]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - block/cfq-iosched.c
block cfq: don't use atomic_t for cfq_queue
[mirror_ubuntu-jammy-kernel.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
5a0e3ad6 10#include <linux/slab.h>
1cc9be68
AV
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
ad5ebd2f 13#include <linux/jiffies.h>
1da177e4 14#include <linux/rbtree.h>
22e2c507 15#include <linux/ioprio.h>
7b679138 16#include <linux/blktrace_api.h>
e98ef89b 17#include "cfq.h"
1da177e4
LT
18
19/*
20 * tunables
21 */
fe094d98 22/* max queue in one round of service */
abc3c744 23static const int cfq_quantum = 8;
64100099 24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
64100099 29static const int cfq_slice_sync = HZ / 10;
3b18152c 30static int cfq_slice_async = HZ / 25;
64100099 31static const int cfq_slice_async_rq = 2;
caaa5f9f 32static int cfq_slice_idle = HZ / 125;
80bdf0c7 33static int cfq_group_idle = HZ / 125;
5db5d642
CZ
34static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35static const int cfq_hist_divisor = 4;
22e2c507 36
d9e7620e 37/*
0871714e 38 * offset from end of service tree
d9e7620e 39 */
0871714e 40#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
41
42/*
43 * below this threshold, we consider thinktime immediate
44 */
45#define CFQ_MIN_TT (2)
46
22e2c507 47#define CFQ_SLICE_SCALE (5)
45333d5a 48#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 49#define CFQ_SERVICE_SHIFT 12
22e2c507 50
3dde36dd 51#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 52#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 53#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 54#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 55
fe094d98
JA
56#define RQ_CIC(rq) \
57 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
7f1dc8a2 59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
1da177e4 60
e18b890b
CL
61static struct kmem_cache *cfq_pool;
62static struct kmem_cache *cfq_ioc_pool;
1da177e4 63
245b2e70 64static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 65static struct completion *ioc_gone;
9a11b4ed 66static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 67
80b15c73
KK
68static DEFINE_SPINLOCK(cic_index_lock);
69static DEFINE_IDA(cic_index_ida);
70
22e2c507
JA
71#define CFQ_PRIO_LISTS IOPRIO_BE_NR
72#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
73#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
206dc69b 75#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 76#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 77
cc09e299
JA
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
aa6f6a3d 87 unsigned count;
73e9ffdd 88 unsigned total_weight;
1fa8f6d6 89 u64 min_vdisktime;
cc09e299 90};
73e9ffdd
RK
91#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
cc09e299 93
6118b70b
JA
94/*
95 * Per process-grouping structure
96 */
97struct cfq_queue {
98 /* reference count */
30d7b944 99 int ref;
6118b70b
JA
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
dae739eb
VG
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
f75edf2d 125 unsigned int allocated_slice;
c4081ba5 126 unsigned int slice_dispatch;
dae739eb
VG
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
6118b70b
JA
129 unsigned long slice_end;
130 long slice_resid;
6118b70b
JA
131
132 /* pending metadata requests */
133 int meta_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
140
c4081ba5
RK
141 pid_t pid;
142
3dde36dd 143 u32 seek_history;
b2c18e1e
JM
144 sector_t last_request_pos;
145
aa6f6a3d 146 struct cfq_rb_root *service_tree;
df5fe3e8 147 struct cfq_queue *new_cfqq;
cdb16e8f 148 struct cfq_group *cfqg;
ae30c286 149 struct cfq_group *orig_cfqg;
c4e7893e
VG
150 /* Number of sectors dispatched from queue in single dispatch round */
151 unsigned long nr_sectors;
6118b70b
JA
152};
153
c0324a02 154/*
718eee05 155 * First index in the service_trees.
c0324a02
CZ
156 * IDLE is handled separately, so it has negative index
157 */
158enum wl_prio_t {
c0324a02 159 BE_WORKLOAD = 0,
615f0259
VG
160 RT_WORKLOAD = 1,
161 IDLE_WORKLOAD = 2,
b4627321 162 CFQ_PRIO_NR,
c0324a02
CZ
163};
164
718eee05
CZ
165/*
166 * Second index in the service_trees.
167 */
168enum wl_type_t {
169 ASYNC_WORKLOAD = 0,
170 SYNC_NOIDLE_WORKLOAD = 1,
171 SYNC_WORKLOAD = 2
172};
173
cdb16e8f
VG
174/* This is per cgroup per device grouping structure */
175struct cfq_group {
1fa8f6d6
VG
176 /* group service_tree member */
177 struct rb_node rb_node;
178
179 /* group service_tree key */
180 u64 vdisktime;
25bc6b07 181 unsigned int weight;
1fa8f6d6
VG
182
183 /* number of cfqq currently on this group */
184 int nr_cfqq;
185
cdb16e8f 186 /*
b4627321
VG
187 * Per group busy queus average. Useful for workload slice calc. We
188 * create the array for each prio class but at run time it is used
189 * only for RT and BE class and slot for IDLE class remains unused.
190 * This is primarily done to avoid confusion and a gcc warning.
191 */
192 unsigned int busy_queues_avg[CFQ_PRIO_NR];
193 /*
194 * rr lists of queues with requests. We maintain service trees for
195 * RT and BE classes. These trees are subdivided in subclasses
196 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
197 * class there is no subclassification and all the cfq queues go on
198 * a single tree service_tree_idle.
cdb16e8f
VG
199 * Counts are embedded in the cfq_rb_root
200 */
201 struct cfq_rb_root service_trees[2][3];
202 struct cfq_rb_root service_tree_idle;
dae739eb
VG
203
204 unsigned long saved_workload_slice;
205 enum wl_type_t saved_workload;
206 enum wl_prio_t saved_serving_prio;
25fb5169
VG
207 struct blkio_group blkg;
208#ifdef CONFIG_CFQ_GROUP_IOSCHED
209 struct hlist_node cfqd_node;
b1c35769 210 atomic_t ref;
25fb5169 211#endif
80bdf0c7
VG
212 /* number of requests that are on the dispatch list or inside driver */
213 int dispatched;
cdb16e8f 214};
718eee05 215
22e2c507
JA
216/*
217 * Per block device queue structure
218 */
1da177e4 219struct cfq_data {
165125e1 220 struct request_queue *queue;
1fa8f6d6
VG
221 /* Root service tree for cfq_groups */
222 struct cfq_rb_root grp_service_tree;
cdb16e8f 223 struct cfq_group root_group;
22e2c507 224
c0324a02
CZ
225 /*
226 * The priority currently being served
22e2c507 227 */
c0324a02 228 enum wl_prio_t serving_prio;
718eee05
CZ
229 enum wl_type_t serving_type;
230 unsigned long workload_expires;
cdb16e8f 231 struct cfq_group *serving_group;
a36e71f9
JA
232
233 /*
234 * Each priority tree is sorted by next_request position. These
235 * trees are used when determining if two or more queues are
236 * interleaving requests (see cfq_close_cooperator).
237 */
238 struct rb_root prio_trees[CFQ_PRIO_LISTS];
239
22e2c507
JA
240 unsigned int busy_queues;
241
53c583d2
CZ
242 int rq_in_driver;
243 int rq_in_flight[2];
45333d5a
AC
244
245 /*
246 * queue-depth detection
247 */
248 int rq_queued;
25776e35 249 int hw_tag;
e459dd08
CZ
250 /*
251 * hw_tag can be
252 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
253 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
254 * 0 => no NCQ
255 */
256 int hw_tag_est_depth;
257 unsigned int hw_tag_samples;
1da177e4 258
22e2c507
JA
259 /*
260 * idle window management
261 */
262 struct timer_list idle_slice_timer;
23e018a1 263 struct work_struct unplug_work;
1da177e4 264
22e2c507
JA
265 struct cfq_queue *active_queue;
266 struct cfq_io_context *active_cic;
22e2c507 267
c2dea2d1
VT
268 /*
269 * async queue for each priority case
270 */
271 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
272 struct cfq_queue *async_idle_cfqq;
15c31be4 273
6d048f53 274 sector_t last_position;
1da177e4 275
1da177e4
LT
276 /*
277 * tunables, see top of file
278 */
279 unsigned int cfq_quantum;
22e2c507 280 unsigned int cfq_fifo_expire[2];
1da177e4
LT
281 unsigned int cfq_back_penalty;
282 unsigned int cfq_back_max;
22e2c507
JA
283 unsigned int cfq_slice[2];
284 unsigned int cfq_slice_async_rq;
285 unsigned int cfq_slice_idle;
80bdf0c7 286 unsigned int cfq_group_idle;
963b72fc 287 unsigned int cfq_latency;
ae30c286 288 unsigned int cfq_group_isolation;
d9ff4187 289
80b15c73 290 unsigned int cic_index;
d9ff4187 291 struct list_head cic_list;
1da177e4 292
6118b70b
JA
293 /*
294 * Fallback dummy cfqq for extreme OOM conditions
295 */
296 struct cfq_queue oom_cfqq;
365722bb 297
573412b2 298 unsigned long last_delayed_sync;
25fb5169
VG
299
300 /* List of cfq groups being managed on this device*/
301 struct hlist_head cfqg_list;
bb729bc9 302 struct rcu_head rcu;
1da177e4
LT
303};
304
25fb5169
VG
305static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
306
cdb16e8f
VG
307static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
308 enum wl_prio_t prio,
65b32a57 309 enum wl_type_t type)
c0324a02 310{
1fa8f6d6
VG
311 if (!cfqg)
312 return NULL;
313
c0324a02 314 if (prio == IDLE_WORKLOAD)
cdb16e8f 315 return &cfqg->service_tree_idle;
c0324a02 316
cdb16e8f 317 return &cfqg->service_trees[prio][type];
c0324a02
CZ
318}
319
3b18152c 320enum cfqq_state_flags {
b0b8d749
JA
321 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
322 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 323 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 324 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
325 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
326 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
327 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 328 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 329 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 330 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 331 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 332 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 333 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
334};
335
336#define CFQ_CFQQ_FNS(name) \
337static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
338{ \
fe094d98 339 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
340} \
341static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
342{ \
fe094d98 343 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
344} \
345static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
346{ \
fe094d98 347 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
348}
349
350CFQ_CFQQ_FNS(on_rr);
351CFQ_CFQQ_FNS(wait_request);
b029195d 352CFQ_CFQQ_FNS(must_dispatch);
3b18152c 353CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
354CFQ_CFQQ_FNS(fifo_expire);
355CFQ_CFQQ_FNS(idle_window);
356CFQ_CFQQ_FNS(prio_changed);
44f7c160 357CFQ_CFQQ_FNS(slice_new);
91fac317 358CFQ_CFQQ_FNS(sync);
a36e71f9 359CFQ_CFQQ_FNS(coop);
ae54abed 360CFQ_CFQQ_FNS(split_coop);
76280aff 361CFQ_CFQQ_FNS(deep);
f75edf2d 362CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
363#undef CFQ_CFQQ_FNS
364
afc24d49 365#ifdef CONFIG_CFQ_GROUP_IOSCHED
2868ef7b
VG
366#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
367 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
368 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
369 blkg_path(&(cfqq)->cfqg->blkg), ##args);
370
371#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
372 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
373 blkg_path(&(cfqg)->blkg), ##args); \
374
375#else
7b679138
JA
376#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
377 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
378#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
379#endif
7b679138
JA
380#define cfq_log(cfqd, fmt, args...) \
381 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
382
615f0259
VG
383/* Traverses through cfq group service trees */
384#define for_each_cfqg_st(cfqg, i, j, st) \
385 for (i = 0; i <= IDLE_WORKLOAD; i++) \
386 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
387 : &cfqg->service_tree_idle; \
388 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
389 (i == IDLE_WORKLOAD && j == 0); \
390 j++, st = i < IDLE_WORKLOAD ? \
391 &cfqg->service_trees[i][j]: NULL) \
392
393
02b35081
VG
394static inline bool iops_mode(struct cfq_data *cfqd)
395{
396 /*
397 * If we are not idling on queues and it is a NCQ drive, parallel
398 * execution of requests is on and measuring time is not possible
399 * in most of the cases until and unless we drive shallower queue
400 * depths and that becomes a performance bottleneck. In such cases
401 * switch to start providing fairness in terms of number of IOs.
402 */
403 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
404 return true;
405 else
406 return false;
407}
408
c0324a02
CZ
409static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
410{
411 if (cfq_class_idle(cfqq))
412 return IDLE_WORKLOAD;
413 if (cfq_class_rt(cfqq))
414 return RT_WORKLOAD;
415 return BE_WORKLOAD;
416}
417
718eee05
CZ
418
419static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
420{
421 if (!cfq_cfqq_sync(cfqq))
422 return ASYNC_WORKLOAD;
423 if (!cfq_cfqq_idle_window(cfqq))
424 return SYNC_NOIDLE_WORKLOAD;
425 return SYNC_WORKLOAD;
426}
427
58ff82f3
VG
428static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
429 struct cfq_data *cfqd,
430 struct cfq_group *cfqg)
c0324a02
CZ
431{
432 if (wl == IDLE_WORKLOAD)
cdb16e8f 433 return cfqg->service_tree_idle.count;
c0324a02 434
cdb16e8f
VG
435 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
436 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
437 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
438}
439
f26bd1f0
VG
440static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
441 struct cfq_group *cfqg)
442{
443 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
444 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
445}
446
165125e1 447static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 448static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 449 struct io_context *, gfp_t);
4ac845a2 450static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
451 struct io_context *);
452
453static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 454 bool is_sync)
91fac317 455{
a6151c3a 456 return cic->cfqq[is_sync];
91fac317
VT
457}
458
459static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 460 struct cfq_queue *cfqq, bool is_sync)
91fac317 461{
a6151c3a 462 cic->cfqq[is_sync] = cfqq;
91fac317
VT
463}
464
bca4b914 465#define CIC_DEAD_KEY 1ul
80b15c73 466#define CIC_DEAD_INDEX_SHIFT 1
bca4b914
KK
467
468static inline void *cfqd_dead_key(struct cfq_data *cfqd)
469{
80b15c73 470 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
bca4b914
KK
471}
472
473static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
474{
475 struct cfq_data *cfqd = cic->key;
476
477 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
478 return NULL;
479
480 return cfqd;
481}
482
91fac317
VT
483/*
484 * We regard a request as SYNC, if it's either a read or has the SYNC bit
485 * set (in which case it could also be direct WRITE).
486 */
a6151c3a 487static inline bool cfq_bio_sync(struct bio *bio)
91fac317 488{
7b6d91da 489 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
91fac317 490}
1da177e4 491
99f95e52
AM
492/*
493 * scheduler run of queue, if there are requests pending and no one in the
494 * driver that will restart queueing
495 */
23e018a1 496static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 497{
7b679138
JA
498 if (cfqd->busy_queues) {
499 cfq_log(cfqd, "schedule dispatch");
23e018a1 500 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 501 }
99f95e52
AM
502}
503
165125e1 504static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
505{
506 struct cfq_data *cfqd = q->elevator->elevator_data;
507
f04a6424 508 return !cfqd->rq_queued;
99f95e52
AM
509}
510
44f7c160
JA
511/*
512 * Scale schedule slice based on io priority. Use the sync time slice only
513 * if a queue is marked sync and has sync io queued. A sync queue with async
514 * io only, should not get full sync slice length.
515 */
a6151c3a 516static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 517 unsigned short prio)
44f7c160 518{
d9e7620e 519 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 520
d9e7620e
JA
521 WARN_ON(prio >= IOPRIO_BE_NR);
522
523 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
524}
44f7c160 525
d9e7620e
JA
526static inline int
527cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
528{
529 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
530}
531
25bc6b07
VG
532static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
533{
534 u64 d = delta << CFQ_SERVICE_SHIFT;
535
536 d = d * BLKIO_WEIGHT_DEFAULT;
537 do_div(d, cfqg->weight);
538 return d;
539}
540
541static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
542{
543 s64 delta = (s64)(vdisktime - min_vdisktime);
544 if (delta > 0)
545 min_vdisktime = vdisktime;
546
547 return min_vdisktime;
548}
549
550static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
551{
552 s64 delta = (s64)(vdisktime - min_vdisktime);
553 if (delta < 0)
554 min_vdisktime = vdisktime;
555
556 return min_vdisktime;
557}
558
559static void update_min_vdisktime(struct cfq_rb_root *st)
560{
561 u64 vdisktime = st->min_vdisktime;
562 struct cfq_group *cfqg;
563
25bc6b07
VG
564 if (st->left) {
565 cfqg = rb_entry_cfqg(st->left);
566 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
567 }
568
569 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
570}
571
5db5d642
CZ
572/*
573 * get averaged number of queues of RT/BE priority.
