]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/cfq-iosched.c
cfq-iosched: make seek_mean converge more quickly
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
1da177e4 12#include <linux/rbtree.h>
22e2c507 13#include <linux/ioprio.h>
7b679138 14#include <linux/blktrace_api.h>
1da177e4
LT
15
16/*
17 * tunables
18 */
fe094d98
JA
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
64100099 21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
64100099 26static const int cfq_slice_sync = HZ / 10;
3b18152c 27static int cfq_slice_async = HZ / 25;
64100099 28static const int cfq_slice_async_rq = 2;
caaa5f9f 29static int cfq_slice_idle = HZ / 125;
22e2c507 30
d9e7620e 31/*
0871714e 32 * offset from end of service tree
d9e7620e 33 */
0871714e 34#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
35
36/*
37 * below this threshold, we consider thinktime immediate
38 */
39#define CFQ_MIN_TT (2)
40
22e2c507 41#define CFQ_SLICE_SCALE (5)
45333d5a 42#define CFQ_HW_QUEUE_MIN (5)
22e2c507 43
fe094d98
JA
44#define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 46#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 47
e18b890b
CL
48static struct kmem_cache *cfq_pool;
49static struct kmem_cache *cfq_ioc_pool;
1da177e4 50
4050cf16 51static DEFINE_PER_CPU(unsigned long, ioc_count);
334e94de 52static struct completion *ioc_gone;
9a11b4ed 53static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 54
22e2c507
JA
55#define CFQ_PRIO_LISTS IOPRIO_BE_NR
56#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
57#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
206dc69b
JA
59#define sample_valid(samples) ((samples) > 80)
60
cc09e299
JA
61/*
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
66 */
67struct cfq_rb_root {
68 struct rb_root rb;
69 struct rb_node *left;
70};
71#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
72
22e2c507
JA
73/*
74 * Per block device queue structure
75 */
1da177e4 76struct cfq_data {
165125e1 77 struct request_queue *queue;
22e2c507
JA
78
79 /*
80 * rr list of queues with requests and the count of them
81 */
cc09e299 82 struct cfq_rb_root service_tree;
a36e71f9
JA
83
84 /*
85 * Each priority tree is sorted by next_request position. These
86 * trees are used when determining if two or more queues are
87 * interleaving requests (see cfq_close_cooperator).
88 */
89 struct rb_root prio_trees[CFQ_PRIO_LISTS];
90
22e2c507 91 unsigned int busy_queues;
3a9a3f6c
DS
92 /*
93 * Used to track any pending rt requests so we can pre-empt current
94 * non-RT cfqq in service when this value is non-zero.
95 */
96 unsigned int busy_rt_queues;
22e2c507 97
22e2c507 98 int rq_in_driver;
3ed9a296 99 int sync_flight;
45333d5a
AC
100
101 /*
102 * queue-depth detection
103 */
104 int rq_queued;
25776e35 105 int hw_tag;
45333d5a
AC
106 int hw_tag_samples;
107 int rq_in_driver_peak;
1da177e4 108
22e2c507
JA
109 /*
110 * idle window management
111 */
112 struct timer_list idle_slice_timer;
113 struct work_struct unplug_work;
1da177e4 114
22e2c507
JA
115 struct cfq_queue *active_queue;
116 struct cfq_io_context *active_cic;
22e2c507 117
c2dea2d1
VT
118 /*
119 * async queue for each priority case
120 */
121 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
122 struct cfq_queue *async_idle_cfqq;
15c31be4 123
6d048f53 124 sector_t last_position;
22e2c507 125 unsigned long last_end_request;
1da177e4 126
1da177e4
LT
127 /*
128 * tunables, see top of file
129 */
130 unsigned int cfq_quantum;
22e2c507 131 unsigned int cfq_fifo_expire[2];
1da177e4
LT
132 unsigned int cfq_back_penalty;
133 unsigned int cfq_back_max;
22e2c507
JA
134 unsigned int cfq_slice[2];
135 unsigned int cfq_slice_async_rq;
136 unsigned int cfq_slice_idle;
d9ff4187
AV
137
138 struct list_head cic_list;
1da177e4
LT
139};
140
22e2c507
JA
141/*
142 * Per process-grouping structure
143 */
1da177e4
LT
144struct cfq_queue {
145 /* reference count */
146 atomic_t ref;
be754d2c
RK
147 /* various state flags, see below */
148 unsigned int flags;
1da177e4
LT
149 /* parent cfq_data */
150 struct cfq_data *cfqd;
d9e7620e
JA
151 /* service_tree member */
152 struct rb_node rb_node;
153 /* service_tree key */
154 unsigned long rb_key;
a36e71f9
JA
155 /* prio tree member */
156 struct rb_node p_node;
1da177e4
LT
157 /* sorted list of pending requests */
158 struct rb_root sort_list;
159 /* if fifo isn't expired, next request to serve */
5e705374 160 struct request *next_rq;
1da177e4
LT
161 /* requests queued in sort_list */
162 int queued[2];
163 /* currently allocated requests */
164 int allocated[2];
165 /* fifo list of requests in sort_list */
22e2c507 166 struct list_head fifo;
1da177e4 167
22e2c507 168 unsigned long slice_end;
c5b680f3 169 long slice_resid;
2f5cb738 170 unsigned int slice_dispatch;
1da177e4 171
be754d2c
RK
172 /* pending metadata requests */
173 int meta_pending;
6d048f53
JA
174 /* number of requests that are on the dispatch list or inside driver */
175 int dispatched;
22e2c507
JA
176
177 /* io prio of this group */
178 unsigned short ioprio, org_ioprio;
179 unsigned short ioprio_class, org_ioprio_class;
180
7b679138 181 pid_t pid;
1da177e4
LT
182};
183
3b18152c 184enum cfqq_state_flags {
b0b8d749
JA
185 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
186 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 187 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749
JA
188 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
189 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
190 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
191 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
192 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 193 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 194 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
a36e71f9 195 CFQ_CFQQ_FLAG_coop, /* has done a coop jump of the queue */
3b18152c
JA
196};
197
198#define CFQ_CFQQ_FNS(name) \
199static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
200{ \
fe094d98 201 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
202} \
203static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
204{ \
fe094d98 205 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
206} \
207static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
208{ \
fe094d98 209 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
210}
211
212CFQ_CFQQ_FNS(on_rr);
213CFQ_CFQQ_FNS(wait_request);
b029195d 214CFQ_CFQQ_FNS(must_dispatch);
3b18152c
JA
215CFQ_CFQQ_FNS(must_alloc);
216CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
217CFQ_CFQQ_FNS(fifo_expire);
218CFQ_CFQQ_FNS(idle_window);
219CFQ_CFQQ_FNS(prio_changed);
44f7c160 220CFQ_CFQQ_FNS(slice_new);
91fac317 221CFQ_CFQQ_FNS(sync);
a36e71f9 222CFQ_CFQQ_FNS(coop);
3b18152c
JA
223#undef CFQ_CFQQ_FNS
224
7b679138
JA
225#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
226 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
227#define cfq_log(cfqd, fmt, args...) \
228 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
229
165125e1 230static void cfq_dispatch_insert(struct request_queue *, struct request *);
91fac317 231static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
fd0928df 232 struct io_context *, gfp_t);
4ac845a2 233static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
234 struct io_context *);
235
236static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
237 int is_sync)
238{
239 return cic->cfqq[!!is_sync];
240}
241
242static inline void cic_set_cfqq(struct cfq_io_context *cic,
243 struct cfq_queue *cfqq, int is_sync)
244{
245 cic->cfqq[!!is_sync] = cfqq;
246}
247
248/*
249 * We regard a request as SYNC, if it's either a read or has the SYNC bit
250 * set (in which case it could also be direct WRITE).
