
0049af73 573static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
574{
575 struct throtl_grp *tg;
576
0049af73 577 tg = throtl_rb_first(parent_sq);
e43473b7
VG
578 if (!tg)
579 return;
580
0049af73 581 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
582}
583
77216b04 584static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 585{
77216b04 586 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
0049af73 587 struct rb_node **node = &parent_sq->pending_tree.rb_node;
e43473b7
VG
588 struct rb_node *parent = NULL;
589 struct throtl_grp *__tg;
590 unsigned long key = tg->disptime;
591 int left = 1;
592
593 while (*node != NULL) {
594 parent = *node;
595 __tg = rb_entry_tg(parent);
596
597 if (time_before(key, __tg->disptime))
598 node = &parent->rb_left;
599 else {
600 node = &parent->rb_right;
601 left = 0;
602 }
603 }
604
605 if (left)
0049af73 606 parent_sq->first_pending = &tg->rb_node;
e43473b7
VG
607
608 rb_link_node(&tg->rb_node, parent, node);
0049af73 609 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
e43473b7
VG
610}
611
77216b04 612static void __throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 613{
77216b04 614 tg_service_queue_add(tg);
5b2c16aa 615 tg->flags |= THROTL_TG_PENDING;
77216b04 616 tg->service_queue.parent_sq->nr_pending++;
e43473b7
VG
617}
618
77216b04 619static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 620{
5b2c16aa 621 if (!(tg->flags & THROTL_TG_PENDING))
77216b04 622 __throtl_enqueue_tg(tg);
e43473b7
VG
623}
624
77216b04 625static void __throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 626{
77216b04 627 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
5b2c16aa 628 tg->flags &= ~THROTL_TG_PENDING;
e43473b7
VG
629}
630
77216b04 631static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 632{
5b2c16aa 633 if (tg->flags & THROTL_TG_PENDING)
77216b04 634 __throtl_dequeue_tg(tg);
e43473b7
VG
635}
636
a9131a27 637/* Call with queue lock held */
69df0ab0
TH
638static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
639 unsigned long expires)
a9131a27 640{
69df0ab0
TH
641 mod_timer(&sq->pending_timer, expires);
642 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
643 expires - jiffies, jiffies);
a9131a27
TH
644}
645
7f52f98c
TH
646/**
647 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
648 * @sq: the service_queue to schedule dispatch for
649 * @force: force scheduling
650 *
651 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
652 * dispatch time of the first pending child. Returns %true if either timer
653 * is armed or there's no pending child left. %false if the current
654 * dispatch window is still open and the caller should continue
655 * dispatching.
656 *
657 * If @force is %true, the dispatch timer is always scheduled and this
658 * function is guaranteed to return %true. This is to be used when the
659 * caller can't dispatch itself and needs to invoke pending_timer
660 * unconditionally. Note that forced scheduling is likely to induce short
661 * delay before dispatch starts even if @sq->first_pending_disptime is not
662 * in the future and thus shouldn't be used in hot paths.
663 */
664static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
665 bool force)
e43473b7 666{
6a525600 667 /* any pending children left? */
c9e0332e 668 if (!sq->nr_pending)
7f52f98c 669 return true;
e43473b7 670
c9e0332e 671 update_min_dispatch_time(sq);
e43473b7 672
69df0ab0 673 /* is the next dispatch time in the future? */
7f52f98c 674 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 675 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 676 return true;
69df0ab0
TH
677 }
678
7f52f98c
TH
679 /* tell the caller to continue dispatching */
680 return false;
e43473b7
VG
681}
682
32ee5bc4
VG
683static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
684 bool rw, unsigned long start)
685{
686 tg->bytes_disp[rw] = 0;
687 tg->io_disp[rw] = 0;
688
689 /*
690 * Previous slice has expired. We must have trimmed it after last
691 * bio dispatch. That means since start of last slice, we never used
692 * that bandwidth. Do try to make use of that bandwidth while giving
693 * credit.
694 */
695 if (time_after_eq(start, tg->slice_start[rw]))
696 tg->slice_start[rw] = start;
697
698 tg->slice_end[rw] = jiffies + throtl_slice;
699 throtl_log(&tg->service_queue,
700 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
701 rw == READ ? 'R' : 'W', tg->slice_start[rw],
702 tg->slice_end[rw], jiffies);
703}
704
0f3457f6 705static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
e43473b7
VG
706{
707 tg->bytes_disp[rw] = 0;
8e89d13f 708 tg->io_disp[rw] = 0;
e43473b7
VG
709 tg->slice_start[rw] = jiffies;
710 tg->slice_end[rw] = jiffies + throtl_slice;
fda6f272
TH
711 throtl_log(&tg->service_queue,
712 "[%c] new slice start=%lu end=%lu jiffies=%lu",
713 rw == READ ? 'R' : 'W', tg->slice_start[rw],
714 tg->slice_end[rw], jiffies);
e43473b7
VG
715}
716
0f3457f6
TH
717static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
718 unsigned long jiffy_end)
d1ae8ffd
VG
719{
720 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
721}
722
0f3457f6
TH
723static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
724 unsigned long jiffy_end)
e43473b7
VG
725{
726 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
fda6f272
TH
727 throtl_log(&tg->service_queue,
728 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
729 rw == READ ? 'R' : 'W', tg->slice_start[rw],
730 tg->slice_end[rw], jiffies);
e43473b7
VG
731}
732
733/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 734static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
735{
736 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
737 return 0;
738
739 return 1;
740}
741
742/* Trim the used slices and adjust slice start accordingly */
0f3457f6 743static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 744{
3aad5d3e
VG
745 unsigned long nr_slices, time_elapsed, io_trim;
746 u64 bytes_trim, tmp;
e43473b7
VG
747
748 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
749
750 /*
751 * If bps are unlimited (-1), then time slice don't get
752 * renewed. Don't try to trim the slice if slice is used. A new
753 * slice will start when appropriate.
