]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/cfq-iosched.c
cfq-iosched: add a knob for desktop interactiveness
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
1da177e4 12#include <linux/rbtree.h>
22e2c507 13#include <linux/ioprio.h>
7b679138 14#include <linux/blktrace_api.h>
1da177e4
LT
15
16/*
17 * tunables
18 */
fe094d98
JA
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
64100099 21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
64100099 26static const int cfq_slice_sync = HZ / 10;
3b18152c 27static int cfq_slice_async = HZ / 25;
64100099 28static const int cfq_slice_async_rq = 2;
caaa5f9f 29static int cfq_slice_idle = HZ / 125;
22e2c507 30
d9e7620e 31/*
0871714e 32 * offset from end of service tree
d9e7620e 33 */
0871714e 34#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
35
36/*
37 * below this threshold, we consider thinktime immediate
38 */
39#define CFQ_MIN_TT (2)
40
22e2c507 41#define CFQ_SLICE_SCALE (5)
45333d5a 42#define CFQ_HW_QUEUE_MIN (5)
22e2c507 43
fe094d98
JA
44#define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 46#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 47
e18b890b
CL
48static struct kmem_cache *cfq_pool;
49static struct kmem_cache *cfq_ioc_pool;
1da177e4 50
245b2e70 51static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 52static struct completion *ioc_gone;
9a11b4ed 53static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 54
22e2c507
JA
55#define CFQ_PRIO_LISTS IOPRIO_BE_NR
56#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
57#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
206dc69b
JA
59#define sample_valid(samples) ((samples) > 80)
60
cc09e299
JA
61/*
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
66 */
67struct cfq_rb_root {
68 struct rb_root rb;
69 struct rb_node *left;
70};
71#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
72
6118b70b
JA
73/*
74 * Per process-grouping structure
75 */
76struct cfq_queue {
77 /* reference count */
78 atomic_t ref;
79 /* various state flags, see below */
80 unsigned int flags;
81 /* parent cfq_data */
82 struct cfq_data *cfqd;
83 /* service_tree member */
84 struct rb_node rb_node;
85 /* service_tree key */
86 unsigned long rb_key;
87 /* prio tree member */
88 struct rb_node p_node;
89 /* prio tree root we belong to, if any */
90 struct rb_root *p_root;
91 /* sorted list of pending requests */
92 struct rb_root sort_list;
93 /* if fifo isn't expired, next request to serve */
94 struct request *next_rq;
95 /* requests queued in sort_list */
96 int queued[2];
97 /* currently allocated requests */
98 int allocated[2];
99 /* fifo list of requests in sort_list */
100 struct list_head fifo;
101
102 unsigned long slice_end;
103 long slice_resid;
104 unsigned int slice_dispatch;
105
106 /* pending metadata requests */
107 int meta_pending;
108 /* number of requests that are on the dispatch list or inside driver */
109 int dispatched;
110
111 /* io prio of this group */
112 unsigned short ioprio, org_ioprio;
113 unsigned short ioprio_class, org_ioprio_class;
114
115 pid_t pid;
116};
117
22e2c507
JA
118/*
119 * Per block device queue structure
120 */
1da177e4 121struct cfq_data {
165125e1 122 struct request_queue *queue;
22e2c507
JA
123
124 /*
125 * rr list of queues with requests and the count of them
126 */
cc09e299 127 struct cfq_rb_root service_tree;
a36e71f9
JA
128
129 /*
130 * Each priority tree is sorted by next_request position. These
131 * trees are used when determining if two or more queues are
132 * interleaving requests (see cfq_close_cooperator).
133 */
134 struct rb_root prio_trees[CFQ_PRIO_LISTS];
135
22e2c507
JA
136 unsigned int busy_queues;
137
5ad531db 138 int rq_in_driver[2];
3ed9a296 139 int sync_flight;
45333d5a
AC
140
141 /*
142 * queue-depth detection
143 */
144 int rq_queued;
25776e35 145 int hw_tag;
45333d5a
AC
146 int hw_tag_samples;
147 int rq_in_driver_peak;
1da177e4 148
22e2c507
JA
149 /*
150 * idle window management
151 */
152 struct timer_list idle_slice_timer;
153 struct work_struct unplug_work;
1da177e4 154
22e2c507
JA
155 struct cfq_queue *active_queue;
156 struct cfq_io_context *active_cic;
22e2c507 157
c2dea2d1
VT
158 /*
159 * async queue for each priority case
160 */
161 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
162 struct cfq_queue *async_idle_cfqq;
15c31be4 163
6d048f53 164 sector_t last_position;
1da177e4 165
1da177e4
LT
166 /*
167 * tunables, see top of file
168 */
169 unsigned int cfq_quantum;
22e2c507 170 unsigned int cfq_fifo_expire[2];
1da177e4
LT
171 unsigned int cfq_back_penalty;
172 unsigned int cfq_back_max;
22e2c507
JA
173 unsigned int cfq_slice[2];
174 unsigned int cfq_slice_async_rq;
175 unsigned int cfq_slice_idle;
1d223515 176 unsigned int cfq_desktop;
d9ff4187
AV
177
178 struct list_head cic_list;
1da177e4 179
6118b70b
JA
180 /*
181 * Fallback dummy cfqq for extreme OOM conditions
182 */
183 struct cfq_queue oom_cfqq;
1da177e4
LT
184};
185
3b18152c 186enum cfqq_state_flags {
b0b8d749
JA
187 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
188 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 189 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 190 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
191 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
192 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
193 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 194 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 195 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
a36e71f9 196 CFQ_CFQQ_FLAG_coop, /* has done a coop jump of the queue */
3b18152c
JA
197};
198
199#define CFQ_CFQQ_FNS(name) \
200static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
201{ \
fe094d98 202 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
203} \
204static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
205{ \
fe094d98 206 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
207} \
208static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
209{ \
fe094d98 210 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
211}
212
213CFQ_CFQQ_FNS(on_rr);
214CFQ_CFQQ_FNS(wait_request);
b029195d 215CFQ_CFQQ_FNS(must_dispatch);
3b18152c 216CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
217CFQ_CFQQ_FNS(fifo_expire);
218CFQ_CFQQ_FNS(idle_window);
219CFQ_CFQQ_FNS(prio_changed);
44f7c160 220CFQ_CFQQ_FNS(slice_new);
91fac317 221CFQ_CFQQ_FNS(sync);
a36e71f9 222CFQ_CFQQ_FNS(coop);
3b18152c
JA
223#undef CFQ_CFQQ_FNS
224
7b679138
JA
225#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
226 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
227#define cfq_log(cfqd, fmt, args...) \
228 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
229
165125e1 230static void cfq_dispatch_insert(struct request_queue *, struct request *);
91fac317 231static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
fd0928df 232 struct io_context *, gfp_t);
4ac845a2 233static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
234 struct io_context *);
235
5ad531db
JA
236static inline int rq_in_driver(struct cfq_data *cfqd)
237{
238 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
239}
240
91fac317
VT
241static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
242 int is_sync)
243{
244 return cic->cfqq[!!is_sync];
245}
246
247static inline void cic_set_cfqq(struct cfq_io_context *cic,
248 struct cfq_queue *cfqq, int is_sync)
249{
250 cic->cfqq[!!is_sync] = cfqq;
251}
252
253/*
254 * We regard a request as SYNC, if it's either a read or has the SYNC bit
255 * set (in which case it could also be direct WRITE).
256 */
257static inline int cfq_bio_sync(struct bio *bio)
258{
1f98a13f 259 if (bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO))
91fac317
VT
260 return 1;
261
262 return 0;
263}
1da177e4 264
99f95e52
AM
265/*
266 * scheduler run of queue, if there are requests pending and no one in the
267 * driver that will restart queueing
268 */
269static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
270{
7b679138
JA
271 if (cfqd->busy_queues) {
272 cfq_log(cfqd, "schedule dispatch");
18887ad9 273 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 274 }
99f95e52
AM
275}
276
165125e1 277static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
278{
279 struct cfq_data *cfqd = q->elevator->elevator_data;
280
b4878f24 281 return !cfqd->busy_queues;
99f95e52
AM
282}
283
44f7c160
JA
284/*
285 * Scale schedule slice based on io priority. Use the sync time slice only
286 * if a queue is marked sync and has sync io queued. A sync queue with async
287 * io only, should not get full sync slice length.
288 */
d9e7620e
JA
289static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
290 unsigned short prio)
44f7c160 291{
d9e7620e 292 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 293
d9e7620e
JA
294 WARN_ON(prio >= IOPRIO_BE_NR);
295
296 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
297}
44f7c160 298
d9e7620e
JA
299static inline int
300cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
301{
302 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
303}
304
305static inline void
306cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
307{
308 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
7b679138 309 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
310}
311
312/*
313 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
314 * isn't valid until the first request from the dispatch is activated
315 * and the slice time set.
316 */
317static inline int cfq_slice_used(struct cfq_queue *cfqq)
318{
319 if (cfq_cfqq_slice_new(cfqq))
320 return 0;
321 if (time_before(jiffies, cfqq->slice_end))
322 return 0;
323
324 return 1;
325}
326
1da177e4 327/*
5e705374 328 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 329 * We choose the request that is closest to the head right now. Distance
e8a99053 330 * behind the head is penalized and only allowed to a certain extent.
1da177e4 331 */
5e705374
JA
332static struct request *
333cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
1da177e4
LT
334{
335 sector_t last, s1, s2, d1 = 0, d2 = 0;
1da177e4 336 unsigned long back_max;
e8a99053
AM
337#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
338#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
339 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 340
5e705374
JA
341 if (rq1 == NULL || rq1 == rq2)
342 return rq2;
343 if (rq2 == NULL)
344 return rq1;
9c2c38a1 345
5e705374
JA
346 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
347 return rq1;
348 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
349 return rq2;
374f84ac
JA
350 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
351 return rq1;
352 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
353 return rq2;
1da177e4 354
83096ebf
TH
355 s1 = blk_rq_pos(rq1);
356 s2 = blk_rq_pos(rq2);
1da177e4 357
6d048f53 358 last = cfqd->last_position;
1da177e4 359
1da177e4
LT
360 /*
361 * by definition, 1KiB is 2 sectors
362 */
363 back_max = cfqd->cfq_back_max * 2;
364
365 /*
366 * Strict one way elevator _except_ in the case where we allow
367 * short backward seeks which are biased as twice the cost of a
368 * similar forward seek.