251 */
252static inline int cfq_bio_sync(struct bio *bio)
253{
254 if (bio_data_dir(bio) == READ || bio_sync(bio))
255 return 1;
256
257 return 0;
258}
1da177e4 259
99f95e52
AM
260/*
261 * scheduler run of queue, if there are requests pending and no one in the
262 * driver that will restart queueing
263 */
264static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
265{
7b679138
JA
266 if (cfqd->busy_queues) {
267 cfq_log(cfqd, "schedule dispatch");
18887ad9 268 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 269 }
99f95e52
AM
270}
271
165125e1 272static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
273{
274 struct cfq_data *cfqd = q->elevator->elevator_data;
275
b4878f24 276 return !cfqd->busy_queues;
99f95e52
AM
277}
278
44f7c160
JA
279/*
280 * Scale schedule slice based on io priority. Use the sync time slice only
281 * if a queue is marked sync and has sync io queued. A sync queue with async
282 * io only, should not get full sync slice length.
283 */
d9e7620e
JA
284static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
285 unsigned short prio)
44f7c160 286{
d9e7620e 287 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 288
d9e7620e
JA
289 WARN_ON(prio >= IOPRIO_BE_NR);
290
291 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
292}
44f7c160 293
d9e7620e
JA
294static inline int
295cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
296{
297 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
298}
299
300static inline void
301cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
302{
303 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
7b679138 304 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
305}
306
307/*
308 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
309 * isn't valid until the first request from the dispatch is activated
310 * and the slice time set.
311 */
312static inline int cfq_slice_used(struct cfq_queue *cfqq)
313{
314 if (cfq_cfqq_slice_new(cfqq))
315 return 0;
316 if (time_before(jiffies, cfqq->slice_end))
317 return 0;
318
319 return 1;
320}
321
1da177e4 322/*
5e705374 323 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 324 * We choose the request that is closest to the head right now. Distance
e8a99053 325 * behind the head is penalized and only allowed to a certain extent.
1da177e4 326 */
5e705374
JA
327static struct request *
328cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
1da177e4
LT
329{
330 sector_t last, s1, s2, d1 = 0, d2 = 0;
1da177e4 331 unsigned long back_max;
e8a99053
AM
332#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
333#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
334 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 335
5e705374
JA
336 if (rq1 == NULL || rq1 == rq2)
337 return rq2;
338 if (rq2 == NULL)
339 return rq1;
9c2c38a1 340
5e705374
JA
341 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
342 return rq1;
343 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
344 return rq2;
374f84ac
JA
345 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
346 return rq1;
347 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
348 return rq2;
1da177e4 349
5e705374
JA
350 s1 = rq1->sector;
351 s2 = rq2->sector;
1da177e4 352
6d048f53 353 last = cfqd->last_position;
1da177e4 354
1da177e4
LT
355 /*
356 * by definition, 1KiB is 2 sectors
357 */
358 back_max = cfqd->cfq_back_max * 2;
359
360 /*
361 * Strict one way elevator _except_ in the case where we allow
362 * short backward seeks which are biased as twice the cost of a
363 * similar forward seek.
364 */
365 if (s1 >= last)
366 d1 = s1 - last;
367 else if (s1 + back_max >= last)
368 d1 = (last - s1) * cfqd->cfq_back_penalty;
369 else
e8a99053 370 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
371
372 if (s2 >= last)
373 d2 = s2 - last;
374 else if (s2 + back_max >= last)
375 d2 = (last - s2) * cfqd->cfq_back_penalty;
376 else
e8a99053 377 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
378
379 /* Found required data */
e8a99053
AM
380
381 /*
382 * By doing switch() on the bit mask "wrap" we avoid having to
383 * check two variables for all permutations: --> faster!
384 */
385 switch (wrap) {
5e705374 386 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 387 if (d1 < d2)
5e705374 388 return rq1;
e8a99053 389 else if (d2 < d1)
5e705374 390 return rq2;
e8a99053
AM
391 else {
392 if (s1 >= s2)
5e705374 393 return rq1;
e8a99053 394 else
5e705374 395 return rq2;
e8a99053 396 }
1da177e4 397
e8a99053 398 case CFQ_RQ2_WRAP:
5e705374 399 return rq1;
e8a99053 400 case CFQ_RQ1_WRAP:
5e705374
JA
401 return rq2;
402 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
403 default:
404 /*
405 * Since both rqs are wrapped,
406 * start with the one that's further behind head
407 * (--> only *one* back seek required),
408 * since back seek takes more time than forward.
409 */
410 if (s1 <= s2)
5e705374 411 return rq1;
1da177e4 412 else
5e705374 413 return rq2;
1da177e4
LT
414 }
415}
416
498d3aa2
JA
417/*
418 * The below is leftmost cache rbtree addon
419 */
0871714e 420static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299
JA
421{
422 if (!root->left)
423 root->left = rb_first(&root->rb);
424
0871714e
JA
425 if (root->left)
426 return rb_entry(root->left, struct cfq_queue, rb_node);
427
428 return NULL;
cc09e299
JA
429}
430
a36e71f9
JA
431static void rb_erase_init(struct rb_node *n, struct rb_root *root)
432{
433 rb_erase(n, root);
434 RB_CLEAR_NODE(n);
435}
436
cc09e299
JA
437static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
438{
439 if (root->left == n)
440 root->left = NULL;
a36e71f9 441 rb_erase_init(n, &root->rb);
cc09e299
JA
442}
443
1da177e4
LT
444/*
445 * would be nice to take fifo expire time into account as well
446 */
5e705374
JA
447static struct request *
448cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
449 struct request *last)
1da177e4 450{
21183b07
JA
451 struct rb_node *rbnext = rb_next(&last->rb_node);
452 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 453 struct request *next = NULL, *prev = NULL;
1da177e4 454
21183b07 455 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
456
457 if (rbprev)
5e705374 458 prev = rb_entry_rq(rbprev);
1da177e4 459
21183b07 460 if (rbnext)
5e705374 461 next = rb_entry_rq(rbnext);
21183b07
JA
462 else {
463 rbnext = rb_first(&cfqq->sort_list);
464 if (rbnext && rbnext != &last->rb_node)
5e705374 465 next = rb_entry_rq(rbnext);
21183b07 466 }
1da177e4 467
21183b07 468 return cfq_choose_req(cfqd, next, prev);
1da177e4
LT
469}
470
d9e7620e
JA
471static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
472 struct cfq_queue *cfqq)
1da177e4 473{
d9e7620e
JA
474 /*
475 * just an approximation, should be ok.
