]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/cfq-iosched.c
blkio: Introduce blkio controller cgroup interface
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
1da177e4
LT
16
17/*
18 * tunables
19 */
fe094d98
JA
20/* max queue in one round of service */
21static const int cfq_quantum = 4;
64100099 22static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
23/* maximum backwards seek, in KiB */
24static const int cfq_back_max = 16 * 1024;
25/* penalty of a backwards seek */
26static const int cfq_back_penalty = 2;
64100099 27static const int cfq_slice_sync = HZ / 10;
3b18152c 28static int cfq_slice_async = HZ / 25;
64100099 29static const int cfq_slice_async_rq = 2;
caaa5f9f 30static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
31static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
32static const int cfq_hist_divisor = 4;
22e2c507 33
d9e7620e 34/*
0871714e 35 * offset from end of service tree
d9e7620e 36 */
0871714e 37#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
38
39/*
40 * below this threshold, we consider thinktime immediate
41 */
42#define CFQ_MIN_TT (2)
43
e6c5bc73
JM
44/*
45 * Allow merged cfqqs to perform this amount of seeky I/O before
46 * deciding to break the queues up again.
47 */
48#define CFQQ_COOP_TOUT (HZ)
49
22e2c507 50#define CFQ_SLICE_SCALE (5)
45333d5a 51#define CFQ_HW_QUEUE_MIN (5)
22e2c507 52
fe094d98
JA
53#define RQ_CIC(rq) \
54 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 55#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 56
e18b890b
CL
57static struct kmem_cache *cfq_pool;
58static struct kmem_cache *cfq_ioc_pool;
1da177e4 59
245b2e70 60static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 61static struct completion *ioc_gone;
9a11b4ed 62static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 63
22e2c507
JA
64#define CFQ_PRIO_LISTS IOPRIO_BE_NR
65#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
66#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
206dc69b 68#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 69#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 70
cc09e299
JA
71/*
72 * Most of our rbtree usage is for sorting with min extraction, so
73 * if we cache the leftmost node we don't have to walk down the tree
74 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
75 * move this into the elevator for the rq sorting as well.
76 */
77struct cfq_rb_root {
78 struct rb_root rb;
79 struct rb_node *left;
aa6f6a3d 80 unsigned count;
1fa8f6d6 81 u64 min_vdisktime;
cc09e299 82};
1fa8f6d6 83#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
cc09e299 84
6118b70b
JA
85/*
86 * Per process-grouping structure
87 */
88struct cfq_queue {
89 /* reference count */
90 atomic_t ref;
91 /* various state flags, see below */
92 unsigned int flags;
93 /* parent cfq_data */
94 struct cfq_data *cfqd;
95 /* service_tree member */
96 struct rb_node rb_node;
97 /* service_tree key */
98 unsigned long rb_key;
99 /* prio tree member */
100 struct rb_node p_node;
101 /* prio tree root we belong to, if any */
102 struct rb_root *p_root;
103 /* sorted list of pending requests */
104 struct rb_root sort_list;
105 /* if fifo isn't expired, next request to serve */
106 struct request *next_rq;
107 /* requests queued in sort_list */
108 int queued[2];
109 /* currently allocated requests */
110 int allocated[2];
111 /* fifo list of requests in sort_list */
112 struct list_head fifo;
113
114 unsigned long slice_end;
115 long slice_resid;
116 unsigned int slice_dispatch;
117
118 /* pending metadata requests */
119 int meta_pending;
120 /* number of requests that are on the dispatch list or inside driver */
121 int dispatched;
122
123 /* io prio of this group */
124 unsigned short ioprio, org_ioprio;
125 unsigned short ioprio_class, org_ioprio_class;
126
b2c18e1e
JM
127 unsigned int seek_samples;
128 u64 seek_total;
129 sector_t seek_mean;
130 sector_t last_request_pos;
e6c5bc73 131 unsigned long seeky_start;
b2c18e1e 132
6118b70b 133 pid_t pid;
df5fe3e8 134
aa6f6a3d 135 struct cfq_rb_root *service_tree;
df5fe3e8 136 struct cfq_queue *new_cfqq;
cdb16e8f 137 struct cfq_group *cfqg;
6118b70b
JA
138};
139
c0324a02 140/*
718eee05 141 * First index in the service_trees.
c0324a02
CZ
142 * IDLE is handled separately, so it has negative index
143 */
144enum wl_prio_t {
c0324a02 145 BE_WORKLOAD = 0,
615f0259
VG
146 RT_WORKLOAD = 1,
147 IDLE_WORKLOAD = 2,
c0324a02
CZ
148};
149
718eee05
CZ
150/*
151 * Second index in the service_trees.
152 */
153enum wl_type_t {
154 ASYNC_WORKLOAD = 0,
155 SYNC_NOIDLE_WORKLOAD = 1,
156 SYNC_WORKLOAD = 2
157};
158
cdb16e8f
VG
159/* This is per cgroup per device grouping structure */
160struct cfq_group {
1fa8f6d6
VG
161 /* group service_tree member */
162 struct rb_node rb_node;
163
164 /* group service_tree key */
165 u64 vdisktime;
166 bool on_st;
167
168 /* number of cfqq currently on this group */
169 int nr_cfqq;
170
cdb16e8f
VG
171 /*
172 * rr lists of queues with requests, onle rr for each priority class.
173 * Counts are embedded in the cfq_rb_root
174 */
175 struct cfq_rb_root service_trees[2][3];
176 struct cfq_rb_root service_tree_idle;
177};
718eee05 178
22e2c507
JA
179/*
180 * Per block device queue structure
181 */
1da177e4 182struct cfq_data {
165125e1 183 struct request_queue *queue;
1fa8f6d6
VG
184 /* Root service tree for cfq_groups */
185 struct cfq_rb_root grp_service_tree;
cdb16e8f 186 struct cfq_group root_group;
22e2c507 187
c0324a02
CZ
188 /*
189 * The priority currently being served
22e2c507 190 */
c0324a02 191 enum wl_prio_t serving_prio;
718eee05
CZ
192 enum wl_type_t serving_type;
193 unsigned long workload_expires;
cdb16e8f 194 struct cfq_group *serving_group;
8e550632 195 bool noidle_tree_requires_idle;
a36e71f9
JA
196
197 /*
198 * Each priority tree is sorted by next_request position. These
199 * trees are used when determining if two or more queues are
200 * interleaving requests (see cfq_close_cooperator).
201 */
202 struct rb_root prio_trees[CFQ_PRIO_LISTS];
203
22e2c507 204 unsigned int busy_queues;
5db5d642 205 unsigned int busy_queues_avg[2];
22e2c507 206
5ad531db 207 int rq_in_driver[2];
3ed9a296 208 int sync_flight;
45333d5a
AC
209
210 /*
211 * queue-depth detection
212 */
213 int rq_queued;
25776e35 214 int hw_tag;
e459dd08
CZ
215 /*
216 * hw_tag can be
217 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
218 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
219 * 0 => no NCQ
220 */
221 int hw_tag_est_depth;
222 unsigned int hw_tag_samples;
1da177e4 223
22e2c507
JA
224 /*
225 * idle window management
226 */
227 struct timer_list idle_slice_timer;
23e018a1 228 struct work_struct unplug_work;
1da177e4 229
22e2c507
JA
230 struct cfq_queue *active_queue;
231 struct cfq_io_context *active_cic;
22e2c507 232
c2dea2d1
VT
233 /*
234 * async queue for each priority case
235 */
236 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
237 struct cfq_queue *async_idle_cfqq;
15c31be4 238
6d048f53 239 sector_t last_position;
1da177e4 240
1da177e4
LT
241 /*
242 * tunables, see top of file
243 */
244 unsigned int cfq_quantum;
22e2c507 245 unsigned int cfq_fifo_expire[2];
1da177e4
LT
246 unsigned int cfq_back_penalty;
247 unsigned int cfq_back_max;
22e2c507
JA
248 unsigned int cfq_slice[2];
249 unsigned int cfq_slice_async_rq;
250 unsigned int cfq_slice_idle;
963b72fc 251 unsigned int cfq_latency;
d9ff4187
AV
252
253 struct list_head cic_list;
1da177e4 254
6118b70b
JA
255 /*
256 * Fallback dummy cfqq for extreme OOM conditions
257 */
258 struct cfq_queue oom_cfqq;
365722bb
VG
259
260 unsigned long last_end_sync_rq;
1da177e4
LT
261};
262
cdb16e8f
VG
263static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
264 enum wl_prio_t prio,
718eee05 265 enum wl_type_t type,
c0324a02
CZ
266 struct cfq_data *cfqd)
267{
1fa8f6d6
VG
268 if (!cfqg)
269 return NULL;
270
c0324a02 271 if (prio == IDLE_WORKLOAD)
cdb16e8f 272 return &cfqg->service_tree_idle;
c0324a02 273
cdb16e8f 274 return &cfqg->service_trees[prio][type];
c0324a02
CZ
275}
276
3b18152c 277enum cfqq_state_flags {
b0b8d749
JA
278 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
279 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 280 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 281 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
282 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
283 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
284 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 285 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 286 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 287 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
76280aff 288 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
3b18152c
JA
289};
290
291#define CFQ_CFQQ_FNS(name) \
292static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
293{ \
fe094d98 294 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
295} \
296static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
297{ \
fe094d98 298 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
299} \
300static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
301{ \
fe094d98 302 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
303}
304
305CFQ_CFQQ_FNS(on_rr);
306CFQ_CFQQ_FNS(wait_request);
b029195d 307CFQ_CFQQ_FNS(must_dispatch);
3b18152c 308CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
309CFQ_CFQQ_FNS(fifo_expire);
310CFQ_CFQQ_FNS(idle_window);
311CFQ_CFQQ_FNS(prio_changed);
44f7c160 312CFQ_CFQQ_FNS(slice_new);
91fac317 313CFQ_CFQQ_FNS(sync);
a36e71f9 314CFQ_CFQQ_FNS(coop);
76280aff 315CFQ_CFQQ_FNS(deep);
3b18152c
JA
316#undef CFQ_CFQQ_FNS
317
7b679138
JA
318#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
319 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
320#define cfq_log(cfqd, fmt, args...) \
321 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
322
615f0259
VG
323/* Traverses through cfq group service trees */
324#define for_each_cfqg_st(cfqg, i, j, st) \
325 for (i = 0; i <= IDLE_WORKLOAD; i++) \
326 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
327 : &cfqg->service_tree_idle; \
328 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
329 (i == IDLE_WORKLOAD && j == 0); \
330 j++, st = i < IDLE_WORKLOAD ? \
331 &cfqg->service_trees[i][j]: NULL) \
332
333
c0324a02
CZ
334static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
335{
336 if (cfq_class_idle(cfqq))
337 return IDLE_WORKLOAD;
338 if (cfq_class_rt(cfqq))
339 return RT_WORKLOAD;
340 return BE_WORKLOAD;
341}
342
718eee05
CZ
343
344static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
345{
346 if (!cfq_cfqq_sync(cfqq))
347 return ASYNC_WORKLOAD;
348 if (!cfq_cfqq_idle_window(cfqq))
349 return SYNC_NOIDLE_WORKLOAD;
350 return SYNC_WORKLOAD;
351}
352
c0324a02
CZ
353static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
354{
cdb16e8f
VG
355 struct cfq_group *cfqg = &cfqd->root_group;
356
c0324a02 357 if (wl == IDLE_WORKLOAD)
cdb16e8f 358 return cfqg->service_tree_idle.count;
c0324a02 359
cdb16e8f
VG
360 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
361 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
362 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
363}
364
165125e1 365static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 366static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 367 struct io_context *, gfp_t);
4ac845a2 368static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
369 struct io_context *);
370
5ad531db
JA
371static inline int rq_in_driver(struct cfq_data *cfqd)
372{
373 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
374}
375
91fac317 376static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 377 bool is_sync)
91fac317 378{
a6151c3a 379 return cic->cfqq[is_sync];
91fac317
VT
380}
381
382static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 383 struct cfq_queue *cfqq, bool is_sync)
91fac317 384{
a6151c3a 385 cic->cfqq[is_sync] = cfqq;
91fac317
VT
386}
387
388/*
389 * We regard a request as SYNC, if it's either a read or has the SYNC bit
390 * set (in which case it could also be direct WRITE).
391 */
a6151c3a 392static inline bool cfq_bio_sync(struct bio *bio)
91fac317 393{
a6151c3a 394 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 395}
1da177e4 396
99f95e52
AM
397/*
398 * scheduler run of queue, if there are requests pending and no one in the
399 * driver that will restart queueing
400 */
23e018a1 401static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 402{
7b679138
JA
403 if (cfqd->busy_queues) {
404 cfq_log(cfqd, "schedule dispatch");
23e018a1 405 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 406 }
99f95e52
AM
407}
408
165125e1 409static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
410{
411 struct cfq_data *cfqd = q->elevator->elevator_data;
412
f04a6424 413 return !cfqd->rq_queued;
99f95e52
AM
414}
415
44f7c160
JA
416/*
417 * Scale schedule slice based on io priority. Use the sync time slice only
418 * if a queue is marked sync and has sync io queued. A sync queue with async
419 * io only, should not get full sync slice length.