369 */
370 if (s1 >= last)
371 d1 = s1 - last;
372 else if (s1 + back_max >= last)
373 d1 = (last - s1) * cfqd->cfq_back_penalty;
374 else
e8a99053 375 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
376
377 if (s2 >= last)
378 d2 = s2 - last;
379 else if (s2 + back_max >= last)
380 d2 = (last - s2) * cfqd->cfq_back_penalty;
381 else
e8a99053 382 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
383
384 /* Found required data */
e8a99053
AM
385
386 /*
387 * By doing switch() on the bit mask "wrap" we avoid having to
388 * check two variables for all permutations: --> faster!
389 */
390 switch (wrap) {
5e705374 391 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 392 if (d1 < d2)
5e705374 393 return rq1;
e8a99053 394 else if (d2 < d1)
5e705374 395 return rq2;
e8a99053
AM
396 else {
397 if (s1 >= s2)
5e705374 398 return rq1;
e8a99053 399 else
5e705374 400 return rq2;
e8a99053 401 }
1da177e4 402
e8a99053 403 case CFQ_RQ2_WRAP:
5e705374 404 return rq1;
e8a99053 405 case CFQ_RQ1_WRAP:
5e705374
JA
406 return rq2;
407 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
408 default:
409 /*
410 * Since both rqs are wrapped,
411 * start with the one that's further behind head
412 * (--> only *one* back seek required),
413 * since back seek takes more time than forward.
414 */
415 if (s1 <= s2)
5e705374 416 return rq1;
1da177e4 417 else
5e705374 418 return rq2;
1da177e4
LT
419 }
420}
421
498d3aa2
JA
422/*
423 * The below is leftmost cache rbtree addon
424 */
0871714e 425static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299
JA
426{
427 if (!root->left)
428 root->left = rb_first(&root->rb);
429
0871714e
JA
430 if (root->left)
431 return rb_entry(root->left, struct cfq_queue, rb_node);
432
433 return NULL;
cc09e299
JA
434}
435
a36e71f9
JA
436static void rb_erase_init(struct rb_node *n, struct rb_root *root)
437{
438 rb_erase(n, root);
439 RB_CLEAR_NODE(n);
440}
441
cc09e299
JA
442static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
443{
444 if (root->left == n)
445 root->left = NULL;
a36e71f9 446 rb_erase_init(n, &root->rb);
cc09e299
JA
447}
448
1da177e4
LT
449/*
450 * would be nice to take fifo expire time into account as well
451 */
5e705374
JA
452static struct request *
453cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
454 struct request *last)
1da177e4 455{
21183b07
JA
456 struct rb_node *rbnext = rb_next(&last->rb_node);
457 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 458 struct request *next = NULL, *prev = NULL;
1da177e4 459
21183b07 460 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
461
462 if (rbprev)
5e705374 463 prev = rb_entry_rq(rbprev);
1da177e4 464
21183b07 465 if (rbnext)
5e705374 466 next = rb_entry_rq(rbnext);
21183b07
JA
467 else {
468 rbnext = rb_first(&cfqq->sort_list);
469 if (rbnext && rbnext != &last->rb_node)
5e705374 470 next = rb_entry_rq(rbnext);
21183b07 471 }
1da177e4 472
21183b07 473 return cfq_choose_req(cfqd, next, prev);
1da177e4
LT
474}
475
d9e7620e
JA
476static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
477 struct cfq_queue *cfqq)
1da177e4 478{
d9e7620e
JA
479 /*
480 * just an approximation, should be ok.
481 */
67e6b49e
JA
482 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
483 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
484}
485
498d3aa2
JA
486/*
487 * The cfqd->service_tree holds all pending cfq_queue's that have
488 * requests waiting to be processed. It is sorted in the order that
489 * we will service the queues.
490 */
a36e71f9
JA
491static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
492 int add_front)
d9e7620e 493{
0871714e
JA
494 struct rb_node **p, *parent;
495 struct cfq_queue *__cfqq;
d9e7620e 496 unsigned long rb_key;
498d3aa2 497 int left;
d9e7620e 498
0871714e
JA
499 if (cfq_class_idle(cfqq)) {
500 rb_key = CFQ_IDLE_DELAY;
501 parent = rb_last(&cfqd->service_tree.rb);
502 if (parent && parent != &cfqq->rb_node) {
503 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
504 rb_key += __cfqq->rb_key;
505 } else
506 rb_key += jiffies;
507 } else if (!add_front) {
edd75ffd
JA
508 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
509 rb_key += cfqq->slice_resid;
510 cfqq->slice_resid = 0;
511 } else
512 rb_key = 0;
1da177e4 513
d9e7620e 514 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 515 /*
d9e7620e 516 * same position, nothing more to do
99f9628a 517 */
d9e7620e
JA
518 if (rb_key == cfqq->rb_key)
519 return;
1da177e4 520
cc09e299 521 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
1da177e4 522 }
d9e7620e 523
498d3aa2 524 left = 1;
0871714e
JA
525 parent = NULL;
526 p = &cfqd->service_tree.rb.rb_node;
d9e7620e 527 while (*p) {
67060e37 528 struct rb_node **n;
cc09e299 529
d9e7620e
JA
530 parent = *p;
531 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
532
0c534e0a
JA
533 /*
534 * sort RT queues first, we always want to give
67060e37
JA
535 * preference to them. IDLE queues goes to the back.
536 * after that, sort on the next service time.
0c534e0a
JA
537 */
538 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
67060e37 539 n = &(*p)->rb_left;
0c534e0a 540 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
67060e37
JA
541 n = &(*p)->rb_right;
542 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
543 n = &(*p)->rb_left;
544 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
545 n = &(*p)->rb_right;
0c534e0a 546 else if (rb_key < __cfqq->rb_key)
67060e37
JA
547 n = &(*p)->rb_left;
548 else
549 n = &(*p)->rb_right;
550
551 if (n == &(*p)->rb_right)
cc09e299 552 left = 0;
67060e37
JA
553
554 p = n;
d9e7620e
JA
555 }
556
cc09e299
JA
557 if (left)
558 cfqd->service_tree.left = &cfqq->rb_node;
559
d9e7620e
JA
560 cfqq->rb_key = rb_key;
561 rb_link_node(&cfqq->rb_node, parent, p);
cc09e299 562 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
1da177e4
LT
563}
564
a36e71f9 565static struct cfq_queue *
f2d1f0ae
JA
566cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
567 sector_t sector, struct rb_node **ret_parent,
568 struct rb_node ***rb_link)
a36e71f9 569{
a36e71f9
JA
570 struct rb_node **p, *parent;
571 struct cfq_queue *cfqq = NULL;
572
573 parent = NULL;
574 p = &root->rb_node;
575 while (*p) {
576 struct rb_node **n;
577
578 parent = *p;
579 cfqq = rb_entry(parent, struct cfq_queue, p_node);
580
581 /*
582 * Sort strictly based on sector. Smallest to the left,
583 * largest to the right.
584 */
2e46e8b2 585 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 586 n = &(*p)->rb_right;
2e46e8b2 587 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
588 n = &(*p)->rb_left;
589 else
590 break;
591 p = n;
3ac6c9f8 592 cfqq = NULL;
a36e71f9
JA
593 }
594
595 *ret_parent = parent;
596 if (rb_link)
597 *rb_link = p;
3ac6c9f8 598 return cfqq;
a36e71f9
JA
599}
600
601static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
602{
a36e71f9
JA
603 struct rb_node **p, *parent;
604 struct cfq_queue *__cfqq;
605
f2d1f0ae
JA
606 if (cfqq->p_root) {
607 rb_erase(&cfqq->p_node, cfqq->p_root);
608 cfqq->p_root = NULL;
609 }
a36e71f9
JA
610
611 if (cfq_class_idle(cfqq))
612 return;
613 if (!cfqq->next_rq)
614 return;
615
f2d1f0ae 616 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
617 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
618 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
619 if (!__cfqq) {
620 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
621 rb_insert_color(&cfqq->p_node, cfqq->p_root);
622 } else
623 cfqq->p_root = NULL;
a36e71f9
JA
624}
625
498d3aa2
JA
626/*
627 * Update cfqq's position in the service tree.
628 */
edd75ffd 629static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 630{
6d048f53
JA
631 /*
632 * Resorting requires the cfqq to be on the RR list already.
633 */
a36e71f9 634 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 635 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
636 cfq_prio_tree_add(cfqd, cfqq);
637 }
6d048f53
JA
638}
639
1da177e4
LT
640/*
641 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 642 * the pending list according to last request service
1da177e4 643 */
febffd61 644static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 645{
7b679138 646 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
647 BUG_ON(cfq_cfqq_on_rr(cfqq));
648 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
649 cfqd->busy_queues++;
650
edd75ffd 651 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
652}
653
498d3aa2
JA
654/*
655 * Called when the cfqq no longer has requests pending, remove it from
656 * the service tree.
657 */
febffd61 658static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 659{
7b679138 660 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
661 BUG_ON(!cfq_cfqq_on_rr(cfqq));
662 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 663
cc09e299
JA
664 if (!RB_EMPTY_NODE(&cfqq->rb_node))
665 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
f2d1f0ae
JA
666 if (cfqq->p_root) {
667 rb_erase(&cfqq->p_node, cfqq->p_root);
668 cfqq->p_root = NULL;
669 }
d9e7620e 670
1da177e4
LT
671 BUG_ON(!cfqd->busy_queues);
672 cfqd->busy_queues--;
673}
674
675/*
676 * rb tree support functions
677 */
febffd61 678static void cfq_del_rq_rb(struct request *rq)
1da177e4 679{
5e705374 680 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 681 struct cfq_data *cfqd = cfqq->cfqd;
5e705374 682 const int sync = rq_is_sync(rq);
1da177e4 683
b4878f24
JA
684 BUG_ON(!cfqq->queued[sync]);
685 cfqq->queued[sync]--;
1da177e4 686
5e705374 687 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 688
dd67d051 689 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
b4878f24 690 cfq_del_cfqq_rr(cfqd, cfqq);
1da177e4
LT
691}
692
5e705374 693static void cfq_add_rq_rb(struct request *rq)
1da177e4 694{
5e705374 695 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 696 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 697 struct request *__alias, *prev;
1da177e4 698
5380a101 699 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
700
701 /*
702 * looks a little odd, but the first insert might return an alias.