754 */
0f3457f6 755 if (throtl_slice_used(tg, rw))
e43473b7
VG
756 return;
757
d1ae8ffd
VG
758 /*
759 * A bio has been dispatched. Also adjust slice_end. It might happen
760 * that initially cgroup limit was very low resulting in high
761 * slice_end, but later limit was bumped up and bio was dispached
762 * sooner, then we need to reduce slice_end. A high bogus slice_end
763 * is bad because it does not allow new slice to start.
764 */
765
0f3457f6 766 throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
d1ae8ffd 767
e43473b7
VG
768 time_elapsed = jiffies - tg->slice_start[rw];
769
770 nr_slices = time_elapsed / throtl_slice;
771
772 if (!nr_slices)
773 return;
3aad5d3e
VG
774 tmp = tg->bps[rw] * throtl_slice * nr_slices;
775 do_div(tmp, HZ);
776 bytes_trim = tmp;
e43473b7 777
8e89d13f 778 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
e43473b7 779
8e89d13f 780 if (!bytes_trim && !io_trim)
e43473b7
VG
781 return;
782
783 if (tg->bytes_disp[rw] >= bytes_trim)
784 tg->bytes_disp[rw] -= bytes_trim;
785 else
786 tg->bytes_disp[rw] = 0;
787
8e89d13f
VG
788 if (tg->io_disp[rw] >= io_trim)
789 tg->io_disp[rw] -= io_trim;
790 else
791 tg->io_disp[rw] = 0;
792
e43473b7
VG
793 tg->slice_start[rw] += nr_slices * throtl_slice;
794
fda6f272
TH
795 throtl_log(&tg->service_queue,
796 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
797 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
798 tg->slice_start[rw], tg->slice_end[rw], jiffies);
e43473b7
VG
799}
800
0f3457f6
TH
801static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
802 unsigned long *wait)
e43473b7
VG
803{
804 bool rw = bio_data_dir(bio);
8e89d13f 805 unsigned int io_allowed;
e43473b7 806 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
c49c06e4 807 u64 tmp;
e43473b7 808
8e89d13f 809 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
e43473b7 810
8e89d13f
VG
811 /* Slice has just started. Consider one slice interval */
812 if (!jiffy_elapsed)
813 jiffy_elapsed_rnd = throtl_slice;
814
815 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
816
c49c06e4
VG
817 /*
818 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
819 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
820 * will allow dispatch after 1 second and after that slice should
821 * have been trimmed.
822 */
823
824 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
825 do_div(tmp, HZ);
826
827 if (tmp > UINT_MAX)
828 io_allowed = UINT_MAX;
829 else
830 io_allowed = tmp;
8e89d13f
VG
831
832 if (tg->io_disp[rw] + 1 <= io_allowed) {
e43473b7
VG
833 if (wait)
834 *wait = 0;
835 return 1;
836 }
837
8e89d13f
VG
838 /* Calc approx time to dispatch */
839 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
840
841 if (jiffy_wait > jiffy_elapsed)
842 jiffy_wait = jiffy_wait - jiffy_elapsed;
843 else
844 jiffy_wait = 1;
845
846 if (wait)
847 *wait = jiffy_wait;
848 return 0;
849}
850
0f3457f6
TH
851static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
852 unsigned long *wait)
8e89d13f
VG
853{
854 bool rw = bio_data_dir(bio);
3aad5d3e 855 u64 bytes_allowed, extra_bytes, tmp;
8e89d13f 856 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
e43473b7
VG
857
858 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
859
860 /* Slice has just started. Consider one slice interval */
861 if (!jiffy_elapsed)
862 jiffy_elapsed_rnd = throtl_slice;
863
864 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
865
5e901a2b
VG
866 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
867 do_div(tmp, HZ);
3aad5d3e 868 bytes_allowed = tmp;
e43473b7
VG
869
870 if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
871 if (wait)
872 *wait = 0;
873 return 1;
874 }
875
876 /* Calc approx time to dispatch */
877 extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
878 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
879
880 if (!jiffy_wait)
881 jiffy_wait = 1;
882
883 /*
884 * This wait time is without taking into consideration the rounding
885 * up we did. Add that time also.