420 */
a6151c3a 421static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 422 unsigned short prio)
44f7c160 423{
d9e7620e 424 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 425
d9e7620e
JA
426 WARN_ON(prio >= IOPRIO_BE_NR);
427
428 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
429}
44f7c160 430
d9e7620e
JA
431static inline int
432cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
433{
434 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
435}
436
5db5d642
CZ
437/*
438 * get averaged number of queues of RT/BE priority.
439 * average is updated, with a formula that gives more weight to higher numbers,
440 * to quickly follows sudden increases and decrease slowly
441 */
442
5869619c
JA
443static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
444{
5db5d642
CZ
445 unsigned min_q, max_q;
446 unsigned mult = cfq_hist_divisor - 1;
447 unsigned round = cfq_hist_divisor / 2;
c0324a02 448 unsigned busy = cfq_busy_queues_wl(rt, cfqd);
5db5d642
CZ
449
450 min_q = min(cfqd->busy_queues_avg[rt], busy);
451 max_q = max(cfqd->busy_queues_avg[rt], busy);
452 cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
453 cfq_hist_divisor;
454 return cfqd->busy_queues_avg[rt];
455}
456
44f7c160
JA
457static inline void
458cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
459{
5db5d642
CZ
460 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
461 if (cfqd->cfq_latency) {
462 /* interested queues (we consider only the ones with the same
463 * priority class) */
464 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
465 unsigned sync_slice = cfqd->cfq_slice[1];
466 unsigned expect_latency = sync_slice * iq;
467 if (expect_latency > cfq_target_latency) {
468 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
469 /* scale low_slice according to IO priority
470 * and sync vs async */
471 unsigned low_slice =
472 min(slice, base_low_slice * slice / sync_slice);
473 /* the adapted slice value is scaled to fit all iqs
474 * into the target latency */
475 slice = max(slice * cfq_target_latency / expect_latency,
476 low_slice);
477 }
478 }
479 cfqq->slice_end = jiffies + slice;
7b679138 480 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
481}
482
483/*
484 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
485 * isn't valid until the first request from the dispatch is activated
486 * and the slice time set.
487 */
a6151c3a 488static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
489{
490 if (cfq_cfqq_slice_new(cfqq))
491 return 0;
492 if (time_before(jiffies, cfqq->slice_end))
493 return 0;
494
495 return 1;
496}
497
1da177e4 498/*
5e705374 499 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 500 * We choose the request that is closest to the head right now. Distance
e8a99053 501 * behind the head is penalized and only allowed to a certain extent.
1da177e4 502 */
5e705374 503static struct request *
cf7c25cf 504cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 505{
cf7c25cf 506 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 507 unsigned long back_max;
e8a99053
AM
508#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
509#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
510 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 511
5e705374
JA
512 if (rq1 == NULL || rq1 == rq2)
513 return rq2;
514 if (rq2 == NULL)
515 return rq1;
9c2c38a1 516
5e705374
JA
517 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
518 return rq1;
519 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
520 return rq2;
374f84ac
JA
521 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
522 return rq1;
523 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
524 return rq2;
1da177e4 525
83096ebf
TH
526 s1 = blk_rq_pos(rq1);
527 s2 = blk_rq_pos(rq2);
1da177e4 528
1da177e4
LT
529 /*
530 * by definition, 1KiB is 2 sectors
531 */
532 back_max = cfqd->cfq_back_max * 2;
533
534 /*
535 * Strict one way elevator _except_ in the case where we allow
536 * short backward seeks which are biased as twice the cost of a
537 * similar forward seek.
538 */
539 if (s1 >= last)
540 d1 = s1 - last;
541 else if (s1 + back_max >= last)
542 d1 = (last - s1) * cfqd->cfq_back_penalty;
543 else
e8a99053 544 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
545
546 if (s2 >= last)
547 d2 = s2 - last;
548 else if (s2 + back_max >= last)
549 d2 = (last - s2) * cfqd->cfq_back_penalty;
550 else
e8a99053 551 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
552
553 /* Found required data */
e8a99053
AM
554
555 /*
556 * By doing switch() on the bit mask "wrap" we avoid having to
557 * check two variables for all permutations: --> faster!
558 */
559 switch (wrap) {
5e705374 560 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 561 if (d1 < d2)
5e705374 562 return rq1;
e8a99053 563 else if (d2 < d1)
5e705374 564 return rq2;
e8a99053
AM
565 else {
566 if (s1 >= s2)
5e705374 567 return rq1;
e8a99053 568 else
5e705374 569 return rq2;
e8a99053 570 }
1da177e4 571
e8a99053 572 case CFQ_RQ2_WRAP:
5e705374 573 return rq1;
e8a99053 574 case CFQ_RQ1_WRAP:
5e705374
JA
575 return rq2;
576 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
577 default:
578 /*
579 * Since both rqs are wrapped,
580 * start with the one that's further behind head
581 * (--> only *one* back seek required),
582 * since back seek takes more time than forward.
583 */
584 if (s1 <= s2)
5e705374 585 return rq1;
1da177e4 586 else
5e705374 587 return rq2;
1da177e4
LT
588 }
589}
590
498d3aa2
JA
591/*
592 * The below is leftmost cache rbtree addon
593 */
0871714e 594static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 595{
615f0259
VG
596 /* Service tree is empty */
597 if (!root->count)
598 return NULL;
599
cc09e299
JA
600 if (!root->left)
601 root->left = rb_first(&root->rb);
602
0871714e
JA
603 if (root->left)
604 return rb_entry(root->left, struct cfq_queue, rb_node);
605
606 return NULL;
cc09e299
JA
607}
608
1fa8f6d6
VG
609static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
610{
611 if (!root->left)
612 root->left = rb_first(&root->rb);
613
614 if (root->left)
615 return rb_entry_cfqg(root->left);
616
617 return NULL;
618}
619
a36e71f9
JA
620static void rb_erase_init(struct rb_node *n, struct rb_root *root)
621{
622 rb_erase(n, root);
623 RB_CLEAR_NODE(n);
624}
625
cc09e299
JA
626static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
627{
628 if (root->left == n)
629 root->left = NULL;
a36e71f9 630 rb_erase_init(n, &root->rb);
aa6f6a3d 631 --root->count;
cc09e299
JA
632}
633
1da177e4
LT
634/*
635 * would be nice to take fifo expire time into account as well
636 */
5e705374
JA
637static struct request *
638cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
639 struct request *last)
1da177e4 640{
21183b07
JA
641 struct rb_node *rbnext = rb_next(&last->rb_node);
642 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 643 struct request *next = NULL, *prev = NULL;
1da177e4 644
21183b07 645 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
646
647 if (rbprev)
5e705374 648 prev = rb_entry_rq(rbprev);
1da177e4 649
21183b07 650 if (rbnext)
5e705374 651 next = rb_entry_rq(rbnext);
21183b07
JA
652 else {
653 rbnext = rb_first(&cfqq->sort_list);
654 if (rbnext && rbnext != &last->rb_node)
5e705374 655 next = rb_entry_rq(rbnext);
21183b07 656 }
1da177e4 657
cf7c25cf 658 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
659}
660
d9e7620e
JA
661static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
662 struct cfq_queue *cfqq)
1da177e4 663{
d9e7620e
JA
664 /*
665 * just an approximation, should be ok.
666 */
cdb16e8f 667 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 668 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
669}
670
1fa8f6d6
VG
671static inline s64
672cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
673{
674 return cfqg->vdisktime - st->min_vdisktime;
675}
676
677static void
678__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
679{
680 struct rb_node **node = &st->rb.rb_node;
681 struct rb_node *parent = NULL;
682 struct cfq_group *__cfqg;
683 s64 key = cfqg_key(st, cfqg);
684 int left = 1;
685
686 while (*node != NULL) {
687 parent = *node;
688 __cfqg = rb_entry_cfqg(parent);
689
690 if (key < cfqg_key(st, __cfqg))
691 node = &parent->rb_left;
692 else {
693 node = &parent->rb_right;
694 left = 0;
695 }
696 }
697
698 if (left)
699 st->left = &cfqg->rb_node;
700
701 rb_link_node(&cfqg->rb_node, parent, node);
702 rb_insert_color(&cfqg->rb_node, &st->rb);
703}
704
705static void
706cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
707{
708 struct cfq_rb_root *st = &cfqd->grp_service_tree;
709 struct cfq_group *__cfqg;
710 struct rb_node *n;
711
712 cfqg->nr_cfqq++;
713 if (cfqg->on_st)
714 return;
715
716 /*
717 * Currently put the group at the end. Later implement something
718 * so that groups get lesser vtime based on their weights, so that
719 * if group does not loose all if it was not continously backlogged.
720 */
721 n = rb_last(&st->rb);
722 if (n) {
723 __cfqg = rb_entry_cfqg(n);
724 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
725 } else
726 cfqg->vdisktime = st->min_vdisktime;
727
728 __cfq_group_service_tree_add(st, cfqg);
729 cfqg->on_st = true;
730}
731
732static void
733cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
734{
735 struct cfq_rb_root *st = &cfqd->grp_service_tree;
736
737 BUG_ON(cfqg->nr_cfqq < 1);
738 cfqg->nr_cfqq--;
739 /* If there are other cfq queues under this group, don't delete it */
740 if (cfqg->nr_cfqq)
741 return;
742
743 cfqg->on_st = false;
744 if (!RB_EMPTY_NODE(&cfqg->rb_node))
745 cfq_rb_erase(&cfqg->rb_node, st);
746}
747
498d3aa2 748/*
c0324a02 749 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
750 * requests waiting to be processed. It is sorted in the order that
751 * we will service the queues.
752 */
a36e71f9 753static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 754 bool add_front)
d9e7620e 755{
0871714e
JA
756 struct rb_node **p, *parent;
757 struct cfq_queue *__cfqq;
d9e7620e 758 unsigned long rb_key;
c0324a02 759 struct cfq_rb_root *service_tree;
498d3aa2 760 int left;
d9e7620e 761
cdb16e8f
VG
762 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
763 cfqq_type(cfqq), cfqd);
0871714e
JA
764 if (cfq_class_idle(cfqq)) {
765 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 766 parent = rb_last(&service_tree->rb);
0871714e
JA
767 if (parent && parent != &cfqq->rb_node) {
768 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
769 rb_key += __cfqq->rb_key;
770 } else
771 rb_key += jiffies;
772 } else if (!add_front) {
b9c8946b
JA
773 /*
774 * Get our rb key offset. Subtract any residual slice
775 * value carried from last service. A negative resid
776 * count indicates slice overrun, and this should position
777 * the next service time further away in the tree.
778 */
edd75ffd 779 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 780 rb_key -= cfqq->slice_resid;
edd75ffd 781 cfqq->slice_resid = 0;
48e025e6
CZ
782 } else {
783 rb_key = -HZ;
aa6f6a3d 784 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
785 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
786 }
1da177e4 787
d9e7620e 788 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 789 /*
d9e7620e 790 * same position, nothing more to do
99f9628a 791 */
c0324a02
CZ
792 if (rb_key == cfqq->rb_key &&
793 cfqq->service_tree == service_tree)
d9e7620e 794 return;
1da177e4 795
aa6f6a3d
CZ
796 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
797 cfqq->service_tree = NULL;
1da177e4 798 }
d9e7620e 799
498d3aa2 800 left = 1;
0871714e 801 parent = NULL;
aa6f6a3d
CZ
802 cfqq->service_tree = service_tree;
803 p = &service_tree->rb.rb_node;
d9e7620e 804 while (*p) {
67060e37 805 struct rb_node **n;
cc09e299 806
d9e7620e
JA
807 parent = *p;
808 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
809
0c534e0a 810 /*
c0324a02 811 * sort by key, that represents service time.
0c534e0a 812 */
c0324a02 813 if (time_before(rb_key, __cfqq->rb_key))
67060e37 814 n = &(*p)->rb_left;
c0324a02 815 else {
67060e37 816 n = &(*p)->rb_right;
cc09e299 817 left = 0;
c0324a02 818 }
67060e37
JA
819
820 p = n;
d9e7620e
JA
821 }
822
cc09e299 823 if (left)
aa6f6a3d 824 service_tree->left = &cfqq->rb_node;
cc09e299 825
d9e7620e
JA
826 cfqq->rb_key = rb_key;
827 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
828 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
829 service_tree->count++;
1fa8f6d6 830 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
831}
832
a36e71f9 833static struct cfq_queue *
f2d1f0ae
JA
834cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
835 sector_t sector, struct rb_node **ret_parent,
836 struct rb_node ***rb_link)
a36e71f9 837{
a36e71f9
JA
838 struct rb_node **p, *parent;
839 struct cfq_queue *cfqq = NULL;
840
841 parent = NULL;
842 p = &root->rb_node;
843 while (*p) {
844 struct rb_node **n;
845
846 parent = *p;
847 cfqq = rb_entry(parent, struct cfq_queue, p_node);
848
849 /*
850 * Sort strictly based on sector. Smallest to the left,
851 * largest to the right.