703 * if that happens, put the alias on the dispatch list
704 */
21183b07 705 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 706 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
707
708 if (!cfq_cfqq_on_rr(cfqq))
709 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
710
711 /*
712 * check if this request is a better next-serve candidate
713 */
a36e71f9 714 prev = cfqq->next_rq;
5044eed4 715 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
a36e71f9
JA
716
717 /*
718 * adjust priority tree position, if ->next_rq changes
719 */
720 if (prev != cfqq->next_rq)
721 cfq_prio_tree_add(cfqd, cfqq);
722
5044eed4 723 BUG_ON(!cfqq->next_rq);
1da177e4
LT
724}
725
febffd61 726static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 727{
5380a101
JA
728 elv_rb_del(&cfqq->sort_list, rq);
729 cfqq->queued[rq_is_sync(rq)]--;
5e705374 730 cfq_add_rq_rb(rq);
1da177e4
LT
731}
732
206dc69b
JA
733static struct request *
734cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 735{
206dc69b 736 struct task_struct *tsk = current;
91fac317 737 struct cfq_io_context *cic;
206dc69b 738 struct cfq_queue *cfqq;
1da177e4 739
4ac845a2 740 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
741 if (!cic)
742 return NULL;
743
744 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
745 if (cfqq) {
746 sector_t sector = bio->bi_sector + bio_sectors(bio);
747
21183b07 748 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 749 }
1da177e4 750
1da177e4
LT
751 return NULL;
752}
753
165125e1 754static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 755{
22e2c507 756 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 757
5ad531db 758 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 759 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 760 rq_in_driver(cfqd));
25776e35 761
5b93629b 762 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
763}
764
165125e1 765static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 766{
b4878f24 767 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 768 const int sync = rq_is_sync(rq);
b4878f24 769
5ad531db
JA
770 WARN_ON(!cfqd->rq_in_driver[sync]);
771 cfqd->rq_in_driver[sync]--;
7b679138 772 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 773 rq_in_driver(cfqd));
1da177e4
LT
774}
775
b4878f24 776static void cfq_remove_request(struct request *rq)
1da177e4 777{
5e705374 778 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 779
5e705374
JA
780 if (cfqq->next_rq == rq)
781 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 782
b4878f24 783 list_del_init(&rq->queuelist);
5e705374 784 cfq_del_rq_rb(rq);
374f84ac 785
45333d5a 786 cfqq->cfqd->rq_queued--;
374f84ac
JA
787 if (rq_is_meta(rq)) {
788 WARN_ON(!cfqq->meta_pending);
789 cfqq->meta_pending--;
790 }
1da177e4
LT
791}
792
165125e1
JA
793static int cfq_merge(struct request_queue *q, struct request **req,
794 struct bio *bio)
1da177e4
LT
795{
796 struct cfq_data *cfqd = q->elevator->elevator_data;
797 struct request *__rq;
1da177e4 798
206dc69b 799 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 800 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
801 *req = __rq;
802 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
803 }
804
805 return ELEVATOR_NO_MERGE;
1da177e4
LT
806}
807
165125e1 808static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 809 int type)
1da177e4 810{
21183b07 811 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 812 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 813
5e705374 814 cfq_reposition_rq_rb(cfqq, req);
1da177e4 815 }
1da177e4
LT
816}
817
818static void
165125e1 819cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
820 struct request *next)
821{
22e2c507
JA
822 /*
823 * reposition in fifo if next is older than rq
824 */
825 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
826 time_before(next->start_time, rq->start_time))
827 list_move(&rq->queuelist, &next->queuelist);
828
b4878f24 829 cfq_remove_request(next);
22e2c507
JA
830}
831
165125e1 832static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
833 struct bio *bio)
834{
835 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 836 struct cfq_io_context *cic;
da775265 837 struct cfq_queue *cfqq;
da775265
JA
838
839 /*
ec8acb69 840 * Disallow merge of a sync bio into an async request.
da775265 841 */
91fac317 842 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
da775265
JA
843 return 0;
844
845 /*
719d3402
JA
846 * Lookup the cfqq that this bio will be queued with. Allow
847 * merge only if rq is queued there.
da775265 848 */
4ac845a2 849 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317
VT
850 if (!cic)
851 return 0;
719d3402 852
91fac317 853 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
719d3402
JA
854 if (cfqq == RQ_CFQQ(rq))
855 return 1;
da775265 856
ec8acb69 857 return 0;
da775265
JA
858}
859
febffd61
JA
860static void __cfq_set_active_queue(struct cfq_data *cfqd,
861 struct cfq_queue *cfqq)
22e2c507
JA
862{
863 if (cfqq) {
7b679138 864 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 865 cfqq->slice_end = 0;
2f5cb738
JA
866 cfqq->slice_dispatch = 0;
867
2f5cb738 868 cfq_clear_cfqq_wait_request(cfqq);
b029195d 869 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
870 cfq_clear_cfqq_must_alloc_slice(cfqq);
871 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 872 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
873
874 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
875 }
876
877 cfqd->active_queue = cfqq;
878}
879
7b14e3b5
JA
880/*
881 * current cfqq expired its slice (or was too idle), select new one
882 */
883static void
884__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6084cdda 885 int timed_out)
7b14e3b5 886{
7b679138
JA
887 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
888
7b14e3b5
JA
889 if (cfq_cfqq_wait_request(cfqq))
890 del_timer(&cfqd->idle_slice_timer);
891
7b14e3b5
JA
892 cfq_clear_cfqq_wait_request(cfqq);
893
894 /*
6084cdda 895 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 896 */
7b679138 897 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 898 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
899 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
900 }
7b14e3b5 901
edd75ffd 902 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
903
904 if (cfqq == cfqd->active_queue)
905 cfqd->active_queue = NULL;
906
907 if (cfqd->active_cic) {
908 put_io_context(cfqd->active_cic->ioc);
909 cfqd->active_cic = NULL;
910 }
7b14e3b5
JA
911}
912
6084cdda 913static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
7b14e3b5
JA
914{
915 struct cfq_queue *cfqq = cfqd->active_queue;
916
917 if (cfqq)
6084cdda 918 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
919}
920
498d3aa2
JA
921/*
922 * Get next queue for service. Unless we have a queue preemption,
923 * we'll simply select the first cfqq in the service tree.
924 */
6d048f53 925static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 926{
edd75ffd
JA
927 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
928 return NULL;
d9e7620e 929
0871714e 930 return cfq_rb_first(&cfqd->service_tree);
6d048f53
JA
931}
932
498d3aa2
JA
933/*
934 * Get and set a new active queue for service.
935 */
a36e71f9
JA
936static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
937 struct cfq_queue *cfqq)
6d048f53 938{
a36e71f9
JA
939 if (!cfqq) {
940 cfqq = cfq_get_next_queue(cfqd);
941 if (cfqq)
942 cfq_clear_cfqq_coop(cfqq);
943 }
6d048f53 944
22e2c507 945 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 946 return cfqq;
22e2c507
JA
947}
948
d9e7620e
JA
949static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
950 struct request *rq)
951{
83096ebf
TH
952 if (blk_rq_pos(rq) >= cfqd->last_position)
953 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 954 else
83096ebf 955 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
956}
957
04dc6e71
JM
958#define CIC_SEEK_THR 8 * 1024
959#define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
960
6d048f53
JA
961static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
962{
963 struct cfq_io_context *cic = cfqd->active_cic;
04dc6e71 964 sector_t sdist = cic->seek_mean;
6d048f53
JA
965
966 if (!sample_valid(cic->seek_samples))
04dc6e71 967 sdist = CIC_SEEK_THR;
6d048f53 968
04dc6e71 969 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
970}
971
a36e71f9
JA
972static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
973 struct cfq_queue *cur_cfqq)
974{
f2d1f0ae 975 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
976 struct rb_node *parent, *node;
977 struct cfq_queue *__cfqq;
978 sector_t sector = cfqd->last_position;
979
980 if (RB_EMPTY_ROOT(root))
981 return NULL;
982
983 /*
984 * First, if we find a request starting at the end of the last
985 * request, choose it.
986 */
f2d1f0ae 987 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
988 if (__cfqq)
989 return __cfqq;
990
991 /*
992 * If the exact sector wasn't found, the parent of the NULL leaf
993 * will contain the closest sector.
994 */
995 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
996 if (cfq_rq_close(cfqd, __cfqq->next_rq))
997 return __cfqq;
998
2e46e8b2 999 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1000 node = rb_next(&__cfqq->p_node);
1001 else
1002 node = rb_prev(&__cfqq->p_node);
1003 if (!node)
1004 return NULL;
1005
1006 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1007 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1008 return __cfqq;
1009
1010 return NULL;
1011}
1012
1013/*
1014 * cfqd - obvious
1015 * cur_cfqq - passed in so that we don't decide that the current queue is
1016 * closely cooperating with itself.
1017 *
1018 * So, basically we're assuming that that cur_cfqq has dispatched at least
1019 * one request, and that cfqd->last_position reflects a position on the disk
1020 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1021 * assumption.
1022 */
1023static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1024 struct cfq_queue *cur_cfqq,
1025 int probe)
6d048f53 1026{
a36e71f9
JA
1027 struct cfq_queue *cfqq;
1028
1029 /*
1030 * A valid cfq_io_context is necessary to compare requests against
1031 * the seek_mean of the current cfqq.
1032 */
1033 if (!cfqd->active_cic)
1034 return NULL;
1035
6d048f53 1036 /*
d9e7620e
JA
1037 * We should notice if some of the queues are cooperating, eg
1038 * working closely on the same area of the disk. In that case,
1039 * we can group them together and don't waste time idling.