574 * average is updated, with a formula that gives more weight to higher numbers,
575 * to quickly follows sudden increases and decrease slowly
576 */
577
58ff82f3
VG
578static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
579 struct cfq_group *cfqg, bool rt)
5869619c 580{
5db5d642
CZ
581 unsigned min_q, max_q;
582 unsigned mult = cfq_hist_divisor - 1;
583 unsigned round = cfq_hist_divisor / 2;
58ff82f3 584 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 585
58ff82f3
VG
586 min_q = min(cfqg->busy_queues_avg[rt], busy);
587 max_q = max(cfqg->busy_queues_avg[rt], busy);
588 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 589 cfq_hist_divisor;
58ff82f3
VG
590 return cfqg->busy_queues_avg[rt];
591}
592
593static inline unsigned
594cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
595{
596 struct cfq_rb_root *st = &cfqd->grp_service_tree;
597
598 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
599}
600
44f7c160
JA
601static inline void
602cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
603{
5db5d642
CZ
604 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
605 if (cfqd->cfq_latency) {
58ff82f3
VG
606 /*
607 * interested queues (we consider only the ones with the same
608 * priority class in the cfq group)
609 */
610 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
611 cfq_class_rt(cfqq));
5db5d642
CZ
612 unsigned sync_slice = cfqd->cfq_slice[1];
613 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
614 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
615
616 if (expect_latency > group_slice) {
5db5d642
CZ
617 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
618 /* scale low_slice according to IO priority
619 * and sync vs async */
620 unsigned low_slice =
621 min(slice, base_low_slice * slice / sync_slice);
622 /* the adapted slice value is scaled to fit all iqs
623 * into the target latency */
58ff82f3 624 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
625 low_slice);
626 }
627 }
dae739eb 628 cfqq->slice_start = jiffies;
5db5d642 629 cfqq->slice_end = jiffies + slice;
f75edf2d 630 cfqq->allocated_slice = slice;
7b679138 631 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
632}
633
634/*
635 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
636 * isn't valid until the first request from the dispatch is activated
637 * and the slice time set.
638 */
a6151c3a 639static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
640{
641 if (cfq_cfqq_slice_new(cfqq))
c1e44756 642 return false;
44f7c160 643 if (time_before(jiffies, cfqq->slice_end))
c1e44756 644 return false;
44f7c160 645
c1e44756 646 return true;
44f7c160
JA
647}
648
1da177e4 649/*
5e705374 650 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 651 * We choose the request that is closest to the head right now. Distance
e8a99053 652 * behind the head is penalized and only allowed to a certain extent.
1da177e4 653 */
5e705374 654static struct request *
cf7c25cf 655cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 656{
cf7c25cf 657 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 658 unsigned long back_max;
e8a99053
AM
659#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
660#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
661 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 662
5e705374
JA
663 if (rq1 == NULL || rq1 == rq2)
664 return rq2;
665 if (rq2 == NULL)
666 return rq1;
9c2c38a1 667
5e705374
JA
668 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
669 return rq1;
670 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
671 return rq2;
7b6d91da 672 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
374f84ac 673 return rq1;
7b6d91da
CH
674 else if ((rq2->cmd_flags & REQ_META) &&
675 !(rq1->cmd_flags & REQ_META))
374f84ac 676 return rq2;
1da177e4 677
83096ebf
TH
678 s1 = blk_rq_pos(rq1);
679 s2 = blk_rq_pos(rq2);
1da177e4 680
1da177e4
LT
681 /*
682 * by definition, 1KiB is 2 sectors
683 */
684 back_max = cfqd->cfq_back_max * 2;
685
686 /*
687 * Strict one way elevator _except_ in the case where we allow
688 * short backward seeks which are biased as twice the cost of a
689 * similar forward seek.
690 */
691 if (s1 >= last)
692 d1 = s1 - last;
693 else if (s1 + back_max >= last)
694 d1 = (last - s1) * cfqd->cfq_back_penalty;
695 else
e8a99053 696 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
697
698 if (s2 >= last)
699 d2 = s2 - last;
700 else if (s2 + back_max >= last)
701 d2 = (last - s2) * cfqd->cfq_back_penalty;
702 else
e8a99053 703 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
704
705 /* Found required data */
e8a99053
AM
706
707 /*
708 * By doing switch() on the bit mask "wrap" we avoid having to
709 * check two variables for all permutations: --> faster!
710 */
711 switch (wrap) {
5e705374 712 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 713 if (d1 < d2)
5e705374 714 return rq1;
e8a99053 715 else if (d2 < d1)
5e705374 716 return rq2;
e8a99053
AM
717 else {
718 if (s1 >= s2)
5e705374 719 return rq1;
e8a99053 720 else
5e705374 721 return rq2;
e8a99053 722 }
1da177e4 723
e8a99053 724 case CFQ_RQ2_WRAP:
5e705374 725 return rq1;
e8a99053 726 case CFQ_RQ1_WRAP:
5e705374
JA
727 return rq2;
728 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
729 default:
730 /*
731 * Since both rqs are wrapped,
732 * start with the one that's further behind head
733 * (--> only *one* back seek required),
734 * since back seek takes more time than forward.
735 */
736 if (s1 <= s2)
5e705374 737 return rq1;
1da177e4 738 else
5e705374 739 return rq2;
1da177e4
LT
740 }
741}
742
498d3aa2
JA
743/*
744 * The below is leftmost cache rbtree addon
745 */
0871714e 746static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 747{
615f0259
VG
748 /* Service tree is empty */
749 if (!root->count)
750 return NULL;
751
cc09e299
JA
752 if (!root->left)
753 root->left = rb_first(&root->rb);
754
0871714e
JA
755 if (root->left)
756 return rb_entry(root->left, struct cfq_queue, rb_node);
757
758 return NULL;
cc09e299
JA
759}
760
1fa8f6d6
VG
761static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
762{
763 if (!root->left)
764 root->left = rb_first(&root->rb);
765
766 if (root->left)
767 return rb_entry_cfqg(root->left);
768
769 return NULL;
770}
771
a36e71f9
JA
772static void rb_erase_init(struct rb_node *n, struct rb_root *root)
773{
774 rb_erase(n, root);
775 RB_CLEAR_NODE(n);
776}
777
cc09e299
JA
778static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
779{
780 if (root->left == n)
781 root->left = NULL;
a36e71f9 782 rb_erase_init(n, &root->rb);
aa6f6a3d 783 --root->count;
cc09e299
JA
784}
785
1da177e4
LT
786/*
787 * would be nice to take fifo expire time into account as well
788 */
5e705374
JA
789static struct request *
790cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
791 struct request *last)
1da177e4 792{
21183b07
JA
793 struct rb_node *rbnext = rb_next(&last->rb_node);
794 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 795 struct request *next = NULL, *prev = NULL;
1da177e4 796
21183b07 797 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
798
799 if (rbprev)
5e705374 800 prev = rb_entry_rq(rbprev);
1da177e4 801
21183b07 802 if (rbnext)
5e705374 803 next = rb_entry_rq(rbnext);
21183b07
JA
804 else {
805 rbnext = rb_first(&cfqq->sort_list);
806 if (rbnext && rbnext != &last->rb_node)
5e705374 807 next = rb_entry_rq(rbnext);
21183b07 808 }
1da177e4 809
cf7c25cf 810 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
811}
812
d9e7620e
JA
813static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
814 struct cfq_queue *cfqq)
1da177e4 815{
d9e7620e
JA
816 /*
817 * just an approximation, should be ok.
818 */
cdb16e8f 819 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 820 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
821}
822
1fa8f6d6
VG
823static inline s64
824cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
825{
826 return cfqg->vdisktime - st->min_vdisktime;
827}
828
829static void
830__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
831{
832 struct rb_node **node = &st->rb.rb_node;
833 struct rb_node *parent = NULL;
834 struct cfq_group *__cfqg;
835 s64 key = cfqg_key(st, cfqg);
836 int left = 1;
837
838 while (*node != NULL) {
839 parent = *node;
840 __cfqg = rb_entry_cfqg(parent);
841
842 if (key < cfqg_key(st, __cfqg))
843 node = &parent->rb_left;
844 else {
845 node = &parent->rb_right;
846 left = 0;
847 }
848 }
849
850 if (left)
851 st->left = &cfqg->rb_node;
852
853 rb_link_node(&cfqg->rb_node, parent, node);
854 rb_insert_color(&cfqg->rb_node, &st->rb);
855}
856
857static void
858cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
859{
860 struct cfq_rb_root *st = &cfqd->grp_service_tree;
861 struct cfq_group *__cfqg;
862 struct rb_node *n;
863
864 cfqg->nr_cfqq++;
760701bf 865 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1fa8f6d6
VG
866 return;
867
868 /*
869 * Currently put the group at the end. Later implement something
870 * so that groups get lesser vtime based on their weights, so that
871 * if group does not loose all if it was not continously backlogged.
872 */
873 n = rb_last(&st->rb);
874 if (n) {
875 __cfqg = rb_entry_cfqg(n);
876 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
877 } else
878 cfqg->vdisktime = st->min_vdisktime;
879
880 __cfq_group_service_tree_add(st, cfqg);
58ff82f3 881 st->total_weight += cfqg->weight;
1fa8f6d6
VG
882}
883
884static void
885cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
886{
887 struct cfq_rb_root *st = &cfqd->grp_service_tree;
888
889 BUG_ON(cfqg->nr_cfqq < 1);
890 cfqg->nr_cfqq--;
25bc6b07 891
1fa8f6d6
VG
892 /* If there are other cfq queues under this group, don't delete it */
893 if (cfqg->nr_cfqq)
894 return;
895
2868ef7b 896 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
58ff82f3 897 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
898 if (!RB_EMPTY_NODE(&cfqg->rb_node))
899 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 900 cfqg->saved_workload_slice = 0;
e98ef89b 901 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
902}
903
904static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
905{
f75edf2d 906 unsigned int slice_used;
dae739eb
VG
907
908 /*
909 * Queue got expired before even a single request completed or
910 * got expired immediately after first request completion.
911 */
912 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
913 /*
914 * Also charge the seek time incurred to the group, otherwise
915 * if there are mutiple queues in the group, each can dispatch
916 * a single request on seeky media and cause lots of seek time
917 * and group will never know it.
918 */
919 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
920 1);
921 } else {
922 slice_used = jiffies - cfqq->slice_start;
f75edf2d
VG
923 if (slice_used > cfqq->allocated_slice)
924 slice_used = cfqq->allocated_slice;
dae739eb
VG
925 }
926
dae739eb
VG
927 return slice_used;
928}
929
930static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
e5ff082e 931 struct cfq_queue *cfqq)
dae739eb
VG
932{
933 struct cfq_rb_root *st = &cfqd->grp_service_tree;
02b35081 934 unsigned int used_sl, charge;
f26bd1f0
VG
935 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
936 - cfqg->service_tree_idle.count;
937
938 BUG_ON(nr_sync < 0);
02b35081 939 used_sl = charge = cfq_cfqq_slice_usage(cfqq);
dae739eb 940
02b35081
VG
941 if (iops_mode(cfqd))
942 charge = cfqq->slice_dispatch;
943 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
944 charge = cfqq->allocated_slice;
dae739eb
VG
945
946 /* Can't update vdisktime while group is on service tree */
947 cfq_rb_erase(&cfqg->rb_node, st);
02b35081 948 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
dae739eb
VG
949 __cfq_group_service_tree_add(st, cfqg);
950
951 /* This group is being expired. Save the context */
952 if (time_after(cfqd->workload_expires, jiffies)) {
953 cfqg->saved_workload_slice = cfqd->workload_expires
954 - jiffies;
955 cfqg->saved_workload = cfqd->serving_type;
956 cfqg->saved_serving_prio = cfqd->serving_prio;
957 } else
958 cfqg->saved_workload_slice = 0;
2868ef7b
VG
959
960 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
961 st->min_vdisktime);
c4e7893e
VG
962 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
963 " sect=%u", used_sl, cfqq->slice_dispatch, charge,
964 iops_mode(cfqd), cfqq->nr_sectors);
e98ef89b
VG
965 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
966 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1fa8f6d6
VG
967}
968
25fb5169
VG
969#ifdef CONFIG_CFQ_GROUP_IOSCHED
970static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
971{
972 if (blkg)
973 return container_of(blkg, struct cfq_group, blkg);
974 return NULL;
975}
976
fe071437
VG
977void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
978 unsigned int weight)
f8d461d6
VG
979{
980 cfqg_of_blkg(blkg)->weight = weight;
981}
982
25fb5169
VG
983static struct cfq_group *
984cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
985{
986 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
987 struct cfq_group *cfqg = NULL;
988 void *key = cfqd;
989 int i, j;
990 struct cfq_rb_root *st;
22084190
VG
991 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
992 unsigned int major, minor;
25fb5169 993
25fb5169 994 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
a74b2ada
RB
995 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
996 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
997 cfqg->blkg.dev = MKDEV(major, minor);
998 goto done;
999 }
25fb5169
VG
1000 if (cfqg || !create)
1001 goto done;
1002
1003 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1004 if (!cfqg)
1005 goto done;
1006
25fb5169
VG
1007 for_each_cfqg_st(cfqg, i, j, st)
1008 *st = CFQ_RB_ROOT;
1009 RB_CLEAR_NODE(&cfqg->rb_node);
1010
b1c35769
VG
1011 /*
1012 * Take the initial reference that will be released on destroy
1013 * This can be thought of a joint reference by cgroup and
1014 * elevator which will be dropped by either elevator exit
1015 * or cgroup deletion path depending on who is exiting first.
1016 */
1017 atomic_set(&cfqg->ref, 1);
1018
180be2a0
VG
1019 /*
1020 * Add group onto cgroup list. It might happen that bdi->dev is
1021 * not initiliazed yet. Initialize this new group without major
1022 * and minor info and this info will be filled in once a new thread
1023 * comes for IO. See code above.
1024 */
1025 if (bdi->dev) {
1026 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1027 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
22084190 1028 MKDEV(major, minor));
180be2a0
VG
1029 } else
1030 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1031 0);
1032
34d0f179 1033 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
25fb5169
VG
1034
1035 /* Add group on cfqd list */
1036 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1037
1038done:
25fb5169
VG
1039 return cfqg;
1040}
1041
1042/*
1043 * Search for the cfq group current task belongs to. If create = 1, then also
1044 * create the cfq group if it does not exist. request_queue lock must be held.
1045 */
1046static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1047{
1048 struct cgroup *cgroup;
1049 struct cfq_group *cfqg = NULL;
1050
1051 rcu_read_lock();
1052 cgroup = task_cgroup(current, blkio_subsys_id);
1053 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1054 if (!cfqg && create)
1055 cfqg = &cfqd->root_group;
1056 rcu_read_unlock();
1057 return cfqg;
1058}
1059
7f1dc8a2
VG
1060static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1061{
1062 atomic_inc(&cfqg->ref);
1063 return cfqg;
1064}
1065
25fb5169
VG
1066static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1067{
1068 /* Currently, all async queues are mapped to root group */
1069 if (!cfq_cfqq_sync(cfqq))
1070 cfqg = &cfqq->cfqd->root_group;
1071
1072 cfqq->cfqg = cfqg;
b1c35769
VG
1073 /* cfqq reference on cfqg */
1074 atomic_inc(&cfqq->cfqg->ref);
1075}
1076
1077static void cfq_put_cfqg(struct cfq_group *cfqg)
1078{
1079 struct cfq_rb_root *st;
1080 int i, j;
1081
1082 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1083 if (!atomic_dec_and_test(&cfqg->ref))
1084 return;
1085 for_each_cfqg_st(cfqg, i, j, st)
b54ce60e 1086 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
b1c35769
VG
1087 kfree(cfqg);
1088}
1089
1090static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1091{
1092 /* Something wrong if we are trying to remove same group twice */
1093 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1094
1095 hlist_del_init(&cfqg->cfqd_node);
1096
1097 /*
1098 * Put the reference taken at the time of creation so that when all
1099 * queues are gone, group can be destroyed.