852 */
2e46e8b2 853 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 854 n = &(*p)->rb_right;
2e46e8b2 855 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
856 n = &(*p)->rb_left;
857 else
858 break;
859 p = n;
3ac6c9f8 860 cfqq = NULL;
a36e71f9
JA
861 }
862
863 *ret_parent = parent;
864 if (rb_link)
865 *rb_link = p;
3ac6c9f8 866 return cfqq;
a36e71f9
JA
867}
868
869static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
870{
a36e71f9
JA
871 struct rb_node **p, *parent;
872 struct cfq_queue *__cfqq;
873
f2d1f0ae
JA
874 if (cfqq->p_root) {
875 rb_erase(&cfqq->p_node, cfqq->p_root);
876 cfqq->p_root = NULL;
877 }
a36e71f9
JA
878
879 if (cfq_class_idle(cfqq))
880 return;
881 if (!cfqq->next_rq)
882 return;
883
f2d1f0ae 884 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
885 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
886 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
887 if (!__cfqq) {
888 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
889 rb_insert_color(&cfqq->p_node, cfqq->p_root);
890 } else
891 cfqq->p_root = NULL;
a36e71f9
JA
892}
893
498d3aa2
JA
894/*
895 * Update cfqq's position in the service tree.
896 */
edd75ffd 897static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 898{
6d048f53
JA
899 /*
900 * Resorting requires the cfqq to be on the RR list already.
901 */
a36e71f9 902 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 903 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
904 cfq_prio_tree_add(cfqd, cfqq);
905 }
6d048f53
JA
906}
907
1da177e4
LT
908/*
909 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 910 * the pending list according to last request service
1da177e4 911 */
febffd61 912static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 913{
7b679138 914 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
915 BUG_ON(cfq_cfqq_on_rr(cfqq));
916 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
917 cfqd->busy_queues++;
918
edd75ffd 919 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
920}
921
498d3aa2
JA
922/*
923 * Called when the cfqq no longer has requests pending, remove it from
924 * the service tree.
925 */
febffd61 926static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 927{
7b679138 928 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
929 BUG_ON(!cfq_cfqq_on_rr(cfqq));
930 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 931
aa6f6a3d
CZ
932 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
933 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
934 cfqq->service_tree = NULL;
935 }
f2d1f0ae
JA
936 if (cfqq->p_root) {
937 rb_erase(&cfqq->p_node, cfqq->p_root);
938 cfqq->p_root = NULL;
939 }
d9e7620e 940
1fa8f6d6 941 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
942 BUG_ON(!cfqd->busy_queues);
943 cfqd->busy_queues--;
944}
945
946/*
947 * rb tree support functions
948 */
febffd61 949static void cfq_del_rq_rb(struct request *rq)
1da177e4 950{
5e705374 951 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 952 const int sync = rq_is_sync(rq);
1da177e4 953
b4878f24
JA
954 BUG_ON(!cfqq->queued[sync]);
955 cfqq->queued[sync]--;
1da177e4 956
5e705374 957 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 958
f04a6424
VG
959 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
960 /*
961 * Queue will be deleted from service tree when we actually
962 * expire it later. Right now just remove it from prio tree
963 * as it is empty.
964 */
965 if (cfqq->p_root) {
966 rb_erase(&cfqq->p_node, cfqq->p_root);
967 cfqq->p_root = NULL;
968 }
969 }
1da177e4
LT
970}
971
5e705374 972static void cfq_add_rq_rb(struct request *rq)
1da177e4 973{
5e705374 974 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 975 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 976 struct request *__alias, *prev;
1da177e4 977
5380a101 978 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
979
980 /*
981 * looks a little odd, but the first insert might return an alias.
982 * if that happens, put the alias on the dispatch list
983 */
21183b07 984 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 985 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
986
987 if (!cfq_cfqq_on_rr(cfqq))
988 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
989
990 /*
991 * check if this request is a better next-serve candidate
992 */
a36e71f9 993 prev = cfqq->next_rq;
cf7c25cf 994 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
995
996 /*
997 * adjust priority tree position, if ->next_rq changes
998 */
999 if (prev != cfqq->next_rq)
1000 cfq_prio_tree_add(cfqd, cfqq);
1001
5044eed4 1002 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1003}
1004
febffd61 1005static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1006{
5380a101
JA
1007 elv_rb_del(&cfqq->sort_list, rq);
1008 cfqq->queued[rq_is_sync(rq)]--;
5e705374 1009 cfq_add_rq_rb(rq);
1da177e4
LT
1010}
1011
206dc69b
JA
1012static struct request *
1013cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1014{
206dc69b 1015 struct task_struct *tsk = current;
91fac317 1016 struct cfq_io_context *cic;
206dc69b 1017 struct cfq_queue *cfqq;
1da177e4 1018
4ac845a2 1019 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1020 if (!cic)
1021 return NULL;
1022
1023 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1024 if (cfqq) {
1025 sector_t sector = bio->bi_sector + bio_sectors(bio);
1026
21183b07 1027 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1028 }
1da177e4 1029
1da177e4
LT
1030 return NULL;
1031}
1032
165125e1 1033static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1034{
22e2c507 1035 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1036
5ad531db 1037 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 1038 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 1039 rq_in_driver(cfqd));
25776e35 1040
5b93629b 1041 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1042}
1043
165125e1 1044static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1045{
b4878f24 1046 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 1047 const int sync = rq_is_sync(rq);
b4878f24 1048
5ad531db
JA
1049 WARN_ON(!cfqd->rq_in_driver[sync]);
1050 cfqd->rq_in_driver[sync]--;
7b679138 1051 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 1052 rq_in_driver(cfqd));
1da177e4
LT
1053}
1054
b4878f24 1055static void cfq_remove_request(struct request *rq)
1da177e4 1056{
5e705374 1057 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1058
5e705374
JA
1059 if (cfqq->next_rq == rq)
1060 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1061
b4878f24 1062 list_del_init(&rq->queuelist);
5e705374 1063 cfq_del_rq_rb(rq);
374f84ac 1064
45333d5a 1065 cfqq->cfqd->rq_queued--;
374f84ac
JA
1066 if (rq_is_meta(rq)) {
1067 WARN_ON(!cfqq->meta_pending);
1068 cfqq->meta_pending--;
1069 }
1da177e4
LT
1070}
1071
165125e1
JA
1072static int cfq_merge(struct request_queue *q, struct request **req,
1073 struct bio *bio)
1da177e4
LT
1074{
1075 struct cfq_data *cfqd = q->elevator->elevator_data;
1076 struct request *__rq;
1da177e4 1077
206dc69b 1078 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1079 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1080 *req = __rq;
1081 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1082 }
1083
1084 return ELEVATOR_NO_MERGE;
1da177e4
LT
1085}
1086
165125e1 1087static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1088 int type)
1da177e4 1089{
21183b07 1090 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1091 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1092
5e705374 1093 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1094 }
1da177e4
LT
1095}
1096
1097static void
165125e1 1098cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1099 struct request *next)
1100{
cf7c25cf 1101 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1102 /*
1103 * reposition in fifo if next is older than rq
1104 */
1105 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1106 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1107 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1108 rq_set_fifo_time(rq, rq_fifo_time(next));
1109 }
22e2c507 1110
cf7c25cf
CZ
1111 if (cfqq->next_rq == next)
1112 cfqq->next_rq = rq;
b4878f24 1113 cfq_remove_request(next);
22e2c507
JA
1114}
1115
165125e1 1116static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1117 struct bio *bio)
1118{
1119 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1120 struct cfq_io_context *cic;
da775265 1121 struct cfq_queue *cfqq;
da775265
JA
1122
1123 /*
ec8acb69 1124 * Disallow merge of a sync bio into an async request.
da775265 1125 */
91fac317 1126 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1127 return false;
da775265
JA
1128
1129 /*
719d3402
JA
1130 * Lookup the cfqq that this bio will be queued with. Allow
1131 * merge only if rq is queued there.
da775265 1132 */
4ac845a2 1133 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1134 if (!cic)
a6151c3a 1135 return false;
719d3402 1136
91fac317 1137 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1138 return cfqq == RQ_CFQQ(rq);
da775265
JA
1139}
1140
febffd61
JA
1141static void __cfq_set_active_queue(struct cfq_data *cfqd,
1142 struct cfq_queue *cfqq)
22e2c507
JA
1143{
1144 if (cfqq) {
7b679138 1145 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 1146 cfqq->slice_end = 0;
2f5cb738
JA
1147 cfqq->slice_dispatch = 0;
1148
2f5cb738 1149 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1150 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1151 cfq_clear_cfqq_must_alloc_slice(cfqq);
1152 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1153 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1154
1155 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1156 }
1157
1158 cfqd->active_queue = cfqq;
1159}
1160
7b14e3b5
JA
1161/*
1162 * current cfqq expired its slice (or was too idle), select new one
1163 */
1164static void
1165__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1166 bool timed_out)
7b14e3b5 1167{
7b679138
JA
1168 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1169
7b14e3b5
JA
1170 if (cfq_cfqq_wait_request(cfqq))
1171 del_timer(&cfqd->idle_slice_timer);
1172
7b14e3b5
JA
1173 cfq_clear_cfqq_wait_request(cfqq);
1174
1175 /*
6084cdda 1176 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1177 */
7b679138 1178 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1179 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1180 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1181 }
7b14e3b5 1182
f04a6424
VG
1183 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1184 cfq_del_cfqq_rr(cfqd, cfqq);
1185
edd75ffd 1186 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1187
1188 if (cfqq == cfqd->active_queue)
1189 cfqd->active_queue = NULL;
1190
1191 if (cfqd->active_cic) {
1192 put_io_context(cfqd->active_cic->ioc);
1193 cfqd->active_cic = NULL;
1194 }
7b14e3b5
JA
1195}
1196
a6151c3a 1197static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1198{
1199 struct cfq_queue *cfqq = cfqd->active_queue;
1200
1201 if (cfqq)
6084cdda 1202 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1203}
1204
498d3aa2
JA
1205/*
1206 * Get next queue for service. Unless we have a queue preemption,
1207 * we'll simply select the first cfqq in the service tree.
1208 */
6d048f53 1209static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1210{
c0324a02 1211 struct cfq_rb_root *service_tree =
cdb16e8f
VG
1212 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1213 cfqd->serving_type, cfqd);
d9e7620e 1214
f04a6424
VG
1215 if (!cfqd->rq_queued)
1216 return NULL;
1217
1fa8f6d6
VG
1218 /* There is nothing to dispatch */
1219 if (!service_tree)
1220 return NULL;
c0324a02
CZ
1221 if (RB_EMPTY_ROOT(&service_tree->rb))
1222 return NULL;
1223 return cfq_rb_first(service_tree);
6d048f53
JA
1224}
1225
f04a6424
VG
1226static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1227{
1228 struct cfq_group *cfqg = &cfqd->root_group;
1229 struct cfq_queue *cfqq;
1230 int i, j;
1231 struct cfq_rb_root *st;
1232
1233 if (!cfqd->rq_queued)
1234 return NULL;
1235
1236 for_each_cfqg_st(cfqg, i, j, st)
1237 if ((cfqq = cfq_rb_first(st)) != NULL)
1238 return cfqq;
1239 return NULL;
1240}
1241
498d3aa2
JA
1242/*
1243 * Get and set a new active queue for service.
1244 */
a36e71f9
JA
1245static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1246 struct cfq_queue *cfqq)
6d048f53 1247{
e00ef799 1248 if (!cfqq)
a36e71f9 1249 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1250
22e2c507 1251 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1252 return cfqq;
22e2c507
JA
1253}
1254
d9e7620e
JA
1255static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1256 struct request *rq)
1257{
83096ebf
TH
1258 if (blk_rq_pos(rq) >= cfqd->last_position)
1259 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1260 else
83096ebf 1261 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1262}
1263
b2c18e1e
JM
1264#define CFQQ_SEEK_THR 8 * 1024
1265#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 1266
b2c18e1e
JM
1267static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1268 struct request *rq)
6d048f53 1269{
b2c18e1e 1270 sector_t sdist = cfqq->seek_mean;
6d048f53 1271
b2c18e1e
JM
1272 if (!sample_valid(cfqq->seek_samples))
1273 sdist = CFQQ_SEEK_THR;
6d048f53 1274
04dc6e71 1275 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
1276}
1277
a36e71f9
JA
1278static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1279 struct cfq_queue *cur_cfqq)
1280{
f2d1f0ae 1281 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1282 struct rb_node *parent, *node;
1283 struct cfq_queue *__cfqq;
1284 sector_t sector = cfqd->last_position;
1285
1286 if (RB_EMPTY_ROOT(root))
1287 return NULL;
1288
1289 /*
1290 * First, if we find a request starting at the end of the last
1291 * request, choose it.