6d048f53 1040 */
a36e71f9
JA
1041 cfqq = cfqq_close(cfqd, cur_cfqq);
1042 if (!cfqq)
1043 return NULL;
1044
1045 if (cfq_cfqq_coop(cfqq))
1046 return NULL;
1047
1048 if (!probe)
1049 cfq_mark_cfqq_coop(cfqq);
1050 return cfqq;
6d048f53
JA
1051}
1052
6d048f53 1053static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1054{
1792669c 1055 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1056 struct cfq_io_context *cic;
7b14e3b5
JA
1057 unsigned long sl;
1058
a68bbddb 1059 /*
f7d7b7a7
JA
1060 * SSD device without seek penalty, disable idling. But only do so
1061 * for devices that support queuing, otherwise we still have a problem
1062 * with sync vs async workloads.
a68bbddb 1063 */
f7d7b7a7 1064 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1065 return;
1066
dd67d051 1067 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1068 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1069
1070 /*
1071 * idle is disabled, either manually or by past process history
1072 */
6d048f53
JA
1073 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1074 return;
1075
7b679138
JA
1076 /*
1077 * still requests with the driver, don't idle
1078 */
5ad531db 1079 if (rq_in_driver(cfqd))
7b679138
JA
1080 return;
1081
22e2c507
JA
1082 /*
1083 * task has exited, don't wait
1084 */
206dc69b 1085 cic = cfqd->active_cic;
66dac98e 1086 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1087 return;
1088
3b18152c 1089 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1090
206dc69b
JA
1091 /*
1092 * we don't want to idle for seeks, but we do want to allow
1093 * fair distribution of slice time for a process doing back-to-back
1094 * seeks. so allow a little bit of time for him to submit a new rq
1095 */
6d048f53 1096 sl = cfqd->cfq_slice_idle;
caaa5f9f 1097 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
d9e7620e 1098 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
206dc69b 1099
7b14e3b5 1100 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1101 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1102}
1103
498d3aa2
JA
1104/*
1105 * Move request from internal lists to the request queue dispatch list.
1106 */
165125e1 1107static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1108{
3ed9a296 1109 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1110 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1111
7b679138
JA
1112 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1113
06d21886 1114 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1115 cfq_remove_request(rq);
6d048f53 1116 cfqq->dispatched++;
5380a101 1117 elv_dispatch_sort(q, rq);
3ed9a296
JA
1118
1119 if (cfq_cfqq_sync(cfqq))
1120 cfqd->sync_flight++;
1da177e4
LT
1121}
1122
1123/*
1124 * return expired entry, or NULL to just start from scratch in rbtree
1125 */
febffd61 1126static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4
LT
1127{
1128 struct cfq_data *cfqd = cfqq->cfqd;
22e2c507 1129 struct request *rq;
89850f7e 1130 int fifo;
1da177e4 1131
3b18152c 1132 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1133 return NULL;
cb887411
JA
1134
1135 cfq_mark_cfqq_fifo_expire(cfqq);
1136
89850f7e
JA
1137 if (list_empty(&cfqq->fifo))
1138 return NULL;
1da177e4 1139
6d048f53 1140 fifo = cfq_cfqq_sync(cfqq);
89850f7e 1141 rq = rq_entry_fifo(cfqq->fifo.next);
1da177e4 1142
6d048f53 1143 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
7b679138 1144 rq = NULL;
1da177e4 1145
7b679138 1146 cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
6d048f53 1147 return rq;
1da177e4
LT
1148}
1149
22e2c507
JA
1150static inline int
1151cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1152{
1153 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1154
22e2c507 1155 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1156
22e2c507 1157 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1158}
1159
22e2c507 1160/*
498d3aa2
JA
1161 * Select a queue for service. If we have a current active queue,
1162 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1163 */
1b5ed5e1 1164static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1165{
a36e71f9 1166 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1167
22e2c507
JA
1168 cfqq = cfqd->active_queue;
1169 if (!cfqq)
1170 goto new_queue;
1da177e4 1171
22e2c507 1172 /*
6d048f53 1173 * The active queue has run out of time, expire it and select new.
22e2c507 1174 */
b029195d 1175 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1176 goto expire;
1da177e4 1177
22e2c507 1178 /*
6d048f53
JA
1179 * The active queue has requests and isn't expired, allow it to
1180 * dispatch.
22e2c507 1181 */
dd67d051 1182 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1183 goto keep_queue;
6d048f53 1184
a36e71f9
JA
1185 /*
1186 * If another queue has a request waiting within our mean seek
1187 * distance, let it run. The expire code will check for close
1188 * cooperators and put the close queue at the front of the service
1189 * tree.
1190 */
1191 new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1192 if (new_cfqq)
1193 goto expire;
1194
6d048f53
JA
1195 /*
1196 * No requests pending. If the active queue still has requests in
1197 * flight or is idling for a new request, allow either of these
1198 * conditions to happen (or time out) before selecting a new queue.
1199 */
cc197479
JA
1200 if (timer_pending(&cfqd->idle_slice_timer) ||
1201 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
caaa5f9f
JA
1202 cfqq = NULL;
1203 goto keep_queue;
22e2c507
JA
1204 }
1205
3b18152c 1206expire:
6084cdda 1207 cfq_slice_expired(cfqd, 0);
3b18152c 1208new_queue:
a36e71f9 1209 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1210keep_queue:
3b18152c 1211 return cfqq;
22e2c507
JA
1212}
1213
febffd61 1214static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1215{
1216 int dispatched = 0;
1217
1218 while (cfqq->next_rq) {
1219 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1220 dispatched++;
1221 }
1222
1223 BUG_ON(!list_empty(&cfqq->fifo));
1224 return dispatched;
1225}
1226
498d3aa2
JA
1227/*
1228 * Drain our current requests. Used for barriers and when switching
1229 * io schedulers on-the-fly.
1230 */
d9e7620e 1231static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1232{
0871714e 1233 struct cfq_queue *cfqq;
d9e7620e 1234 int dispatched = 0;
1b5ed5e1 1235
0871714e 1236 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
d9e7620e 1237 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1238
6084cdda 1239 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1240
1241 BUG_ON(cfqd->busy_queues);
1242
6923715a 1243 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
1244 return dispatched;
1245}
1246
2f5cb738
JA
1247/*
1248 * Dispatch a request from cfqq, moving them to the request queue
1249 * dispatch list.
1250 */
1251static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1252{
1253 struct request *rq;
1254
1255 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1256
1257 /*
1258 * follow expired path, else get first next available
1259 */
1260 rq = cfq_check_fifo(cfqq);
1261 if (!rq)
1262 rq = cfqq->next_rq;
1263
1264 /*
1265 * insert request into driver dispatch list
1266 */
1267 cfq_dispatch_insert(cfqd->queue, rq);
1268
1269 if (!cfqd->active_cic) {
1270 struct cfq_io_context *cic = RQ_CIC(rq);
1271
d9c7d394 1272 atomic_long_inc(&cic->ioc->refcount);
2f5cb738
JA
1273 cfqd->active_cic = cic;
1274 }
1275}
1276
1277/*
1278 * Find the cfqq that we need to service and move a request from that to the
1279 * dispatch list
1280 */
165125e1 1281static int cfq_dispatch_requests(struct request_queue *q, int force)
22e2c507
JA
1282{
1283 struct cfq_data *cfqd = q->elevator->elevator_data;
6d048f53 1284 struct cfq_queue *cfqq;
2f5cb738 1285 unsigned int max_dispatch;
22e2c507
JA
1286
1287 if (!cfqd->busy_queues)
1288 return 0;
1289
1b5ed5e1
TH
1290 if (unlikely(force))
1291 return cfq_forced_dispatch(cfqd);
1292
2f5cb738
JA
1293 cfqq = cfq_select_queue(cfqd);
1294 if (!cfqq)
1295 return 0;
1296
5ad531db
JA
1297 /*
1298 * Drain async requests before we start sync IO
1299 */
1300 if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1301 return 0;
1302
2f5cb738
JA
1303 /*
1304 * If this is an async queue and we have sync IO in flight, let it wait
1305 */
1306 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1307 return 0;
1308
1309 max_dispatch = cfqd->cfq_quantum;
1310 if (cfq_class_idle(cfqq))
1311 max_dispatch = 1;
b4878f24 1312
2f5cb738
JA
1313 /*
1314 * Does this cfqq already have too much IO in flight?
1315 */
1316 if (cfqq->dispatched >= max_dispatch) {
1317 /*
1318 * idle queue must always only have a single IO in flight
1319 */
3ed9a296 1320 if (cfq_class_idle(cfqq))
2f5cb738 1321 return 0;
3ed9a296 1322
2f5cb738
JA
1323 /*
1324 * We have other queues, don't allow more IO from this one
1325 */
1326 if (cfqd->busy_queues > 1)
1327 return 0;
9ede209e 1328
2f5cb738
JA
1329 /*
1330 * we are the only queue, allow up to 4 times of 'quantum'
1331 */
1332 if (cfqq->dispatched >= 4 * max_dispatch)
1333 return 0;
1334 }
3ed9a296 1335
2f5cb738
JA
1336 /*
1337 * Dispatch a request from this cfqq
1338 */
1339 cfq_dispatch_request(cfqd, cfqq);
1340 cfqq->slice_dispatch++;
b029195d 1341 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1342
2f5cb738
JA
1343 /*
1344 * expire an async queue immediately if it has used up its slice. idle
1345 * queue always expire after 1 dispatch round.
1346 */
1347 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1348 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1349 cfq_class_idle(cfqq))) {
1350 cfqq->slice_end = jiffies + 1;
1351 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1352 }
1353
b217a903 1354 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 1355 return 1;
1da177e4
LT
1356}
1357
1da177e4 1358/*
5e705374
JA
1359 * task holds one reference to the queue, dropped when task exits. each rq
1360 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1361 *
1362 * queue lock must be held here.
1363 */
1364static void cfq_put_queue(struct cfq_queue *cfqq)
1365{
22e2c507
JA
1366 struct cfq_data *cfqd = cfqq->cfqd;
1367
1368 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1369
1370 if (!atomic_dec_and_test(&cfqq->ref))
1371 return;
1372
7b679138 1373 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1374 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1375 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3b18152c 1376 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 1377
28f95cbc 1378 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1379 __cfq_slice_expired(cfqd, cfqq, 0);
28f95cbc
JA
1380 cfq_schedule_dispatch(cfqd);
1381 }
22e2c507 1382
1da177e4
LT
1383 kmem_cache_free(cfq_pool, cfqq);
1384}
1385
d6de8be7
JA
1386/*
1387 * Must always be called with the rcu_read_lock() held
1388 */
07416d29
JA
1389static void
1390__call_for_each_cic(struct io_context *ioc,
1391 void (*func)(struct io_context *, struct cfq_io_context *))
1392{
1393 struct cfq_io_context *cic;
1394 struct hlist_node *n;
1395
1396 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1397 func(ioc, cic);
1398}
1399
4ac845a2 1400/*
34e6bbf2 1401 * Call func for each cic attached to this ioc.