476 */
67e6b49e
JA
477 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
478 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
479}
480
498d3aa2
JA
481/*
482 * The cfqd->service_tree holds all pending cfq_queue's that have
483 * requests waiting to be processed. It is sorted in the order that
484 * we will service the queues.
485 */
a36e71f9
JA
486static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
487 int add_front)
d9e7620e 488{
0871714e
JA
489 struct rb_node **p, *parent;
490 struct cfq_queue *__cfqq;
d9e7620e 491 unsigned long rb_key;
498d3aa2 492 int left;
d9e7620e 493
0871714e
JA
494 if (cfq_class_idle(cfqq)) {
495 rb_key = CFQ_IDLE_DELAY;
496 parent = rb_last(&cfqd->service_tree.rb);
497 if (parent && parent != &cfqq->rb_node) {
498 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
499 rb_key += __cfqq->rb_key;
500 } else
501 rb_key += jiffies;
502 } else if (!add_front) {
edd75ffd
JA
503 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
504 rb_key += cfqq->slice_resid;
505 cfqq->slice_resid = 0;
506 } else
507 rb_key = 0;
1da177e4 508
d9e7620e 509 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 510 /*
d9e7620e 511 * same position, nothing more to do
99f9628a 512 */
d9e7620e
JA
513 if (rb_key == cfqq->rb_key)
514 return;
1da177e4 515
cc09e299 516 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
1da177e4 517 }
d9e7620e 518
498d3aa2 519 left = 1;
0871714e
JA
520 parent = NULL;
521 p = &cfqd->service_tree.rb.rb_node;
d9e7620e 522 while (*p) {
67060e37 523 struct rb_node **n;
cc09e299 524
d9e7620e
JA
525 parent = *p;
526 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
527
0c534e0a
JA
528 /*
529 * sort RT queues first, we always want to give
67060e37
JA
530 * preference to them. IDLE queues goes to the back.
531 * after that, sort on the next service time.
0c534e0a
JA
532 */
533 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
67060e37 534 n = &(*p)->rb_left;
0c534e0a 535 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
67060e37
JA
536 n = &(*p)->rb_right;
537 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
538 n = &(*p)->rb_left;
539 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
540 n = &(*p)->rb_right;
0c534e0a 541 else if (rb_key < __cfqq->rb_key)
67060e37
JA
542 n = &(*p)->rb_left;
543 else
544 n = &(*p)->rb_right;
545
546 if (n == &(*p)->rb_right)
cc09e299 547 left = 0;
67060e37
JA
548
549 p = n;
d9e7620e
JA
550 }
551
cc09e299
JA
552 if (left)
553 cfqd->service_tree.left = &cfqq->rb_node;
554
d9e7620e
JA
555 cfqq->rb_key = rb_key;
556 rb_link_node(&cfqq->rb_node, parent, p);
cc09e299 557 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
1da177e4
LT
558}
559
a36e71f9
JA
560static struct cfq_queue *
561cfq_prio_tree_lookup(struct cfq_data *cfqd, int ioprio, sector_t sector,
562 struct rb_node **ret_parent, struct rb_node ***rb_link)
563{
564 struct rb_root *root = &cfqd->prio_trees[ioprio];
565 struct rb_node **p, *parent;
566 struct cfq_queue *cfqq = NULL;
567
568 parent = NULL;
569 p = &root->rb_node;
570 while (*p) {
571 struct rb_node **n;
572
573 parent = *p;
574 cfqq = rb_entry(parent, struct cfq_queue, p_node);
575
576 /*
577 * Sort strictly based on sector. Smallest to the left,
578 * largest to the right.
579 */
580 if (sector > cfqq->next_rq->sector)
581 n = &(*p)->rb_right;
582 else if (sector < cfqq->next_rq->sector)
583 n = &(*p)->rb_left;
584 else
585 break;
586 p = n;
587 }
588
589 *ret_parent = parent;
590 if (rb_link)
591 *rb_link = p;
592 return NULL;
593}
594
595static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
596{
597 struct rb_root *root = &cfqd->prio_trees[cfqq->ioprio];
598 struct rb_node **p, *parent;
599 struct cfq_queue *__cfqq;
600
601 if (!RB_EMPTY_NODE(&cfqq->p_node))
602 rb_erase_init(&cfqq->p_node, root);
603
604 if (cfq_class_idle(cfqq))
605 return;
606 if (!cfqq->next_rq)
607 return;
608
609 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->ioprio, cfqq->next_rq->sector,
610 &parent, &p);
611 BUG_ON(__cfqq);
612
613 rb_link_node(&cfqq->p_node, parent, p);
614 rb_insert_color(&cfqq->p_node, root);
615}
616
498d3aa2
JA
617/*
618 * Update cfqq's position in the service tree.
619 */
edd75ffd 620static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 621{
6d048f53
JA
622 /*
623 * Resorting requires the cfqq to be on the RR list already.
624 */
a36e71f9 625 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 626 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
627 cfq_prio_tree_add(cfqd, cfqq);
628 }
6d048f53
JA
629}
630
1da177e4
LT
631/*
632 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 633 * the pending list according to last request service
1da177e4 634 */
febffd61 635static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 636{
7b679138 637 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
638 BUG_ON(cfq_cfqq_on_rr(cfqq));
639 cfq_mark_cfqq_on_rr(cfqq);
1da177e4 640 cfqd->busy_queues++;
3a9a3f6c
DS
641 if (cfq_class_rt(cfqq))
642 cfqd->busy_rt_queues++;
1da177e4 643
edd75ffd 644 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
645}
646
498d3aa2
JA
647/*
648 * Called when the cfqq no longer has requests pending, remove it from
649 * the service tree.