886 */
887 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
e43473b7
VG
888 if (wait)
889 *wait = jiffy_wait;
8e89d13f
VG
890 return 0;
891}
892
893/*
894 * Returns whether one can dispatch a bio or not. Also returns approx number
895 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
896 */
0f3457f6
TH
897static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
898 unsigned long *wait)
8e89d13f
VG
899{
900 bool rw = bio_data_dir(bio);
901 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
902
903 /*
904 * Currently whole state machine of group depends on first bio
905 * queued in the group bio list. So one should not be calling
906 * this function with a different bio if there are other bios
907 * queued.
908 */
73f0d49a 909 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 910 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 911
8e89d13f
VG
912 /* If tg->bps = -1, then BW is unlimited */
913 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
914 if (wait)
915 *wait = 0;
916 return 1;
917 }
918
919 /*
920 * If previous slice expired, start a new one otherwise renew/extend
921 * existing slice to make sure it is at least throtl_slice interval
922 * long since now.
923 */
0f3457f6
TH
924 if (throtl_slice_used(tg, rw))
925 throtl_start_new_slice(tg, rw);
8e89d13f
VG
926 else {
927 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
0f3457f6 928 throtl_extend_slice(tg, rw, jiffies + throtl_slice);
8e89d13f
VG
929 }
930
0f3457f6
TH
931 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
932 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
8e89d13f
VG
933 if (wait)
934 *wait = 0;
935 return 1;
936 }
937
938 max_wait = max(bps_wait, iops_wait);
939
940 if (wait)
941 *wait = max_wait;
942
943 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 944 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7
VG
945
946 return 0;
947}
948
3c798398 949static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
629ed0b1
TH
950 int rw)
951{
8a3d2615
TH
952 struct throtl_grp *tg = blkg_to_tg(blkg);
953 struct tg_stats_cpu *stats_cpu;
629ed0b1
TH
954 unsigned long flags;
955
956 /* If per cpu stats are not allocated yet, don't do any accounting. */
8a3d2615 957 if (tg->stats_cpu == NULL)
629ed0b1
TH
958 return;
959
960 /*
961 * Disabling interrupts to provide mutual exclusion between two
962 * writes on same cpu. It probably is not needed for 64bit. Not
963 * optimizing that case yet.
964 */
965 local_irq_save(flags);
966
8a3d2615 967 stats_cpu = this_cpu_ptr(tg->stats_cpu);
629ed0b1 968
629ed0b1
TH
969 blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
970 blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
971
972 local_irq_restore(flags);
973}
974
e43473b7
VG
975static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
976{
977 bool rw = bio_data_dir(bio);
e43473b7
VG
978
979 /* Charge the bio to the group */
980 tg->bytes_disp[rw] += bio->bi_size;
8e89d13f 981 tg->io_disp[rw]++;
e43473b7 982
2a0f61e6
TH
983 /*
984 * REQ_THROTTLED is used to prevent the same bio to be throttled
985 * more than once as a throttled bio will go through blk-throtl the
986 * second time when it eventually gets issued. Set it when a bio
987 * is being charged to a tg.
988 *
989 * Dispatch stats aren't recursive and each @bio should only be
990 * accounted by the @tg it was originally associated with. Let's
991 * update the stats when setting REQ_THROTTLED for the first time
992 * which is guaranteed to be for the @bio's original tg.
993 */
994 if (!(bio->bi_rw & REQ_THROTTLED)) {
995 bio->bi_rw |= REQ_THROTTLED;
996 throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size,
997 bio->bi_rw);
998 }
e43473b7
VG
999}
1000
c5cc2070
TH
1001/**
1002 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1003 * @bio: bio to add
1004 * @qn: qnode to use
1005 * @tg: the target throtl_grp
1006 *
1007 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1008 * tg->qnode_on_self[] is used.
1009 */
1010static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1011 struct throtl_grp *tg)
e43473b7 1012{
73f0d49a 1013 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1014 bool rw = bio_data_dir(bio);
1015
c5cc2070
TH
1016 if (!qn)
1017 qn = &tg->qnode_on_self[rw];
1018
0e9f4164
TH
1019 /*
1020 * If @tg doesn't currently have any bios queued in the same
1021 * direction, queueing @bio can change when @tg should be
1022 * dispatched. Mark that @tg was empty. This is automatically
1023 * cleaered on the next tg_update_disptime().