4ac845a2 1402 */
34e6bbf2 1403static void
4ac845a2
JA
1404call_for_each_cic(struct io_context *ioc,
1405 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1406{
4ac845a2 1407 rcu_read_lock();
07416d29 1408 __call_for_each_cic(ioc, func);
4ac845a2 1409 rcu_read_unlock();
34e6bbf2
FC
1410}
1411
1412static void cfq_cic_free_rcu(struct rcu_head *head)
1413{
1414 struct cfq_io_context *cic;
1415
1416 cic = container_of(head, struct cfq_io_context, rcu_head);
1417
1418 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 1419 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 1420
9a11b4ed
JA
1421 if (ioc_gone) {
1422 /*
1423 * CFQ scheduler is exiting, grab exit lock and check
1424 * the pending io context count. If it hits zero,
1425 * complete ioc_gone and set it back to NULL
1426 */
1427 spin_lock(&ioc_gone_lock);
245b2e70 1428 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
1429 complete(ioc_gone);
1430 ioc_gone = NULL;
1431 }
1432 spin_unlock(&ioc_gone_lock);
1433 }
34e6bbf2 1434}
4ac845a2 1435
34e6bbf2
FC
1436static void cfq_cic_free(struct cfq_io_context *cic)
1437{
1438 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1439}
1440
1441static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1442{
1443 unsigned long flags;
1444
1445 BUG_ON(!cic->dead_key);
1446
1447 spin_lock_irqsave(&ioc->lock, flags);
1448 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 1449 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1450 spin_unlock_irqrestore(&ioc->lock, flags);
1451
34e6bbf2 1452 cfq_cic_free(cic);
4ac845a2
JA
1453}
1454
d6de8be7
JA
1455/*
1456 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1457 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1458 * and ->trim() which is called with the task lock held
1459 */
4ac845a2
JA
1460static void cfq_free_io_context(struct io_context *ioc)
1461{
4ac845a2 1462 /*
34e6bbf2
FC
1463 * ioc->refcount is zero here, or we are called from elv_unregister(),
1464 * so no more cic's are allowed to be linked into this ioc. So it
1465 * should be ok to iterate over the known list, we will see all cic's
1466 * since no new ones are added.
4ac845a2 1467 */
07416d29 1468 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
1469}
1470
89850f7e 1471static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1472{
28f95cbc 1473 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1474 __cfq_slice_expired(cfqd, cfqq, 0);
28f95cbc
JA
1475 cfq_schedule_dispatch(cfqd);
1476 }
22e2c507 1477
89850f7e
JA
1478 cfq_put_queue(cfqq);
1479}
22e2c507 1480
89850f7e
JA
1481static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1482 struct cfq_io_context *cic)
1483{
4faa3c81
FC
1484 struct io_context *ioc = cic->ioc;
1485
fc46379d 1486 list_del_init(&cic->queue_list);
4ac845a2
JA
1487
1488 /*
1489 * Make sure key == NULL is seen for dead queues
1490 */
fc46379d 1491 smp_wmb();
4ac845a2 1492 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1493 cic->key = NULL;
1494
4faa3c81
FC
1495 if (ioc->ioc_data == cic)
1496 rcu_assign_pointer(ioc->ioc_data, NULL);
1497
ff6657c6
JA
1498 if (cic->cfqq[BLK_RW_ASYNC]) {
1499 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1500 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
1501 }
1502
ff6657c6
JA
1503 if (cic->cfqq[BLK_RW_SYNC]) {
1504 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1505 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 1506 }
89850f7e
JA
1507}
1508
4ac845a2
JA
1509static void cfq_exit_single_io_context(struct io_context *ioc,
1510 struct cfq_io_context *cic)
89850f7e
JA
1511{
1512 struct cfq_data *cfqd = cic->key;
1513
89850f7e 1514 if (cfqd) {
165125e1 1515 struct request_queue *q = cfqd->queue;
4ac845a2 1516 unsigned long flags;
89850f7e 1517
4ac845a2 1518 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
1519
1520 /*
1521 * Ensure we get a fresh copy of the ->key to prevent
1522 * race between exiting task and queue
1523 */
1524 smp_read_barrier_depends();
1525 if (cic->key)
1526 __cfq_exit_single_io_context(cfqd, cic);
1527
4ac845a2 1528 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1529 }
1da177e4
LT
1530}
1531
498d3aa2
JA
1532/*
1533 * The process that ioc belongs to has exited, we need to clean up
1534 * and put the internal structures we have that belongs to that process.
1535 */
e2d74ac0 1536static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1537{
4ac845a2 1538 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1539}
1540
22e2c507 1541static struct cfq_io_context *
8267e268 1542cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1543{
b5deef90 1544 struct cfq_io_context *cic;
1da177e4 1545
94f6030c
CL
1546 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1547 cfqd->queue->node);
1da177e4 1548 if (cic) {
22e2c507 1549 cic->last_end_request = jiffies;
553698f9 1550 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 1551 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
1552 cic->dtor = cfq_free_io_context;
1553 cic->exit = cfq_exit_io_context;
245b2e70 1554 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
1555 }
1556
1557 return cic;
1558}
1559
fd0928df 1560static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
1561{
1562 struct task_struct *tsk = current;
1563 int ioprio_class;
1564
3b18152c 1565 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
1566 return;
1567
fd0928df 1568 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 1569 switch (ioprio_class) {
fe094d98
JA
1570 default:
1571 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1572 case IOPRIO_CLASS_NONE:
1573 /*
6d63c275 1574 * no prio set, inherit CPU scheduling settings
fe094d98
JA
1575 */
1576 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 1577 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
1578 break;
1579 case IOPRIO_CLASS_RT:
1580 cfqq->ioprio = task_ioprio(ioc);
1581 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1582 break;
1583 case IOPRIO_CLASS_BE:
1584 cfqq->ioprio = task_ioprio(ioc);
1585 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1586 break;
1587 case IOPRIO_CLASS_IDLE:
1588 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1589 cfqq->ioprio = 7;
1590 cfq_clear_cfqq_idle_window(cfqq);
1591 break;
22e2c507
JA
1592 }
1593
1594 /*
1595 * keep track of original prio settings in case we have to temporarily
1596 * elevate the priority of this queue
1597 */
1598 cfqq->org_ioprio = cfqq->ioprio;
1599 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 1600 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
1601}
1602
febffd61 1603static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 1604{
478a82b0
AV
1605 struct cfq_data *cfqd = cic->key;
1606 struct cfq_queue *cfqq;
c1b707d2 1607 unsigned long flags;
35e6077c 1608
caaa5f9f
JA
1609 if (unlikely(!cfqd))
1610 return;
1611
c1b707d2 1612 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 1613
ff6657c6 1614 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
1615 if (cfqq) {
1616 struct cfq_queue *new_cfqq;
ff6657c6
JA
1617 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1618 GFP_ATOMIC);
caaa5f9f 1619 if (new_cfqq) {
ff6657c6 1620 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
1621 cfq_put_queue(cfqq);
1622 }
22e2c507 1623 }
caaa5f9f 1624
ff6657c6 1625 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
1626 if (cfqq)
1627 cfq_mark_cfqq_prio_changed(cfqq);
1628
c1b707d2 1629 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
1630}
1631
fc46379d 1632static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 1633{
4ac845a2 1634 call_for_each_cic(ioc, changed_ioprio);
fc46379d 1635 ioc->ioprio_changed = 0;
22e2c507
JA
1636}
1637
d5036d77
JA
1638static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1639 pid_t pid, int is_sync)
1640{
1641 RB_CLEAR_NODE(&cfqq->rb_node);
1642 RB_CLEAR_NODE(&cfqq->p_node);
1643 INIT_LIST_HEAD(&cfqq->fifo);
1644
1645 atomic_set(&cfqq->ref, 0);
1646 cfqq->cfqd = cfqd;
1647
1648 cfq_mark_cfqq_prio_changed(cfqq);
1649
1650 if (is_sync) {
1651 if (!cfq_class_idle(cfqq))
1652 cfq_mark_cfqq_idle_window(cfqq);
1653 cfq_mark_cfqq_sync(cfqq);
1654 }
1655 cfqq->pid = pid;
1656}
1657
22e2c507 1658static struct cfq_queue *
15c31be4 1659cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
fd0928df 1660 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 1661{
22e2c507 1662 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 1663 struct cfq_io_context *cic;
22e2c507
JA
1664
1665retry:
4ac845a2 1666 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
1667 /* cic always exists here */
1668 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 1669
6118b70b
JA
1670 /*
1671 * Always try a new alloc if we fell back to the OOM cfqq
1672 * originally, since it should just be a temporary situation.
1673 */
1674 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1675 cfqq = NULL;
22e2c507
JA
1676 if (new_cfqq) {
1677 cfqq = new_cfqq;
1678 new_cfqq = NULL;
1679 } else if (gfp_mask & __GFP_WAIT) {
1680 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 1681 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 1682 gfp_mask | __GFP_ZERO,
94f6030c 1683 cfqd->queue->node);
22e2c507 1684 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
1685 if (new_cfqq)
1686 goto retry;
22e2c507 1687 } else {
94f6030c
CL
1688 cfqq = kmem_cache_alloc_node(cfq_pool,
1689 gfp_mask | __GFP_ZERO,
1690 cfqd->queue->node);
22e2c507
JA
1691 }
1692
6118b70b
JA
1693 if (cfqq) {
1694 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1695 cfq_init_prio_data(cfqq, ioc);
1696 cfq_log_cfqq(cfqd, cfqq, "alloced");
1697 } else
1698 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
1699 }
1700
1701 if (new_cfqq)
1702 kmem_cache_free(cfq_pool, new_cfqq);
1703
22e2c507
JA
1704 return cfqq;
1705}
1706
c2dea2d1
VT
1707static struct cfq_queue **
1708cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1709{
fe094d98 1710 switch (ioprio_class) {
c2dea2d1
VT
1711 case IOPRIO_CLASS_RT:
1712 return &cfqd->async_cfqq[0][ioprio];
1713 case IOPRIO_CLASS_BE:
1714 return &cfqd->async_cfqq[1][ioprio];
1715 case IOPRIO_CLASS_IDLE:
1716 return &cfqd->async_idle_cfqq;
1717 default:
1718 BUG();
1719 }
1720}
1721
15c31be4 1722static struct cfq_queue *
fd0928df 1723cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
15c31be4
JA
1724 gfp_t gfp_mask)
1725{
fd0928df
JA
1726 const int ioprio = task_ioprio(ioc);
1727 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 1728 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
1729 struct cfq_queue *cfqq = NULL;
1730
c2dea2d1
VT
1731 if (!is_sync) {
1732 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1733 cfqq = *async_cfqq;
1734 }
1735
6118b70b 1736 if (!cfqq)
fd0928df 1737 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
1738
1739 /*
1740 * pin the queue now that it's allocated, scheduler exit will prune it
1741 */
c2dea2d1 1742 if (!is_sync && !(*async_cfqq)) {
15c31be4 1743 atomic_inc(&cfqq->ref);
c2dea2d1 1744 *async_cfqq = cfqq;
15c31be4
JA
1745 }
1746
1747 atomic_inc(&cfqq->ref);
1748 return cfqq;
1749}
1750
498d3aa2
JA
1751/*
1752 * We drop cfq io contexts lazily, so we may find a dead one.