650 */
febffd61 651static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 652{
7b679138 653 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
654 BUG_ON(!cfq_cfqq_on_rr(cfqq));
655 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 656
cc09e299
JA
657 if (!RB_EMPTY_NODE(&cfqq->rb_node))
658 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
a36e71f9
JA
659 if (!RB_EMPTY_NODE(&cfqq->p_node))
660 rb_erase_init(&cfqq->p_node, &cfqd->prio_trees[cfqq->ioprio]);
d9e7620e 661
1da177e4
LT
662 BUG_ON(!cfqd->busy_queues);
663 cfqd->busy_queues--;
3a9a3f6c
DS
664 if (cfq_class_rt(cfqq))
665 cfqd->busy_rt_queues--;
1da177e4
LT
666}
667
668/*
669 * rb tree support functions
670 */
febffd61 671static void cfq_del_rq_rb(struct request *rq)
1da177e4 672{
5e705374 673 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 674 struct cfq_data *cfqd = cfqq->cfqd;
5e705374 675 const int sync = rq_is_sync(rq);
1da177e4 676
b4878f24
JA
677 BUG_ON(!cfqq->queued[sync]);
678 cfqq->queued[sync]--;
1da177e4 679
5e705374 680 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 681
dd67d051 682 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
b4878f24 683 cfq_del_cfqq_rr(cfqd, cfqq);
1da177e4
LT
684}
685
5e705374 686static void cfq_add_rq_rb(struct request *rq)
1da177e4 687{
5e705374 688 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 689 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 690 struct request *__alias, *prev;
1da177e4 691
5380a101 692 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
693
694 /*
695 * looks a little odd, but the first insert might return an alias.
696 * if that happens, put the alias on the dispatch list
697 */
21183b07 698 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 699 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
700
701 if (!cfq_cfqq_on_rr(cfqq))
702 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
703
704 /*
705 * check if this request is a better next-serve candidate
706 */
a36e71f9 707 prev = cfqq->next_rq;
5044eed4 708 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
a36e71f9
JA
709
710 /*
711 * adjust priority tree position, if ->next_rq changes
712 */
713 if (prev != cfqq->next_rq)
714 cfq_prio_tree_add(cfqd, cfqq);
715
5044eed4 716 BUG_ON(!cfqq->next_rq);
1da177e4
LT
717}
718
febffd61 719static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 720{
5380a101
JA
721 elv_rb_del(&cfqq->sort_list, rq);
722 cfqq->queued[rq_is_sync(rq)]--;
5e705374 723 cfq_add_rq_rb(rq);
1da177e4
LT
724}
725
206dc69b
JA
726static struct request *
727cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 728{
206dc69b 729 struct task_struct *tsk = current;
91fac317 730 struct cfq_io_context *cic;
206dc69b 731 struct cfq_queue *cfqq;
1da177e4 732
4ac845a2 733 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
734 if (!cic)
735 return NULL;
736
737 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
738 if (cfqq) {
739 sector_t sector = bio->bi_sector + bio_sectors(bio);
740
21183b07 741 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 742 }
1da177e4 743
1da177e4
LT
744 return NULL;
745}
746
165125e1 747static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 748{
22e2c507 749 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 750
b4878f24 751 cfqd->rq_in_driver++;
7b679138
JA
752 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
753 cfqd->rq_in_driver);
25776e35 754
6d048f53 755 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
1da177e4
LT
756}
757
165125e1 758static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 759{
b4878f24
JA
760 struct cfq_data *cfqd = q->elevator->elevator_data;
761
762 WARN_ON(!cfqd->rq_in_driver);
763 cfqd->rq_in_driver--;
7b679138
JA
764 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
765 cfqd->rq_in_driver);
1da177e4
LT
766}
767
b4878f24 768static void cfq_remove_request(struct request *rq)
1da177e4 769{
5e705374 770 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 771
5e705374
JA
772 if (cfqq->next_rq == rq)
773 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 774
b4878f24 775 list_del_init(&rq->queuelist);
5e705374 776 cfq_del_rq_rb(rq);
374f84ac 777
45333d5a 778 cfqq->cfqd->rq_queued--;
374f84ac
JA
779 if (rq_is_meta(rq)) {
780 WARN_ON(!cfqq->meta_pending);
781 cfqq->meta_pending--;
782 }
1da177e4
LT
783}
784
165125e1
JA
785static int cfq_merge(struct request_queue *q, struct request **req,
786 struct bio *bio)
1da177e4
LT
787{
788 struct cfq_data *cfqd = q->elevator->elevator_data;
789 struct request *__rq;
1da177e4 790
206dc69b 791 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 792 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
793 *req = __rq;
794 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
795 }
796
797 return ELEVATOR_NO_MERGE;
1da177e4
LT
798}
799
165125e1 800static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 801 int type)
1da177e4 802{
21183b07 803 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 804 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 805
5e705374 806 cfq_reposition_rq_rb(cfqq, req);
1da177e4 807 }
1da177e4
LT
808}
809
810static void
165125e1 811cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
812 struct request *next)
813{
22e2c507
JA
814 /*
815 * reposition in fifo if next is older than rq
816 */
817 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
818 time_before(next->start_time, rq->start_time))
819 list_move(&rq->queuelist, &next->queuelist);
820
b4878f24 821 cfq_remove_request(next);
22e2c507
JA
822}
823
165125e1 824static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
825 struct bio *bio)
826{
827 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 828 struct cfq_io_context *cic;
da775265 829 struct cfq_queue *cfqq;
da775265
JA
830
831 /*
ec8acb69 832 * Disallow merge of a sync bio into an async request.
da775265 833 */
91fac317 834 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
da775265
JA
835 return 0;
836
837 /*
719d3402
JA
838 * Lookup the cfqq that this bio will be queued with. Allow
839 * merge only if rq is queued there.
da775265 840 */
4ac845a2 841 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317
VT
842 if (!cic)
843 return 0;
719d3402 844
91fac317 845 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
719d3402
JA
846 if (cfqq == RQ_CFQQ(rq))
847 return 1;
da775265 848
ec8acb69 849 return 0;
da775265
JA
850}
851
febffd61
JA
852static void __cfq_set_active_queue(struct cfq_data *cfqd,
853 struct cfq_queue *cfqq)
22e2c507
JA
854{
855 if (cfqq) {
7b679138 856 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 857 cfqq->slice_end = 0;
2f5cb738
JA
858 cfqq->slice_dispatch = 0;
859
2f5cb738 860 cfq_clear_cfqq_wait_request(cfqq);
b029195d 861 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
862 cfq_clear_cfqq_must_alloc_slice(cfqq);
863 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 864 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
865
866 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
867 }
868
869 cfqd->active_queue = cfqq;
870}
871
7b14e3b5
JA
872/*
873 * current cfqq expired its slice (or was too idle), select new one
874 */
875static void
876__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6084cdda 877 int timed_out)
7b14e3b5 878{
7b679138
JA
879 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
880
7b14e3b5
JA
881 if (cfq_cfqq_wait_request(cfqq))
882 del_timer(&cfqd->idle_slice_timer);
883
7b14e3b5
JA
884 cfq_clear_cfqq_wait_request(cfqq);
885
886 /*
6084cdda 887 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 888 */
7b679138 889 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 890 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
891 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
892 }
7b14e3b5 893
edd75ffd 894 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
895
896 if (cfqq == cfqd->active_queue)
897 cfqd->active_queue = NULL;
898
899 if (cfqd->active_cic) {
900 put_io_context(cfqd->active_cic->ioc);
901 cfqd->active_cic = NULL;
902 }
7b14e3b5
JA
903}
904
6084cdda 905static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
7b14e3b5
JA
906{
907 struct cfq_queue *cfqq = cfqd->active_queue;
908
909 if (cfqq)
6084cdda 910 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
911}
912
498d3aa2
JA
913/*
914 * Get next queue for service. Unless we have a queue preemption,
915 * we'll simply select the first cfqq in the service tree.