1024 */
1025 if (!sq->nr_queued[rw])
1026 tg->flags |= THROTL_TG_WAS_EMPTY;
1027
c5cc2070
TH
1028 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1029
73f0d49a 1030 sq->nr_queued[rw]++;
77216b04 1031 throtl_enqueue_tg(tg);
e43473b7
VG
1032}
1033
77216b04 1034static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 1035{
73f0d49a 1036 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1037 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1038 struct bio *bio;
1039
c5cc2070 1040 if ((bio = throtl_peek_queued(&sq->queued[READ])))
0f3457f6 1041 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 1042
c5cc2070 1043 if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
0f3457f6 1044 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
1045
1046 min_wait = min(read_wait, write_wait);
1047 disptime = jiffies + min_wait;
1048
e43473b7 1049 /* Update dispatch time */
77216b04 1050 throtl_dequeue_tg(tg);
e43473b7 1051 tg->disptime = disptime;
77216b04 1052 throtl_enqueue_tg(tg);
0e9f4164
TH
1053
1054 /* see throtl_add_bio_tg() */
1055 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
1056}
1057
32ee5bc4
VG
1058static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1059 struct throtl_grp *parent_tg, bool rw)
1060{
1061 if (throtl_slice_used(parent_tg, rw)) {
1062 throtl_start_new_slice_with_credit(parent_tg, rw,
1063 child_tg->slice_start[rw]);
1064 }
1065
1066}
1067
77216b04 1068static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 1069{
73f0d49a 1070 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
1071 struct throtl_service_queue *parent_sq = sq->parent_sq;
1072 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 1073 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
1074 struct bio *bio;
1075
c5cc2070
TH
1076 /*
1077 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1078 * from @tg may put its reference and @parent_sq might end up
1079 * getting released prematurely. Remember the tg to put and put it
1080 * after @bio is transferred to @parent_sq.
1081 */
1082 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 1083 sq->nr_queued[rw]--;
e43473b7
VG
1084
1085 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
1086
1087 /*
1088 * If our parent is another tg, we just need to transfer @bio to
1089 * the parent using throtl_add_bio_tg(). If our parent is
1090 * @td->service_queue, @bio is ready to be issued. Put it on its
1091 * bio_lists[] and decrease total number queued. The caller is
1092 * responsible for issuing these bios.
1093 */
1094 if (parent_tg) {
c5cc2070 1095 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 1096 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 1097 } else {
c5cc2070
TH
1098 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1099 &parent_sq->queued[rw]);
6bc9c2b4
TH
1100 BUG_ON(tg->td->nr_queued[rw] <= 0);
1101 tg->td->nr_queued[rw]--;
1102 }
e43473b7 1103
0f3457f6 1104 throtl_trim_slice(tg, rw);
6bc9c2b4 1105
c5cc2070
TH
1106 if (tg_to_put)
1107 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1108}
1109
77216b04 1110static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1111{
73f0d49a 1112 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1113 unsigned int nr_reads = 0, nr_writes = 0;
1114 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
c2f6805d 1115 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
e43473b7
VG
1116 struct bio *bio;
1117
1118 /* Try to dispatch 75% READS and 25% WRITES */
1119
c5cc2070 1120 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1121 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1122
77216b04 1123 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1124 nr_reads++;
1125
1126 if (nr_reads >= max_nr_reads)
1127 break;
1128 }
1129
c5cc2070 1130 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1131 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1132
77216b04 1133 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1134 nr_writes++;
1135
1136 if (nr_writes >= max_nr_writes)
1137 break;
1138 }
1139
1140 return nr_reads + nr_writes;
1141}
1142
651930bc 1143static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1144{
1145 unsigned int nr_disp = 0;
e43473b7
VG
1146
1147 while (1) {
73f0d49a
TH
1148 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1149 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1150
1151 if (!tg)
1152 break;
1153
1154 if (time_before(jiffies, tg->disptime))
1155 break;
1156
77216b04 1157 throtl_dequeue_tg(tg);
e43473b7 1158
77216b04 1159 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1160
73f0d49a 1161 if (sq->nr_queued[0] || sq->nr_queued[1])
77216b04 1162 tg_update_disptime(tg);
e43473b7
VG
1163
1164 if (nr_disp >= throtl_quantum)
1165 break;
1166 }
1167
1168 return nr_disp;
1169}
1170
6e1a5704
TH
1171/**
1172 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1173 * @arg: the throtl_service_queue being serviced
1174 *
1175 * This timer is armed when a child throtl_grp with active bio's become
1176 * pending and queued on the service_queue's pending_tree and expires when
1177 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1178 * dispatches bio's from the children throtl_grps to the parent
1179 * service_queue.
1180 *
1181 * If the parent's parent is another throtl_grp, dispatching is propagated
1182 * by either arming its pending_timer or repeating dispatch directly. If
1183 * the top-level service_tree is reached, throtl_data->dispatch_work is
1184 * kicked so that the ready bio's are issued.