1753 */
dbecf3ab 1754static void
4ac845a2
JA
1755cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1756 struct cfq_io_context *cic)
dbecf3ab 1757{
4ac845a2
JA
1758 unsigned long flags;
1759
fc46379d 1760 WARN_ON(!list_empty(&cic->queue_list));
597bc485 1761
4ac845a2
JA
1762 spin_lock_irqsave(&ioc->lock, flags);
1763
4faa3c81 1764 BUG_ON(ioc->ioc_data == cic);
597bc485 1765
4ac845a2 1766 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 1767 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1768 spin_unlock_irqrestore(&ioc->lock, flags);
1769
1770 cfq_cic_free(cic);
dbecf3ab
OH
1771}
1772
e2d74ac0 1773static struct cfq_io_context *
4ac845a2 1774cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 1775{
e2d74ac0 1776 struct cfq_io_context *cic;
d6de8be7 1777 unsigned long flags;
4ac845a2 1778 void *k;
e2d74ac0 1779
91fac317
VT
1780 if (unlikely(!ioc))
1781 return NULL;
1782
d6de8be7
JA
1783 rcu_read_lock();
1784
597bc485
JA
1785 /*
1786 * we maintain a last-hit cache, to avoid browsing over the tree
1787 */
4ac845a2 1788 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
1789 if (cic && cic->key == cfqd) {
1790 rcu_read_unlock();
597bc485 1791 return cic;
d6de8be7 1792 }
597bc485 1793
4ac845a2 1794 do {
4ac845a2
JA
1795 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1796 rcu_read_unlock();
1797 if (!cic)
1798 break;
be3b0753
OH
1799 /* ->key must be copied to avoid race with cfq_exit_queue() */
1800 k = cic->key;
1801 if (unlikely(!k)) {
4ac845a2 1802 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 1803 rcu_read_lock();
4ac845a2 1804 continue;
dbecf3ab 1805 }
e2d74ac0 1806
d6de8be7 1807 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 1808 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 1809 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
1810 break;
1811 } while (1);
e2d74ac0 1812
4ac845a2 1813 return cic;
e2d74ac0
JA
1814}
1815
4ac845a2
JA
1816/*
1817 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1818 * the process specific cfq io context when entered from the block layer.
1819 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1820 */
febffd61
JA
1821static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1822 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 1823{
0261d688 1824 unsigned long flags;
4ac845a2 1825 int ret;
e2d74ac0 1826
4ac845a2
JA
1827 ret = radix_tree_preload(gfp_mask);
1828 if (!ret) {
1829 cic->ioc = ioc;
1830 cic->key = cfqd;
e2d74ac0 1831
4ac845a2
JA
1832 spin_lock_irqsave(&ioc->lock, flags);
1833 ret = radix_tree_insert(&ioc->radix_root,
1834 (unsigned long) cfqd, cic);
ffc4e759
JA
1835 if (!ret)
1836 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 1837 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 1838
4ac845a2
JA
1839 radix_tree_preload_end();
1840
1841 if (!ret) {
1842 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1843 list_add(&cic->queue_list, &cfqd->cic_list);
1844 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1845 }
e2d74ac0
JA
1846 }
1847
4ac845a2
JA
1848 if (ret)
1849 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 1850
4ac845a2 1851 return ret;
e2d74ac0
JA
1852}
1853
1da177e4
LT
1854/*
1855 * Setup general io context and cfq io context. There can be several cfq
1856 * io contexts per general io context, if this process is doing io to more
e2d74ac0 1857 * than one device managed by cfq.
1da177e4
LT
1858 */
1859static struct cfq_io_context *
e2d74ac0 1860cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1861{
22e2c507 1862 struct io_context *ioc = NULL;
1da177e4 1863 struct cfq_io_context *cic;
1da177e4 1864
22e2c507 1865 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 1866
b5deef90 1867 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
1868 if (!ioc)
1869 return NULL;
1870
4ac845a2 1871 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
1872 if (cic)
1873 goto out;
1da177e4 1874
e2d74ac0
JA
1875 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1876 if (cic == NULL)
1877 goto err;
1da177e4 1878
4ac845a2
JA
1879 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1880 goto err_free;
1881
1da177e4 1882out:
fc46379d
JA
1883 smp_read_barrier_depends();
1884 if (unlikely(ioc->ioprio_changed))
1885 cfq_ioc_set_ioprio(ioc);
1886
1da177e4 1887 return cic;
4ac845a2
JA
1888err_free:
1889 cfq_cic_free(cic);
1da177e4
LT
1890err:
1891 put_io_context(ioc);
1892 return NULL;
1893}
1894
22e2c507
JA
1895static void
1896cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 1897{
aaf1228d
JA
1898 unsigned long elapsed = jiffies - cic->last_end_request;
1899 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 1900
22e2c507
JA
1901 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1902 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1903 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1904}
1da177e4 1905
206dc69b 1906static void
6d048f53
JA
1907cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1908 struct request *rq)
206dc69b
JA
1909{
1910 sector_t sdist;
1911 u64 total;
1912
4d00aa47
JM
1913 if (!cic->last_request_pos)
1914 sdist = 0;
83096ebf
TH
1915 else if (cic->last_request_pos < blk_rq_pos(rq))
1916 sdist = blk_rq_pos(rq) - cic->last_request_pos;
206dc69b 1917 else
83096ebf 1918 sdist = cic->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
1919
1920 /*
1921 * Don't allow the seek distance to get too large from the
1922 * odd fragment, pagein, etc
1923 */
1924 if (cic->seek_samples <= 60) /* second&third seek */
1925 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1926 else
1927 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1928
1929 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1930 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1931 total = cic->seek_total + (cic->seek_samples/2);
1932 do_div(total, cic->seek_samples);
1933 cic->seek_mean = (sector_t)total;
1934}
1da177e4 1935
22e2c507
JA
1936/*
1937 * Disable idle window if the process thinks too long or seeks so much that
1938 * it doesn't matter
1939 */
1940static void
1941cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1942 struct cfq_io_context *cic)
1943{
7b679138 1944 int old_idle, enable_idle;
1be92f2f 1945
0871714e
JA
1946 /*
1947 * Don't idle for async or idle io prio class
1948 */
1949 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
1950 return;
1951
c265a7f4 1952 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 1953
66dac98e 1954 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1d223515 1955 (!cfqd->cfq_desktop && cfqd->hw_tag && CIC_SEEKY(cic)))
22e2c507
JA
1956 enable_idle = 0;
1957 else if (sample_valid(cic->ttime_samples)) {
1958 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1959 enable_idle = 0;
1960 else
1961 enable_idle = 1;
1da177e4
LT
1962 }
1963
7b679138
JA
1964 if (old_idle != enable_idle) {
1965 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1966 if (enable_idle)
1967 cfq_mark_cfqq_idle_window(cfqq);
1968 else
1969 cfq_clear_cfqq_idle_window(cfqq);
1970 }
22e2c507 1971}
1da177e4 1972
22e2c507
JA
1973/*
1974 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1975 * no or if we aren't sure, a 1 will cause a preempt.
1976 */
1977static int
1978cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 1979 struct request *rq)
22e2c507 1980{
6d048f53 1981 struct cfq_queue *cfqq;
22e2c507 1982
6d048f53
JA
1983 cfqq = cfqd->active_queue;
1984 if (!cfqq)
22e2c507
JA
1985 return 0;
1986
6d048f53
JA
1987 if (cfq_slice_used(cfqq))
1988 return 1;
1989
1990 if (cfq_class_idle(new_cfqq))
caaa5f9f 1991 return 0;
22e2c507
JA
1992
1993 if (cfq_class_idle(cfqq))
1994 return 1;
1e3335de 1995
374f84ac
JA
1996 /*
1997 * if the new request is sync, but the currently running queue is
1998 * not, let the sync request have priority.
1999 */
5e705374 2000 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
22e2c507 2001 return 1;
1e3335de 2002
374f84ac
JA
2003 /*
2004 * So both queues are sync. Let the new request get disk time if
2005 * it's a metadata request and the current queue is doing regular IO.
2006 */
2007 if (rq_is_meta(rq) && !cfqq->meta_pending)
2008 return 1;
22e2c507 2009
3a9a3f6c
DS
2010 /*
2011 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2012 */
2013 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2014 return 1;
2015
1e3335de
JA
2016 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2017 return 0;
2018
2019 /*
2020 * if this request is as-good as one we would expect from the
2021 * current cfqq, let it preempt
2022 */
6d048f53 2023 if (cfq_rq_close(cfqd, rq))
1e3335de
JA
2024 return 1;
2025
22e2c507
JA
2026 return 0;
2027}
2028
2029/*
2030 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2031 * let it have half of its nominal slice.
2032 */
2033static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2034{
7b679138 2035 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2036 cfq_slice_expired(cfqd, 1);
22e2c507 2037
bf572256
JA
2038 /*
2039 * Put the new queue at the front of the of the current list,
2040 * so we know that it will be selected next.