916 */
6d048f53 917static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 918{
edd75ffd
JA
919 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
920 return NULL;
d9e7620e 921
0871714e 922 return cfq_rb_first(&cfqd->service_tree);
6d048f53
JA
923}
924
498d3aa2
JA
925/*
926 * Get and set a new active queue for service.
927 */
a36e71f9
JA
928static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
929 struct cfq_queue *cfqq)
6d048f53 930{
a36e71f9
JA
931 if (!cfqq) {
932 cfqq = cfq_get_next_queue(cfqd);
933 if (cfqq)
934 cfq_clear_cfqq_coop(cfqq);
935 }
6d048f53 936
22e2c507 937 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 938 return cfqq;
22e2c507
JA
939}
940
d9e7620e
JA
941static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
942 struct request *rq)
943{
944 if (rq->sector >= cfqd->last_position)
945 return rq->sector - cfqd->last_position;
946 else
947 return cfqd->last_position - rq->sector;
948}
949
6d048f53
JA
950static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
951{
952 struct cfq_io_context *cic = cfqd->active_cic;
953
954 if (!sample_valid(cic->seek_samples))
955 return 0;
956
957 return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
958}
959
a36e71f9
JA
960static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
961 struct cfq_queue *cur_cfqq)
962{
963 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->ioprio];
964 struct rb_node *parent, *node;
965 struct cfq_queue *__cfqq;
966 sector_t sector = cfqd->last_position;
967
968 if (RB_EMPTY_ROOT(root))
969 return NULL;
970
971 /*
972 * First, if we find a request starting at the end of the last
973 * request, choose it.
974 */
975 __cfqq = cfq_prio_tree_lookup(cfqd, cur_cfqq->ioprio,
976 sector, &parent, NULL);
977 if (__cfqq)
978 return __cfqq;
979
980 /*
981 * If the exact sector wasn't found, the parent of the NULL leaf
982 * will contain the closest sector.
983 */
984 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
985 if (cfq_rq_close(cfqd, __cfqq->next_rq))
986 return __cfqq;
987
988 if (__cfqq->next_rq->sector < sector)
989 node = rb_next(&__cfqq->p_node);
990 else
991 node = rb_prev(&__cfqq->p_node);
992 if (!node)
993 return NULL;
994
995 __cfqq = rb_entry(node, struct cfq_queue, p_node);
996 if (cfq_rq_close(cfqd, __cfqq->next_rq))
997 return __cfqq;
998
999 return NULL;
1000}
1001
1002/*
1003 * cfqd - obvious
1004 * cur_cfqq - passed in so that we don't decide that the current queue is
1005 * closely cooperating with itself.
1006 *
1007 * So, basically we're assuming that that cur_cfqq has dispatched at least
1008 * one request, and that cfqd->last_position reflects a position on the disk
1009 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1010 * assumption.
1011 */
1012static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1013 struct cfq_queue *cur_cfqq,
1014 int probe)
6d048f53 1015{
a36e71f9
JA
1016 struct cfq_queue *cfqq;
1017
1018 /*
1019 * A valid cfq_io_context is necessary to compare requests against
1020 * the seek_mean of the current cfqq.
1021 */
1022 if (!cfqd->active_cic)
1023 return NULL;
1024
6d048f53 1025 /*
d9e7620e
JA
1026 * We should notice if some of the queues are cooperating, eg
1027 * working closely on the same area of the disk. In that case,
1028 * we can group them together and don't waste time idling.
6d048f53 1029 */
a36e71f9
JA
1030 cfqq = cfqq_close(cfqd, cur_cfqq);
1031 if (!cfqq)
1032 return NULL;
1033
1034 if (cfq_cfqq_coop(cfqq))
1035 return NULL;
1036
1037 if (!probe)
1038 cfq_mark_cfqq_coop(cfqq);
1039 return cfqq;
6d048f53
JA
1040}
1041
a36e71f9 1042
6d048f53 1043#define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
caaa5f9f 1044
6d048f53 1045static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1046{
1792669c 1047 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1048 struct cfq_io_context *cic;
7b14e3b5
JA
1049 unsigned long sl;
1050
a68bbddb 1051 /*
f7d7b7a7
JA
1052 * SSD device without seek penalty, disable idling. But only do so
1053 * for devices that support queuing, otherwise we still have a problem
1054 * with sync vs async workloads.
a68bbddb 1055 */
f7d7b7a7 1056 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1057 return;
1058
dd67d051 1059 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1060 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1061
1062 /*
1063 * idle is disabled, either manually or by past process history
1064 */
6d048f53
JA
1065 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1066 return;
1067
7b679138
JA
1068 /*
1069 * still requests with the driver, don't idle
1070 */
1071 if (cfqd->rq_in_driver)
1072 return;
1073
22e2c507
JA
1074 /*
1075 * task has exited, don't wait
1076 */
206dc69b 1077 cic = cfqd->active_cic;
66dac98e 1078 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1079 return;
1080
3b18152c 1081 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1082
206dc69b
JA
1083 /*
1084 * we don't want to idle for seeks, but we do want to allow
1085 * fair distribution of slice time for a process doing back-to-back
1086 * seeks. so allow a little bit of time for him to submit a new rq
1087 */
6d048f53 1088 sl = cfqd->cfq_slice_idle;
caaa5f9f 1089 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
d9e7620e 1090 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
206dc69b 1091
7b14e3b5 1092 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1093 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1094}
1095
498d3aa2
JA
1096/*
1097 * Move request from internal lists to the request queue dispatch list.