6e1a5704 1185 */
69df0ab0
TH
1186static void throtl_pending_timer_fn(unsigned long arg)
1187{
1188 struct throtl_service_queue *sq = (void *)arg;
2e48a530 1189 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1190 struct throtl_data *td = sq_to_td(sq);
cb76199c 1191 struct request_queue *q = td->queue;
2e48a530
TH
1192 struct throtl_service_queue *parent_sq;
1193 bool dispatched;
6e1a5704 1194 int ret;
e43473b7
VG
1195
1196 spin_lock_irq(q->queue_lock);
2e48a530
TH
1197again:
1198 parent_sq = sq->parent_sq;
1199 dispatched = false;
e43473b7 1200
7f52f98c
TH
1201 while (true) {
1202 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1203 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1204 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1205
1206 ret = throtl_select_dispatch(sq);
1207 if (ret) {
7f52f98c
TH
1208 throtl_log(sq, "bios disp=%u", ret);
1209 dispatched = true;
1210 }
e43473b7 1211
7f52f98c
TH
1212 if (throtl_schedule_next_dispatch(sq, false))
1213 break;
e43473b7 1214
7f52f98c
TH
1215 /* this dispatch windows is still open, relax and repeat */
1216 spin_unlock_irq(q->queue_lock);
1217 cpu_relax();
1218 spin_lock_irq(q->queue_lock);
651930bc 1219 }
e43473b7 1220
2e48a530
TH
1221 if (!dispatched)
1222 goto out_unlock;
6e1a5704 1223
2e48a530
TH
1224 if (parent_sq) {
1225 /* @parent_sq is another throl_grp, propagate dispatch */
1226 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1227 tg_update_disptime(tg);
1228 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1229 /* window is already open, repeat dispatching */
1230 sq = parent_sq;
1231 tg = sq_to_tg(sq);
1232 goto again;
1233 }
1234 }
1235 } else {
1236 /* reached the top-level, queue issueing */
1237 queue_work(kthrotld_workqueue, &td->dispatch_work);
1238 }
1239out_unlock:
e43473b7 1240 spin_unlock_irq(q->queue_lock);
6e1a5704 1241}
e43473b7 1242
6e1a5704
TH
1243/**
1244 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1245 * @work: work item being executed
1246 *
1247 * This function is queued for execution when bio's reach the bio_lists[]
1248 * of throtl_data->service_queue. Those bio's are ready and issued by this
1249 * function.
1250 */
1251void blk_throtl_dispatch_work_fn(struct work_struct *work)
1252{
1253 struct throtl_data *td = container_of(work, struct throtl_data,
1254 dispatch_work);
1255 struct throtl_service_queue *td_sq = &td->service_queue;
1256 struct request_queue *q = td->queue;
1257 struct bio_list bio_list_on_stack;
1258 struct bio *bio;
1259 struct blk_plug plug;
1260 int rw;
1261
1262 bio_list_init(&bio_list_on_stack);
1263
1264 spin_lock_irq(q->queue_lock);
c5cc2070
TH
1265 for (rw = READ; rw <= WRITE; rw++)
1266 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1267 bio_list_add(&bio_list_on_stack, bio);
6e1a5704
TH
1268 spin_unlock_irq(q->queue_lock);
1269
1270 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1271 blk_start_plug(&plug);
e43473b7
VG
1272 while((bio = bio_list_pop(&bio_list_on_stack)))
1273 generic_make_request(bio);
69d60eb9 1274 blk_finish_plug(&plug);
e43473b7 1275 }
e43473b7
VG
1276}
1277
f95a04af
TH
1278static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
1279 struct blkg_policy_data *pd, int off)
41b38b6d 1280{
f95a04af 1281 struct throtl_grp *tg = pd_to_tg(pd);
41b38b6d
TH
1282 struct blkg_rwstat rwstat = { }, tmp;
1283 int i, cpu;
1284
1285 for_each_possible_cpu(cpu) {
8a3d2615 1286 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
41b38b6d
TH
1287
1288 tmp = blkg_rwstat_read((void *)sc + off);
1289 for (i = 0; i < BLKG_RWSTAT_NR; i++)
1290 rwstat.cnt[i] += tmp.cnt[i];
1291 }
1292
f95a04af 1293 return __blkg_prfill_rwstat(sf, pd, &rwstat);
41b38b6d
TH
1294}
1295
182446d0
TH
1296static int tg_print_cpu_rwstat(struct cgroup_subsys_state *css,
1297 struct cftype *cft, struct seq_file *sf)
41b38b6d 1298{
182446d0 1299 struct blkcg *blkcg = css_to_blkcg(css);
41b38b6d 1300
3c798398 1301 blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl,
5bc4afb1 1302 cft->private, true);
41b38b6d
TH
1303 return 0;
1304}
1305
f95a04af
TH
1306static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1307 int off)
60c2bc2d 1308{
f95a04af
TH
1309 struct throtl_grp *tg = pd_to_tg(pd);
1310 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1311
af133ceb 1312 if (v == -1)
60c2bc2d 1313 return 0;
f95a04af 1314 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1315}
1316
f95a04af
TH
1317static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1318 int off)
e43473b7 1319{