1100 */
1101 cfq_put_cfqg(cfqg);
1102}
1103
1104static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1105{
1106 struct hlist_node *pos, *n;
1107 struct cfq_group *cfqg;
1108
1109 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1110 /*
1111 * If cgroup removal path got to blk_group first and removed
1112 * it from cgroup list, then it will take care of destroying
1113 * cfqg also.
1114 */
e98ef89b 1115 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
b1c35769
VG
1116 cfq_destroy_cfqg(cfqd, cfqg);
1117 }
25fb5169 1118}
b1c35769
VG
1119
1120/*
1121 * Blk cgroup controller notification saying that blkio_group object is being
1122 * delinked as associated cgroup object is going away. That also means that
1123 * no new IO will come in this group. So get rid of this group as soon as
1124 * any pending IO in the group is finished.
1125 *
1126 * This function is called under rcu_read_lock(). key is the rcu protected
1127 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1128 * read lock.
1129 *
1130 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1131 * it should not be NULL as even if elevator was exiting, cgroup deltion
1132 * path got to it first.
1133 */
1134void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1135{
1136 unsigned long flags;
1137 struct cfq_data *cfqd = key;
1138
1139 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1140 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1141 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1142}
1143
25fb5169
VG
1144#else /* GROUP_IOSCHED */
1145static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1146{
1147 return &cfqd->root_group;
1148}
7f1dc8a2
VG
1149
1150static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1151{
50eaeb32 1152 return cfqg;
7f1dc8a2
VG
1153}
1154
25fb5169
VG
1155static inline void
1156cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1157 cfqq->cfqg = cfqg;
1158}
1159
b1c35769
VG
1160static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1161static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1162
25fb5169
VG
1163#endif /* GROUP_IOSCHED */
1164
498d3aa2 1165/*
c0324a02 1166 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1167 * requests waiting to be processed. It is sorted in the order that
1168 * we will service the queues.
1169 */
a36e71f9 1170static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1171 bool add_front)
d9e7620e 1172{
0871714e
JA
1173 struct rb_node **p, *parent;
1174 struct cfq_queue *__cfqq;
d9e7620e 1175 unsigned long rb_key;
c0324a02 1176 struct cfq_rb_root *service_tree;
498d3aa2 1177 int left;
dae739eb 1178 int new_cfqq = 1;
ae30c286
VG
1179 int group_changed = 0;
1180
1181#ifdef CONFIG_CFQ_GROUP_IOSCHED
1182 if (!cfqd->cfq_group_isolation
1183 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1184 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1185 /* Move this cfq to root group */
1186 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1187 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1188 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1189 cfqq->orig_cfqg = cfqq->cfqg;
1190 cfqq->cfqg = &cfqd->root_group;
1191 atomic_inc(&cfqd->root_group.ref);
1192 group_changed = 1;
1193 } else if (!cfqd->cfq_group_isolation
1194 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1195 /* cfqq is sequential now needs to go to its original group */
1196 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1197 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1198 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1199 cfq_put_cfqg(cfqq->cfqg);
1200 cfqq->cfqg = cfqq->orig_cfqg;
1201 cfqq->orig_cfqg = NULL;
1202 group_changed = 1;
1203 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1204 }
1205#endif
d9e7620e 1206
cdb16e8f 1207 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1208 cfqq_type(cfqq));
0871714e
JA
1209 if (cfq_class_idle(cfqq)) {
1210 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1211 parent = rb_last(&service_tree->rb);
0871714e
JA
1212 if (parent && parent != &cfqq->rb_node) {
1213 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1214 rb_key += __cfqq->rb_key;
1215 } else
1216 rb_key += jiffies;
1217 } else if (!add_front) {
b9c8946b
JA
1218 /*
1219 * Get our rb key offset. Subtract any residual slice
1220 * value carried from last service. A negative resid
1221 * count indicates slice overrun, and this should position
1222 * the next service time further away in the tree.
1223 */
edd75ffd 1224 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1225 rb_key -= cfqq->slice_resid;
edd75ffd 1226 cfqq->slice_resid = 0;
48e025e6
CZ
1227 } else {
1228 rb_key = -HZ;
aa6f6a3d 1229 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1230 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1231 }
1da177e4 1232
d9e7620e 1233 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1234 new_cfqq = 0;
99f9628a 1235 /*
d9e7620e 1236 * same position, nothing more to do
99f9628a 1237 */
c0324a02
CZ
1238 if (rb_key == cfqq->rb_key &&
1239 cfqq->service_tree == service_tree)
d9e7620e 1240 return;
1da177e4 1241
aa6f6a3d
CZ
1242 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1243 cfqq->service_tree = NULL;
1da177e4 1244 }
d9e7620e 1245
498d3aa2 1246 left = 1;
0871714e 1247 parent = NULL;
aa6f6a3d
CZ
1248 cfqq->service_tree = service_tree;
1249 p = &service_tree->rb.rb_node;
d9e7620e 1250 while (*p) {
67060e37 1251 struct rb_node **n;
cc09e299 1252
d9e7620e
JA
1253 parent = *p;
1254 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1255
0c534e0a 1256 /*
c0324a02 1257 * sort by key, that represents service time.
0c534e0a 1258 */
c0324a02 1259 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1260 n = &(*p)->rb_left;
c0324a02 1261 else {
67060e37 1262 n = &(*p)->rb_right;
cc09e299 1263 left = 0;
c0324a02 1264 }
67060e37
JA
1265
1266 p = n;
d9e7620e
JA
1267 }
1268
cc09e299 1269 if (left)
aa6f6a3d 1270 service_tree->left = &cfqq->rb_node;
cc09e299 1271
d9e7620e
JA
1272 cfqq->rb_key = rb_key;
1273 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1274 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1275 service_tree->count++;
ae30c286 1276 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1277 return;
1fa8f6d6 1278 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1279}
1280
a36e71f9 1281static struct cfq_queue *
f2d1f0ae
JA
1282cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1283 sector_t sector, struct rb_node **ret_parent,
1284 struct rb_node ***rb_link)
a36e71f9 1285{
a36e71f9
JA
1286 struct rb_node **p, *parent;
1287 struct cfq_queue *cfqq = NULL;
1288
1289 parent = NULL;
1290 p = &root->rb_node;
1291 while (*p) {
1292 struct rb_node **n;
1293
1294 parent = *p;
1295 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1296
1297 /*
1298 * Sort strictly based on sector. Smallest to the left,
1299 * largest to the right.
1300 */
2e46e8b2 1301 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1302 n = &(*p)->rb_right;
2e46e8b2 1303 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1304 n = &(*p)->rb_left;
1305 else
1306 break;
1307 p = n;
3ac6c9f8 1308 cfqq = NULL;
a36e71f9
JA
1309 }
1310
1311 *ret_parent = parent;
1312 if (rb_link)
1313 *rb_link = p;
3ac6c9f8 1314 return cfqq;
a36e71f9
JA
1315}
1316
1317static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1318{
a36e71f9
JA
1319 struct rb_node **p, *parent;
1320 struct cfq_queue *__cfqq;
1321
f2d1f0ae
JA
1322 if (cfqq->p_root) {
1323 rb_erase(&cfqq->p_node, cfqq->p_root);
1324 cfqq->p_root = NULL;
1325 }
a36e71f9
JA
1326
1327 if (cfq_class_idle(cfqq))
1328 return;
1329 if (!cfqq->next_rq)
1330 return;
1331
f2d1f0ae 1332 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1333 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1334 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1335 if (!__cfqq) {
1336 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1337 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1338 } else
1339 cfqq->p_root = NULL;
a36e71f9
JA
1340}
1341
498d3aa2
JA
1342/*
1343 * Update cfqq's position in the service tree.
1344 */
edd75ffd 1345static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1346{
6d048f53
JA
1347 /*
1348 * Resorting requires the cfqq to be on the RR list already.
1349 */
a36e71f9 1350 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1351 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1352 cfq_prio_tree_add(cfqd, cfqq);
1353 }
6d048f53
JA
1354}
1355
1da177e4
LT
1356/*
1357 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1358 * the pending list according to last request service
1da177e4 1359 */
febffd61 1360static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1361{
7b679138 1362 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1363 BUG_ON(cfq_cfqq_on_rr(cfqq));
1364 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1365 cfqd->busy_queues++;
1366
edd75ffd 1367 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1368}
1369
498d3aa2
JA
1370/*
1371 * Called when the cfqq no longer has requests pending, remove it from
1372 * the service tree.
1373 */
febffd61 1374static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1375{
7b679138 1376 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1377 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1378 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1379
aa6f6a3d
CZ
1380 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1381 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1382 cfqq->service_tree = NULL;
1383 }
f2d1f0ae
JA
1384 if (cfqq->p_root) {
1385 rb_erase(&cfqq->p_node, cfqq->p_root);
1386 cfqq->p_root = NULL;
1387 }
d9e7620e 1388
1fa8f6d6 1389 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1390 BUG_ON(!cfqd->busy_queues);
1391 cfqd->busy_queues--;
1392}
1393
1394/*
1395 * rb tree support functions
1396 */
febffd61 1397static void cfq_del_rq_rb(struct request *rq)
1da177e4 1398{
5e705374 1399 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1400 const int sync = rq_is_sync(rq);
1da177e4 1401
b4878f24
JA
1402 BUG_ON(!cfqq->queued[sync]);
1403 cfqq->queued[sync]--;
1da177e4 1404
5e705374 1405 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1406
f04a6424
VG
1407 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1408 /*
1409 * Queue will be deleted from service tree when we actually
1410 * expire it later. Right now just remove it from prio tree
1411 * as it is empty.
1412 */
1413 if (cfqq->p_root) {
1414 rb_erase(&cfqq->p_node, cfqq->p_root);
1415 cfqq->p_root = NULL;
1416 }
1417 }
1da177e4
LT
1418}
1419
5e705374 1420static void cfq_add_rq_rb(struct request *rq)
1da177e4 1421{
5e705374 1422 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1423 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1424 struct request *__alias, *prev;
1da177e4 1425
5380a101 1426 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1427
1428 /*
1429 * looks a little odd, but the first insert might return an alias.
1430 * if that happens, put the alias on the dispatch list
1431 */
21183b07 1432 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1433 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1434
1435 if (!cfq_cfqq_on_rr(cfqq))
1436 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1437
1438 /*
1439 * check if this request is a better next-serve candidate
1440 */
a36e71f9 1441 prev = cfqq->next_rq;
cf7c25cf 1442 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1443
1444 /*
1445 * adjust priority tree position, if ->next_rq changes
1446 */
1447 if (prev != cfqq->next_rq)
1448 cfq_prio_tree_add(cfqd, cfqq);
1449
5044eed4 1450 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1451}
1452
febffd61 1453static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1454{
5380a101
JA
1455 elv_rb_del(&cfqq->sort_list, rq);
1456 cfqq->queued[rq_is_sync(rq)]--;
e98ef89b
VG
1457 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1458 rq_data_dir(rq), rq_is_sync(rq));
5e705374 1459 cfq_add_rq_rb(rq);
e98ef89b 1460 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
7f1dc8a2
VG
1461 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1462 rq_is_sync(rq));
1da177e4
LT
1463}
1464
206dc69b
JA
1465static struct request *
1466cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1467{
206dc69b 1468 struct task_struct *tsk = current;
91fac317 1469 struct cfq_io_context *cic;
206dc69b 1470 struct cfq_queue *cfqq;
1da177e4 1471
4ac845a2 1472 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1473 if (!cic)
1474 return NULL;
1475
1476 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1477 if (cfqq) {
1478 sector_t sector = bio->bi_sector + bio_sectors(bio);
1479
21183b07 1480 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1481 }
1da177e4 1482
1da177e4
LT
1483 return NULL;
1484}
1485
165125e1 1486static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1487{
22e2c507 1488 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1489
53c583d2 1490 cfqd->rq_in_driver++;
7b679138 1491 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1492 cfqd->rq_in_driver);
25776e35 1493
5b93629b 1494 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1495}
1496
165125e1 1497static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1498{
b4878f24
JA
1499 struct cfq_data *cfqd = q->elevator->elevator_data;
1500
53c583d2
CZ
1501 WARN_ON(!cfqd->rq_in_driver);
1502 cfqd->rq_in_driver--;
7b679138 1503 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1504 cfqd->rq_in_driver);
1da177e4
LT
1505}
1506
b4878f24 1507static void cfq_remove_request(struct request *rq)
1da177e4 1508{
5e705374 1509 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1510
5e705374
JA
1511 if (cfqq->next_rq == rq)
1512 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1513
b4878f24 1514 list_del_init(&rq->queuelist);
5e705374 1515 cfq_del_rq_rb(rq);
374f84ac 1516
45333d5a 1517 cfqq->cfqd->rq_queued--;
e98ef89b
VG
1518 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1519 rq_data_dir(rq), rq_is_sync(rq));
7b6d91da 1520 if (rq->cmd_flags & REQ_META) {
374f84ac
JA
1521 WARN_ON(!cfqq->meta_pending);
1522 cfqq->meta_pending--;
1523 }
1da177e4
LT
1524}
1525
165125e1
JA
1526static int cfq_merge(struct request_queue *q, struct request **req,
1527 struct bio *bio)
1da177e4
LT
1528{
1529 struct cfq_data *cfqd = q->elevator->elevator_data;
1530 struct request *__rq;
1da177e4 1531
206dc69b 1532 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1533 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1534 *req = __rq;
1535 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1536 }
1537
1538 return ELEVATOR_NO_MERGE;
1da177e4
LT
1539}
1540
165125e1 1541static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1542 int type)
1da177e4 1543{
21183b07 1544 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1545 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1546
5e705374 1547 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1548 }
1da177e4
LT
1549}
1550
812d4026
DS
1551static void cfq_bio_merged(struct request_queue *q, struct request *req,
1552 struct bio *bio)
1553{
e98ef89b
VG
1554 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1555 bio_data_dir(bio), cfq_bio_sync(bio));
812d4026
DS
1556}
1557
1da177e4 1558static void
165125e1 1559cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1560 struct request *next)
1561{
cf7c25cf 1562 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1563 /*
1564 * reposition in fifo if next is older than rq
1565 */
1566 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1567 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1568 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1569 rq_set_fifo_time(rq, rq_fifo_time(next));
1570 }
22e2c507 1571
cf7c25cf
CZ
1572 if (cfqq->next_rq == next)
1573 cfqq->next_rq = rq;
b4878f24 1574 cfq_remove_request(next);
e98ef89b
VG
1575 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1576 rq_data_dir(next), rq_is_sync(next));
22e2c507
JA
1577}
1578
165125e1 1579static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1580 struct bio *bio)
1581{
1582 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1583 struct cfq_io_context *cic;
da775265 1584 struct cfq_queue *cfqq;
da775265
JA
1585
1586 /*
ec8acb69 1587 * Disallow merge of a sync bio into an async request.
da775265 1588 */
91fac317 1589 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1590 return false;
da775265
JA
1591
1592 /*
719d3402
JA
1593 * Lookup the cfqq that this bio will be queued with. Allow
1594 * merge only if rq is queued there.
da775265 1595 */
4ac845a2 1596 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1597 if (!cic)
a6151c3a 1598 return false;
719d3402 1599
91fac317 1600 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1601 return cfqq == RQ_CFQQ(rq);
da775265
JA
1602}
1603
812df48d
DS
1604static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1605{
1606 del_timer(&cfqd->idle_slice_timer);
e98ef89b 1607 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
812df48d
DS
1608}
1609
febffd61
JA
1610static void __cfq_set_active_queue(struct cfq_data *cfqd,
1611 struct cfq_queue *cfqq)
22e2c507
JA
1612{
1613 if (cfqq) {
b1ffe737
DS
1614 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1615 cfqd->serving_prio, cfqd->serving_type);
e98ef89b 1616 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
dae739eb
VG
1617 cfqq->slice_start = 0;
1618 cfqq->dispatch_start = jiffies;
f75edf2d 1619 cfqq->allocated_slice = 0;
22e2c507 1620 cfqq->slice_end = 0;
2f5cb738 1621 cfqq->slice_dispatch = 0;
c4e7893e 1622 cfqq->nr_sectors = 0;
2f5cb738 1623
2f5cb738 1624 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1625 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1626 cfq_clear_cfqq_must_alloc_slice(cfqq);
1627 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1628 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738 1629
812df48d 1630 cfq_del_timer(cfqd, cfqq);
22e2c507
JA
1631 }
1632
1633 cfqd->active_queue = cfqq;
1634}
1635
7b14e3b5
JA
1636/*
1637 * current cfqq expired its slice (or was too idle), select new one
1638 */
1639static void
1640__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e5ff082e 1641 bool timed_out)
7b14e3b5 1642{
7b679138
JA
1643 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1644
7b14e3b5 1645 if (cfq_cfqq_wait_request(cfqq))
812df48d 1646 cfq_del_timer(cfqd, cfqq);
7b14e3b5 1647
7b14e3b5 1648 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1649 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1650
ae54abed
SL
1651 /*
1652 * If this cfqq is shared between multiple processes, check to
1653 * make sure that those processes are still issuing I/Os within
1654 * the mean seek distance. If not, it may be time to break the
1655 * queues apart again.