1292 */
f2d1f0ae 1293 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1294 if (__cfqq)
1295 return __cfqq;
1296
1297 /*
1298 * If the exact sector wasn't found, the parent of the NULL leaf
1299 * will contain the closest sector.
1300 */
1301 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1302 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1303 return __cfqq;
1304
2e46e8b2 1305 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1306 node = rb_next(&__cfqq->p_node);
1307 else
1308 node = rb_prev(&__cfqq->p_node);
1309 if (!node)
1310 return NULL;
1311
1312 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1313 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1314 return __cfqq;
1315
1316 return NULL;
1317}
1318
1319/*
1320 * cfqd - obvious
1321 * cur_cfqq - passed in so that we don't decide that the current queue is
1322 * closely cooperating with itself.
1323 *
1324 * So, basically we're assuming that that cur_cfqq has dispatched at least
1325 * one request, and that cfqd->last_position reflects a position on the disk
1326 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1327 * assumption.
1328 */
1329static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1330 struct cfq_queue *cur_cfqq)
6d048f53 1331{
a36e71f9
JA
1332 struct cfq_queue *cfqq;
1333
e6c5bc73
JM
1334 if (!cfq_cfqq_sync(cur_cfqq))
1335 return NULL;
1336 if (CFQQ_SEEKY(cur_cfqq))
1337 return NULL;
1338
6d048f53 1339 /*
d9e7620e
JA
1340 * We should notice if some of the queues are cooperating, eg
1341 * working closely on the same area of the disk. In that case,
1342 * we can group them together and don't waste time idling.
6d048f53 1343 */
a36e71f9
JA
1344 cfqq = cfqq_close(cfqd, cur_cfqq);
1345 if (!cfqq)
1346 return NULL;
1347
df5fe3e8
JM
1348 /*
1349 * It only makes sense to merge sync queues.
1350 */
1351 if (!cfq_cfqq_sync(cfqq))
1352 return NULL;
e6c5bc73
JM
1353 if (CFQQ_SEEKY(cfqq))
1354 return NULL;
df5fe3e8 1355
c0324a02
CZ
1356 /*
1357 * Do not merge queues of different priority classes
1358 */
1359 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1360 return NULL;
1361
a36e71f9 1362 return cfqq;
6d048f53
JA
1363}
1364
a6d44e98
CZ
1365/*
1366 * Determine whether we should enforce idle window for this queue.
1367 */
1368
1369static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1370{
1371 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1372 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1373
f04a6424
VG
1374 BUG_ON(!service_tree);
1375 BUG_ON(!service_tree->count);
1376
a6d44e98
CZ
1377 /* We never do for idle class queues. */
1378 if (prio == IDLE_WORKLOAD)
1379 return false;
1380
1381 /* We do for queues that were marked with idle window flag. */
1382 if (cfq_cfqq_idle_window(cfqq))
1383 return true;
1384
1385 /*
1386 * Otherwise, we do only if they are the last ones
1387 * in their service tree.
1388 */
f04a6424 1389 return service_tree->count == 1;
a6d44e98
CZ
1390}
1391
6d048f53 1392static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1393{
1792669c 1394 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1395 struct cfq_io_context *cic;
7b14e3b5
JA
1396 unsigned long sl;
1397
a68bbddb 1398 /*
f7d7b7a7
JA
1399 * SSD device without seek penalty, disable idling. But only do so
1400 * for devices that support queuing, otherwise we still have a problem
1401 * with sync vs async workloads.
a68bbddb 1402 */
f7d7b7a7 1403 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1404 return;
1405
dd67d051 1406 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1407 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1408
1409 /*
1410 * idle is disabled, either manually or by past process history
1411 */
a6d44e98 1412 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1413 return;
1414
7b679138 1415 /*
8e550632 1416 * still active requests from this queue, don't idle
7b679138 1417 */
8e550632 1418 if (cfqq->dispatched)
7b679138
JA
1419 return;
1420
22e2c507
JA
1421 /*
1422 * task has exited, don't wait
1423 */
206dc69b 1424 cic = cfqd->active_cic;
66dac98e 1425 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1426 return;
1427
355b659c
CZ
1428 /*
1429 * If our average think time is larger than the remaining time
1430 * slice, then don't idle. This avoids overrunning the allotted
1431 * time slice.
1432 */
1433 if (sample_valid(cic->ttime_samples) &&
1434 (cfqq->slice_end - jiffies < cic->ttime_mean))
1435 return;
1436
3b18152c 1437 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1438
6d048f53 1439 sl = cfqd->cfq_slice_idle;
206dc69b 1440
7b14e3b5 1441 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1442 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1443}
1444
498d3aa2
JA
1445/*
1446 * Move request from internal lists to the request queue dispatch list.
1447 */
165125e1 1448static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1449{
3ed9a296 1450 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1451 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1452
7b679138
JA
1453 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1454
06d21886 1455 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1456 cfq_remove_request(rq);
6d048f53 1457 cfqq->dispatched++;
5380a101 1458 elv_dispatch_sort(q, rq);
3ed9a296
JA
1459
1460 if (cfq_cfqq_sync(cfqq))
1461 cfqd->sync_flight++;
1da177e4
LT
1462}
1463
1464/*
1465 * return expired entry, or NULL to just start from scratch in rbtree
1466 */
febffd61 1467static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1468{
30996f40 1469 struct request *rq = NULL;
1da177e4 1470
3b18152c 1471 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1472 return NULL;
cb887411
JA
1473
1474 cfq_mark_cfqq_fifo_expire(cfqq);
1475
89850f7e
JA
1476 if (list_empty(&cfqq->fifo))
1477 return NULL;
1da177e4 1478
89850f7e 1479 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1480 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1481 rq = NULL;
1da177e4 1482
30996f40 1483 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1484 return rq;
1da177e4
LT
1485}
1486
22e2c507
JA
1487static inline int
1488cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1489{
1490 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1491
22e2c507 1492 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1493
22e2c507 1494 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1495}
1496
df5fe3e8
JM
1497/*
1498 * Must be called with the queue_lock held.
1499 */
1500static int cfqq_process_refs(struct cfq_queue *cfqq)
1501{
1502 int process_refs, io_refs;
1503
1504 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1505 process_refs = atomic_read(&cfqq->ref) - io_refs;
1506 BUG_ON(process_refs < 0);
1507 return process_refs;
1508}
1509
1510static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1511{
e6c5bc73 1512 int process_refs, new_process_refs;
df5fe3e8
JM
1513 struct cfq_queue *__cfqq;
1514
1515 /* Avoid a circular list and skip interim queue merges */
1516 while ((__cfqq = new_cfqq->new_cfqq)) {
1517 if (__cfqq == cfqq)
1518 return;
1519 new_cfqq = __cfqq;
1520 }
1521
1522 process_refs = cfqq_process_refs(cfqq);
1523 /*
1524 * If the process for the cfqq has gone away, there is no
1525 * sense in merging the queues.
1526 */
1527 if (process_refs == 0)
1528 return;
1529
e6c5bc73
JM
1530 /*
1531 * Merge in the direction of the lesser amount of work.
1532 */
1533 new_process_refs = cfqq_process_refs(new_cfqq);
1534 if (new_process_refs >= process_refs) {
1535 cfqq->new_cfqq = new_cfqq;
1536 atomic_add(process_refs, &new_cfqq->ref);
1537 } else {
1538 new_cfqq->new_cfqq = cfqq;
1539 atomic_add(new_process_refs, &cfqq->ref);
1540 }
df5fe3e8
JM
1541}
1542
cdb16e8f
VG
1543static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1544 struct cfq_group *cfqg, enum wl_prio_t prio,
1545 bool prio_changed)
718eee05
CZ
1546{
1547 struct cfq_queue *queue;
1548 int i;
1549 bool key_valid = false;
1550 unsigned long lowest_key = 0;
1551 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1552
1553 if (prio_changed) {
1554 /*
1555 * When priorities switched, we prefer starting
1556 * from SYNC_NOIDLE (first choice), or just SYNC
1557 * over ASYNC
1558 */
cdb16e8f 1559 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1560 return cur_best;
1561 cur_best = SYNC_WORKLOAD;
cdb16e8f 1562 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1563 return cur_best;
1564
1565 return ASYNC_WORKLOAD;
1566 }
1567
1568 for (i = 0; i < 3; ++i) {
1569 /* otherwise, select the one with lowest rb_key */
cdb16e8f 1570 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
718eee05
CZ
1571 if (queue &&
1572 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1573 lowest_key = queue->rb_key;
1574 cur_best = i;
1575 key_valid = true;
1576 }
1577 }
1578
1579 return cur_best;
1580}
1581
cdb16e8f 1582static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05
CZ
1583{
1584 enum wl_prio_t previous_prio = cfqd->serving_prio;
1585 bool prio_changed;
1586 unsigned slice;
1587 unsigned count;
cdb16e8f 1588 struct cfq_rb_root *st;
718eee05 1589
1fa8f6d6
VG
1590 if (!cfqg) {
1591 cfqd->serving_prio = IDLE_WORKLOAD;
1592 cfqd->workload_expires = jiffies + 1;
1593 return;
1594 }
1595
718eee05
CZ
1596 /* Choose next priority. RT > BE > IDLE */
1597 if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1598 cfqd->serving_prio = RT_WORKLOAD;
1599 else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1600 cfqd->serving_prio = BE_WORKLOAD;
1601 else {
1602 cfqd->serving_prio = IDLE_WORKLOAD;
1603 cfqd->workload_expires = jiffies + 1;
1604 return;
1605 }
1606
1607 /*
1608 * For RT and BE, we have to choose also the type
1609 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1610 * expiration time
1611 */
1612 prio_changed = (cfqd->serving_prio != previous_prio);
cdb16e8f
VG
1613 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1614 cfqd);
1615 count = st->count;
718eee05
CZ
1616
1617 /*
1618 * If priority didn't change, check workload expiration,
1619 * and that we still have other queues ready
1620 */
1621 if (!prio_changed && count &&
1622 !time_after(jiffies, cfqd->workload_expires))
1623 return;
1624
1625 /* otherwise select new workload type */
1626 cfqd->serving_type =
cdb16e8f
VG
1627 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
1628 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1629 cfqd);
1630 count = st->count;
718eee05
CZ
1631
1632 /*
1633 * the workload slice is computed as a fraction of target latency
1634 * proportional to the number of queues in that workload, over
1635 * all the queues in the same priority class
1636 */
1637 slice = cfq_target_latency * count /
1638 max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
1639 cfq_busy_queues_wl(cfqd->serving_prio, cfqd));
1640
1641 if (cfqd->serving_type == ASYNC_WORKLOAD)
1642 /* async workload slice is scaled down according to
1643 * the sync/async slice ratio. */
1644 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1645 else
1646 /* sync workload slice is at least 2 * cfq_slice_idle */
1647 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1648
1649 slice = max_t(unsigned, slice, CFQ_MIN_TT);
1650 cfqd->workload_expires = jiffies + slice;
8e550632 1651 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
1652}
1653
1fa8f6d6
VG
1654static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
1655{
1656 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1657
1658 if (RB_EMPTY_ROOT(&st->rb))
1659 return NULL;
1660 return cfq_rb_first_group(st);
1661}
1662
cdb16e8f
VG
1663static void cfq_choose_cfqg(struct cfq_data *cfqd)
1664{
1fa8f6d6
VG
1665 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
1666
1667 cfqd->serving_group = cfqg;
1668 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
1669}
1670
22e2c507 1671/*
498d3aa2
JA
1672 * Select a queue for service. If we have a current active queue,
1673 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1674 */
1b5ed5e1 1675static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1676{
a36e71f9 1677 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1678
22e2c507
JA
1679 cfqq = cfqd->active_queue;
1680 if (!cfqq)
1681 goto new_queue;
1da177e4 1682
f04a6424
VG
1683 if (!cfqd->rq_queued)
1684 return NULL;
22e2c507 1685 /*
6d048f53 1686 * The active queue has run out of time, expire it and select new.
22e2c507 1687 */
b029195d 1688 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1689 goto expire;
1da177e4 1690
22e2c507 1691 /*
6d048f53
JA
1692 * The active queue has requests and isn't expired, allow it to
1693 * dispatch.
22e2c507 1694 */
dd67d051 1695 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1696 goto keep_queue;
6d048f53 1697
a36e71f9
JA
1698 /*
1699 * If another queue has a request waiting within our mean seek
1700 * distance, let it run. The expire code will check for close
1701 * cooperators and put the close queue at the front of the service
df5fe3e8 1702 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 1703 */
b3b6d040 1704 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
1705 if (new_cfqq) {
1706 if (!cfqq->new_cfqq)
1707 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 1708 goto expire;
df5fe3e8 1709 }
a36e71f9 1710
6d048f53
JA
1711 /*
1712 * No requests pending. If the active queue still has requests in
1713 * flight or is idling for a new request, allow either of these
1714 * conditions to happen (or time out) before selecting a new queue.