f95a04af
TH
1320 struct throtl_grp *tg = pd_to_tg(pd);
1321 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1322
af133ceb
TH
1323 if (v == -1)
1324 return 0;
f95a04af 1325 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1326}
1327
182446d0
TH
1328static int tg_print_conf_u64(struct cgroup_subsys_state *css,
1329 struct cftype *cft, struct seq_file *sf)
8e89d13f 1330{
182446d0 1331 blkcg_print_blkgs(sf, css_to_blkcg(css), tg_prfill_conf_u64,
3c798398 1332 &blkcg_policy_throtl, cft->private, false);
af133ceb 1333 return 0;
8e89d13f
VG
1334}
1335
182446d0
TH
1336static int tg_print_conf_uint(struct cgroup_subsys_state *css,
1337 struct cftype *cft, struct seq_file *sf)
8e89d13f 1338{
182446d0 1339 blkcg_print_blkgs(sf, css_to_blkcg(css), tg_prfill_conf_uint,
3c798398 1340 &blkcg_policy_throtl, cft->private, false);
af133ceb 1341 return 0;
60c2bc2d
TH
1342}
1343
182446d0
TH
1344static int tg_set_conf(struct cgroup_subsys_state *css, struct cftype *cft,
1345 const char *buf, bool is_u64)
60c2bc2d 1346{
182446d0 1347 struct blkcg *blkcg = css_to_blkcg(css);
60c2bc2d 1348 struct blkg_conf_ctx ctx;
af133ceb 1349 struct throtl_grp *tg;
69df0ab0 1350 struct throtl_service_queue *sq;
693e751e
TH
1351 struct blkcg_gq *blkg;
1352 struct cgroup *pos_cgrp;
60c2bc2d
TH
1353 int ret;
1354
3c798398 1355 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
60c2bc2d
TH
1356 if (ret)
1357 return ret;
1358
af133ceb 1359 tg = blkg_to_tg(ctx.blkg);
69df0ab0 1360 sq = &tg->service_queue;
af133ceb 1361
a2b1693b
TH
1362 if (!ctx.v)
1363 ctx.v = -1;
af133ceb 1364
a2b1693b
TH
1365 if (is_u64)
1366 *(u64 *)((void *)tg + cft->private) = ctx.v;
1367 else
1368 *(unsigned int *)((void *)tg + cft->private) = ctx.v;
af133ceb 1369
fda6f272
TH
1370 throtl_log(&tg->service_queue,
1371 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1372 tg->bps[READ], tg->bps[WRITE],
1373 tg->iops[READ], tg->iops[WRITE]);
632b4493 1374
693e751e
TH
1375 /*
1376 * Update has_rules[] flags for the updated tg's subtree. A tg is
1377 * considered to have rules if either the tg itself or any of its
1378 * ancestors has rules. This identifies groups without any
1379 * restrictions in the whole hierarchy and allows them to bypass
1380 * blk-throttle.
1381 */
1382 tg_update_has_rules(tg);
1383 blkg_for_each_descendant_pre(blkg, pos_cgrp, ctx.blkg)
1384 tg_update_has_rules(blkg_to_tg(blkg));
1385
632b4493
TH
1386 /*
1387 * We're already holding queue_lock and know @tg is valid. Let's
1388 * apply the new config directly.
1389 *
1390 * Restart the slices for both READ and WRITES. It might happen
1391 * that a group's limit are dropped suddenly and we don't want to
1392 * account recently dispatched IO with new low rate.
1393 */
0f3457f6
TH
1394 throtl_start_new_slice(tg, 0);
1395 throtl_start_new_slice(tg, 1);
632b4493 1396
5b2c16aa 1397 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1398 tg_update_disptime(tg);
7f52f98c 1399 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1400 }
60c2bc2d
TH
1401
1402 blkg_conf_finish(&ctx);
a2b1693b 1403 return 0;
8e89d13f
VG
1404}
1405
182446d0 1406static int tg_set_conf_u64(struct cgroup_subsys_state *css, struct cftype *cft,
af133ceb 1407 const char *buf)
60c2bc2d 1408{
182446d0 1409 return tg_set_conf(css, cft, buf, true);
60c2bc2d
TH
1410}
1411
182446d0 1412static int tg_set_conf_uint(struct cgroup_subsys_state *css, struct cftype *cft,
af133ceb 1413 const char *buf)
60c2bc2d 1414{
182446d0 1415 return tg_set_conf(css, cft, buf, false);
60c2bc2d
TH
1416}
1417
1418static struct cftype throtl_files[] = {
1419 {
1420 .name = "throttle.read_bps_device",
af133ceb
TH
1421 .private = offsetof(struct throtl_grp, bps[READ]),
1422 .read_seq_string = tg_print_conf_u64,
1423 .write_string = tg_set_conf_u64,
60c2bc2d
TH
1424 .max_write_len = 256,
1425 },
1426 {
1427 .name = "throttle.write_bps_device",
af133ceb
TH
1428 .private = offsetof(struct throtl_grp, bps[WRITE]),
1429 .read_seq_string = tg_print_conf_u64,
1430 .write_string = tg_set_conf_u64,
60c2bc2d
TH
1431 .max_write_len = 256,
1432 },
1433 {
1434 .name = "throttle.read_iops_device",
af133ceb
TH
1435 .private = offsetof(struct throtl_grp, iops[READ]),
1436 .read_seq_string = tg_print_conf_uint,
1437 .write_string = tg_set_conf_uint,
60c2bc2d
TH
1438 .max_write_len = 256,
1439 },
1440 {
1441 .name = "throttle.write_iops_device",
af133ceb
TH
1442 .private = offsetof(struct throtl_grp, iops[WRITE]),
1443 .read_seq_string = tg_print_conf_uint,
1444 .write_string = tg_set_conf_uint,