1656 */
1657 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1658 cfq_mark_cfqq_split_coop(cfqq);
1659
7b14e3b5 1660 /*
6084cdda 1661 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1662 */
7b679138 1663 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1664 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1665 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1666 }
7b14e3b5 1667
e5ff082e 1668 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
dae739eb 1669
f04a6424
VG
1670 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1671 cfq_del_cfqq_rr(cfqd, cfqq);
1672
edd75ffd 1673 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1674
1675 if (cfqq == cfqd->active_queue)
1676 cfqd->active_queue = NULL;
1677
1678 if (cfqd->active_cic) {
1679 put_io_context(cfqd->active_cic->ioc);
1680 cfqd->active_cic = NULL;
1681 }
7b14e3b5
JA
1682}
1683
e5ff082e 1684static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1685{
1686 struct cfq_queue *cfqq = cfqd->active_queue;
1687
1688 if (cfqq)
e5ff082e 1689 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1690}
1691
498d3aa2
JA
1692/*
1693 * Get next queue for service. Unless we have a queue preemption,
1694 * we'll simply select the first cfqq in the service tree.
1695 */
6d048f53 1696static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1697{
c0324a02 1698 struct cfq_rb_root *service_tree =
cdb16e8f 1699 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1700 cfqd->serving_type);
d9e7620e 1701
f04a6424
VG
1702 if (!cfqd->rq_queued)
1703 return NULL;
1704
1fa8f6d6
VG
1705 /* There is nothing to dispatch */
1706 if (!service_tree)
1707 return NULL;
c0324a02
CZ
1708 if (RB_EMPTY_ROOT(&service_tree->rb))
1709 return NULL;
1710 return cfq_rb_first(service_tree);
6d048f53
JA
1711}
1712
f04a6424
VG
1713static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1714{
25fb5169 1715 struct cfq_group *cfqg;
f04a6424
VG
1716 struct cfq_queue *cfqq;
1717 int i, j;
1718 struct cfq_rb_root *st;
1719
1720 if (!cfqd->rq_queued)
1721 return NULL;
1722
25fb5169
VG
1723 cfqg = cfq_get_next_cfqg(cfqd);
1724 if (!cfqg)
1725 return NULL;
1726
f04a6424
VG
1727 for_each_cfqg_st(cfqg, i, j, st)
1728 if ((cfqq = cfq_rb_first(st)) != NULL)
1729 return cfqq;
1730 return NULL;
1731}
1732
498d3aa2
JA
1733/*
1734 * Get and set a new active queue for service.
1735 */
a36e71f9
JA
1736static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1737 struct cfq_queue *cfqq)
6d048f53 1738{
e00ef799 1739 if (!cfqq)
a36e71f9 1740 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1741
22e2c507 1742 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1743 return cfqq;
22e2c507
JA
1744}
1745
d9e7620e
JA
1746static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1747 struct request *rq)
1748{
83096ebf
TH
1749 if (blk_rq_pos(rq) >= cfqd->last_position)
1750 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1751 else
83096ebf 1752 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1753}
1754
b2c18e1e 1755static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1756 struct request *rq)
6d048f53 1757{
e9ce335d 1758 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1759}
1760
a36e71f9
JA
1761static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1762 struct cfq_queue *cur_cfqq)
1763{
f2d1f0ae 1764 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1765 struct rb_node *parent, *node;
1766 struct cfq_queue *__cfqq;
1767 sector_t sector = cfqd->last_position;
1768
1769 if (RB_EMPTY_ROOT(root))
1770 return NULL;
1771
1772 /*
1773 * First, if we find a request starting at the end of the last
1774 * request, choose it.
1775 */
f2d1f0ae 1776 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1777 if (__cfqq)
1778 return __cfqq;
1779
1780 /*
1781 * If the exact sector wasn't found, the parent of the NULL leaf
1782 * will contain the closest sector.
1783 */
1784 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1785 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1786 return __cfqq;
1787
2e46e8b2 1788 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1789 node = rb_next(&__cfqq->p_node);
1790 else
1791 node = rb_prev(&__cfqq->p_node);
1792 if (!node)
1793 return NULL;
1794
1795 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1796 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1797 return __cfqq;
1798
1799 return NULL;
1800}
1801
1802/*
1803 * cfqd - obvious
1804 * cur_cfqq - passed in so that we don't decide that the current queue is
1805 * closely cooperating with itself.
1806 *
1807 * So, basically we're assuming that that cur_cfqq has dispatched at least
1808 * one request, and that cfqd->last_position reflects a position on the disk
1809 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1810 * assumption.
1811 */
1812static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1813 struct cfq_queue *cur_cfqq)
6d048f53 1814{
a36e71f9
JA
1815 struct cfq_queue *cfqq;
1816
39c01b21
DS
1817 if (cfq_class_idle(cur_cfqq))
1818 return NULL;
e6c5bc73
JM
1819 if (!cfq_cfqq_sync(cur_cfqq))
1820 return NULL;
1821 if (CFQQ_SEEKY(cur_cfqq))
1822 return NULL;
1823
b9d8f4c7
GJ
1824 /*
1825 * Don't search priority tree if it's the only queue in the group.
1826 */
1827 if (cur_cfqq->cfqg->nr_cfqq == 1)
1828 return NULL;
1829
6d048f53 1830 /*
d9e7620e
JA
1831 * We should notice if some of the queues are cooperating, eg
1832 * working closely on the same area of the disk. In that case,
1833 * we can group them together and don't waste time idling.
6d048f53 1834 */
a36e71f9
JA
1835 cfqq = cfqq_close(cfqd, cur_cfqq);
1836 if (!cfqq)
1837 return NULL;
1838
8682e1f1
VG
1839 /* If new queue belongs to different cfq_group, don't choose it */
1840 if (cur_cfqq->cfqg != cfqq->cfqg)
1841 return NULL;
1842
df5fe3e8
JM
1843 /*
1844 * It only makes sense to merge sync queues.
1845 */
1846 if (!cfq_cfqq_sync(cfqq))
1847 return NULL;
e6c5bc73
JM
1848 if (CFQQ_SEEKY(cfqq))
1849 return NULL;
df5fe3e8 1850
c0324a02
CZ
1851 /*
1852 * Do not merge queues of different priority classes
1853 */
1854 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1855 return NULL;
1856
a36e71f9 1857 return cfqq;
6d048f53
JA
1858}
1859
a6d44e98
CZ
1860/*
1861 * Determine whether we should enforce idle window for this queue.
1862 */
1863
1864static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1865{
1866 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1867 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1868
f04a6424
VG
1869 BUG_ON(!service_tree);
1870 BUG_ON(!service_tree->count);
1871
b6508c16
VG
1872 if (!cfqd->cfq_slice_idle)
1873 return false;
1874
a6d44e98
CZ
1875 /* We never do for idle class queues. */
1876 if (prio == IDLE_WORKLOAD)
1877 return false;
1878
1879 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1880 if (cfq_cfqq_idle_window(cfqq) &&
1881 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1882 return true;
1883
1884 /*
1885 * Otherwise, we do only if they are the last ones
1886 * in their service tree.
1887 */
b1ffe737 1888 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
c1e44756 1889 return true;
b1ffe737
DS
1890 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1891 service_tree->count);
c1e44756 1892 return false;
a6d44e98
CZ
1893}
1894
6d048f53 1895static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1896{
1792669c 1897 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1898 struct cfq_io_context *cic;
80bdf0c7 1899 unsigned long sl, group_idle = 0;
7b14e3b5 1900
a68bbddb 1901 /*
f7d7b7a7
JA
1902 * SSD device without seek penalty, disable idling. But only do so
1903 * for devices that support queuing, otherwise we still have a problem
1904 * with sync vs async workloads.
a68bbddb 1905 */
f7d7b7a7 1906 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1907 return;
1908
dd67d051 1909 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1910 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1911
1912 /*
1913 * idle is disabled, either manually or by past process history
1914 */
80bdf0c7
VG
1915 if (!cfq_should_idle(cfqd, cfqq)) {
1916 /* no queue idling. Check for group idling */
1917 if (cfqd->cfq_group_idle)
1918 group_idle = cfqd->cfq_group_idle;
1919 else
1920 return;
1921 }
6d048f53 1922
7b679138 1923 /*
8e550632 1924 * still active requests from this queue, don't idle
7b679138 1925 */
8e550632 1926 if (cfqq->dispatched)
7b679138
JA
1927 return;
1928
22e2c507
JA
1929 /*
1930 * task has exited, don't wait
1931 */
206dc69b 1932 cic = cfqd->active_cic;
66dac98e 1933 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1934 return;
1935
355b659c
CZ
1936 /*
1937 * If our average think time is larger than the remaining time
1938 * slice, then don't idle. This avoids overrunning the allotted
1939 * time slice.
1940 */
1941 if (sample_valid(cic->ttime_samples) &&
b1ffe737
DS
1942 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1943 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1944 cic->ttime_mean);
355b659c 1945 return;
b1ffe737 1946 }
355b659c 1947
80bdf0c7
VG
1948 /* There are other queues in the group, don't do group idle */
1949 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
1950 return;
1951
3b18152c 1952 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1953
80bdf0c7
VG
1954 if (group_idle)
1955 sl = cfqd->cfq_group_idle;
1956 else
1957 sl = cfqd->cfq_slice_idle;
206dc69b 1958
7b14e3b5 1959 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
e98ef89b 1960 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
80bdf0c7
VG
1961 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
1962 group_idle ? 1 : 0);
1da177e4
LT
1963}
1964
498d3aa2
JA
1965/*
1966 * Move request from internal lists to the request queue dispatch list.
1967 */
165125e1 1968static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1969{
3ed9a296 1970 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1971 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1972
7b679138
JA
1973 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1974
06d21886 1975 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1976 cfq_remove_request(rq);
6d048f53 1977 cfqq->dispatched++;
80bdf0c7 1978 (RQ_CFQG(rq))->dispatched++;
5380a101 1979 elv_dispatch_sort(q, rq);
3ed9a296 1980
53c583d2 1981 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
c4e7893e 1982 cfqq->nr_sectors += blk_rq_sectors(rq);
e98ef89b 1983 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
84c124da 1984 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
1985}
1986
1987/*
1988 * return expired entry, or NULL to just start from scratch in rbtree
1989 */
febffd61 1990static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1991{
30996f40 1992 struct request *rq = NULL;
1da177e4 1993
3b18152c 1994 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1995 return NULL;
cb887411
JA
1996
1997 cfq_mark_cfqq_fifo_expire(cfqq);
1998
89850f7e
JA
1999 if (list_empty(&cfqq->fifo))
2000 return NULL;
1da177e4 2001
89850f7e 2002 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 2003 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 2004 rq = NULL;
1da177e4 2005
30996f40 2006 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 2007 return rq;
1da177e4
LT
2008}
2009
22e2c507
JA
2010static inline int
2011cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2012{
2013 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 2014
22e2c507 2015 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 2016
22e2c507 2017 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
2018}
2019
df5fe3e8
JM
2020/*
2021 * Must be called with the queue_lock held.
2022 */
2023static int cfqq_process_refs(struct cfq_queue *cfqq)
2024{
2025 int process_refs, io_refs;
2026
2027 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
30d7b944 2028 process_refs = cfqq->ref - io_refs;
df5fe3e8
JM
2029 BUG_ON(process_refs < 0);
2030 return process_refs;
2031}
2032
2033static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2034{
e6c5bc73 2035 int process_refs, new_process_refs;
df5fe3e8
JM
2036 struct cfq_queue *__cfqq;
2037
c10b61f0
JM
2038 /*
2039 * If there are no process references on the new_cfqq, then it is
2040 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2041 * chain may have dropped their last reference (not just their
2042 * last process reference).
2043 */
2044 if (!cfqq_process_refs(new_cfqq))
2045 return;
2046
df5fe3e8
JM
2047 /* Avoid a circular list and skip interim queue merges */
2048 while ((__cfqq = new_cfqq->new_cfqq)) {
2049 if (__cfqq == cfqq)
2050 return;
2051 new_cfqq = __cfqq;
2052 }
2053
2054 process_refs = cfqq_process_refs(cfqq);
c10b61f0 2055 new_process_refs = cfqq_process_refs(new_cfqq);
df5fe3e8
JM
2056 /*
2057 * If the process for the cfqq has gone away, there is no
2058 * sense in merging the queues.
2059 */
c10b61f0 2060 if (process_refs == 0 || new_process_refs == 0)
df5fe3e8
JM
2061 return;
2062
e6c5bc73
JM
2063 /*
2064 * Merge in the direction of the lesser amount of work.
2065 */
e6c5bc73
JM
2066 if (new_process_refs >= process_refs) {
2067 cfqq->new_cfqq = new_cfqq;
30d7b944 2068 new_cfqq->ref += process_refs;
e6c5bc73
JM
2069 } else {
2070 new_cfqq->new_cfqq = cfqq;
30d7b944 2071 cfqq->ref += new_process_refs;
e6c5bc73 2072 }
df5fe3e8
JM
2073}
2074
cdb16e8f 2075static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 2076 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
2077{
2078 struct cfq_queue *queue;
2079 int i;
2080 bool key_valid = false;
2081 unsigned long lowest_key = 0;
2082 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2083
65b32a57
VG
2084 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2085 /* select the one with lowest rb_key */
2086 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
2087 if (queue &&
2088 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2089 lowest_key = queue->rb_key;
2090 cur_best = i;
2091 key_valid = true;
2092 }
2093 }
2094
2095 return cur_best;
2096}
2097
cdb16e8f 2098static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 2099{
718eee05
CZ
2100 unsigned slice;
2101 unsigned count;
cdb16e8f 2102 struct cfq_rb_root *st;
58ff82f3 2103 unsigned group_slice;
e4ea0c16 2104 enum wl_prio_t original_prio = cfqd->serving_prio;
718eee05
CZ
2105
2106 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2107 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2108 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2109 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2110 cfqd->serving_prio = BE_WORKLOAD;
2111 else {
2112 cfqd->serving_prio = IDLE_WORKLOAD;
2113 cfqd->workload_expires = jiffies + 1;
2114 return;
2115 }
2116
e4ea0c16
SL
2117 if (original_prio != cfqd->serving_prio)
2118 goto new_workload;
2119
718eee05
CZ
2120 /*
2121 * For RT and BE, we have to choose also the type
2122 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2123 * expiration time
2124 */
65b32a57 2125 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2126 count = st->count;
718eee05
CZ
2127
2128 /*
65b32a57 2129 * check workload expiration, and that we still have other queues ready
718eee05 2130 */
65b32a57 2131 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2132 return;
2133
e4ea0c16 2134new_workload:
718eee05
CZ
2135 /* otherwise select new workload type */
2136 cfqd->serving_type =
65b32a57
VG
2137 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2138 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2139 count = st->count;
718eee05
CZ
2140
2141 /*
2142 * the workload slice is computed as a fraction of target latency
2143 * proportional to the number of queues in that workload, over
2144 * all the queues in the same priority class
2145 */
58ff82f3
VG
2146 group_slice = cfq_group_slice(cfqd, cfqg);
2147
2148 slice = group_slice * count /
2149 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2150 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2151
f26bd1f0
VG
2152 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2153 unsigned int tmp;
2154
2155 /*
2156 * Async queues are currently system wide. Just taking
2157 * proportion of queues with-in same group will lead to higher
2158 * async ratio system wide as generally root group is going
2159 * to have higher weight. A more accurate thing would be to
2160 * calculate system wide asnc/sync ratio.