1715 */
cc197479 1716 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 1717 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
1718 cfqq = NULL;
1719 goto keep_queue;
22e2c507
JA
1720 }
1721
3b18152c 1722expire:
6084cdda 1723 cfq_slice_expired(cfqd, 0);
3b18152c 1724new_queue:
718eee05
CZ
1725 /*
1726 * Current queue expired. Check if we have to switch to a new
1727 * service tree
1728 */
1729 if (!new_cfqq)
cdb16e8f 1730 cfq_choose_cfqg(cfqd);
718eee05 1731
a36e71f9 1732 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1733keep_queue:
3b18152c 1734 return cfqq;
22e2c507
JA
1735}
1736
febffd61 1737static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1738{
1739 int dispatched = 0;
1740
1741 while (cfqq->next_rq) {
1742 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1743 dispatched++;
1744 }
1745
1746 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
1747
1748 /* By default cfqq is not expired if it is empty. Do it explicitly */
1749 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
1750 return dispatched;
1751}
1752
498d3aa2
JA
1753/*
1754 * Drain our current requests. Used for barriers and when switching
1755 * io schedulers on-the-fly.
1756 */
d9e7620e 1757static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1758{
0871714e 1759 struct cfq_queue *cfqq;
d9e7620e 1760 int dispatched = 0;
cdb16e8f 1761
f04a6424
VG
1762 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
1763 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1764
6084cdda 1765 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1766 BUG_ON(cfqd->busy_queues);
1767
6923715a 1768 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
1769 return dispatched;
1770}
1771
0b182d61 1772static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 1773{
2f5cb738 1774 unsigned int max_dispatch;
22e2c507 1775
5ad531db
JA
1776 /*
1777 * Drain async requests before we start sync IO
1778 */
a6d44e98 1779 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 1780 return false;
5ad531db 1781
2f5cb738
JA
1782 /*
1783 * If this is an async queue and we have sync IO in flight, let it wait
1784 */
1785 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 1786 return false;
2f5cb738
JA
1787
1788 max_dispatch = cfqd->cfq_quantum;
1789 if (cfq_class_idle(cfqq))
1790 max_dispatch = 1;
b4878f24 1791
2f5cb738
JA
1792 /*
1793 * Does this cfqq already have too much IO in flight?
1794 */
1795 if (cfqq->dispatched >= max_dispatch) {
1796 /*
1797 * idle queue must always only have a single IO in flight
1798 */
3ed9a296 1799 if (cfq_class_idle(cfqq))
0b182d61 1800 return false;
3ed9a296 1801
2f5cb738
JA
1802 /*
1803 * We have other queues, don't allow more IO from this one
1804 */
1805 if (cfqd->busy_queues > 1)
0b182d61 1806 return false;
9ede209e 1807
365722bb 1808 /*
474b18cc 1809 * Sole queue user, no limit
365722bb 1810 */
474b18cc 1811 max_dispatch = -1;
8e296755
JA
1812 }
1813
1814 /*
1815 * Async queues must wait a bit before being allowed dispatch.
1816 * We also ramp up the dispatch depth gradually for async IO,
1817 * based on the last sync IO we serviced
1818 */
963b72fc 1819 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
1820 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1821 unsigned int depth;
365722bb 1822
61f0c1dc 1823 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
1824 if (!depth && !cfqq->dispatched)
1825 depth = 1;
8e296755
JA
1826 if (depth < max_dispatch)
1827 max_dispatch = depth;
2f5cb738 1828 }
3ed9a296 1829
0b182d61
JA
1830 /*
1831 * If we're below the current max, allow a dispatch
1832 */
1833 return cfqq->dispatched < max_dispatch;
1834}
1835
1836/*
1837 * Dispatch a request from cfqq, moving them to the request queue
1838 * dispatch list.
1839 */
1840static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1841{
1842 struct request *rq;
1843
1844 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1845
1846 if (!cfq_may_dispatch(cfqd, cfqq))
1847 return false;
1848
1849 /*
1850 * follow expired path, else get first next available
1851 */
1852 rq = cfq_check_fifo(cfqq);
1853 if (!rq)
1854 rq = cfqq->next_rq;
1855
1856 /*
1857 * insert request into driver dispatch list
1858 */
1859 cfq_dispatch_insert(cfqd->queue, rq);
1860
1861 if (!cfqd->active_cic) {
1862 struct cfq_io_context *cic = RQ_CIC(rq);
1863
1864 atomic_long_inc(&cic->ioc->refcount);
1865 cfqd->active_cic = cic;
1866 }
1867
1868 return true;
1869}
1870
1871/*
1872 * Find the cfqq that we need to service and move a request from that to the
1873 * dispatch list
1874 */
1875static int cfq_dispatch_requests(struct request_queue *q, int force)
1876{
1877 struct cfq_data *cfqd = q->elevator->elevator_data;
1878 struct cfq_queue *cfqq;
1879
1880 if (!cfqd->busy_queues)
1881 return 0;
1882
1883 if (unlikely(force))
1884 return cfq_forced_dispatch(cfqd);
1885
1886 cfqq = cfq_select_queue(cfqd);
1887 if (!cfqq)
8e296755
JA
1888 return 0;
1889
2f5cb738 1890 /*
0b182d61 1891 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 1892 */
0b182d61
JA
1893 if (!cfq_dispatch_request(cfqd, cfqq))
1894 return 0;
1895
2f5cb738 1896 cfqq->slice_dispatch++;
b029195d 1897 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1898
2f5cb738
JA
1899 /*
1900 * expire an async queue immediately if it has used up its slice. idle
1901 * queue always expire after 1 dispatch round.
1902 */
1903 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1904 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1905 cfq_class_idle(cfqq))) {
1906 cfqq->slice_end = jiffies + 1;
1907 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1908 }
1909
b217a903 1910 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 1911 return 1;
1da177e4
LT
1912}
1913
1da177e4 1914/*
5e705374
JA
1915 * task holds one reference to the queue, dropped when task exits. each rq
1916 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1917 *
1918 * queue lock must be held here.
1919 */
1920static void cfq_put_queue(struct cfq_queue *cfqq)
1921{
22e2c507
JA
1922 struct cfq_data *cfqd = cfqq->cfqd;
1923
1924 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1925
1926 if (!atomic_dec_and_test(&cfqq->ref))
1927 return;
1928
7b679138 1929 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1930 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1931 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1da177e4 1932
28f95cbc 1933 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1934 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1935 cfq_schedule_dispatch(cfqd);
28f95cbc 1936 }
22e2c507 1937
f04a6424 1938 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4
LT
1939 kmem_cache_free(cfq_pool, cfqq);
1940}
1941
d6de8be7
JA
1942/*
1943 * Must always be called with the rcu_read_lock() held
1944 */
07416d29
JA
1945static void
1946__call_for_each_cic(struct io_context *ioc,
1947 void (*func)(struct io_context *, struct cfq_io_context *))
1948{
1949 struct cfq_io_context *cic;
1950 struct hlist_node *n;
1951
1952 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1953 func(ioc, cic);
1954}
1955
4ac845a2 1956/*
34e6bbf2 1957 * Call func for each cic attached to this ioc.
4ac845a2 1958 */
34e6bbf2 1959static void
4ac845a2
JA
1960call_for_each_cic(struct io_context *ioc,
1961 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1962{
4ac845a2 1963 rcu_read_lock();
07416d29 1964 __call_for_each_cic(ioc, func);
4ac845a2 1965 rcu_read_unlock();
34e6bbf2
FC
1966}
1967
1968static void cfq_cic_free_rcu(struct rcu_head *head)
1969{
1970 struct cfq_io_context *cic;
1971
1972 cic = container_of(head, struct cfq_io_context, rcu_head);
1973
1974 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 1975 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 1976
9a11b4ed
JA
1977 if (ioc_gone) {
1978 /*
1979 * CFQ scheduler is exiting, grab exit lock and check
1980 * the pending io context count. If it hits zero,
1981 * complete ioc_gone and set it back to NULL
1982 */
1983 spin_lock(&ioc_gone_lock);
245b2e70 1984 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
1985 complete(ioc_gone);
1986 ioc_gone = NULL;
1987 }
1988 spin_unlock(&ioc_gone_lock);
1989 }
34e6bbf2 1990}
4ac845a2 1991
34e6bbf2
FC
1992static void cfq_cic_free(struct cfq_io_context *cic)
1993{
1994 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1995}
1996
1997static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1998{
1999 unsigned long flags;
2000
2001 BUG_ON(!cic->dead_key);
2002
2003 spin_lock_irqsave(&ioc->lock, flags);
2004 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 2005 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2006 spin_unlock_irqrestore(&ioc->lock, flags);
2007
34e6bbf2 2008 cfq_cic_free(cic);
4ac845a2
JA
2009}
2010
d6de8be7
JA
2011/*
2012 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2013 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2014 * and ->trim() which is called with the task lock held
2015 */
4ac845a2
JA
2016static void cfq_free_io_context(struct io_context *ioc)
2017{
4ac845a2 2018 /*
34e6bbf2
FC
2019 * ioc->refcount is zero here, or we are called from elv_unregister(),
2020 * so no more cic's are allowed to be linked into this ioc. So it
2021 * should be ok to iterate over the known list, we will see all cic's
2022 * since no new ones are added.
4ac845a2 2023 */
07416d29 2024 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2025}
2026
89850f7e 2027static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 2028{
df5fe3e8
JM
2029 struct cfq_queue *__cfqq, *next;
2030
28f95cbc 2031 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 2032 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2033 cfq_schedule_dispatch(cfqd);
28f95cbc 2034 }
22e2c507 2035
df5fe3e8
JM
2036 /*
2037 * If this queue was scheduled to merge with another queue, be
2038 * sure to drop the reference taken on that queue (and others in
2039 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2040 */
2041 __cfqq = cfqq->new_cfqq;
2042 while (__cfqq) {
2043 if (__cfqq == cfqq) {
2044 WARN(1, "cfqq->new_cfqq loop detected\n");
2045 break;
2046 }
2047 next = __cfqq->new_cfqq;
2048 cfq_put_queue(__cfqq);
2049 __cfqq = next;
2050 }
2051
89850f7e
JA
2052 cfq_put_queue(cfqq);
2053}
22e2c507 2054
89850f7e
JA
2055static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2056 struct cfq_io_context *cic)
2057{
4faa3c81
FC
2058 struct io_context *ioc = cic->ioc;
2059
fc46379d 2060 list_del_init(&cic->queue_list);
4ac845a2
JA
2061
2062 /*
2063 * Make sure key == NULL is seen for dead queues
2064 */
fc46379d 2065 smp_wmb();
4ac845a2 2066 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
2067 cic->key = NULL;
2068
4faa3c81
FC
2069 if (ioc->ioc_data == cic)
2070 rcu_assign_pointer(ioc->ioc_data, NULL);
2071
ff6657c6
JA
2072 if (cic->cfqq[BLK_RW_ASYNC]) {
2073 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2074 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2075 }
2076
ff6657c6
JA
2077 if (cic->cfqq[BLK_RW_SYNC]) {
2078 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2079 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2080 }
89850f7e
JA
2081}
2082
4ac845a2
JA
2083static void cfq_exit_single_io_context(struct io_context *ioc,
2084 struct cfq_io_context *cic)
89850f7e
JA
2085{
2086 struct cfq_data *cfqd = cic->key;
2087
89850f7e 2088 if (cfqd) {
165125e1 2089 struct request_queue *q = cfqd->queue;
4ac845a2 2090 unsigned long flags;
89850f7e 2091
4ac845a2 2092 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2093
2094 /*
2095 * Ensure we get a fresh copy of the ->key to prevent
2096 * race between exiting task and queue
2097 */
2098 smp_read_barrier_depends();
2099 if (cic->key)
2100 __cfq_exit_single_io_context(cfqd, cic);
2101
4ac845a2 2102 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2103 }
1da177e4
LT
2104}
2105
498d3aa2
JA
2106/*
2107 * The process that ioc belongs to has exited, we need to clean up
2108 * and put the internal structures we have that belongs to that process.