60c2bc2d
TH
1445 .max_write_len = 256,
1446 },
1447 {
1448 .name = "throttle.io_service_bytes",
5bc4afb1 1449 .private = offsetof(struct tg_stats_cpu, service_bytes),
8a3d2615 1450 .read_seq_string = tg_print_cpu_rwstat,
60c2bc2d
TH
1451 },
1452 {
1453 .name = "throttle.io_serviced",
5bc4afb1 1454 .private = offsetof(struct tg_stats_cpu, serviced),
8a3d2615 1455 .read_seq_string = tg_print_cpu_rwstat,
60c2bc2d
TH
1456 },
1457 { } /* terminate */
1458};
1459
da527770 1460static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1461{
1462 struct throtl_data *td = q->td;
1463
69df0ab0 1464 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1465}
1466
3c798398 1467static struct blkcg_policy blkcg_policy_throtl = {
f9fcc2d3
TH
1468 .pd_size = sizeof(struct throtl_grp),
1469 .cftypes = throtl_files,
1470
1471 .pd_init_fn = throtl_pd_init,
693e751e 1472 .pd_online_fn = throtl_pd_online,
f9fcc2d3
TH
1473 .pd_exit_fn = throtl_pd_exit,
1474 .pd_reset_stats_fn = throtl_pd_reset_stats,
e43473b7
VG
1475};
1476
bc16a4f9 1477bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
e43473b7
VG
1478{
1479 struct throtl_data *td = q->td;
c5cc2070 1480 struct throtl_qnode *qn = NULL;
e43473b7 1481 struct throtl_grp *tg;
73f0d49a 1482 struct throtl_service_queue *sq;
0e9f4164 1483 bool rw = bio_data_dir(bio);
3c798398 1484 struct blkcg *blkcg;
bc16a4f9 1485 bool throttled = false;
e43473b7 1486
2a0f61e6
TH
1487 /* see throtl_charge_bio() */
1488 if (bio->bi_rw & REQ_THROTTLED)
bc16a4f9 1489 goto out;
e43473b7 1490
af75cd3c
VG
1491 /*
1492 * A throtl_grp pointer retrieved under rcu can be used to access
1493 * basic fields like stats and io rates. If a group has no rules,
1494 * just update the dispatch stats in lockless manner and return.
1495 */
af75cd3c 1496 rcu_read_lock();
3c798398 1497 blkcg = bio_blkcg(bio);
cd1604fa 1498 tg = throtl_lookup_tg(td, blkcg);
af75cd3c 1499 if (tg) {
693e751e 1500 if (!tg->has_rules[rw]) {
629ed0b1
TH
1501 throtl_update_dispatch_stats(tg_to_blkg(tg),
1502 bio->bi_size, bio->bi_rw);
2a7f1244 1503 goto out_unlock_rcu;
af75cd3c
VG
1504 }
1505 }
af75cd3c
VG
1506
1507 /*
1508 * Either group has not been allocated yet or it is not an unlimited
1509 * IO group
1510 */
e43473b7 1511 spin_lock_irq(q->queue_lock);
cd1604fa 1512 tg = throtl_lookup_create_tg(td, blkcg);
bc16a4f9
TH
1513 if (unlikely(!tg))
1514 goto out_unlock;
f469a7b4 1515
73f0d49a
TH
1516 sq = &tg->service_queue;
1517
9e660acf
TH
1518 while (true) {
1519 /* throtl is FIFO - if bios are already queued, should queue */
1520 if (sq->nr_queued[rw])
1521 break;
de701c74 1522
9e660acf
TH
1523 /* if above limits, break to queue */
1524 if (!tg_may_dispatch(tg, bio, NULL))
1525 break;
1526
1527 /* within limits, let's charge and dispatch directly */
e43473b7 1528 throtl_charge_bio(tg, bio);
04521db0
VG
1529
1530 /*
1531 * We need to trim slice even when bios are not being queued
1532 * otherwise it might happen that a bio is not queued for
1533 * a long time and slice keeps on extending and trim is not
1534 * called for a long time. Now if limits are reduced suddenly
1535 * we take into account all the IO dispatched so far at new
1536 * low rate and * newly queued IO gets a really long dispatch
1537 * time.
1538 *
1539 * So keep on trimming slice even if bio is not queued.
1540 */
0f3457f6 1541 throtl_trim_slice(tg, rw);
9e660acf
TH
1542
1543 /*
1544 * @bio passed through this layer without being throttled.
1545 * Climb up the ladder. If we''re already at the top, it
1546 * can be executed directly.
1547 */
c5cc2070 1548 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
1549 sq = sq->parent_sq;
1550 tg = sq_to_tg(sq);
1551 if (!tg)
1552 goto out_unlock;
e43473b7
VG
1553 }
1554
9e660acf 1555 /* out-of-limit, queue to @tg */
fda6f272
TH
1556 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1557 rw == READ ? 'R' : 'W',
1558 tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1559 tg->io_disp[rw], tg->iops[rw],
1560 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 1561
671058fb 1562 bio_associate_current(bio);
6bc9c2b4 1563 tg->td->nr_queued[rw]++;
c5cc2070 1564 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 1565 throttled = true;
e43473b7 1566
7f52f98c
TH
1567 /*
1568 * Update @tg's dispatch time and force schedule dispatch if @tg
1569 * was empty before @bio. The forced scheduling isn't likely to
1570 * cause undue delay as @bio is likely to be dispatched directly if
1571 * its @tg's disptime is not in the future.