2161 */
2162 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2163 tmp = tmp/cfqd->busy_queues;
2164 slice = min_t(unsigned, slice, tmp);
2165
718eee05
CZ
2166 /* async workload slice is scaled down according to
2167 * the sync/async slice ratio. */
2168 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2169 } else
718eee05
CZ
2170 /* sync workload slice is at least 2 * cfq_slice_idle */
2171 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2172
2173 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2174 cfq_log(cfqd, "workload slice:%d", slice);
718eee05
CZ
2175 cfqd->workload_expires = jiffies + slice;
2176}
2177
1fa8f6d6
VG
2178static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2179{
2180 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2181 struct cfq_group *cfqg;
1fa8f6d6
VG
2182
2183 if (RB_EMPTY_ROOT(&st->rb))
2184 return NULL;
25bc6b07 2185 cfqg = cfq_rb_first_group(st);
25bc6b07
VG
2186 update_min_vdisktime(st);
2187 return cfqg;
1fa8f6d6
VG
2188}
2189
cdb16e8f
VG
2190static void cfq_choose_cfqg(struct cfq_data *cfqd)
2191{
1fa8f6d6
VG
2192 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2193
2194 cfqd->serving_group = cfqg;
dae739eb
VG
2195
2196 /* Restore the workload type data */
2197 if (cfqg->saved_workload_slice) {
2198 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2199 cfqd->serving_type = cfqg->saved_workload;
2200 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2201 } else
2202 cfqd->workload_expires = jiffies - 1;
2203
1fa8f6d6 2204 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2205}
2206
22e2c507 2207/*
498d3aa2
JA
2208 * Select a queue for service. If we have a current active queue,
2209 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2210 */
1b5ed5e1 2211static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2212{
a36e71f9 2213 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2214
22e2c507
JA
2215 cfqq = cfqd->active_queue;
2216 if (!cfqq)
2217 goto new_queue;
1da177e4 2218
f04a6424
VG
2219 if (!cfqd->rq_queued)
2220 return NULL;
c244bb50
VG
2221
2222 /*
2223 * We were waiting for group to get backlogged. Expire the queue
2224 */
2225 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2226 goto expire;
2227
22e2c507 2228 /*
6d048f53 2229 * The active queue has run out of time, expire it and select new.
22e2c507 2230 */
7667aa06
VG
2231 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2232 /*
2233 * If slice had not expired at the completion of last request
2234 * we might not have turned on wait_busy flag. Don't expire
2235 * the queue yet. Allow the group to get backlogged.
2236 *
2237 * The very fact that we have used the slice, that means we
2238 * have been idling all along on this queue and it should be
2239 * ok to wait for this request to complete.
2240 */
82bbbf28
VG
2241 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2242 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2243 cfqq = NULL;
7667aa06 2244 goto keep_queue;
82bbbf28 2245 } else
80bdf0c7 2246 goto check_group_idle;
7667aa06 2247 }
1da177e4 2248
22e2c507 2249 /*
6d048f53
JA
2250 * The active queue has requests and isn't expired, allow it to
2251 * dispatch.
22e2c507 2252 */
dd67d051 2253 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2254 goto keep_queue;
6d048f53 2255
a36e71f9
JA
2256 /*
2257 * If another queue has a request waiting within our mean seek
2258 * distance, let it run. The expire code will check for close
2259 * cooperators and put the close queue at the front of the service
df5fe3e8 2260 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2261 */
b3b6d040 2262 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2263 if (new_cfqq) {
2264 if (!cfqq->new_cfqq)
2265 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2266 goto expire;
df5fe3e8 2267 }
a36e71f9 2268
6d048f53
JA
2269 /*
2270 * No requests pending. If the active queue still has requests in
2271 * flight or is idling for a new request, allow either of these
2272 * conditions to happen (or time out) before selecting a new queue.
2273 */
80bdf0c7
VG
2274 if (timer_pending(&cfqd->idle_slice_timer)) {
2275 cfqq = NULL;
2276 goto keep_queue;
2277 }
2278
8e1ac665
SL
2279 /*
2280 * This is a deep seek queue, but the device is much faster than
2281 * the queue can deliver, don't idle
2282 **/
2283 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2284 (cfq_cfqq_slice_new(cfqq) ||
2285 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2286 cfq_clear_cfqq_deep(cfqq);
2287 cfq_clear_cfqq_idle_window(cfqq);
2288 }
2289
80bdf0c7
VG
2290 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2291 cfqq = NULL;
2292 goto keep_queue;
2293 }
2294
2295 /*
2296 * If group idle is enabled and there are requests dispatched from
2297 * this group, wait for requests to complete.
2298 */
2299check_group_idle:
2300 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2301 && cfqq->cfqg->dispatched) {
caaa5f9f
JA
2302 cfqq = NULL;
2303 goto keep_queue;
22e2c507
JA
2304 }
2305
3b18152c 2306expire:
e5ff082e 2307 cfq_slice_expired(cfqd, 0);
3b18152c 2308new_queue:
718eee05
CZ
2309 /*
2310 * Current queue expired. Check if we have to switch to a new
2311 * service tree
2312 */
2313 if (!new_cfqq)
cdb16e8f 2314 cfq_choose_cfqg(cfqd);
718eee05 2315
a36e71f9 2316 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2317keep_queue:
3b18152c 2318 return cfqq;
22e2c507
JA
2319}
2320
febffd61 2321static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2322{
2323 int dispatched = 0;
2324
2325 while (cfqq->next_rq) {
2326 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2327 dispatched++;
2328 }
2329
2330 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2331
2332 /* By default cfqq is not expired if it is empty. Do it explicitly */
e5ff082e 2333 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2334 return dispatched;
2335}
2336
498d3aa2
JA
2337/*
2338 * Drain our current requests. Used for barriers and when switching
2339 * io schedulers on-the-fly.
2340 */
d9e7620e 2341static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2342{
0871714e 2343 struct cfq_queue *cfqq;
d9e7620e 2344 int dispatched = 0;
cdb16e8f 2345
3440c49f 2346 /* Expire the timeslice of the current active queue first */
e5ff082e 2347 cfq_slice_expired(cfqd, 0);
3440c49f
DS
2348 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2349 __cfq_set_active_queue(cfqd, cfqq);
f04a6424 2350 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3440c49f 2351 }
1b5ed5e1 2352
1b5ed5e1
TH
2353 BUG_ON(cfqd->busy_queues);
2354
6923715a 2355 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2356 return dispatched;
2357}
2358
abc3c744
SL
2359static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2360 struct cfq_queue *cfqq)
2361{
2362 /* the queue hasn't finished any request, can't estimate */
2363 if (cfq_cfqq_slice_new(cfqq))
c1e44756 2364 return true;
abc3c744
SL
2365 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2366 cfqq->slice_end))
c1e44756 2367 return true;
abc3c744 2368
c1e44756 2369 return false;
abc3c744
SL
2370}
2371
0b182d61 2372static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2373{
2f5cb738 2374 unsigned int max_dispatch;
22e2c507 2375
5ad531db
JA
2376 /*
2377 * Drain async requests before we start sync IO
2378 */
53c583d2 2379 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2380 return false;
5ad531db 2381
2f5cb738
JA
2382 /*
2383 * If this is an async queue and we have sync IO in flight, let it wait
2384 */
53c583d2 2385 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2386 return false;
2f5cb738 2387
abc3c744 2388 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2389 if (cfq_class_idle(cfqq))
2390 max_dispatch = 1;
b4878f24 2391
2f5cb738
JA
2392 /*
2393 * Does this cfqq already have too much IO in flight?
2394 */
2395 if (cfqq->dispatched >= max_dispatch) {
2396 /*
2397 * idle queue must always only have a single IO in flight
2398 */
3ed9a296 2399 if (cfq_class_idle(cfqq))
0b182d61 2400 return false;
3ed9a296 2401
2f5cb738
JA
2402 /*
2403 * We have other queues, don't allow more IO from this one
2404 */
abc3c744 2405 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
0b182d61 2406 return false;
9ede209e 2407
365722bb 2408 /*
474b18cc 2409 * Sole queue user, no limit
365722bb 2410 */
abc3c744
SL
2411 if (cfqd->busy_queues == 1)
2412 max_dispatch = -1;
2413 else
2414 /*
2415 * Normally we start throttling cfqq when cfq_quantum/2
2416 * requests have been dispatched. But we can drive
2417 * deeper queue depths at the beginning of slice
2418 * subjected to upper limit of cfq_quantum.
2419 * */
2420 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2421 }
2422
2423 /*
2424 * Async queues must wait a bit before being allowed dispatch.
2425 * We also ramp up the dispatch depth gradually for async IO,
2426 * based on the last sync IO we serviced
2427 */
963b72fc 2428 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2429 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2430 unsigned int depth;
365722bb 2431
61f0c1dc 2432 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2433 if (!depth && !cfqq->dispatched)
2434 depth = 1;
8e296755
JA
2435 if (depth < max_dispatch)
2436 max_dispatch = depth;
2f5cb738 2437 }
3ed9a296 2438
0b182d61
JA
2439 /*
2440 * If we're below the current max, allow a dispatch
2441 */
2442 return cfqq->dispatched < max_dispatch;
2443}
2444
2445/*
2446 * Dispatch a request from cfqq, moving them to the request queue
2447 * dispatch list.
2448 */
2449static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2450{
2451 struct request *rq;
2452
2453 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2454
2455 if (!cfq_may_dispatch(cfqd, cfqq))
2456 return false;
2457
2458 /*
2459 * follow expired path, else get first next available
2460 */
2461 rq = cfq_check_fifo(cfqq);
2462 if (!rq)
2463 rq = cfqq->next_rq;
2464
2465 /*
2466 * insert request into driver dispatch list
2467 */
2468 cfq_dispatch_insert(cfqd->queue, rq);
2469
2470 if (!cfqd->active_cic) {
2471 struct cfq_io_context *cic = RQ_CIC(rq);
2472
2473 atomic_long_inc(&cic->ioc->refcount);
2474 cfqd->active_cic = cic;
2475 }
2476
2477 return true;
2478}
2479
2480/*
2481 * Find the cfqq that we need to service and move a request from that to the
2482 * dispatch list
2483 */
2484static int cfq_dispatch_requests(struct request_queue *q, int force)
2485{
2486 struct cfq_data *cfqd = q->elevator->elevator_data;
2487 struct cfq_queue *cfqq;
2488
2489 if (!cfqd->busy_queues)
2490 return 0;
2491
2492 if (unlikely(force))
2493 return cfq_forced_dispatch(cfqd);
2494
2495 cfqq = cfq_select_queue(cfqd);
2496 if (!cfqq)
8e296755
JA
2497 return 0;
2498
2f5cb738 2499 /*
0b182d61 2500 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2501 */
0b182d61
JA
2502 if (!cfq_dispatch_request(cfqd, cfqq))
2503 return 0;
2504
2f5cb738 2505 cfqq->slice_dispatch++;
b029195d 2506 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2507
2f5cb738
JA
2508 /*
2509 * expire an async queue immediately if it has used up its slice. idle
2510 * queue always expire after 1 dispatch round.
2511 */
2512 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2513 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2514 cfq_class_idle(cfqq))) {
2515 cfqq->slice_end = jiffies + 1;
e5ff082e 2516 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2517 }
2518
b217a903 2519 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2520 return 1;
1da177e4
LT
2521}
2522
1da177e4 2523/*
5e705374
JA
2524 * task holds one reference to the queue, dropped when task exits. each rq
2525 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2526 *
b1c35769 2527 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2528 * queue lock must be held here.
2529 */
2530static void cfq_put_queue(struct cfq_queue *cfqq)
2531{
22e2c507 2532 struct cfq_data *cfqd = cfqq->cfqd;
878eaddd 2533 struct cfq_group *cfqg, *orig_cfqg;
22e2c507 2534
30d7b944 2535 BUG_ON(cfqq->ref <= 0);
1da177e4 2536
30d7b944
SL
2537 cfqq->ref--;
2538 if (cfqq->ref)
1da177e4
LT
2539 return;
2540
7b679138 2541 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2542 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2543 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2544 cfqg = cfqq->cfqg;
878eaddd 2545 orig_cfqg = cfqq->orig_cfqg;
1da177e4 2546
28f95cbc 2547 if (unlikely(cfqd->active_queue == cfqq)) {
e5ff082e 2548 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2549 cfq_schedule_dispatch(cfqd);
28f95cbc 2550 }
22e2c507 2551
f04a6424 2552 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2553 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2554 cfq_put_cfqg(cfqg);
878eaddd
VG
2555 if (orig_cfqg)
2556 cfq_put_cfqg(orig_cfqg);
1da177e4
LT
2557}
2558
d6de8be7
JA
2559/*
2560 * Must always be called with the rcu_read_lock() held
2561 */
07416d29
JA
2562static void
2563__call_for_each_cic(struct io_context *ioc,
2564 void (*func)(struct io_context *, struct cfq_io_context *))
2565{
2566 struct cfq_io_context *cic;
2567 struct hlist_node *n;
2568
2569 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2570 func(ioc, cic);
2571}
2572
4ac845a2 2573/*
34e6bbf2 2574 * Call func for each cic attached to this ioc.
4ac845a2 2575 */
34e6bbf2 2576static void
4ac845a2
JA
2577call_for_each_cic(struct io_context *ioc,
2578 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2579{
4ac845a2 2580 rcu_read_lock();
07416d29 2581 __call_for_each_cic(ioc, func);
4ac845a2 2582 rcu_read_unlock();
34e6bbf2
FC
2583}
2584
2585static void cfq_cic_free_rcu(struct rcu_head *head)
2586{
2587 struct cfq_io_context *cic;
2588
2589 cic = container_of(head, struct cfq_io_context, rcu_head);
2590
2591 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2592 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2593
9a11b4ed
JA
2594 if (ioc_gone) {
2595 /*
2596 * CFQ scheduler is exiting, grab exit lock and check
2597 * the pending io context count. If it hits zero,
2598 * complete ioc_gone and set it back to NULL
2599 */
2600 spin_lock(&ioc_gone_lock);
245b2e70 2601 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2602 complete(ioc_gone);
2603 ioc_gone = NULL;
2604 }
2605 spin_unlock(&ioc_gone_lock);
2606 }
34e6bbf2 2607}
4ac845a2 2608
34e6bbf2
FC
2609static void cfq_cic_free(struct cfq_io_context *cic)
2610{
2611 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2612}
2613
2614static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2615{
2616 unsigned long flags;
bca4b914 2617 unsigned long dead_key = (unsigned long) cic->key;
4ac845a2 2618
bca4b914 2619 BUG_ON(!(dead_key & CIC_DEAD_KEY));
4ac845a2
JA
2620
2621 spin_lock_irqsave(&ioc->lock, flags);
80b15c73 2622 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
ffc4e759 2623 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2624 spin_unlock_irqrestore(&ioc->lock, flags);
2625
34e6bbf2 2626 cfq_cic_free(cic);
4ac845a2
JA
2627}
2628
d6de8be7
JA
2629/*
2630 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2631 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2632 * and ->trim() which is called with the task lock held
2633 */
4ac845a2
JA
2634static void cfq_free_io_context(struct io_context *ioc)
2635{
4ac845a2 2636 /*
34e6bbf2
FC
2637 * ioc->refcount is zero here, or we are called from elv_unregister(),
2638 * so no more cic's are allowed to be linked into this ioc. So it
2639 * should be ok to iterate over the known list, we will see all cic's
2640 * since no new ones are added.