2109 */
e2d74ac0 2110static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2111{
4ac845a2 2112 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2113}
2114
22e2c507 2115static struct cfq_io_context *
8267e268 2116cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2117{
b5deef90 2118 struct cfq_io_context *cic;
1da177e4 2119
94f6030c
CL
2120 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2121 cfqd->queue->node);
1da177e4 2122 if (cic) {
22e2c507 2123 cic->last_end_request = jiffies;
553698f9 2124 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2125 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2126 cic->dtor = cfq_free_io_context;
2127 cic->exit = cfq_exit_io_context;
245b2e70 2128 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2129 }
2130
2131 return cic;
2132}
2133
fd0928df 2134static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2135{
2136 struct task_struct *tsk = current;
2137 int ioprio_class;
2138
3b18152c 2139 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2140 return;
2141
fd0928df 2142 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2143 switch (ioprio_class) {
fe094d98
JA
2144 default:
2145 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2146 case IOPRIO_CLASS_NONE:
2147 /*
6d63c275 2148 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2149 */
2150 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2151 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2152 break;
2153 case IOPRIO_CLASS_RT:
2154 cfqq->ioprio = task_ioprio(ioc);
2155 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2156 break;
2157 case IOPRIO_CLASS_BE:
2158 cfqq->ioprio = task_ioprio(ioc);
2159 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2160 break;
2161 case IOPRIO_CLASS_IDLE:
2162 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2163 cfqq->ioprio = 7;
2164 cfq_clear_cfqq_idle_window(cfqq);
2165 break;
22e2c507
JA
2166 }
2167
2168 /*
2169 * keep track of original prio settings in case we have to temporarily
2170 * elevate the priority of this queue
2171 */
2172 cfqq->org_ioprio = cfqq->ioprio;
2173 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2174 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2175}
2176
febffd61 2177static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2178{
478a82b0
AV
2179 struct cfq_data *cfqd = cic->key;
2180 struct cfq_queue *cfqq;
c1b707d2 2181 unsigned long flags;
35e6077c 2182
caaa5f9f
JA
2183 if (unlikely(!cfqd))
2184 return;
2185
c1b707d2 2186 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2187
ff6657c6 2188 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2189 if (cfqq) {
2190 struct cfq_queue *new_cfqq;
ff6657c6
JA
2191 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2192 GFP_ATOMIC);
caaa5f9f 2193 if (new_cfqq) {
ff6657c6 2194 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2195 cfq_put_queue(cfqq);
2196 }
22e2c507 2197 }
caaa5f9f 2198
ff6657c6 2199 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2200 if (cfqq)
2201 cfq_mark_cfqq_prio_changed(cfqq);
2202
c1b707d2 2203 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2204}
2205
fc46379d 2206static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2207{
4ac845a2 2208 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2209 ioc->ioprio_changed = 0;
22e2c507
JA
2210}
2211
d5036d77 2212static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2213 pid_t pid, bool is_sync)
d5036d77
JA
2214{
2215 RB_CLEAR_NODE(&cfqq->rb_node);
2216 RB_CLEAR_NODE(&cfqq->p_node);
2217 INIT_LIST_HEAD(&cfqq->fifo);
2218
2219 atomic_set(&cfqq->ref, 0);
2220 cfqq->cfqd = cfqd;
2221
2222 cfq_mark_cfqq_prio_changed(cfqq);
2223
2224 if (is_sync) {
2225 if (!cfq_class_idle(cfqq))
2226 cfq_mark_cfqq_idle_window(cfqq);
2227 cfq_mark_cfqq_sync(cfqq);
2228 }
2229 cfqq->pid = pid;
2230}
2231
cdb16e8f
VG
2232static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
2233{
2234 cfqq->cfqg = cfqg;
2235}
2236
2237static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
2238{
2239 return &cfqd->root_group;
2240}
2241
22e2c507 2242static struct cfq_queue *
a6151c3a 2243cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2244 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2245{
22e2c507 2246 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2247 struct cfq_io_context *cic;
cdb16e8f 2248 struct cfq_group *cfqg;
22e2c507
JA
2249
2250retry:
cdb16e8f 2251 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2252 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2253 /* cic always exists here */
2254 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2255
6118b70b
JA
2256 /*
2257 * Always try a new alloc if we fell back to the OOM cfqq
2258 * originally, since it should just be a temporary situation.
2259 */
2260 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2261 cfqq = NULL;
22e2c507
JA
2262 if (new_cfqq) {
2263 cfqq = new_cfqq;
2264 new_cfqq = NULL;
2265 } else if (gfp_mask & __GFP_WAIT) {
2266 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2267 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2268 gfp_mask | __GFP_ZERO,
94f6030c 2269 cfqd->queue->node);
22e2c507 2270 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2271 if (new_cfqq)
2272 goto retry;
22e2c507 2273 } else {
94f6030c
CL
2274 cfqq = kmem_cache_alloc_node(cfq_pool,
2275 gfp_mask | __GFP_ZERO,
2276 cfqd->queue->node);
22e2c507
JA
2277 }
2278
6118b70b
JA
2279 if (cfqq) {
2280 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2281 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2282 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2283 cfq_log_cfqq(cfqd, cfqq, "alloced");
2284 } else
2285 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2286 }
2287
2288 if (new_cfqq)
2289 kmem_cache_free(cfq_pool, new_cfqq);
2290
22e2c507
JA
2291 return cfqq;
2292}
2293
c2dea2d1
VT
2294static struct cfq_queue **
2295cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2296{
fe094d98 2297 switch (ioprio_class) {
c2dea2d1
VT
2298 case IOPRIO_CLASS_RT:
2299 return &cfqd->async_cfqq[0][ioprio];
2300 case IOPRIO_CLASS_BE:
2301 return &cfqd->async_cfqq[1][ioprio];
2302 case IOPRIO_CLASS_IDLE:
2303 return &cfqd->async_idle_cfqq;
2304 default:
2305 BUG();
2306 }
2307}
2308
15c31be4 2309static struct cfq_queue *
a6151c3a 2310cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2311 gfp_t gfp_mask)
2312{
fd0928df
JA
2313 const int ioprio = task_ioprio(ioc);
2314 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2315 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2316 struct cfq_queue *cfqq = NULL;
2317
c2dea2d1
VT
2318 if (!is_sync) {
2319 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2320 cfqq = *async_cfqq;
2321 }
2322
6118b70b 2323 if (!cfqq)
fd0928df 2324 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2325
2326 /*
2327 * pin the queue now that it's allocated, scheduler exit will prune it
2328 */
c2dea2d1 2329 if (!is_sync && !(*async_cfqq)) {
15c31be4 2330 atomic_inc(&cfqq->ref);
c2dea2d1 2331 *async_cfqq = cfqq;
15c31be4
JA
2332 }
2333
2334 atomic_inc(&cfqq->ref);
2335 return cfqq;
2336}
2337
498d3aa2
JA
2338/*
2339 * We drop cfq io contexts lazily, so we may find a dead one.
2340 */
dbecf3ab 2341static void
4ac845a2
JA
2342cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2343 struct cfq_io_context *cic)
dbecf3ab 2344{
4ac845a2
JA
2345 unsigned long flags;
2346
fc46379d 2347 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2348
4ac845a2
JA
2349 spin_lock_irqsave(&ioc->lock, flags);
2350
4faa3c81 2351 BUG_ON(ioc->ioc_data == cic);
597bc485 2352
4ac845a2 2353 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2354 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2355 spin_unlock_irqrestore(&ioc->lock, flags);
2356
2357 cfq_cic_free(cic);
dbecf3ab
OH
2358}
2359
e2d74ac0 2360static struct cfq_io_context *
4ac845a2 2361cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2362{
e2d74ac0 2363 struct cfq_io_context *cic;
d6de8be7 2364 unsigned long flags;
4ac845a2 2365 void *k;
e2d74ac0 2366
91fac317
VT
2367 if (unlikely(!ioc))
2368 return NULL;
2369
d6de8be7
JA
2370 rcu_read_lock();
2371
597bc485
JA
2372 /*
2373 * we maintain a last-hit cache, to avoid browsing over the tree
2374 */
4ac845a2 2375 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2376 if (cic && cic->key == cfqd) {
2377 rcu_read_unlock();
597bc485 2378 return cic;
d6de8be7 2379 }
597bc485 2380
4ac845a2 2381 do {
4ac845a2
JA
2382 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2383 rcu_read_unlock();
2384 if (!cic)
2385 break;
be3b0753
OH
2386 /* ->key must be copied to avoid race with cfq_exit_queue() */
2387 k = cic->key;
2388 if (unlikely(!k)) {
4ac845a2 2389 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2390 rcu_read_lock();
4ac845a2 2391 continue;
dbecf3ab 2392 }
e2d74ac0 2393
d6de8be7 2394 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2395 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2396 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2397 break;
2398 } while (1);
e2d74ac0 2399
4ac845a2 2400 return cic;
e2d74ac0
JA
2401}
2402
4ac845a2
JA
2403/*
2404 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2405 * the process specific cfq io context when entered from the block layer.
2406 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2407 */
febffd61
JA
2408static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2409 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2410{
0261d688 2411 unsigned long flags;
4ac845a2 2412 int ret;
e2d74ac0 2413
4ac845a2
JA
2414 ret = radix_tree_preload(gfp_mask);
2415 if (!ret) {
2416 cic->ioc = ioc;
2417 cic->key = cfqd;
e2d74ac0 2418
4ac845a2
JA
2419 spin_lock_irqsave(&ioc->lock, flags);
2420 ret = radix_tree_insert(&ioc->radix_root,
2421 (unsigned long) cfqd, cic);
ffc4e759
JA
2422 if (!ret)
2423 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2424 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2425
4ac845a2
JA
2426 radix_tree_preload_end();
2427
2428 if (!ret) {
2429 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2430 list_add(&cic->queue_list, &cfqd->cic_list);
2431 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2432 }
e2d74ac0
JA
2433 }
2434
4ac845a2
JA
2435 if (ret)
2436 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2437
4ac845a2 2438 return ret;
e2d74ac0
JA
2439}
2440
1da177e4
LT
2441/*
2442 * Setup general io context and cfq io context. There can be several cfq
2443 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2444 * than one device managed by cfq.
1da177e4
LT
2445 */
2446static struct cfq_io_context *
e2d74ac0 2447cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2448{
22e2c507 2449 struct io_context *ioc = NULL;
1da177e4 2450 struct cfq_io_context *cic;
1da177e4 2451
22e2c507 2452 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2453
b5deef90 2454 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2455 if (!ioc)
2456 return NULL;
2457
4ac845a2 2458 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2459 if (cic)
2460 goto out;
1da177e4 2461
e2d74ac0
JA
2462 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2463 if (cic == NULL)
2464 goto err;
1da177e4 2465
4ac845a2
JA
2466 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2467 goto err_free;
2468
1da177e4 2469out:
fc46379d
JA
2470 smp_read_barrier_depends();
2471 if (unlikely(ioc->ioprio_changed))
2472 cfq_ioc_set_ioprio(ioc);
2473
1da177e4 2474 return cic;
4ac845a2
JA
2475err_free:
2476 cfq_cic_free(cic);
1da177e4
LT
2477err:
2478 put_io_context(ioc);
2479 return NULL;
2480}
2481
22e2c507
JA
2482static void
2483cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2484{
aaf1228d
JA
2485 unsigned long elapsed = jiffies - cic->last_end_request;
2486 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2487
22e2c507
JA
2488 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2489 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2490 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2491}
1da177e4 2492
206dc69b 2493static void
b2c18e1e 2494cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2495 struct request *rq)
206dc69b
JA
2496{
2497 sector_t sdist;
2498 u64 total;
2499
b2c18e1e 2500 if (!cfqq->last_request_pos)
4d00aa47 2501 sdist = 0;
b2c18e1e
JM
2502 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2503 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 2504 else
b2c18e1e 2505 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
2506
2507 /*
2508 * Don't allow the seek distance to get too large from the
2509 * odd fragment, pagein, etc
2510 */
b2c18e1e
JM
2511 if (cfqq->seek_samples <= 60) /* second&third seek */
2512 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 2513 else
b2c18e1e 2514 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 2515
b2c18e1e
JM
2516 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2517 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2518 total = cfqq->seek_total + (cfqq->seek_samples/2);
2519 do_div(total, cfqq->seek_samples);
2520 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
2521
2522 /*
2523 * If this cfqq is shared between multiple processes, check to
2524 * make sure that those processes are still issuing I/Os within
2525 * the mean seek distance. If not, it may be time to break the
2526 * queues apart again.
2527 */
2528 if (cfq_cfqq_coop(cfqq)) {
2529 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2530 cfqq->seeky_start = jiffies;
2531 else if (!CFQQ_SEEKY(cfqq))
2532 cfqq->seeky_start = 0;
2533 }
206dc69b 2534}
1da177e4 2535
22e2c507
JA
2536/*
2537 * Disable idle window if the process thinks too long or seeks so much that
2538 * it doesn't matter
2539 */
2540static void
2541cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2542 struct cfq_io_context *cic)
2543{
7b679138 2544 int old_idle, enable_idle;
1be92f2f 2545
0871714e
JA
2546 /*
2547 * Don't idle for async or idle io prio class
2548 */
2549 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
2550 return;
2551
c265a7f4 2552 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 2553
76280aff
CZ
2554 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2555 cfq_mark_cfqq_deep(cfqq);
2556
66dac98e 2557 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
76280aff
CZ
2558 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2559 && CFQQ_SEEKY(cfqq)))
22e2c507
JA
2560 enable_idle = 0;
2561 else if (sample_valid(cic->ttime_samples)) {
718eee05 2562 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
2563 enable_idle = 0;
2564 else
2565 enable_idle = 1;
1da177e4
LT
2566 }
2567
7b679138
JA
2568 if (old_idle != enable_idle) {
2569 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2570 if (enable_idle)
2571 cfq_mark_cfqq_idle_window(cfqq);
2572 else
2573 cfq_clear_cfqq_idle_window(cfqq);
2574 }
22e2c507 2575}
1da177e4 2576
22e2c507
JA
2577/*
2578 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2579 * no or if we aren't sure, a 1 will cause a preempt.