1098 */
165125e1 1099static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1100{
3ed9a296 1101 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1102 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1103
7b679138
JA
1104 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1105
5380a101 1106 cfq_remove_request(rq);
6d048f53 1107 cfqq->dispatched++;
5380a101 1108 elv_dispatch_sort(q, rq);
3ed9a296
JA
1109
1110 if (cfq_cfqq_sync(cfqq))
1111 cfqd->sync_flight++;
1da177e4
LT
1112}
1113
1114/*
1115 * return expired entry, or NULL to just start from scratch in rbtree
1116 */
febffd61 1117static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4
LT
1118{
1119 struct cfq_data *cfqd = cfqq->cfqd;
22e2c507 1120 struct request *rq;
89850f7e 1121 int fifo;
1da177e4 1122
3b18152c 1123 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1124 return NULL;
cb887411
JA
1125
1126 cfq_mark_cfqq_fifo_expire(cfqq);
1127
89850f7e
JA
1128 if (list_empty(&cfqq->fifo))
1129 return NULL;
1da177e4 1130
6d048f53 1131 fifo = cfq_cfqq_sync(cfqq);
89850f7e 1132 rq = rq_entry_fifo(cfqq->fifo.next);
1da177e4 1133
6d048f53 1134 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
7b679138 1135 rq = NULL;
1da177e4 1136
7b679138 1137 cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
6d048f53 1138 return rq;
1da177e4
LT
1139}
1140
22e2c507
JA
1141static inline int
1142cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1143{
1144 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1145
22e2c507 1146 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1147
22e2c507 1148 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1149}
1150
22e2c507 1151/*
498d3aa2
JA
1152 * Select a queue for service. If we have a current active queue,
1153 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1154 */
1b5ed5e1 1155static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1156{
a36e71f9 1157 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1158
22e2c507
JA
1159 cfqq = cfqd->active_queue;
1160 if (!cfqq)
1161 goto new_queue;
1da177e4 1162
22e2c507 1163 /*
6d048f53 1164 * The active queue has run out of time, expire it and select new.
22e2c507 1165 */
b029195d 1166 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1167 goto expire;
1da177e4 1168
3a9a3f6c
DS
1169 /*
1170 * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1171 * cfqq.
1172 */
1173 if (!cfq_class_rt(cfqq) && cfqd->busy_rt_queues) {
1174 /*
1175 * We simulate this as cfqq timed out so that it gets to bank
1176 * the remaining of its time slice.
1177 */
1178 cfq_log_cfqq(cfqd, cfqq, "preempt");
1179 cfq_slice_expired(cfqd, 1);
1180 goto new_queue;
1181 }
1182
22e2c507 1183 /*
6d048f53
JA
1184 * The active queue has requests and isn't expired, allow it to
1185 * dispatch.
22e2c507 1186 */
dd67d051 1187 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1188 goto keep_queue;
6d048f53 1189
a36e71f9
JA
1190 /*
1191 * If another queue has a request waiting within our mean seek
1192 * distance, let it run. The expire code will check for close
1193 * cooperators and put the close queue at the front of the service
1194 * tree.
1195 */
1196 new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1197 if (new_cfqq)
1198 goto expire;
1199
6d048f53
JA
1200 /*
1201 * No requests pending. If the active queue still has requests in
1202 * flight or is idling for a new request, allow either of these
1203 * conditions to happen (or time out) before selecting a new queue.
1204 */
cc197479
JA
1205 if (timer_pending(&cfqd->idle_slice_timer) ||
1206 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
caaa5f9f
JA
1207 cfqq = NULL;
1208 goto keep_queue;
22e2c507
JA
1209 }
1210
3b18152c 1211expire:
6084cdda 1212 cfq_slice_expired(cfqd, 0);
3b18152c 1213new_queue:
a36e71f9 1214 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1215keep_queue:
3b18152c 1216 return cfqq;
22e2c507
JA
1217}
1218
febffd61 1219static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1220{
1221 int dispatched = 0;
1222
1223 while (cfqq->next_rq) {
1224 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1225 dispatched++;
1226 }
1227
1228 BUG_ON(!list_empty(&cfqq->fifo));
1229 return dispatched;
1230}
1231
498d3aa2
JA
1232/*
1233 * Drain our current requests. Used for barriers and when switching
1234 * io schedulers on-the-fly.
1235 */
d9e7620e 1236static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1237{
0871714e 1238 struct cfq_queue *cfqq;
d9e7620e 1239 int dispatched = 0;
1b5ed5e1 1240
0871714e 1241 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
d9e7620e 1242 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1243
6084cdda 1244 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1245
1246 BUG_ON(cfqd->busy_queues);
1247
7b679138 1248 cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1b5ed5e1
TH
1249 return dispatched;
1250}
1251
2f5cb738
JA
1252/*
1253 * Dispatch a request from cfqq, moving them to the request queue
1254 * dispatch list.
1255 */
1256static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1257{
1258 struct request *rq;
1259
1260 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1261
1262 /*
1263 * follow expired path, else get first next available
1264 */
1265 rq = cfq_check_fifo(cfqq);
1266 if (!rq)
1267 rq = cfqq->next_rq;
1268
1269 /*
1270 * insert request into driver dispatch list
1271 */
1272 cfq_dispatch_insert(cfqd->queue, rq);
1273
1274 if (!cfqd->active_cic) {
1275 struct cfq_io_context *cic = RQ_CIC(rq);
1276
1277 atomic_inc(&cic->ioc->refcount);
1278 cfqd->active_cic = cic;
1279 }
1280}
1281
1282/*
1283 * Find the cfqq that we need to service and move a request from that to the
1284 * dispatch list
1285 */
165125e1 1286static int cfq_dispatch_requests(struct request_queue *q, int force)
22e2c507
JA
1287{
1288 struct cfq_data *cfqd = q->elevator->elevator_data;
6d048f53 1289 struct cfq_queue *cfqq;
2f5cb738 1290 unsigned int max_dispatch;
22e2c507
JA
1291
1292 if (!cfqd->busy_queues)
1293 return 0;
1294
1b5ed5e1
TH
1295 if (unlikely(force))
1296 return cfq_forced_dispatch(cfqd);
1297
2f5cb738
JA
1298 cfqq = cfq_select_queue(cfqd);
1299 if (!cfqq)
1300 return 0;
1301
1302 /*
1303 * If this is an async queue and we have sync IO in flight, let it wait
1304 */
1305 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1306 return 0;
1307
1308 max_dispatch = cfqd->cfq_quantum;
1309 if (cfq_class_idle(cfqq))
1310 max_dispatch = 1;
b4878f24 1311
2f5cb738
JA
1312 /*
1313 * Does this cfqq already have too much IO in flight?
1314 */
1315 if (cfqq->dispatched >= max_dispatch) {
1316 /*
1317 * idle queue must always only have a single IO in flight
1318 */
3ed9a296 1319 if (cfq_class_idle(cfqq))
2f5cb738 1320 return 0;
3ed9a296 1321
2f5cb738
JA
1322 /*
1323 * We have other queues, don't allow more IO from this one
1324 */
1325 if (cfqd->busy_queues > 1)
1326 return 0;
9ede209e 1327
2f5cb738
JA
1328 /*
1329 * we are the only queue, allow up to 4 times of 'quantum'
1330 */
1331 if (cfqq->dispatched >= 4 * max_dispatch)
1332 return 0;
1333 }
3ed9a296 1334
2f5cb738
JA
1335 /*
1336 * Dispatch a request from this cfqq
1337 */
1338 cfq_dispatch_request(cfqd, cfqq);
1339 cfqq->slice_dispatch++;
b029195d 1340 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1341
2f5cb738
JA
1342 /*
1343 * expire an async queue immediately if it has used up its slice. idle
1344 * queue always expire after 1 dispatch round.