4ac845a2 2641 */
07416d29 2642 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2643}
2644
d02a2c07 2645static void cfq_put_cooperator(struct cfq_queue *cfqq)
1da177e4 2646{
df5fe3e8
JM
2647 struct cfq_queue *__cfqq, *next;
2648
df5fe3e8
JM
2649 /*
2650 * If this queue was scheduled to merge with another queue, be
2651 * sure to drop the reference taken on that queue (and others in
2652 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2653 */
2654 __cfqq = cfqq->new_cfqq;
2655 while (__cfqq) {
2656 if (__cfqq == cfqq) {
2657 WARN(1, "cfqq->new_cfqq loop detected\n");
2658 break;
2659 }
2660 next = __cfqq->new_cfqq;
2661 cfq_put_queue(__cfqq);
2662 __cfqq = next;
2663 }
d02a2c07
SL
2664}
2665
2666static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2667{
2668 if (unlikely(cfqq == cfqd->active_queue)) {
2669 __cfq_slice_expired(cfqd, cfqq, 0);
2670 cfq_schedule_dispatch(cfqd);
2671 }
2672
2673 cfq_put_cooperator(cfqq);
df5fe3e8 2674
89850f7e
JA
2675 cfq_put_queue(cfqq);
2676}
22e2c507 2677
89850f7e
JA
2678static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2679 struct cfq_io_context *cic)
2680{
4faa3c81
FC
2681 struct io_context *ioc = cic->ioc;
2682
fc46379d 2683 list_del_init(&cic->queue_list);
4ac845a2
JA
2684
2685 /*
bca4b914 2686 * Make sure dead mark is seen for dead queues
4ac845a2 2687 */
fc46379d 2688 smp_wmb();
bca4b914 2689 cic->key = cfqd_dead_key(cfqd);
fc46379d 2690
4faa3c81
FC
2691 if (ioc->ioc_data == cic)
2692 rcu_assign_pointer(ioc->ioc_data, NULL);
2693
ff6657c6
JA
2694 if (cic->cfqq[BLK_RW_ASYNC]) {
2695 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2696 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2697 }
2698
ff6657c6
JA
2699 if (cic->cfqq[BLK_RW_SYNC]) {
2700 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2701 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2702 }
89850f7e
JA
2703}
2704
4ac845a2
JA
2705static void cfq_exit_single_io_context(struct io_context *ioc,
2706 struct cfq_io_context *cic)
89850f7e 2707{
bca4b914 2708 struct cfq_data *cfqd = cic_to_cfqd(cic);
89850f7e 2709
89850f7e 2710 if (cfqd) {
165125e1 2711 struct request_queue *q = cfqd->queue;
4ac845a2 2712 unsigned long flags;
89850f7e 2713
4ac845a2 2714 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2715
2716 /*
2717 * Ensure we get a fresh copy of the ->key to prevent
2718 * race between exiting task and queue
2719 */
2720 smp_read_barrier_depends();
bca4b914 2721 if (cic->key == cfqd)
62c1fe9d
JA
2722 __cfq_exit_single_io_context(cfqd, cic);
2723
4ac845a2 2724 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2725 }
1da177e4
LT
2726}
2727
498d3aa2
JA
2728/*
2729 * The process that ioc belongs to has exited, we need to clean up
2730 * and put the internal structures we have that belongs to that process.
2731 */
e2d74ac0 2732static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2733{
4ac845a2 2734 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2735}
2736
22e2c507 2737static struct cfq_io_context *
8267e268 2738cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2739{
b5deef90 2740 struct cfq_io_context *cic;
1da177e4 2741
94f6030c
CL
2742 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2743 cfqd->queue->node);
1da177e4 2744 if (cic) {
22e2c507 2745 cic->last_end_request = jiffies;
553698f9 2746 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2747 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2748 cic->dtor = cfq_free_io_context;
2749 cic->exit = cfq_exit_io_context;
245b2e70 2750 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2751 }
2752
2753 return cic;
2754}
2755
fd0928df 2756static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2757{
2758 struct task_struct *tsk = current;
2759 int ioprio_class;
2760
3b18152c 2761 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2762 return;
2763
fd0928df 2764 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2765 switch (ioprio_class) {
fe094d98
JA
2766 default:
2767 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2768 case IOPRIO_CLASS_NONE:
2769 /*
6d63c275 2770 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2771 */
2772 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2773 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2774 break;
2775 case IOPRIO_CLASS_RT:
2776 cfqq->ioprio = task_ioprio(ioc);
2777 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2778 break;
2779 case IOPRIO_CLASS_BE:
2780 cfqq->ioprio = task_ioprio(ioc);
2781 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2782 break;
2783 case IOPRIO_CLASS_IDLE:
2784 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2785 cfqq->ioprio = 7;
2786 cfq_clear_cfqq_idle_window(cfqq);
2787 break;
22e2c507
JA
2788 }
2789
2790 /*
2791 * keep track of original prio settings in case we have to temporarily
2792 * elevate the priority of this queue
2793 */
2794 cfqq->org_ioprio = cfqq->ioprio;
2795 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2796 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2797}
2798
febffd61 2799static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2800{
bca4b914 2801 struct cfq_data *cfqd = cic_to_cfqd(cic);
478a82b0 2802 struct cfq_queue *cfqq;
c1b707d2 2803 unsigned long flags;
35e6077c 2804
caaa5f9f
JA
2805 if (unlikely(!cfqd))
2806 return;
2807
c1b707d2 2808 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2809
ff6657c6 2810 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2811 if (cfqq) {
2812 struct cfq_queue *new_cfqq;
ff6657c6
JA
2813 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2814 GFP_ATOMIC);
caaa5f9f 2815 if (new_cfqq) {
ff6657c6 2816 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2817 cfq_put_queue(cfqq);
2818 }
22e2c507 2819 }
caaa5f9f 2820
ff6657c6 2821 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2822 if (cfqq)
2823 cfq_mark_cfqq_prio_changed(cfqq);
2824
c1b707d2 2825 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2826}
2827
fc46379d 2828static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2829{
4ac845a2 2830 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2831 ioc->ioprio_changed = 0;
22e2c507
JA
2832}
2833
d5036d77 2834static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2835 pid_t pid, bool is_sync)
d5036d77
JA
2836{
2837 RB_CLEAR_NODE(&cfqq->rb_node);
2838 RB_CLEAR_NODE(&cfqq->p_node);
2839 INIT_LIST_HEAD(&cfqq->fifo);
2840
30d7b944 2841 cfqq->ref = 0;
d5036d77
JA
2842 cfqq->cfqd = cfqd;
2843
2844 cfq_mark_cfqq_prio_changed(cfqq);
2845
2846 if (is_sync) {
2847 if (!cfq_class_idle(cfqq))
2848 cfq_mark_cfqq_idle_window(cfqq);
2849 cfq_mark_cfqq_sync(cfqq);
2850 }
2851 cfqq->pid = pid;
2852}
2853
24610333
VG
2854#ifdef CONFIG_CFQ_GROUP_IOSCHED
2855static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2856{
2857 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
bca4b914 2858 struct cfq_data *cfqd = cic_to_cfqd(cic);
24610333
VG
2859 unsigned long flags;
2860 struct request_queue *q;
2861
2862 if (unlikely(!cfqd))
2863 return;
2864
2865 q = cfqd->queue;
2866
2867 spin_lock_irqsave(q->queue_lock, flags);
2868
2869 if (sync_cfqq) {
2870 /*
2871 * Drop reference to sync queue. A new sync queue will be
2872 * assigned in new group upon arrival of a fresh request.
2873 */
2874 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2875 cic_set_cfqq(cic, NULL, 1);
2876 cfq_put_queue(sync_cfqq);
2877 }
2878
2879 spin_unlock_irqrestore(q->queue_lock, flags);
2880}
2881
2882static void cfq_ioc_set_cgroup(struct io_context *ioc)
2883{
2884 call_for_each_cic(ioc, changed_cgroup);
2885 ioc->cgroup_changed = 0;
2886}
2887#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2888
22e2c507 2889static struct cfq_queue *
a6151c3a 2890cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2891 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2892{
22e2c507 2893 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2894 struct cfq_io_context *cic;
cdb16e8f 2895 struct cfq_group *cfqg;
22e2c507
JA
2896
2897retry:
cdb16e8f 2898 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2899 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2900 /* cic always exists here */
2901 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2902
6118b70b
JA
2903 /*
2904 * Always try a new alloc if we fell back to the OOM cfqq
2905 * originally, since it should just be a temporary situation.
2906 */
2907 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2908 cfqq = NULL;
22e2c507
JA
2909 if (new_cfqq) {
2910 cfqq = new_cfqq;
2911 new_cfqq = NULL;
2912 } else if (gfp_mask & __GFP_WAIT) {
2913 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2914 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2915 gfp_mask | __GFP_ZERO,
94f6030c 2916 cfqd->queue->node);
22e2c507 2917 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2918 if (new_cfqq)
2919 goto retry;
22e2c507 2920 } else {
94f6030c
CL
2921 cfqq = kmem_cache_alloc_node(cfq_pool,
2922 gfp_mask | __GFP_ZERO,
2923 cfqd->queue->node);
22e2c507
JA
2924 }
2925
6118b70b
JA
2926 if (cfqq) {
2927 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2928 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2929 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2930 cfq_log_cfqq(cfqd, cfqq, "alloced");
2931 } else
2932 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2933 }
2934
2935 if (new_cfqq)
2936 kmem_cache_free(cfq_pool, new_cfqq);
2937
22e2c507
JA
2938 return cfqq;
2939}
2940
c2dea2d1
VT
2941static struct cfq_queue **
2942cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2943{
fe094d98 2944 switch (ioprio_class) {
c2dea2d1
VT
2945 case IOPRIO_CLASS_RT:
2946 return &cfqd->async_cfqq[0][ioprio];
2947 case IOPRIO_CLASS_BE:
2948 return &cfqd->async_cfqq[1][ioprio];
2949 case IOPRIO_CLASS_IDLE:
2950 return &cfqd->async_idle_cfqq;
2951 default:
2952 BUG();
2953 }
2954}
2955
15c31be4 2956static struct cfq_queue *
a6151c3a 2957cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2958 gfp_t gfp_mask)
2959{
fd0928df
JA
2960 const int ioprio = task_ioprio(ioc);
2961 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2962 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2963 struct cfq_queue *cfqq = NULL;
2964
c2dea2d1
VT
2965 if (!is_sync) {
2966 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2967 cfqq = *async_cfqq;
2968 }
2969
6118b70b 2970 if (!cfqq)
fd0928df 2971 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2972
2973 /*
2974 * pin the queue now that it's allocated, scheduler exit will prune it
2975 */
c2dea2d1 2976 if (!is_sync && !(*async_cfqq)) {
30d7b944 2977 cfqq->ref++;
c2dea2d1 2978 *async_cfqq = cfqq;
15c31be4
JA
2979 }
2980
30d7b944 2981 cfqq->ref++;
15c31be4
JA
2982 return cfqq;
2983}
2984
498d3aa2
JA
2985/*
2986 * We drop cfq io contexts lazily, so we may find a dead one.
2987 */
dbecf3ab 2988static void
4ac845a2
JA
2989cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2990 struct cfq_io_context *cic)
dbecf3ab 2991{
4ac845a2
JA
2992 unsigned long flags;
2993
fc46379d 2994 WARN_ON(!list_empty(&cic->queue_list));
bca4b914 2995 BUG_ON(cic->key != cfqd_dead_key(cfqd));
597bc485 2996
4ac845a2
JA
2997 spin_lock_irqsave(&ioc->lock, flags);
2998
4faa3c81 2999 BUG_ON(ioc->ioc_data == cic);
597bc485 3000
80b15c73 3001 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
ffc4e759 3002 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
3003 spin_unlock_irqrestore(&ioc->lock, flags);
3004
3005 cfq_cic_free(cic);
dbecf3ab
OH
3006}
3007
e2d74ac0 3008static struct cfq_io_context *
4ac845a2 3009cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 3010{
e2d74ac0 3011 struct cfq_io_context *cic;
d6de8be7 3012 unsigned long flags;
e2d74ac0 3013
91fac317
VT
3014 if (unlikely(!ioc))
3015 return NULL;
3016
d6de8be7
JA
3017 rcu_read_lock();
3018
597bc485
JA
3019 /*
3020 * we maintain a last-hit cache, to avoid browsing over the tree
3021 */
4ac845a2 3022 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
3023 if (cic && cic->key == cfqd) {
3024 rcu_read_unlock();
597bc485 3025 return cic;
d6de8be7 3026 }
597bc485 3027
4ac845a2 3028 do {
80b15c73 3029 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
4ac845a2
JA
3030 rcu_read_unlock();
3031 if (!cic)
3032 break;
bca4b914 3033 if (unlikely(cic->key != cfqd)) {
4ac845a2 3034 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 3035 rcu_read_lock();
4ac845a2 3036 continue;
dbecf3ab 3037 }
e2d74ac0 3038
d6de8be7 3039 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 3040 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 3041 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
3042 break;
3043 } while (1);
e2d74ac0 3044
4ac845a2 3045 return cic;
e2d74ac0
JA
3046}
3047
4ac845a2
JA
3048/*
3049 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3050 * the process specific cfq io context when entered from the block layer.
3051 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3052 */
febffd61
JA
3053static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3054 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 3055{
0261d688 3056 unsigned long flags;
4ac845a2 3057 int ret;
e2d74ac0 3058
4ac845a2
JA
3059 ret = radix_tree_preload(gfp_mask);
3060 if (!ret) {
3061 cic->ioc = ioc;
3062 cic->key = cfqd;
e2d74ac0 3063
4ac845a2
JA
3064 spin_lock_irqsave(&ioc->lock, flags);
3065 ret = radix_tree_insert(&ioc->radix_root,
80b15c73 3066 cfqd->cic_index, cic);
ffc4e759
JA
3067 if (!ret)
3068 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 3069 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 3070
4ac845a2
JA
3071 radix_tree_preload_end();
3072
3073 if (!ret) {
3074 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3075 list_add(&cic->queue_list, &cfqd->cic_list);
3076 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3077 }
e2d74ac0
JA
3078 }
3079
4ac845a2
JA
3080 if (ret)
3081 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 3082
4ac845a2 3083 return ret;
e2d74ac0
JA
3084}
3085
1da177e4
LT
3086/*
3087 * Setup general io context and cfq io context. There can be several cfq
3088 * io contexts per general io context, if this process is doing io to more
e2d74ac0 3089 * than one device managed by cfq.
1da177e4
LT
3090 */
3091static struct cfq_io_context *
e2d74ac0 3092cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 3093{
22e2c507 3094 struct io_context *ioc = NULL;
1da177e4 3095 struct cfq_io_context *cic;
1da177e4 3096
22e2c507 3097 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 3098
b5deef90 3099 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
3100 if (!ioc)
3101 return NULL;
3102
4ac845a2 3103 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
3104 if (cic)
3105 goto out;
1da177e4 3106
e2d74ac0
JA
3107 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3108 if (cic == NULL)
3109 goto err;
1da177e4 3110
4ac845a2
JA
3111 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3112 goto err_free;
3113
1da177e4 3114out:
fc46379d
JA
3115 smp_read_barrier_depends();
3116 if (unlikely(ioc->ioprio_changed))
3117 cfq_ioc_set_ioprio(ioc);
3118
24610333
VG
3119#ifdef CONFIG_CFQ_GROUP_IOSCHED
3120 if (unlikely(ioc->cgroup_changed))
3121 cfq_ioc_set_cgroup(ioc);
3122#endif
1da177e4 3123 return cic;
4ac845a2
JA
3124err_free:
3125 cfq_cic_free(cic);
1da177e4
LT
3126err:
3127 put_io_context(ioc);
3128 return NULL;
3129}
3130
22e2c507
JA
3131static void
3132cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 3133{
aaf1228d
JA
3134 unsigned long elapsed = jiffies - cic->last_end_request;
3135 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 3136
22e2c507
JA
3137 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3138 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3139 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3140}
1da177e4 3141
206dc69b 3142static void
b2c18e1e 3143cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3144 struct request *rq)
206dc69b 3145{
3dde36dd 3146 sector_t sdist = 0;
41647e7a 3147 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3148 if (cfqq->last_request_pos) {
3149 if (cfqq->last_request_pos < blk_rq_pos(rq))
3150 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3151 else
3152 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3153 }
206dc69b 3154
3dde36dd 3155 cfqq->seek_history <<= 1;
41647e7a
CZ
3156 if (blk_queue_nonrot(cfqd->queue))
3157 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3158 else
3159 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3160}
1da177e4 3161
22e2c507
JA
3162/*
3163 * Disable idle window if the process thinks too long or seeks so much that
3164 * it doesn't matter
3165 */
3166static void
3167cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3168 struct cfq_io_context *cic)
3169{
7b679138 3170 int old_idle, enable_idle;
1be92f2f 3171
0871714e
JA
3172 /*
3173 * Don't idle for async or idle io prio class
3174 */
3175 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3176 return;
3177
c265a7f4 3178 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3179
76280aff
CZ
3180 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3181 cfq_mark_cfqq_deep(cfqq);
3182
749ef9f8
CZ
3183 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3184 enable_idle = 0;
3185 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3186 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3187 enable_idle = 0;
3188 else if (sample_valid(cic->ttime_samples)) {
718eee05 3189 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3190 enable_idle = 0;
3191 else
3192 enable_idle = 1;
1da177e4
LT
3193 }
3194
7b679138
JA
3195 if (old_idle != enable_idle) {
3196 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3197 if (enable_idle)
3198 cfq_mark_cfqq_idle_window(cfqq);
3199 else
3200 cfq_clear_cfqq_idle_window(cfqq);
3201 }
22e2c507 3202}
1da177e4 3203
22e2c507
JA
3204/*
3205 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3206 * no or if we aren't sure, a 1 will cause a preempt.