1572 */
0e9f4164 1573 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 1574 tg_update_disptime(tg);
7f52f98c 1575 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
1576 }
1577
bc16a4f9 1578out_unlock:
e43473b7 1579 spin_unlock_irq(q->queue_lock);
2a7f1244
TH
1580out_unlock_rcu:
1581 rcu_read_unlock();
bc16a4f9 1582out:
2a0f61e6
TH
1583 /*
1584 * As multiple blk-throtls may stack in the same issue path, we
1585 * don't want bios to leave with the flag set. Clear the flag if
1586 * being issued.
1587 */
1588 if (!throttled)
1589 bio->bi_rw &= ~REQ_THROTTLED;
bc16a4f9 1590 return throttled;
e43473b7
VG
1591}
1592
2a12f0dc
TH
1593/*
1594 * Dispatch all bios from all children tg's queued on @parent_sq. On
1595 * return, @parent_sq is guaranteed to not have any active children tg's
1596 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1597 */
1598static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1599{
1600 struct throtl_grp *tg;
1601
1602 while ((tg = throtl_rb_first(parent_sq))) {
1603 struct throtl_service_queue *sq = &tg->service_queue;
1604 struct bio *bio;
1605
1606 throtl_dequeue_tg(tg);
1607
c5cc2070 1608 while ((bio = throtl_peek_queued(&sq->queued[READ])))
2a12f0dc 1609 tg_dispatch_one_bio(tg, bio_data_dir(bio));
c5cc2070 1610 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2a12f0dc
TH
1611 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1612 }
1613}
1614
c9a929dd
TH
1615/**
1616 * blk_throtl_drain - drain throttled bios
1617 * @q: request_queue to drain throttled bios for
1618 *
1619 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1620 */
1621void blk_throtl_drain(struct request_queue *q)
1622 __releases(q->queue_lock) __acquires(q->queue_lock)
1623{
1624 struct throtl_data *td = q->td;
2a12f0dc
TH
1625 struct blkcg_gq *blkg;
1626 struct cgroup *pos_cgrp;
c9a929dd 1627 struct bio *bio;
651930bc 1628 int rw;
c9a929dd 1629
8bcb6c7d 1630 queue_lockdep_assert_held(q);
2a12f0dc 1631 rcu_read_lock();
c9a929dd 1632
2a12f0dc
TH
1633 /*
1634 * Drain each tg while doing post-order walk on the blkg tree, so
1635 * that all bios are propagated to td->service_queue. It'd be
1636 * better to walk service_queue tree directly but blkg walk is
1637 * easier.
1638 */
1639 blkg_for_each_descendant_post(blkg, pos_cgrp, td->queue->root_blkg)
1640 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
73f0d49a 1641
2a12f0dc 1642 tg_drain_bios(&td_root_tg(td)->service_queue);
c9a929dd 1643
2a12f0dc
TH
1644 /* finally, transfer bios from top-level tg's into the td */
1645 tg_drain_bios(&td->service_queue);
1646
1647 rcu_read_unlock();
c9a929dd
TH
1648 spin_unlock_irq(q->queue_lock);
1649
2a12f0dc 1650 /* all bios now should be in td->service_queue, issue them */
651930bc 1651 for (rw = READ; rw <= WRITE; rw++)
c5cc2070
TH
1652 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1653 NULL)))
651930bc 1654 generic_make_request(bio);
c9a929dd
TH
1655
1656 spin_lock_irq(q->queue_lock);
1657}
1658
e43473b7
VG
1659int blk_throtl_init(struct request_queue *q)
1660{
1661 struct throtl_data *td;
a2b1693b 1662 int ret;
e43473b7
VG
1663
1664 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1665 if (!td)
1666 return -ENOMEM;
1667
69df0ab0 1668 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
77216b04 1669 throtl_service_queue_init(&td->service_queue, NULL);
e43473b7 1670
cd1604fa 1671 q->td = td;
29b12589 1672 td->queue = q;
02977e4a 1673
a2b1693b 1674 /* activate policy */
3c798398 1675 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
a2b1693b 1676 if (ret)
f51b802c 1677 kfree(td);
a2b1693b 1678 return ret;
e43473b7
VG
1679}
1680
1681void blk_throtl_exit(struct request_queue *q)
1682{
c875f4d0 1683 BUG_ON(!q->td);
da527770 1684 throtl_shutdown_wq(q);
3c798398 1685 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
c9a929dd 1686 kfree(q->td);
e43473b7
VG
1687}
1688
1689static int __init throtl_init(void)
1690{
450adcbe
VG
1691 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1692 if (!kthrotld_workqueue)
1693 panic("Failed to create kthrotld\n");
1694
3c798398 1695 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
1696}
1697
1698module_init(throtl_init);