1345 */
1346 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1347 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1348 cfq_class_idle(cfqq))) {
1349 cfqq->slice_end = jiffies + 1;
1350 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1351 }
1352
2f5cb738
JA
1353 cfq_log(cfqd, "dispatched a request");
1354 return 1;
1da177e4
LT
1355}
1356
1da177e4 1357/*
5e705374
JA
1358 * task holds one reference to the queue, dropped when task exits. each rq
1359 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1360 *
1361 * queue lock must be held here.
1362 */
1363static void cfq_put_queue(struct cfq_queue *cfqq)
1364{
22e2c507
JA
1365 struct cfq_data *cfqd = cfqq->cfqd;
1366
1367 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1368
1369 if (!atomic_dec_and_test(&cfqq->ref))
1370 return;
1371
7b679138 1372 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1373 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1374 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3b18152c 1375 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 1376
28f95cbc 1377 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1378 __cfq_slice_expired(cfqd, cfqq, 0);
28f95cbc
JA
1379 cfq_schedule_dispatch(cfqd);
1380 }
22e2c507 1381
1da177e4
LT
1382 kmem_cache_free(cfq_pool, cfqq);
1383}
1384
d6de8be7
JA
1385/*
1386 * Must always be called with the rcu_read_lock() held
1387 */
07416d29
JA
1388static void
1389__call_for_each_cic(struct io_context *ioc,
1390 void (*func)(struct io_context *, struct cfq_io_context *))
1391{
1392 struct cfq_io_context *cic;
1393 struct hlist_node *n;
1394
1395 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1396 func(ioc, cic);
1397}
1398
4ac845a2 1399/*
34e6bbf2 1400 * Call func for each cic attached to this ioc.
4ac845a2 1401 */
34e6bbf2 1402static void
4ac845a2
JA
1403call_for_each_cic(struct io_context *ioc,
1404 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1405{
4ac845a2 1406 rcu_read_lock();
07416d29 1407 __call_for_each_cic(ioc, func);
4ac845a2 1408 rcu_read_unlock();
34e6bbf2
FC
1409}
1410
1411static void cfq_cic_free_rcu(struct rcu_head *head)
1412{
1413 struct cfq_io_context *cic;
1414
1415 cic = container_of(head, struct cfq_io_context, rcu_head);
1416
1417 kmem_cache_free(cfq_ioc_pool, cic);
1418 elv_ioc_count_dec(ioc_count);
1419
9a11b4ed
JA
1420 if (ioc_gone) {
1421 /*
1422 * CFQ scheduler is exiting, grab exit lock and check
1423 * the pending io context count. If it hits zero,
1424 * complete ioc_gone and set it back to NULL
1425 */
1426 spin_lock(&ioc_gone_lock);
1427 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1428 complete(ioc_gone);
1429 ioc_gone = NULL;
1430 }
1431 spin_unlock(&ioc_gone_lock);
1432 }
34e6bbf2 1433}
4ac845a2 1434
34e6bbf2
FC
1435static void cfq_cic_free(struct cfq_io_context *cic)
1436{
1437 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1438}
1439
1440static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1441{
1442 unsigned long flags;
1443
1444 BUG_ON(!cic->dead_key);
1445
1446 spin_lock_irqsave(&ioc->lock, flags);
1447 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 1448 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1449 spin_unlock_irqrestore(&ioc->lock, flags);
1450
34e6bbf2 1451 cfq_cic_free(cic);
4ac845a2
JA
1452}
1453
d6de8be7
JA
1454/*
1455 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1456 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1457 * and ->trim() which is called with the task lock held
1458 */
4ac845a2
JA
1459static void cfq_free_io_context(struct io_context *ioc)
1460{
4ac845a2 1461 /*
34e6bbf2
FC
1462 * ioc->refcount is zero here, or we are called from elv_unregister(),
1463 * so no more cic's are allowed to be linked into this ioc. So it
1464 * should be ok to iterate over the known list, we will see all cic's
1465 * since no new ones are added.
4ac845a2 1466 */
07416d29 1467 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
1468}
1469
89850f7e 1470static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1471{
28f95cbc 1472 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1473 __cfq_slice_expired(cfqd, cfqq, 0);
28f95cbc
JA
1474 cfq_schedule_dispatch(cfqd);
1475 }
22e2c507 1476
89850f7e
JA
1477 cfq_put_queue(cfqq);
1478}
22e2c507 1479
89850f7e
JA
1480static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1481 struct cfq_io_context *cic)
1482{
4faa3c81
FC
1483 struct io_context *ioc = cic->ioc;
1484
fc46379d 1485 list_del_init(&cic->queue_list);
4ac845a2
JA
1486
1487 /*
1488 * Make sure key == NULL is seen for dead queues
1489 */
fc46379d 1490 smp_wmb();
4ac845a2 1491 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1492 cic->key = NULL;
1493
4faa3c81
FC
1494 if (ioc->ioc_data == cic)
1495 rcu_assign_pointer(ioc->ioc_data, NULL);
1496
ff6657c6
JA
1497 if (cic->cfqq[BLK_RW_ASYNC]) {
1498 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1499 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
1500 }
1501
ff6657c6
JA
1502 if (cic->cfqq[BLK_RW_SYNC]) {
1503 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1504 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 1505 }
89850f7e
JA
1506}
1507
4ac845a2
JA
1508static void cfq_exit_single_io_context(struct io_context *ioc,
1509 struct cfq_io_context *cic)
89850f7e
JA
1510{
1511 struct cfq_data *cfqd = cic->key;
1512
89850f7e 1513 if (cfqd) {
165125e1 1514 struct request_queue *q = cfqd->queue;
4ac845a2 1515 unsigned long flags;
89850f7e 1516
4ac845a2 1517 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
1518
1519 /*
1520 * Ensure we get a fresh copy of the ->key to prevent
1521 * race between exiting task and queue
1522 */
1523 smp_read_barrier_depends();
1524 if (cic->key)
1525 __cfq_exit_single_io_context(cfqd, cic);
1526
4ac845a2 1527 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1528 }
1da177e4
LT
1529}
1530
498d3aa2
JA
1531/*
1532 * The process that ioc belongs to has exited, we need to clean up
1533 * and put the internal structures we have that belongs to that process.