3207 */
a6151c3a 3208static bool
22e2c507 3209cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3210 struct request *rq)
22e2c507 3211{
6d048f53 3212 struct cfq_queue *cfqq;
22e2c507 3213
6d048f53
JA
3214 cfqq = cfqd->active_queue;
3215 if (!cfqq)
a6151c3a 3216 return false;
22e2c507 3217
6d048f53 3218 if (cfq_class_idle(new_cfqq))
a6151c3a 3219 return false;
22e2c507
JA
3220
3221 if (cfq_class_idle(cfqq))
a6151c3a 3222 return true;
1e3335de 3223
875feb63
DS
3224 /*
3225 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3226 */
3227 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3228 return false;
3229
374f84ac
JA
3230 /*
3231 * if the new request is sync, but the currently running queue is
3232 * not, let the sync request have priority.
3233 */
5e705374 3234 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3235 return true;
1e3335de 3236
8682e1f1
VG
3237 if (new_cfqq->cfqg != cfqq->cfqg)
3238 return false;
3239
3240 if (cfq_slice_used(cfqq))
3241 return true;
3242
3243 /* Allow preemption only if we are idling on sync-noidle tree */
3244 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3245 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3246 new_cfqq->service_tree->count == 2 &&
3247 RB_EMPTY_ROOT(&cfqq->sort_list))
3248 return true;
3249
374f84ac
JA
3250 /*
3251 * So both queues are sync. Let the new request get disk time if
3252 * it's a metadata request and the current queue is doing regular IO.
3253 */
7b6d91da 3254 if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
e6ec4fe2 3255 return true;
22e2c507 3256
3a9a3f6c
DS
3257 /*
3258 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3259 */
3260 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3261 return true;
3a9a3f6c 3262
d2d59e18
SL
3263 /* An idle queue should not be idle now for some reason */
3264 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3265 return true;
3266
1e3335de 3267 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3268 return false;
1e3335de
JA
3269
3270 /*
3271 * if this request is as-good as one we would expect from the
3272 * current cfqq, let it preempt
3273 */
e9ce335d 3274 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3275 return true;
1e3335de 3276
a6151c3a 3277 return false;
22e2c507
JA
3278}
3279
3280/*
3281 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3282 * let it have half of its nominal slice.
3283 */
3284static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3285{
7b679138 3286 cfq_log_cfqq(cfqd, cfqq, "preempt");
e5ff082e 3287 cfq_slice_expired(cfqd, 1);
22e2c507 3288
bf572256
JA
3289 /*
3290 * Put the new queue at the front of the of the current list,
3291 * so we know that it will be selected next.
3292 */
3293 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3294
3295 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3296
44f7c160
JA
3297 cfqq->slice_end = 0;
3298 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3299}
3300
22e2c507 3301/*
5e705374 3302 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3303 * something we should do about it
3304 */
3305static void
5e705374
JA
3306cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3307 struct request *rq)
22e2c507 3308{
5e705374 3309 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3310
45333d5a 3311 cfqd->rq_queued++;
7b6d91da 3312 if (rq->cmd_flags & REQ_META)
374f84ac
JA
3313 cfqq->meta_pending++;
3314
9c2c38a1 3315 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3316 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3317 cfq_update_idle_window(cfqd, cfqq, cic);
3318
b2c18e1e 3319 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3320
3321 if (cfqq == cfqd->active_queue) {
3322 /*
b029195d
JA
3323 * Remember that we saw a request from this process, but
3324 * don't start queuing just yet. Otherwise we risk seeing lots
3325 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3326 * and merging. If the request is already larger than a single
3327 * page, let it rip immediately. For that case we assume that
2d870722
JA
3328 * merging is already done. Ditto for a busy system that
3329 * has other work pending, don't risk delaying until the
3330 * idle timer unplug to continue working.
22e2c507 3331 */
d6ceb25e 3332 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3333 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3334 cfqd->busy_queues > 1) {
812df48d 3335 cfq_del_timer(cfqd, cfqq);
554554f6 3336 cfq_clear_cfqq_wait_request(cfqq);
bf791937 3337 __blk_run_queue(cfqd->queue);
a11cdaa7 3338 } else {
e98ef89b 3339 cfq_blkiocg_update_idle_time_stats(
a11cdaa7 3340 &cfqq->cfqg->blkg);
bf791937 3341 cfq_mark_cfqq_must_dispatch(cfqq);
a11cdaa7 3342 }
d6ceb25e 3343 }
5e705374 3344 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3345 /*
3346 * not the active queue - expire current slice if it is
3347 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3348 * has some old slice time left and is of higher priority or
3349 * this new queue is RT and the current one is BE
22e2c507
JA
3350 */
3351 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3352 __blk_run_queue(cfqd->queue);
22e2c507 3353 }
1da177e4
LT
3354}
3355
165125e1 3356static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3357{
b4878f24 3358 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3359 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3360
7b679138 3361 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3362 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3363
30996f40 3364 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3365 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3366 cfq_add_rq_rb(rq);
e98ef89b 3367 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
cdc1184c
DS
3368 &cfqd->serving_group->blkg, rq_data_dir(rq),
3369 rq_is_sync(rq));
5e705374 3370 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3371}
3372
45333d5a
AC
3373/*
3374 * Update hw_tag based on peak queue depth over 50 samples under
3375 * sufficient load.
3376 */
3377static void cfq_update_hw_tag(struct cfq_data *cfqd)
3378{
1a1238a7
SL
3379 struct cfq_queue *cfqq = cfqd->active_queue;
3380
53c583d2
CZ
3381 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3382 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3383
3384 if (cfqd->hw_tag == 1)
3385 return;
45333d5a
AC
3386
3387 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3388 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3389 return;
3390
1a1238a7
SL
3391 /*
3392 * If active queue hasn't enough requests and can idle, cfq might not
3393 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3394 * case
3395 */
3396 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3397 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3398 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3399 return;
3400
45333d5a
AC
3401 if (cfqd->hw_tag_samples++ < 50)
3402 return;
3403
e459dd08 3404 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3405 cfqd->hw_tag = 1;
3406 else
3407 cfqd->hw_tag = 0;
45333d5a
AC
3408}
3409
7667aa06
VG
3410static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3411{
3412 struct cfq_io_context *cic = cfqd->active_cic;
3413
3414 /* If there are other queues in the group, don't wait */
3415 if (cfqq->cfqg->nr_cfqq > 1)
3416 return false;
3417
3418 if (cfq_slice_used(cfqq))
3419 return true;
3420
3421 /* if slice left is less than think time, wait busy */
3422 if (cic && sample_valid(cic->ttime_samples)
3423 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3424 return true;
3425
3426 /*
3427 * If think times is less than a jiffy than ttime_mean=0 and above
3428 * will not be true. It might happen that slice has not expired yet
3429 * but will expire soon (4-5 ns) during select_queue(). To cover the
3430 * case where think time is less than a jiffy, mark the queue wait
3431 * busy if only 1 jiffy is left in the slice.
3432 */
3433 if (cfqq->slice_end - jiffies == 1)
3434 return true;
3435
3436 return false;
3437}
3438
165125e1 3439static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3440{
5e705374 3441 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3442 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3443 const int sync = rq_is_sync(rq);
b4878f24 3444 unsigned long now;
1da177e4 3445
b4878f24 3446 now = jiffies;
33659ebb
CH
3447 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3448 !!(rq->cmd_flags & REQ_NOIDLE));
1da177e4 3449
45333d5a
AC
3450 cfq_update_hw_tag(cfqd);
3451
53c583d2 3452 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3453 WARN_ON(!cfqq->dispatched);
53c583d2 3454 cfqd->rq_in_driver--;
6d048f53 3455 cfqq->dispatched--;
80bdf0c7 3456 (RQ_CFQG(rq))->dispatched--;
e98ef89b
VG
3457 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3458 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3459 rq_data_dir(rq), rq_is_sync(rq));
1da177e4 3460
53c583d2 3461 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3462
365722bb 3463 if (sync) {
5e705374 3464 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3465 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3466 cfqd->last_delayed_sync = now;
365722bb 3467 }
caaa5f9f
JA
3468
3469 /*
3470 * If this is the active queue, check if it needs to be expired,
3471 * or if we want to idle in case it has no pending requests.
3472 */
3473 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3474 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3475
44f7c160
JA
3476 if (cfq_cfqq_slice_new(cfqq)) {
3477 cfq_set_prio_slice(cfqd, cfqq);
3478 cfq_clear_cfqq_slice_new(cfqq);
3479 }
f75edf2d
VG
3480
3481 /*
7667aa06
VG
3482 * Should we wait for next request to come in before we expire
3483 * the queue.
f75edf2d 3484 */
7667aa06 3485 if (cfq_should_wait_busy(cfqd, cfqq)) {
80bdf0c7
VG
3486 unsigned long extend_sl = cfqd->cfq_slice_idle;
3487 if (!cfqd->cfq_slice_idle)
3488 extend_sl = cfqd->cfq_group_idle;
3489 cfqq->slice_end = jiffies + extend_sl;
f75edf2d 3490 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3491 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3492 }
3493
a36e71f9 3494 /*
8e550632
CZ
3495 * Idling is not enabled on:
3496 * - expired queues
3497 * - idle-priority queues
3498 * - async queues
3499 * - queues with still some requests queued
3500 * - when there is a close cooperator
a36e71f9 3501 */
0871714e 3502 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
e5ff082e 3503 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3504 else if (sync && cfqq_empty &&
3505 !cfq_close_cooperator(cfqd, cfqq)) {
749ef9f8 3506 cfq_arm_slice_timer(cfqd);
8e550632 3507 }
caaa5f9f 3508 }
6d048f53 3509
2b9408a4 3510 if (!cfqd->rq_in_driver)
d2d59e18 3511 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3512}
3513
22e2c507
JA
3514/*
3515 * we temporarily boost lower priority queues if they are holding fs exclusive
3516 * resources. they are boosted to normal prio (CLASS_BE/4)
3517 */
3518static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3519{
22e2c507
JA
3520 if (has_fs_excl()) {
3521 /*
3522 * boost idle prio on transactions that would lock out other
3523 * users of the filesystem
3524 */
3525 if (cfq_class_idle(cfqq))
3526 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3527 if (cfqq->ioprio > IOPRIO_NORM)
3528 cfqq->ioprio = IOPRIO_NORM;
3529 } else {
3530 /*
dddb7451 3531 * unboost the queue (if needed)
22e2c507 3532 */
dddb7451
CZ
3533 cfqq->ioprio_class = cfqq->org_ioprio_class;
3534 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3535 }
22e2c507 3536}
1da177e4 3537
89850f7e 3538static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3539{
1b379d8d 3540 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3541 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3542 return ELV_MQUEUE_MUST;
3b18152c 3543 }
1da177e4 3544
22e2c507 3545 return ELV_MQUEUE_MAY;
22e2c507
JA
3546}
3547
165125e1 3548static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3549{
3550 struct cfq_data *cfqd = q->elevator->elevator_data;
3551 struct task_struct *tsk = current;
91fac317 3552 struct cfq_io_context *cic;
22e2c507
JA
3553 struct cfq_queue *cfqq;
3554
3555 /*
3556 * don't force setup of a queue from here, as a call to may_queue
3557 * does not necessarily imply that a request actually will be queued.
3558 * so just lookup a possibly existing queue, or return 'may queue'
3559 * if that fails
3560 */
4ac845a2 3561 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3562 if (!cic)
3563 return ELV_MQUEUE_MAY;
3564
b0b78f81 3565 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3566 if (cfqq) {
fd0928df 3567 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3568 cfq_prio_boost(cfqq);
3569
89850f7e 3570 return __cfq_may_queue(cfqq);
22e2c507
JA
3571 }
3572
3573 return ELV_MQUEUE_MAY;
1da177e4
LT
3574}
3575
1da177e4
LT
3576/*
3577 * queue lock held here
3578 */
bb37b94c 3579static void cfq_put_request(struct request *rq)
1da177e4 3580{
5e705374 3581 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3582
5e705374 3583 if (cfqq) {
22e2c507 3584 const int rw = rq_data_dir(rq);
1da177e4 3585
22e2c507
JA
3586 BUG_ON(!cfqq->allocated[rw]);
3587 cfqq->allocated[rw]--;
1da177e4 3588
5e705374 3589 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3590
1da177e4 3591 rq->elevator_private = NULL;
5e705374 3592 rq->elevator_private2 = NULL;
1da177e4 3593
7f1dc8a2
VG
3594 /* Put down rq reference on cfqg */
3595 cfq_put_cfqg(RQ_CFQG(rq));
3596 rq->elevator_private3 = NULL;
3597
1da177e4
LT
3598 cfq_put_queue(cfqq);
3599 }
3600}
3601
df5fe3e8
JM
3602static struct cfq_queue *
3603cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3604 struct cfq_queue *cfqq)
3605{
3606 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3607 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3608 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3609 cfq_put_queue(cfqq);
3610 return cic_to_cfqq(cic, 1);
3611}
3612
e6c5bc73
JM
3613/*
3614 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3615 * was the last process referring to said cfqq.
3616 */
3617static struct cfq_queue *
3618split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3619{
3620 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3621 cfqq->pid = current->pid;
3622 cfq_clear_cfqq_coop(cfqq);
ae54abed 3623 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3624 return cfqq;
3625 }
3626
3627 cic_set_cfqq(cic, NULL, 1);
d02a2c07
SL
3628
3629 cfq_put_cooperator(cfqq);
3630
e6c5bc73
JM
3631 cfq_put_queue(cfqq);
3632 return NULL;
3633}
1da177e4 3634/*
22e2c507 3635 * Allocate cfq data structures associated with this request.
1da177e4 3636 */
22e2c507 3637static int
165125e1 3638cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3639{
3640 struct cfq_data *cfqd = q->elevator->elevator_data;
3641 struct cfq_io_context *cic;
3642 const int rw = rq_data_dir(rq);
a6151c3a 3643 const bool is_sync = rq_is_sync(rq);
22e2c507 3644 struct cfq_queue *cfqq;
1da177e4
LT
3645 unsigned long flags;
3646
3647 might_sleep_if(gfp_mask & __GFP_WAIT);
3648
e2d74ac0 3649 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3650
1da177e4
LT
3651 spin_lock_irqsave(q->queue_lock, flags);
3652
22e2c507
JA
3653 if (!cic)
3654 goto queue_fail;
3655
e6c5bc73 3656new_queue:
91fac317 3657 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3658 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3659 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3660 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3661 } else {
e6c5bc73
JM
3662 /*
3663 * If the queue was seeky for too long, break it apart.