2041 */
2042 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2043
2044 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2045
44f7c160
JA
2046 cfqq->slice_end = 0;
2047 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2048}
2049
22e2c507 2050/*
5e705374 2051 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2052 * something we should do about it
2053 */
2054static void
5e705374
JA
2055cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2056 struct request *rq)
22e2c507 2057{
5e705374 2058 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2059
45333d5a 2060 cfqd->rq_queued++;
374f84ac
JA
2061 if (rq_is_meta(rq))
2062 cfqq->meta_pending++;
2063
9c2c38a1 2064 cfq_update_io_thinktime(cfqd, cic);
6d048f53 2065 cfq_update_io_seektime(cfqd, cic, rq);
9c2c38a1
JA
2066 cfq_update_idle_window(cfqd, cfqq, cic);
2067
83096ebf 2068 cic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2069
2070 if (cfqq == cfqd->active_queue) {
2071 /*
b029195d
JA
2072 * Remember that we saw a request from this process, but
2073 * don't start queuing just yet. Otherwise we risk seeing lots
2074 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2075 * and merging. If the request is already larger than a single
2076 * page, let it rip immediately. For that case we assume that
2d870722
JA
2077 * merging is already done. Ditto for a busy system that
2078 * has other work pending, don't risk delaying until the
2079 * idle timer unplug to continue working.
22e2c507 2080 */
d6ceb25e 2081 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2082 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2083 cfqd->busy_queues > 1) {
d6ceb25e 2084 del_timer(&cfqd->idle_slice_timer);
a7f55792 2085 __blk_run_queue(cfqd->queue);
d6ceb25e 2086 }
b029195d 2087 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2088 }
5e705374 2089 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2090 /*
2091 * not the active queue - expire current slice if it is
2092 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2093 * has some old slice time left and is of higher priority or
2094 * this new queue is RT and the current one is BE
22e2c507
JA
2095 */
2096 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2097 __blk_run_queue(cfqd->queue);
22e2c507 2098 }
1da177e4
LT
2099}
2100
165125e1 2101static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2102{
b4878f24 2103 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2104 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2105
7b679138 2106 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2107 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2108
5e705374 2109 cfq_add_rq_rb(rq);
1da177e4 2110
22e2c507
JA
2111 list_add_tail(&rq->queuelist, &cfqq->fifo);
2112
5e705374 2113 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2114}
2115
45333d5a
AC
2116/*
2117 * Update hw_tag based on peak queue depth over 50 samples under
2118 * sufficient load.
2119 */
2120static void cfq_update_hw_tag(struct cfq_data *cfqd)
2121{
5ad531db
JA
2122 if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2123 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
45333d5a
AC
2124
2125 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2126 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2127 return;
2128
2129 if (cfqd->hw_tag_samples++ < 50)
2130 return;
2131
2132 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2133 cfqd->hw_tag = 1;
2134 else
2135 cfqd->hw_tag = 0;
2136
2137 cfqd->hw_tag_samples = 0;
2138 cfqd->rq_in_driver_peak = 0;
2139}
2140
165125e1 2141static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2142{
5e705374 2143 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2144 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2145 const int sync = rq_is_sync(rq);
b4878f24 2146 unsigned long now;
1da177e4 2147
b4878f24 2148 now = jiffies;
7b679138 2149 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2150
45333d5a
AC
2151 cfq_update_hw_tag(cfqd);
2152
5ad531db 2153 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 2154 WARN_ON(!cfqq->dispatched);
5ad531db 2155 cfqd->rq_in_driver[sync]--;
6d048f53 2156 cfqq->dispatched--;
1da177e4 2157
3ed9a296
JA
2158 if (cfq_cfqq_sync(cfqq))
2159 cfqd->sync_flight--;
2160
caaa5f9f 2161 if (sync)
5e705374 2162 RQ_CIC(rq)->last_end_request = now;
caaa5f9f
JA
2163
2164 /*
2165 * If this is the active queue, check if it needs to be expired,
2166 * or if we want to idle in case it has no pending requests.
2167 */
2168 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2169 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2170
44f7c160
JA
2171 if (cfq_cfqq_slice_new(cfqq)) {
2172 cfq_set_prio_slice(cfqd, cfqq);
2173 cfq_clear_cfqq_slice_new(cfqq);
2174 }
a36e71f9
JA
2175 /*
2176 * If there are no requests waiting in this queue, and
2177 * there are other queues ready to issue requests, AND
2178 * those other queues are issuing requests within our
2179 * mean seek distance, give them a chance to run instead
2180 * of idling.
2181 */
0871714e 2182 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2183 cfq_slice_expired(cfqd, 1);
a36e71f9
JA
2184 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2185 sync && !rq_noidle(rq))
6d048f53 2186 cfq_arm_slice_timer(cfqd);
caaa5f9f 2187 }
6d048f53 2188
5ad531db 2189 if (!rq_in_driver(cfqd))
6d048f53 2190 cfq_schedule_dispatch(cfqd);
1da177e4
LT
2191}
2192
22e2c507
JA
2193/*
2194 * we temporarily boost lower priority queues if they are holding fs exclusive
2195 * resources. they are boosted to normal prio (CLASS_BE/4)
2196 */
2197static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2198{
22e2c507
JA
2199 if (has_fs_excl()) {
2200 /*
2201 * boost idle prio on transactions that would lock out other
2202 * users of the filesystem
2203 */
2204 if (cfq_class_idle(cfqq))
2205 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2206 if (cfqq->ioprio > IOPRIO_NORM)
2207 cfqq->ioprio = IOPRIO_NORM;
2208 } else {
2209 /*
2210 * check if we need to unboost the queue
2211 */
2212 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2213 cfqq->ioprio_class = cfqq->org_ioprio_class;
2214 if (cfqq->ioprio != cfqq->org_ioprio)
2215 cfqq->ioprio = cfqq->org_ioprio;
2216 }
22e2c507 2217}
1da177e4 2218
89850f7e 2219static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2220{
1b379d8d 2221 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2222 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2223 return ELV_MQUEUE_MUST;
3b18152c 2224 }
1da177e4 2225
22e2c507 2226 return ELV_MQUEUE_MAY;
22e2c507
JA
2227}
2228
165125e1 2229static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2230{
2231 struct cfq_data *cfqd = q->elevator->elevator_data;
2232 struct task_struct *tsk = current;
91fac317 2233 struct cfq_io_context *cic;
22e2c507
JA
2234 struct cfq_queue *cfqq;
2235
2236 /*
2237 * don't force setup of a queue from here, as a call to may_queue
2238 * does not necessarily imply that a request actually will be queued.
2239 * so just lookup a possibly existing queue, or return 'may queue'
2240 * if that fails
2241 */
4ac845a2 2242 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2243 if (!cic)
2244 return ELV_MQUEUE_MAY;
2245
b0b78f81 2246 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2247 if (cfqq) {
fd0928df 2248 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2249 cfq_prio_boost(cfqq);
2250
89850f7e 2251 return __cfq_may_queue(cfqq);
22e2c507
JA
2252 }
2253
2254 return ELV_MQUEUE_MAY;
1da177e4
LT
2255}
2256
1da177e4
LT
2257/*
2258 * queue lock held here
2259 */
bb37b94c 2260static void cfq_put_request(struct request *rq)
1da177e4 2261{
5e705374 2262 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2263
5e705374 2264 if (cfqq) {
22e2c507 2265 const int rw = rq_data_dir(rq);
1da177e4 2266
22e2c507
JA
2267 BUG_ON(!cfqq->allocated[rw]);
2268 cfqq->allocated[rw]--;
1da177e4 2269
5e705374 2270 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2271
1da177e4 2272 rq->elevator_private = NULL;
5e705374 2273 rq->elevator_private2 = NULL;
1da177e4 2274
1da177e4
LT
2275 cfq_put_queue(cfqq);
2276 }
2277}
2278
2279/*
22e2c507 2280 * Allocate cfq data structures associated with this request.