2580 */
a6151c3a 2581static bool
22e2c507 2582cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2583 struct request *rq)
22e2c507 2584{
6d048f53 2585 struct cfq_queue *cfqq;
22e2c507 2586
6d048f53
JA
2587 cfqq = cfqd->active_queue;
2588 if (!cfqq)
a6151c3a 2589 return false;
22e2c507 2590
6d048f53 2591 if (cfq_slice_used(cfqq))
a6151c3a 2592 return true;
6d048f53
JA
2593
2594 if (cfq_class_idle(new_cfqq))
a6151c3a 2595 return false;
22e2c507
JA
2596
2597 if (cfq_class_idle(cfqq))
a6151c3a 2598 return true;
1e3335de 2599
f04a6424 2600 /* Allow preemption only if we are idling on sync-noidle tree */
e4a22919
CZ
2601 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2602 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
f04a6424
VG
2603 new_cfqq->service_tree->count == 2 &&
2604 RB_EMPTY_ROOT(&cfqq->sort_list))
718eee05
CZ
2605 return true;
2606
374f84ac
JA
2607 /*
2608 * if the new request is sync, but the currently running queue is
2609 * not, let the sync request have priority.
2610 */
5e705374 2611 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 2612 return true;
1e3335de 2613
374f84ac
JA
2614 /*
2615 * So both queues are sync. Let the new request get disk time if
2616 * it's a metadata request and the current queue is doing regular IO.
2617 */
2618 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 2619 return true;
22e2c507 2620
3a9a3f6c
DS
2621 /*
2622 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2623 */
2624 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 2625 return true;
3a9a3f6c 2626
1e3335de 2627 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 2628 return false;
1e3335de
JA
2629
2630 /*
2631 * if this request is as-good as one we would expect from the
2632 * current cfqq, let it preempt
2633 */
e00ef799 2634 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 2635 return true;
1e3335de 2636
a6151c3a 2637 return false;
22e2c507
JA
2638}
2639
2640/*
2641 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2642 * let it have half of its nominal slice.
2643 */
2644static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2645{
7b679138 2646 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2647 cfq_slice_expired(cfqd, 1);
22e2c507 2648
bf572256
JA
2649 /*
2650 * Put the new queue at the front of the of the current list,
2651 * so we know that it will be selected next.
2652 */
2653 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2654
2655 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2656
44f7c160
JA
2657 cfqq->slice_end = 0;
2658 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2659}
2660
22e2c507 2661/*
5e705374 2662 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2663 * something we should do about it
2664 */
2665static void
5e705374
JA
2666cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2667 struct request *rq)
22e2c507 2668{
5e705374 2669 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2670
45333d5a 2671 cfqd->rq_queued++;
374f84ac
JA
2672 if (rq_is_meta(rq))
2673 cfqq->meta_pending++;
2674
9c2c38a1 2675 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 2676 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
2677 cfq_update_idle_window(cfqd, cfqq, cic);
2678
b2c18e1e 2679 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2680
2681 if (cfqq == cfqd->active_queue) {
2682 /*
b029195d
JA
2683 * Remember that we saw a request from this process, but
2684 * don't start queuing just yet. Otherwise we risk seeing lots
2685 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2686 * and merging. If the request is already larger than a single
2687 * page, let it rip immediately. For that case we assume that
2d870722
JA
2688 * merging is already done. Ditto for a busy system that
2689 * has other work pending, don't risk delaying until the
2690 * idle timer unplug to continue working.
22e2c507 2691 */
d6ceb25e 2692 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2693 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2694 cfqd->busy_queues > 1) {
d6ceb25e 2695 del_timer(&cfqd->idle_slice_timer);
bf791937
VG
2696 __blk_run_queue(cfqd->queue);
2697 } else
2698 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2699 }
5e705374 2700 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2701 /*
2702 * not the active queue - expire current slice if it is
2703 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2704 * has some old slice time left and is of higher priority or
2705 * this new queue is RT and the current one is BE
22e2c507
JA
2706 */
2707 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2708 __blk_run_queue(cfqd->queue);
22e2c507 2709 }
1da177e4
LT
2710}
2711
165125e1 2712static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2713{
b4878f24 2714 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2715 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2716
7b679138 2717 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2718 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2719
30996f40 2720 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 2721 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 2722 cfq_add_rq_rb(rq);
22e2c507 2723
5e705374 2724 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2725}
2726
45333d5a
AC
2727/*
2728 * Update hw_tag based on peak queue depth over 50 samples under
2729 * sufficient load.
2730 */
2731static void cfq_update_hw_tag(struct cfq_data *cfqd)
2732{
1a1238a7
SL
2733 struct cfq_queue *cfqq = cfqd->active_queue;
2734
e459dd08
CZ
2735 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
2736 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
2737
2738 if (cfqd->hw_tag == 1)
2739 return;
45333d5a
AC
2740
2741 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2742 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2743 return;
2744
1a1238a7
SL
2745 /*
2746 * If active queue hasn't enough requests and can idle, cfq might not
2747 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2748 * case
2749 */
2750 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2751 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2752 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2753 return;
2754
45333d5a
AC
2755 if (cfqd->hw_tag_samples++ < 50)
2756 return;
2757
e459dd08 2758 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2759 cfqd->hw_tag = 1;
2760 else
2761 cfqd->hw_tag = 0;
45333d5a
AC
2762}
2763
165125e1 2764static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2765{
5e705374 2766 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2767 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2768 const int sync = rq_is_sync(rq);
b4878f24 2769 unsigned long now;
1da177e4 2770
b4878f24 2771 now = jiffies;
7b679138 2772 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2773
45333d5a
AC
2774 cfq_update_hw_tag(cfqd);
2775
5ad531db 2776 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 2777 WARN_ON(!cfqq->dispatched);
5ad531db 2778 cfqd->rq_in_driver[sync]--;
6d048f53 2779 cfqq->dispatched--;
1da177e4 2780
3ed9a296
JA
2781 if (cfq_cfqq_sync(cfqq))
2782 cfqd->sync_flight--;
2783
365722bb 2784 if (sync) {
5e705374 2785 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
2786 cfqd->last_end_sync_rq = now;
2787 }
caaa5f9f
JA
2788
2789 /*
2790 * If this is the active queue, check if it needs to be expired,
2791 * or if we want to idle in case it has no pending requests.
2792 */
2793 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2794 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2795
44f7c160
JA
2796 if (cfq_cfqq_slice_new(cfqq)) {
2797 cfq_set_prio_slice(cfqd, cfqq);
2798 cfq_clear_cfqq_slice_new(cfqq);
2799 }
a36e71f9 2800 /*
8e550632
CZ
2801 * Idling is not enabled on:
2802 * - expired queues
2803 * - idle-priority queues
2804 * - async queues
2805 * - queues with still some requests queued
2806 * - when there is a close cooperator
a36e71f9 2807 */
0871714e 2808 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2809 cfq_slice_expired(cfqd, 1);
8e550632
CZ
2810 else if (sync && cfqq_empty &&
2811 !cfq_close_cooperator(cfqd, cfqq)) {
2812 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
2813 /*
2814 * Idling is enabled for SYNC_WORKLOAD.
2815 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
2816 * only if we processed at least one !rq_noidle request
2817 */
2818 if (cfqd->serving_type == SYNC_WORKLOAD
2819 || cfqd->noidle_tree_requires_idle)
2820 cfq_arm_slice_timer(cfqd);
2821 }
caaa5f9f 2822 }
6d048f53 2823
5ad531db 2824 if (!rq_in_driver(cfqd))
23e018a1 2825 cfq_schedule_dispatch(cfqd);
1da177e4
LT
2826}
2827
22e2c507
JA
2828/*
2829 * we temporarily boost lower priority queues if they are holding fs exclusive
2830 * resources. they are boosted to normal prio (CLASS_BE/4)
2831 */
2832static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2833{
22e2c507
JA
2834 if (has_fs_excl()) {
2835 /*
2836 * boost idle prio on transactions that would lock out other
2837 * users of the filesystem
2838 */
2839 if (cfq_class_idle(cfqq))
2840 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2841 if (cfqq->ioprio > IOPRIO_NORM)
2842 cfqq->ioprio = IOPRIO_NORM;
2843 } else {
2844 /*
dddb7451 2845 * unboost the queue (if needed)
22e2c507 2846 */
dddb7451
CZ
2847 cfqq->ioprio_class = cfqq->org_ioprio_class;
2848 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 2849 }
22e2c507 2850}
1da177e4 2851
89850f7e 2852static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2853{
1b379d8d 2854 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2855 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2856 return ELV_MQUEUE_MUST;
3b18152c 2857 }
1da177e4 2858
22e2c507 2859 return ELV_MQUEUE_MAY;
22e2c507
JA
2860}
2861
165125e1 2862static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2863{
2864 struct cfq_data *cfqd = q->elevator->elevator_data;
2865 struct task_struct *tsk = current;
91fac317 2866 struct cfq_io_context *cic;
22e2c507
JA
2867 struct cfq_queue *cfqq;
2868
2869 /*
2870 * don't force setup of a queue from here, as a call to may_queue
2871 * does not necessarily imply that a request actually will be queued.
2872 * so just lookup a possibly existing queue, or return 'may queue'
2873 * if that fails
2874 */
4ac845a2 2875 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2876 if (!cic)
2877 return ELV_MQUEUE_MAY;
2878
b0b78f81 2879 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2880 if (cfqq) {
fd0928df 2881 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2882 cfq_prio_boost(cfqq);
2883
89850f7e 2884 return __cfq_may_queue(cfqq);
22e2c507
JA
2885 }
2886
2887 return ELV_MQUEUE_MAY;
1da177e4
LT
2888}
2889
1da177e4
LT
2890/*
2891 * queue lock held here
2892 */
bb37b94c 2893static void cfq_put_request(struct request *rq)
1da177e4 2894{
5e705374 2895 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2896
5e705374 2897 if (cfqq) {
22e2c507 2898 const int rw = rq_data_dir(rq);
1da177e4 2899
22e2c507
JA
2900 BUG_ON(!cfqq->allocated[rw]);
2901 cfqq->allocated[rw]--;
1da177e4 2902
5e705374 2903 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2904
1da177e4 2905 rq->elevator_private = NULL;
5e705374 2906 rq->elevator_private2 = NULL;
1da177e4 2907
1da177e4
LT
2908 cfq_put_queue(cfqq);
2909 }
2910}
2911
df5fe3e8
JM
2912static struct cfq_queue *
2913cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2914 struct cfq_queue *cfqq)
2915{
2916 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2917 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 2918 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
2919 cfq_put_queue(cfqq);
2920 return cic_to_cfqq(cic, 1);
2921}
2922
e6c5bc73
JM
2923static int should_split_cfqq(struct cfq_queue *cfqq)
2924{
2925 if (cfqq->seeky_start &&
2926 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2927 return 1;
2928 return 0;
2929}
2930
2931/*
2932 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2933 * was the last process referring to said cfqq.
2934 */
2935static struct cfq_queue *
2936split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2937{
2938 if (cfqq_process_refs(cfqq) == 1) {
2939 cfqq->seeky_start = 0;
2940 cfqq->pid = current->pid;
2941 cfq_clear_cfqq_coop(cfqq);
2942 return cfqq;
2943 }
2944
2945 cic_set_cfqq(cic, NULL, 1);
2946 cfq_put_queue(cfqq);
2947 return NULL;
2948}
1da177e4 2949/*
22e2c507 2950 * Allocate cfq data structures associated with this request.
1da177e4 2951 */
22e2c507 2952static int
165125e1 2953cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2954{
2955 struct cfq_data *cfqd = q->elevator->elevator_data;
2956 struct cfq_io_context *cic;
2957 const int rw = rq_data_dir(rq);
a6151c3a 2958 const bool is_sync = rq_is_sync(rq);
22e2c507 2959 struct cfq_queue *cfqq;
1da177e4
LT
2960 unsigned long flags;
2961
2962 might_sleep_if(gfp_mask & __GFP_WAIT);
2963
e2d74ac0 2964 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2965
1da177e4
LT
2966 spin_lock_irqsave(q->queue_lock, flags);
2967
22e2c507
JA
2968 if (!cic)
2969 goto queue_fail;
2970
e6c5bc73 2971new_queue:
91fac317 2972 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 2973 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 2974 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 2975 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 2976 } else {
e6c5bc73
JM
2977 /*
2978 * If the queue was seeky for too long, break it apart.