3664 */
ae54abed 3665 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3666 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3667 cfqq = split_cfqq(cic, cfqq);
3668 if (!cfqq)
3669 goto new_queue;
3670 }
3671
df5fe3e8
JM
3672 /*
3673 * Check to see if this queue is scheduled to merge with
3674 * another, closely cooperating queue. The merging of
3675 * queues happens here as it must be done in process context.
3676 * The reference on new_cfqq was taken in merge_cfqqs.
3677 */
3678 if (cfqq->new_cfqq)
3679 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3680 }
1da177e4
LT
3681
3682 cfqq->allocated[rw]++;
30d7b944 3683 cfqq->ref++;
1da177e4 3684
5e705374 3685 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3686
5e705374
JA
3687 rq->elevator_private = cic;
3688 rq->elevator_private2 = cfqq;
7f1dc8a2 3689 rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
5e705374 3690 return 0;
1da177e4 3691
22e2c507
JA
3692queue_fail:
3693 if (cic)
3694 put_io_context(cic->ioc);
89850f7e 3695
23e018a1 3696 cfq_schedule_dispatch(cfqd);
1da177e4 3697 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3698 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3699 return 1;
3700}
3701
65f27f38 3702static void cfq_kick_queue(struct work_struct *work)
22e2c507 3703{
65f27f38 3704 struct cfq_data *cfqd =
23e018a1 3705 container_of(work, struct cfq_data, unplug_work);
165125e1 3706 struct request_queue *q = cfqd->queue;
22e2c507 3707
40bb54d1 3708 spin_lock_irq(q->queue_lock);
a7f55792 3709 __blk_run_queue(cfqd->queue);
40bb54d1 3710 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3711}
3712
3713/*
3714 * Timer running if the active_queue is currently idling inside its time slice
3715 */
3716static void cfq_idle_slice_timer(unsigned long data)
3717{
3718 struct cfq_data *cfqd = (struct cfq_data *) data;
3719 struct cfq_queue *cfqq;
3720 unsigned long flags;
3c6bd2f8 3721 int timed_out = 1;
22e2c507 3722
7b679138
JA
3723 cfq_log(cfqd, "idle timer fired");
3724
22e2c507
JA
3725 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3726
fe094d98
JA
3727 cfqq = cfqd->active_queue;
3728 if (cfqq) {
3c6bd2f8
JA
3729 timed_out = 0;
3730
b029195d
JA
3731 /*
3732 * We saw a request before the queue expired, let it through
3733 */
3734 if (cfq_cfqq_must_dispatch(cfqq))
3735 goto out_kick;
3736
22e2c507
JA
3737 /*
3738 * expired
3739 */
44f7c160 3740 if (cfq_slice_used(cfqq))
22e2c507
JA
3741 goto expire;
3742
3743 /*
3744 * only expire and reinvoke request handler, if there are
3745 * other queues with pending requests
3746 */
caaa5f9f 3747 if (!cfqd->busy_queues)
22e2c507 3748 goto out_cont;
22e2c507
JA
3749
3750 /*
3751 * not expired and it has a request pending, let it dispatch
3752 */
75e50984 3753 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3754 goto out_kick;
76280aff
CZ
3755
3756 /*
3757 * Queue depth flag is reset only when the idle didn't succeed
3758 */
3759 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3760 }
3761expire:
e5ff082e 3762 cfq_slice_expired(cfqd, timed_out);
22e2c507 3763out_kick:
23e018a1 3764 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3765out_cont:
3766 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3767}
3768
3b18152c
JA
3769static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3770{
3771 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3772 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3773}
22e2c507 3774
c2dea2d1
VT
3775static void cfq_put_async_queues(struct cfq_data *cfqd)
3776{
3777 int i;
3778
3779 for (i = 0; i < IOPRIO_BE_NR; i++) {
3780 if (cfqd->async_cfqq[0][i])
3781 cfq_put_queue(cfqd->async_cfqq[0][i]);
3782 if (cfqd->async_cfqq[1][i])
3783 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3784 }
2389d1ef
ON
3785
3786 if (cfqd->async_idle_cfqq)
3787 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3788}
3789
bb729bc9
JA
3790static void cfq_cfqd_free(struct rcu_head *head)
3791{
3792 kfree(container_of(head, struct cfq_data, rcu));
3793}
3794
b374d18a 3795static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3796{
22e2c507 3797 struct cfq_data *cfqd = e->elevator_data;
165125e1 3798 struct request_queue *q = cfqd->queue;
22e2c507 3799
3b18152c 3800 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3801
d9ff4187 3802 spin_lock_irq(q->queue_lock);
e2d74ac0 3803
d9ff4187 3804 if (cfqd->active_queue)
e5ff082e 3805 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3806
3807 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3808 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3809 struct cfq_io_context,
3810 queue_list);
89850f7e
JA
3811
3812 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3813 }
e2d74ac0 3814
c2dea2d1 3815 cfq_put_async_queues(cfqd);
b1c35769 3816 cfq_release_cfq_groups(cfqd);
e98ef89b 3817 cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3818
d9ff4187 3819 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3820
3821 cfq_shutdown_timer_wq(cfqd);
3822
80b15c73
KK
3823 spin_lock(&cic_index_lock);
3824 ida_remove(&cic_index_ida, cfqd->cic_index);
3825 spin_unlock(&cic_index_lock);
3826
b1c35769 3827 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
bb729bc9 3828 call_rcu(&cfqd->rcu, cfq_cfqd_free);
1da177e4
LT
3829}
3830
80b15c73
KK
3831static int cfq_alloc_cic_index(void)
3832{
3833 int index, error;
3834
3835 do {
3836 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3837 return -ENOMEM;
3838
3839 spin_lock(&cic_index_lock);
3840 error = ida_get_new(&cic_index_ida, &index);
3841 spin_unlock(&cic_index_lock);
3842 if (error && error != -EAGAIN)
3843 return error;
3844 } while (error);
3845
3846 return index;
3847}
3848
165125e1 3849static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3850{
3851 struct cfq_data *cfqd;
718eee05 3852 int i, j;
cdb16e8f 3853 struct cfq_group *cfqg;
615f0259 3854 struct cfq_rb_root *st;
1da177e4 3855
80b15c73
KK
3856 i = cfq_alloc_cic_index();
3857 if (i < 0)
3858 return NULL;
3859
94f6030c 3860 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3861 if (!cfqd)
bc1c1169 3862 return NULL;
1da177e4 3863
30d7b944
SL
3864 /*
3865 * Don't need take queue_lock in the routine, since we are
3866 * initializing the ioscheduler, and nobody is using cfqd
3867 */
80b15c73
KK
3868 cfqd->cic_index = i;
3869
1fa8f6d6
VG
3870 /* Init root service tree */
3871 cfqd->grp_service_tree = CFQ_RB_ROOT;
3872
cdb16e8f
VG
3873 /* Init root group */
3874 cfqg = &cfqd->root_group;
615f0259
VG
3875 for_each_cfqg_st(cfqg, i, j, st)
3876 *st = CFQ_RB_ROOT;
1fa8f6d6 3877 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3878
25bc6b07
VG
3879 /* Give preference to root group over other groups */
3880 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3881
25fb5169 3882#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3883 /*
3884 * Take a reference to root group which we never drop. This is just
3885 * to make sure that cfq_put_cfqg() does not try to kfree root group
3886 */
3887 atomic_set(&cfqg->ref, 1);
dcf097b2 3888 rcu_read_lock();
e98ef89b
VG
3889 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3890 (void *)cfqd, 0);
dcf097b2 3891 rcu_read_unlock();
25fb5169 3892#endif
26a2ac00
JA
3893 /*
3894 * Not strictly needed (since RB_ROOT just clears the node and we
3895 * zeroed cfqd on alloc), but better be safe in case someone decides
3896 * to add magic to the rb code
3897 */
3898 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3899 cfqd->prio_trees[i] = RB_ROOT;
3900
6118b70b
JA
3901 /*
3902 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3903 * Grab a permanent reference to it, so that the normal code flow
3904 * will not attempt to free it.
3905 */
3906 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
30d7b944 3907 cfqd->oom_cfqq.ref++;
cdb16e8f 3908 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3909
d9ff4187 3910 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3911
1da177e4 3912 cfqd->queue = q;
1da177e4 3913
22e2c507
JA
3914 init_timer(&cfqd->idle_slice_timer);
3915 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3916 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3917
23e018a1 3918 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3919
1da177e4 3920 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3921 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3922 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3923 cfqd->cfq_back_max = cfq_back_max;
3924 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3925 cfqd->cfq_slice[0] = cfq_slice_async;
3926 cfqd->cfq_slice[1] = cfq_slice_sync;
3927 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3928 cfqd->cfq_slice_idle = cfq_slice_idle;
80bdf0c7 3929 cfqd->cfq_group_idle = cfq_group_idle;
963b72fc 3930 cfqd->cfq_latency = 1;
ae30c286 3931 cfqd->cfq_group_isolation = 0;
e459dd08 3932 cfqd->hw_tag = -1;
edc71131
CZ
3933 /*
3934 * we optimistically start assuming sync ops weren't delayed in last
3935 * second, in order to have larger depth for async operations.
3936 */
573412b2 3937 cfqd->last_delayed_sync = jiffies - HZ;
bc1c1169 3938 return cfqd;
1da177e4
LT
3939}
3940
3941static void cfq_slab_kill(void)
3942{
d6de8be7
JA
3943 /*
3944 * Caller already ensured that pending RCU callbacks are completed,
3945 * so we should have no busy allocations at this point.
3946 */
1da177e4
LT
3947 if (cfq_pool)
3948 kmem_cache_destroy(cfq_pool);
3949 if (cfq_ioc_pool)
3950 kmem_cache_destroy(cfq_ioc_pool);
3951}
3952
3953static int __init cfq_slab_setup(void)
3954{
0a31bd5f 3955 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3956 if (!cfq_pool)
3957 goto fail;
3958
34e6bbf2 3959 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3960 if (!cfq_ioc_pool)
3961 goto fail;
3962
3963 return 0;
3964fail:
3965 cfq_slab_kill();
3966 return -ENOMEM;
3967}
3968
1da177e4
LT
3969/*
3970 * sysfs parts below -->
3971 */
1da177e4
LT
3972static ssize_t
3973cfq_var_show(unsigned int var, char *page)
3974{
3975 return sprintf(page, "%d\n", var);
3976}
3977
3978static ssize_t
3979cfq_var_store(unsigned int *var, const char *page, size_t count)
3980{
3981 char *p = (char *) page;
3982
3983 *var = simple_strtoul(p, &p, 10);
3984 return count;
3985}
3986
1da177e4 3987#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3988static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3989{ \
3d1ab40f 3990 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3991 unsigned int __data = __VAR; \
3992 if (__CONV) \
3993 __data = jiffies_to_msecs(__data); \
3994 return cfq_var_show(__data, (page)); \
3995}
3996SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3997SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3998SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3999SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4000SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507 4001SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
80bdf0c7 4002SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
22e2c507
JA
4003SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4004SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4005SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 4006SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
ae30c286 4007SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
1da177e4
LT
4008#undef SHOW_FUNCTION
4009
4010#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 4011static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 4012{ \
3d1ab40f 4013 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4014 unsigned int __data; \
4015 int ret = cfq_var_store(&__data, (page), count); \
4016 if (__data < (MIN)) \
4017 __data = (MIN); \
4018 else if (__data > (MAX)) \
4019 __data = (MAX); \
4020 if (__CONV) \
4021 *(__PTR) = msecs_to_jiffies(__data); \
4022 else \
4023 *(__PTR) = __data; \
4024 return ret; \
4025}
4026STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
4027STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4028 UINT_MAX, 1);
4029STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4030 UINT_MAX, 1);
e572ec7e 4031STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
4032STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4033 UINT_MAX, 0);
22e2c507 4034STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
80bdf0c7 4035STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
22e2c507
JA
4036STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4037STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
4038STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4039 UINT_MAX, 0);
963b72fc 4040STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
ae30c286 4041STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
1da177e4
LT
4042#undef STORE_FUNCTION
4043
e572ec7e
AV
4044#define CFQ_ATTR(name) \
4045 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4046
4047static struct elv_fs_entry cfq_attrs[] = {
4048 CFQ_ATTR(quantum),
e572ec7e
AV
4049 CFQ_ATTR(fifo_expire_sync),
4050 CFQ_ATTR(fifo_expire_async),
4051 CFQ_ATTR(back_seek_max),
4052 CFQ_ATTR(back_seek_penalty),
4053 CFQ_ATTR(slice_sync),
4054 CFQ_ATTR(slice_async),
4055 CFQ_ATTR(slice_async_rq),
4056 CFQ_ATTR(slice_idle),
80bdf0c7 4057 CFQ_ATTR(group_idle),
963b72fc 4058 CFQ_ATTR(low_latency),
ae30c286 4059 CFQ_ATTR(group_isolation),
e572ec7e 4060 __ATTR_NULL
1da177e4
LT
4061};
4062
1da177e4
LT
4063static struct elevator_type iosched_cfq = {
4064 .ops = {
4065 .elevator_merge_fn = cfq_merge,
4066 .elevator_merged_fn = cfq_merged_request,
4067 .elevator_merge_req_fn = cfq_merged_requests,
da775265 4068 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 4069 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 4070 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 4071 .elevator_add_req_fn = cfq_insert_request,
b4878f24 4072 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
4073 .elevator_deactivate_req_fn = cfq_deactivate_request,
4074 .elevator_queue_empty_fn = cfq_queue_empty,
4075 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
4076 .elevator_former_req_fn = elv_rb_former_request,
4077 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
4078 .elevator_set_req_fn = cfq_set_request,
4079 .elevator_put_req_fn = cfq_put_request,
4080 .elevator_may_queue_fn = cfq_may_queue,
4081 .elevator_init_fn = cfq_init_queue,
4082 .elevator_exit_fn = cfq_exit_queue,
fc46379d 4083 .trim = cfq_free_io_context,
1da177e4 4084 },
3d1ab40f 4085 .elevator_attrs = cfq_attrs,
1da177e4
LT
4086 .elevator_name = "cfq",
4087 .elevator_owner = THIS_MODULE,
4088};
4089
3e252066
VG
4090#ifdef CONFIG_CFQ_GROUP_IOSCHED
4091static struct blkio_policy_type blkio_policy_cfq = {
4092 .ops = {
4093 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4094 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4095 },
062a644d 4096 .plid = BLKIO_POLICY_PROP,
3e252066
VG
4097};
4098#else
4099static struct blkio_policy_type blkio_policy_cfq;
4100#endif
4101
1da177e4
LT
4102static int __init cfq_init(void)
4103{
22e2c507
JA
4104 /*
4105 * could be 0 on HZ < 1000 setups
4106 */
4107 if (!cfq_slice_async)
4108 cfq_slice_async = 1;
4109 if (!cfq_slice_idle)
4110 cfq_slice_idle = 1;
4111
80bdf0c7
VG
4112#ifdef CONFIG_CFQ_GROUP_IOSCHED
4113 if (!cfq_group_idle)
4114 cfq_group_idle = 1;
4115#else
4116 cfq_group_idle = 0;
4117#endif
1da177e4
LT
4118 if (cfq_slab_setup())
4119 return -ENOMEM;
4120
2fdd82bd 4121 elv_register(&iosched_cfq);
3e252066 4122 blkio_policy_register(&blkio_policy_cfq);
1da177e4 4123
2fdd82bd 4124 return 0;
1da177e4
LT
4125}
4126
4127static void __exit cfq_exit(void)
4128{
6e9a4738 4129 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 4130 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 4131 elv_unregister(&iosched_cfq);
334e94de 4132 ioc_gone = &all_gone;
fba82272
OH
4133 /* ioc_gone's update must be visible before reading ioc_count */
4134 smp_wmb();
d6de8be7
JA
4135
4136 /*
4137 * this also protects us from entering cfq_slab_kill() with
4138 * pending RCU callbacks
4139 */
245b2e70 4140 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 4141 wait_for_completion(&all_gone);
80b15c73 4142 ida_destroy(&cic_index_ida);
83521d3e 4143 cfq_slab_kill();
1da177e4
LT
4144}
4145
4146module_init(cfq_init);
4147module_exit(cfq_exit);
4148
4149MODULE_AUTHOR("Jens Axboe");
4150MODULE_LICENSE("GPL");
4151MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");