1da177e4 2281 */
22e2c507 2282static int
165125e1 2283cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2284{
2285 struct cfq_data *cfqd = q->elevator->elevator_data;
2286 struct cfq_io_context *cic;
2287 const int rw = rq_data_dir(rq);
7749a8d4 2288 const int is_sync = rq_is_sync(rq);
22e2c507 2289 struct cfq_queue *cfqq;
1da177e4
LT
2290 unsigned long flags;
2291
2292 might_sleep_if(gfp_mask & __GFP_WAIT);
2293
e2d74ac0 2294 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2295
1da177e4
LT
2296 spin_lock_irqsave(q->queue_lock, flags);
2297
22e2c507
JA
2298 if (!cic)
2299 goto queue_fail;
2300
91fac317 2301 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 2302 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 2303 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317
VT
2304 cic_set_cfqq(cic, cfqq, is_sync);
2305 }
1da177e4
LT
2306
2307 cfqq->allocated[rw]++;
22e2c507 2308 atomic_inc(&cfqq->ref);
1da177e4 2309
5e705374 2310 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 2311
5e705374
JA
2312 rq->elevator_private = cic;
2313 rq->elevator_private2 = cfqq;
2314 return 0;
1da177e4 2315
22e2c507
JA
2316queue_fail:
2317 if (cic)
2318 put_io_context(cic->ioc);
89850f7e 2319
3b18152c 2320 cfq_schedule_dispatch(cfqd);
1da177e4 2321 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 2322 cfq_log(cfqd, "set_request fail");
1da177e4
LT
2323 return 1;
2324}
2325
65f27f38 2326static void cfq_kick_queue(struct work_struct *work)
22e2c507 2327{
65f27f38
DH
2328 struct cfq_data *cfqd =
2329 container_of(work, struct cfq_data, unplug_work);
165125e1 2330 struct request_queue *q = cfqd->queue;
22e2c507 2331
40bb54d1 2332 spin_lock_irq(q->queue_lock);
a7f55792 2333 __blk_run_queue(cfqd->queue);
40bb54d1 2334 spin_unlock_irq(q->queue_lock);
22e2c507
JA
2335}
2336
2337/*
2338 * Timer running if the active_queue is currently idling inside its time slice
2339 */
2340static void cfq_idle_slice_timer(unsigned long data)
2341{
2342 struct cfq_data *cfqd = (struct cfq_data *) data;
2343 struct cfq_queue *cfqq;
2344 unsigned long flags;
3c6bd2f8 2345 int timed_out = 1;
22e2c507 2346
7b679138
JA
2347 cfq_log(cfqd, "idle timer fired");
2348
22e2c507
JA
2349 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2350
fe094d98
JA
2351 cfqq = cfqd->active_queue;
2352 if (cfqq) {
3c6bd2f8
JA
2353 timed_out = 0;
2354
b029195d
JA
2355 /*
2356 * We saw a request before the queue expired, let it through
2357 */
2358 if (cfq_cfqq_must_dispatch(cfqq))
2359 goto out_kick;
2360
22e2c507
JA
2361 /*
2362 * expired
2363 */
44f7c160 2364 if (cfq_slice_used(cfqq))
22e2c507
JA
2365 goto expire;
2366
2367 /*
2368 * only expire and reinvoke request handler, if there are
2369 * other queues with pending requests
2370 */
caaa5f9f 2371 if (!cfqd->busy_queues)
22e2c507 2372 goto out_cont;
22e2c507
JA
2373
2374 /*
2375 * not expired and it has a request pending, let it dispatch
2376 */
75e50984 2377 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2378 goto out_kick;
22e2c507
JA
2379 }
2380expire:
6084cdda 2381 cfq_slice_expired(cfqd, timed_out);
22e2c507 2382out_kick:
3b18152c 2383 cfq_schedule_dispatch(cfqd);
22e2c507
JA
2384out_cont:
2385 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2386}
2387
3b18152c
JA
2388static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2389{
2390 del_timer_sync(&cfqd->idle_slice_timer);
64d01dc9 2391 cancel_work_sync(&cfqd->unplug_work);
3b18152c 2392}
22e2c507 2393
c2dea2d1
VT
2394static void cfq_put_async_queues(struct cfq_data *cfqd)
2395{
2396 int i;
2397
2398 for (i = 0; i < IOPRIO_BE_NR; i++) {
2399 if (cfqd->async_cfqq[0][i])
2400 cfq_put_queue(cfqd->async_cfqq[0][i]);
2401 if (cfqd->async_cfqq[1][i])
2402 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2403 }
2389d1ef
ON
2404
2405 if (cfqd->async_idle_cfqq)
2406 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2407}
2408
b374d18a 2409static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 2410{
22e2c507 2411 struct cfq_data *cfqd = e->elevator_data;
165125e1 2412 struct request_queue *q = cfqd->queue;
22e2c507 2413
3b18152c 2414 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2415
d9ff4187 2416 spin_lock_irq(q->queue_lock);
e2d74ac0 2417
d9ff4187 2418 if (cfqd->active_queue)
6084cdda 2419 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2420
2421 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2422 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2423 struct cfq_io_context,
2424 queue_list);
89850f7e
JA
2425
2426 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2427 }
e2d74ac0 2428
c2dea2d1 2429 cfq_put_async_queues(cfqd);
15c31be4 2430
d9ff4187 2431 spin_unlock_irq(q->queue_lock);
a90d742e
AV
2432
2433 cfq_shutdown_timer_wq(cfqd);
2434
a90d742e 2435 kfree(cfqd);
1da177e4
LT
2436}
2437
165125e1 2438static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
2439{
2440 struct cfq_data *cfqd;
26a2ac00 2441 int i;
1da177e4 2442
94f6030c 2443 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 2444 if (!cfqd)
bc1c1169 2445 return NULL;
1da177e4 2446
cc09e299 2447 cfqd->service_tree = CFQ_RB_ROOT;
26a2ac00
JA
2448
2449 /*
2450 * Not strictly needed (since RB_ROOT just clears the node and we
2451 * zeroed cfqd on alloc), but better be safe in case someone decides
2452 * to add magic to the rb code
2453 */
2454 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2455 cfqd->prio_trees[i] = RB_ROOT;
2456
6118b70b
JA
2457 /*
2458 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2459 * Grab a permanent reference to it, so that the normal code flow
2460 * will not attempt to free it.
2461 */
2462 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2463 atomic_inc(&cfqd->oom_cfqq.ref);
2464
d9ff4187 2465 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 2466
1da177e4 2467 cfqd->queue = q;
1da177e4 2468
22e2c507
JA
2469 init_timer(&cfqd->idle_slice_timer);
2470 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2471 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2472
65f27f38 2473 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 2474
1da177e4 2475 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
2476 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2477 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
2478 cfqd->cfq_back_max = cfq_back_max;
2479 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
2480 cfqd->cfq_slice[0] = cfq_slice_async;
2481 cfqd->cfq_slice[1] = cfq_slice_sync;
2482 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2483 cfqd->cfq_slice_idle = cfq_slice_idle;
1d223515 2484 cfqd->cfq_desktop = 1;
45333d5a 2485 cfqd->hw_tag = 1;
3b18152c 2486
bc1c1169 2487 return cfqd;
1da177e4
LT
2488}
2489
2490static void cfq_slab_kill(void)
2491{
d6de8be7
JA
2492 /*
2493 * Caller already ensured that pending RCU callbacks are completed,
2494 * so we should have no busy allocations at this point.
2495 */
1da177e4
LT
2496 if (cfq_pool)
2497 kmem_cache_destroy(cfq_pool);
2498 if (cfq_ioc_pool)
2499 kmem_cache_destroy(cfq_ioc_pool);
2500}
2501
2502static int __init cfq_slab_setup(void)
2503{
0a31bd5f 2504 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
2505 if (!cfq_pool)
2506 goto fail;
2507
34e6bbf2 2508 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
2509 if (!cfq_ioc_pool)
2510 goto fail;
2511
2512 return 0;
2513fail:
2514 cfq_slab_kill();
2515 return -ENOMEM;
2516}
2517
1da177e4
LT
2518/*
2519 * sysfs parts below -->
2520 */
1da177e4
LT
2521static ssize_t
2522cfq_var_show(unsigned int var, char *page)
2523{
2524 return sprintf(page, "%d\n", var);
2525}
2526
2527static ssize_t
2528cfq_var_store(unsigned int *var, const char *page, size_t count)
2529{
2530 char *p = (char *) page;
2531
2532 *var = simple_strtoul(p, &p, 10);
2533 return count;
2534}
2535
1da177e4 2536#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 2537static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 2538{ \
3d1ab40f 2539 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2540 unsigned int __data = __VAR; \
2541 if (__CONV) \
2542 __data = jiffies_to_msecs(__data); \
2543 return cfq_var_show(__data, (page)); \
2544}
2545SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
2546SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2547SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
2548SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2549SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
2550SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2551SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2552SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2553SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
1d223515 2554SHOW_FUNCTION(cfq_desktop_show, cfqd->cfq_desktop, 0);
1da177e4
LT
2555#undef SHOW_FUNCTION
2556
2557#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 2558static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 2559{ \
3d1ab40f 2560 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2561 unsigned int __data; \
2562 int ret = cfq_var_store(&__data, (page), count); \
2563 if (__data < (MIN)) \
2564 __data = (MIN); \
2565 else if (__data > (MAX)) \
2566 __data = (MAX); \
2567 if (__CONV) \
2568 *(__PTR) = msecs_to_jiffies(__data); \
2569 else \
2570 *(__PTR) = __data; \
2571 return ret; \
2572}
2573STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
2574STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2575 UINT_MAX, 1);
2576STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2577 UINT_MAX, 1);
e572ec7e 2578STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
2579STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2580 UINT_MAX, 0);
22e2c507
JA
2581STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2582STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2583STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
2584STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2585 UINT_MAX, 0);
1d223515 2586STORE_FUNCTION(cfq_desktop_store, &cfqd->cfq_desktop, 0, 1, 0);
1da177e4
LT
2587#undef STORE_FUNCTION
2588
e572ec7e
AV
2589#define CFQ_ATTR(name) \
2590 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2591
2592static struct elv_fs_entry cfq_attrs[] = {
2593 CFQ_ATTR(quantum),
e572ec7e
AV
2594 CFQ_ATTR(fifo_expire_sync),
2595 CFQ_ATTR(fifo_expire_async),
2596 CFQ_ATTR(back_seek_max),
2597 CFQ_ATTR(back_seek_penalty),
2598 CFQ_ATTR(slice_sync),
2599 CFQ_ATTR(slice_async),
2600 CFQ_ATTR(slice_async_rq),
2601 CFQ_ATTR(slice_idle),
1d223515 2602 CFQ_ATTR(desktop),
e572ec7e 2603 __ATTR_NULL
1da177e4
LT
2604};
2605
1da177e4
LT
2606static struct elevator_type iosched_cfq = {
2607 .ops = {
2608 .elevator_merge_fn = cfq_merge,
2609 .elevator_merged_fn = cfq_merged_request,
2610 .elevator_merge_req_fn = cfq_merged_requests,
da775265 2611 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 2612 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 2613 .elevator_add_req_fn = cfq_insert_request,
b4878f24 2614 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
2615 .elevator_deactivate_req_fn = cfq_deactivate_request,
2616 .elevator_queue_empty_fn = cfq_queue_empty,
2617 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
2618 .elevator_former_req_fn = elv_rb_former_request,
2619 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
2620 .elevator_set_req_fn = cfq_set_request,
2621 .elevator_put_req_fn = cfq_put_request,
2622 .elevator_may_queue_fn = cfq_may_queue,
2623 .elevator_init_fn = cfq_init_queue,
2624 .elevator_exit_fn = cfq_exit_queue,
fc46379d 2625 .trim = cfq_free_io_context,
1da177e4 2626 },
3d1ab40f 2627 .elevator_attrs = cfq_attrs,
1da177e4
LT
2628 .elevator_name = "cfq",
2629 .elevator_owner = THIS_MODULE,
2630};
2631
2632static int __init cfq_init(void)
2633{
22e2c507
JA
2634 /*
2635 * could be 0 on HZ < 1000 setups
2636 */
2637 if (!cfq_slice_async)
2638 cfq_slice_async = 1;
2639 if (!cfq_slice_idle)
2640 cfq_slice_idle = 1;
2641
1da177e4
LT
2642 if (cfq_slab_setup())
2643 return -ENOMEM;
2644
2fdd82bd 2645 elv_register(&iosched_cfq);
1da177e4 2646
2fdd82bd 2647 return 0;
1da177e4
LT
2648}
2649
2650static void __exit cfq_exit(void)
2651{
6e9a4738 2652 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 2653 elv_unregister(&iosched_cfq);
334e94de 2654 ioc_gone = &all_gone;
fba82272
OH
2655 /* ioc_gone's update must be visible before reading ioc_count */
2656 smp_wmb();
d6de8be7
JA
2657
2658 /*
2659 * this also protects us from entering cfq_slab_kill() with
2660 * pending RCU callbacks
2661 */
245b2e70 2662 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 2663 wait_for_completion(&all_gone);
83521d3e 2664 cfq_slab_kill();
1da177e4
LT
2665}
2666
2667module_init(cfq_init);
2668module_exit(cfq_exit);
2669
2670MODULE_AUTHOR("Jens Axboe");
2671MODULE_LICENSE("GPL");
2672MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");