2979 */
2980 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2981 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2982 cfqq = split_cfqq(cic, cfqq);
2983 if (!cfqq)
2984 goto new_queue;
2985 }
2986
df5fe3e8
JM
2987 /*
2988 * Check to see if this queue is scheduled to merge with
2989 * another, closely cooperating queue. The merging of
2990 * queues happens here as it must be done in process context.
2991 * The reference on new_cfqq was taken in merge_cfqqs.
2992 */
2993 if (cfqq->new_cfqq)
2994 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 2995 }
1da177e4
LT
2996
2997 cfqq->allocated[rw]++;
22e2c507 2998 atomic_inc(&cfqq->ref);
1da177e4 2999
5e705374 3000 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3001
5e705374
JA
3002 rq->elevator_private = cic;
3003 rq->elevator_private2 = cfqq;
3004 return 0;
1da177e4 3005
22e2c507
JA
3006queue_fail:
3007 if (cic)
3008 put_io_context(cic->ioc);
89850f7e 3009
23e018a1 3010 cfq_schedule_dispatch(cfqd);
1da177e4 3011 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3012 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3013 return 1;
3014}
3015
65f27f38 3016static void cfq_kick_queue(struct work_struct *work)
22e2c507 3017{
65f27f38 3018 struct cfq_data *cfqd =
23e018a1 3019 container_of(work, struct cfq_data, unplug_work);
165125e1 3020 struct request_queue *q = cfqd->queue;
22e2c507 3021
40bb54d1 3022 spin_lock_irq(q->queue_lock);
a7f55792 3023 __blk_run_queue(cfqd->queue);
40bb54d1 3024 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3025}
3026
3027/*
3028 * Timer running if the active_queue is currently idling inside its time slice
3029 */
3030static void cfq_idle_slice_timer(unsigned long data)
3031{
3032 struct cfq_data *cfqd = (struct cfq_data *) data;
3033 struct cfq_queue *cfqq;
3034 unsigned long flags;
3c6bd2f8 3035 int timed_out = 1;
22e2c507 3036
7b679138
JA
3037 cfq_log(cfqd, "idle timer fired");
3038
22e2c507
JA
3039 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3040
fe094d98
JA
3041 cfqq = cfqd->active_queue;
3042 if (cfqq) {
3c6bd2f8
JA
3043 timed_out = 0;
3044
b029195d
JA
3045 /*
3046 * We saw a request before the queue expired, let it through
3047 */
3048 if (cfq_cfqq_must_dispatch(cfqq))
3049 goto out_kick;
3050
22e2c507
JA
3051 /*
3052 * expired
3053 */
44f7c160 3054 if (cfq_slice_used(cfqq))
22e2c507
JA
3055 goto expire;
3056
3057 /*
3058 * only expire and reinvoke request handler, if there are
3059 * other queues with pending requests
3060 */
caaa5f9f 3061 if (!cfqd->busy_queues)
22e2c507 3062 goto out_cont;
22e2c507
JA
3063
3064 /*
3065 * not expired and it has a request pending, let it dispatch
3066 */
75e50984 3067 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3068 goto out_kick;
76280aff
CZ
3069
3070 /*
3071 * Queue depth flag is reset only when the idle didn't succeed
3072 */
3073 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3074 }
3075expire:
6084cdda 3076 cfq_slice_expired(cfqd, timed_out);
22e2c507 3077out_kick:
23e018a1 3078 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3079out_cont:
3080 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3081}
3082
3b18152c
JA
3083static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3084{
3085 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3086 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3087}
22e2c507 3088
c2dea2d1
VT
3089static void cfq_put_async_queues(struct cfq_data *cfqd)
3090{
3091 int i;
3092
3093 for (i = 0; i < IOPRIO_BE_NR; i++) {
3094 if (cfqd->async_cfqq[0][i])
3095 cfq_put_queue(cfqd->async_cfqq[0][i]);
3096 if (cfqd->async_cfqq[1][i])
3097 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3098 }
2389d1ef
ON
3099
3100 if (cfqd->async_idle_cfqq)
3101 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3102}
3103
b374d18a 3104static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3105{
22e2c507 3106 struct cfq_data *cfqd = e->elevator_data;
165125e1 3107 struct request_queue *q = cfqd->queue;
22e2c507 3108
3b18152c 3109 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3110
d9ff4187 3111 spin_lock_irq(q->queue_lock);
e2d74ac0 3112
d9ff4187 3113 if (cfqd->active_queue)
6084cdda 3114 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3115
3116 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3117 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3118 struct cfq_io_context,
3119 queue_list);
89850f7e
JA
3120
3121 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3122 }
e2d74ac0 3123
c2dea2d1 3124 cfq_put_async_queues(cfqd);
15c31be4 3125
d9ff4187 3126 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3127
3128 cfq_shutdown_timer_wq(cfqd);
3129
a90d742e 3130 kfree(cfqd);
1da177e4
LT
3131}
3132
165125e1 3133static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3134{
3135 struct cfq_data *cfqd;
718eee05 3136 int i, j;
cdb16e8f 3137 struct cfq_group *cfqg;
615f0259 3138 struct cfq_rb_root *st;
1da177e4 3139
94f6030c 3140 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3141 if (!cfqd)
bc1c1169 3142 return NULL;
1da177e4 3143
1fa8f6d6
VG
3144 /* Init root service tree */
3145 cfqd->grp_service_tree = CFQ_RB_ROOT;
3146
cdb16e8f
VG
3147 /* Init root group */
3148 cfqg = &cfqd->root_group;
615f0259
VG
3149 for_each_cfqg_st(cfqg, i, j, st)
3150 *st = CFQ_RB_ROOT;
1fa8f6d6 3151 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00
JA
3152
3153 /*
3154 * Not strictly needed (since RB_ROOT just clears the node and we
3155 * zeroed cfqd on alloc), but better be safe in case someone decides
3156 * to add magic to the rb code
3157 */
3158 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3159 cfqd->prio_trees[i] = RB_ROOT;
3160
6118b70b
JA
3161 /*
3162 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3163 * Grab a permanent reference to it, so that the normal code flow
3164 * will not attempt to free it.
3165 */
3166 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3167 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3168 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3169
d9ff4187 3170 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3171
1da177e4 3172 cfqd->queue = q;
1da177e4 3173
22e2c507
JA
3174 init_timer(&cfqd->idle_slice_timer);
3175 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3176 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3177
23e018a1 3178 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3179
1da177e4 3180 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3181 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3182 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3183 cfqd->cfq_back_max = cfq_back_max;
3184 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3185 cfqd->cfq_slice[0] = cfq_slice_async;
3186 cfqd->cfq_slice[1] = cfq_slice_sync;
3187 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3188 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3189 cfqd->cfq_latency = 1;
e459dd08 3190 cfqd->hw_tag = -1;
365722bb 3191 cfqd->last_end_sync_rq = jiffies;
bc1c1169 3192 return cfqd;
1da177e4
LT
3193}
3194
3195static void cfq_slab_kill(void)
3196{
d6de8be7
JA
3197 /*
3198 * Caller already ensured that pending RCU callbacks are completed,
3199 * so we should have no busy allocations at this point.
3200 */
1da177e4
LT
3201 if (cfq_pool)
3202 kmem_cache_destroy(cfq_pool);
3203 if (cfq_ioc_pool)
3204 kmem_cache_destroy(cfq_ioc_pool);
3205}
3206
3207static int __init cfq_slab_setup(void)
3208{
0a31bd5f 3209 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3210 if (!cfq_pool)
3211 goto fail;
3212
34e6bbf2 3213 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3214 if (!cfq_ioc_pool)
3215 goto fail;
3216
3217 return 0;
3218fail:
3219 cfq_slab_kill();
3220 return -ENOMEM;
3221}
3222
1da177e4
LT
3223/*
3224 * sysfs parts below -->
3225 */
1da177e4
LT
3226static ssize_t
3227cfq_var_show(unsigned int var, char *page)
3228{
3229 return sprintf(page, "%d\n", var);
3230}
3231
3232static ssize_t
3233cfq_var_store(unsigned int *var, const char *page, size_t count)
3234{
3235 char *p = (char *) page;
3236
3237 *var = simple_strtoul(p, &p, 10);
3238 return count;
3239}
3240
1da177e4 3241#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3242static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3243{ \
3d1ab40f 3244 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3245 unsigned int __data = __VAR; \
3246 if (__CONV) \
3247 __data = jiffies_to_msecs(__data); \
3248 return cfq_var_show(__data, (page)); \
3249}
3250SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3251SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3252SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3253SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3254SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3255SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3256SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3257SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3258SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3259SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
3260#undef SHOW_FUNCTION
3261
3262#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3263static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3264{ \
3d1ab40f 3265 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3266 unsigned int __data; \
3267 int ret = cfq_var_store(&__data, (page), count); \
3268 if (__data < (MIN)) \
3269 __data = (MIN); \
3270 else if (__data > (MAX)) \
3271 __data = (MAX); \
3272 if (__CONV) \
3273 *(__PTR) = msecs_to_jiffies(__data); \
3274 else \
3275 *(__PTR) = __data; \
3276 return ret; \
3277}
3278STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3279STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3280 UINT_MAX, 1);
3281STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3282 UINT_MAX, 1);
e572ec7e 3283STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3284STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3285 UINT_MAX, 0);
22e2c507
JA
3286STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3287STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3288STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3289STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3290 UINT_MAX, 0);
963b72fc 3291STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
3292#undef STORE_FUNCTION
3293
e572ec7e
AV
3294#define CFQ_ATTR(name) \
3295 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3296
3297static struct elv_fs_entry cfq_attrs[] = {
3298 CFQ_ATTR(quantum),
e572ec7e
AV
3299 CFQ_ATTR(fifo_expire_sync),
3300 CFQ_ATTR(fifo_expire_async),
3301 CFQ_ATTR(back_seek_max),
3302 CFQ_ATTR(back_seek_penalty),
3303 CFQ_ATTR(slice_sync),
3304 CFQ_ATTR(slice_async),
3305 CFQ_ATTR(slice_async_rq),
3306 CFQ_ATTR(slice_idle),
963b72fc 3307 CFQ_ATTR(low_latency),
e572ec7e 3308 __ATTR_NULL
1da177e4
LT
3309};
3310
1da177e4
LT
3311static struct elevator_type iosched_cfq = {
3312 .ops = {
3313 .elevator_merge_fn = cfq_merge,
3314 .elevator_merged_fn = cfq_merged_request,
3315 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3316 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3317 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3318 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3319 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3320 .elevator_deactivate_req_fn = cfq_deactivate_request,
3321 .elevator_queue_empty_fn = cfq_queue_empty,
3322 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3323 .elevator_former_req_fn = elv_rb_former_request,
3324 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3325 .elevator_set_req_fn = cfq_set_request,
3326 .elevator_put_req_fn = cfq_put_request,
3327 .elevator_may_queue_fn = cfq_may_queue,
3328 .elevator_init_fn = cfq_init_queue,
3329 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3330 .trim = cfq_free_io_context,
1da177e4 3331 },
3d1ab40f 3332 .elevator_attrs = cfq_attrs,
1da177e4
LT
3333 .elevator_name = "cfq",
3334 .elevator_owner = THIS_MODULE,
3335};
3336
3337static int __init cfq_init(void)
3338{
22e2c507
JA
3339 /*
3340 * could be 0 on HZ < 1000 setups
3341 */
3342 if (!cfq_slice_async)
3343 cfq_slice_async = 1;
3344 if (!cfq_slice_idle)
3345 cfq_slice_idle = 1;
3346
1da177e4
LT
3347 if (cfq_slab_setup())
3348 return -ENOMEM;
3349
2fdd82bd 3350 elv_register(&iosched_cfq);
1da177e4 3351
2fdd82bd 3352 return 0;
1da177e4
LT
3353}
3354
3355static void __exit cfq_exit(void)
3356{
6e9a4738 3357 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 3358 elv_unregister(&iosched_cfq);
334e94de 3359 ioc_gone = &all_gone;
fba82272
OH
3360 /* ioc_gone's update must be visible before reading ioc_count */
3361 smp_wmb();
d6de8be7
JA
3362
3363 /*
3364 * this also protects us from entering cfq_slab_kill() with
3365 * pending RCU callbacks
3366 */
245b2e70 3367 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3368 wait_for_completion(&all_gone);
83521d3e 3369 cfq_slab_kill();
1da177e4
LT
3370}
3371
3372module_init(cfq_init);
3373module_exit(cfq_exit);
3374
3375MODULE_AUTHOR("Jens Axboe");
3376MODULE_LICENSE("GPL");
3377MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");