1534 */
e2d74ac0 1535static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1536{
4ac845a2 1537 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1538}
1539
22e2c507 1540static struct cfq_io_context *
8267e268 1541cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1542{
b5deef90 1543 struct cfq_io_context *cic;
1da177e4 1544
94f6030c
CL
1545 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1546 cfqd->queue->node);
1da177e4 1547 if (cic) {
22e2c507 1548 cic->last_end_request = jiffies;
553698f9 1549 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 1550 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
1551 cic->dtor = cfq_free_io_context;
1552 cic->exit = cfq_exit_io_context;
4050cf16 1553 elv_ioc_count_inc(ioc_count);
1da177e4
LT
1554 }
1555
1556 return cic;
1557}
1558
fd0928df 1559static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
1560{
1561 struct task_struct *tsk = current;
1562 int ioprio_class;
1563
3b18152c 1564 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
1565 return;
1566
fd0928df 1567 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 1568 switch (ioprio_class) {
fe094d98
JA
1569 default:
1570 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1571 case IOPRIO_CLASS_NONE:
1572 /*
6d63c275 1573 * no prio set, inherit CPU scheduling settings
fe094d98
JA
1574 */
1575 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 1576 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
1577 break;
1578 case IOPRIO_CLASS_RT:
1579 cfqq->ioprio = task_ioprio(ioc);
1580 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1581 break;
1582 case IOPRIO_CLASS_BE:
1583 cfqq->ioprio = task_ioprio(ioc);
1584 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1585 break;
1586 case IOPRIO_CLASS_IDLE:
1587 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1588 cfqq->ioprio = 7;
1589 cfq_clear_cfqq_idle_window(cfqq);
1590 break;
22e2c507
JA
1591 }
1592
1593 /*
1594 * keep track of original prio settings in case we have to temporarily
1595 * elevate the priority of this queue
1596 */
1597 cfqq->org_ioprio = cfqq->ioprio;
1598 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 1599 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
1600}
1601
febffd61 1602static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 1603{
478a82b0
AV
1604 struct cfq_data *cfqd = cic->key;
1605 struct cfq_queue *cfqq;
c1b707d2 1606 unsigned long flags;
35e6077c 1607
caaa5f9f
JA
1608 if (unlikely(!cfqd))
1609 return;
1610
c1b707d2 1611 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 1612
ff6657c6 1613 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
1614 if (cfqq) {
1615 struct cfq_queue *new_cfqq;
ff6657c6
JA
1616 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1617 GFP_ATOMIC);
caaa5f9f 1618 if (new_cfqq) {
ff6657c6 1619 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
1620 cfq_put_queue(cfqq);
1621 }
22e2c507 1622 }
caaa5f9f 1623
ff6657c6 1624 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
1625 if (cfqq)
1626 cfq_mark_cfqq_prio_changed(cfqq);
1627
c1b707d2 1628 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
1629}
1630
fc46379d 1631static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 1632{
4ac845a2 1633 call_for_each_cic(ioc, changed_ioprio);
fc46379d 1634 ioc->ioprio_changed = 0;
22e2c507
JA
1635}
1636
1637static struct cfq_queue *
15c31be4 1638cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
fd0928df 1639 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 1640{
22e2c507 1641 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 1642 struct cfq_io_context *cic;
22e2c507
JA
1643
1644retry:
4ac845a2 1645 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
1646 /* cic always exists here */
1647 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507
JA
1648
1649 if (!cfqq) {
1650 if (new_cfqq) {
1651 cfqq = new_cfqq;
1652 new_cfqq = NULL;
1653 } else if (gfp_mask & __GFP_WAIT) {
89850f7e
JA
1654 /*
1655 * Inform the allocator of the fact that we will
1656 * just repeat this allocation if it fails, to allow
1657 * the allocator to do whatever it needs to attempt to
1658 * free memory.
1659 */
22e2c507 1660 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c
CL
1661 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1662 gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1663 cfqd->queue->node);
22e2c507
JA
1664 spin_lock_irq(cfqd->queue->queue_lock);
1665 goto retry;
1666 } else {
94f6030c
CL
1667 cfqq = kmem_cache_alloc_node(cfq_pool,
1668 gfp_mask | __GFP_ZERO,
1669 cfqd->queue->node);
22e2c507
JA
1670 if (!cfqq)
1671 goto out;
1672 }
1673
d9e7620e 1674 RB_CLEAR_NODE(&cfqq->rb_node);
a36e71f9 1675 RB_CLEAR_NODE(&cfqq->p_node);
22e2c507
JA
1676 INIT_LIST_HEAD(&cfqq->fifo);
1677
22e2c507
JA
1678 atomic_set(&cfqq->ref, 0);
1679 cfqq->cfqd = cfqd;
c5b680f3 1680
3b18152c 1681 cfq_mark_cfqq_prio_changed(cfqq);
91fac317 1682
fd0928df 1683 cfq_init_prio_data(cfqq, ioc);
0871714e
JA
1684
1685 if (is_sync) {
1686 if (!cfq_class_idle(cfqq))
1687 cfq_mark_cfqq_idle_window(cfqq);
1688 cfq_mark_cfqq_sync(cfqq);
1689 }
7b679138
JA
1690 cfqq->pid = current->pid;
1691 cfq_log_cfqq(cfqd, cfqq, "alloced");
22e2c507
JA
1692 }
1693
1694 if (new_cfqq)
1695 kmem_cache_free(cfq_pool, new_cfqq);
1696
22e2c507
JA
1697out:
1698 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1699 return cfqq;
1700}
1701
c2dea2d1
VT
1702static struct cfq_queue **
1703cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1704{
fe094d98 1705 switch (ioprio_class) {
c2dea2d1
VT
1706 case IOPRIO_CLASS_RT:
1707 return &cfqd->async_cfqq[0][ioprio];
1708 case IOPRIO_CLASS_BE:
1709 return &cfqd->async_cfqq[1][ioprio];
1710 case IOPRIO_CLASS_IDLE:
1711 return &cfqd->async_idle_cfqq;
1712 default:
1713 BUG();
1714 }
1715}
1716
15c31be4 1717static struct cfq_queue *
fd0928df 1718cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
15c31be4
JA
1719 gfp_t gfp_mask)
1720{
fd0928df
JA
1721 const int ioprio = task_ioprio(ioc);
1722 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 1723 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
1724 struct cfq_queue *cfqq = NULL;
1725
c2dea2d1
VT
1726 if (!is_sync) {
1727 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1728 cfqq = *async_cfqq;
1729 }
1730
0a0836a0 1731 if (!cfqq) {
fd0928df 1732 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
0a0836a0
ON
1733 if (!cfqq)
1734 return NULL;
1735 }
15c31be4
JA
1736
1737 /*
1738 * pin the queue now that it's allocated, scheduler exit will prune it
1739 */
c2dea2d1 1740 if (!is_sync && !(*async_cfqq)) {
15c31be4 1741 atomic_inc(&cfqq->ref);
c2dea2d1 1742 *async_cfqq = cfqq;
15c31be4
JA
1743 }
1744
1745 atomic_inc(&cfqq->ref);
1746 return cfqq;
1747}
1748
498d3aa2
JA
1749/*
1750 * We drop cfq io contexts lazily, so we may find a dead one.
1751 */
dbecf3ab 1752static void
4ac845a2
JA
1753cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1754 struct cfq_io_context *cic)
dbecf3ab 1755{
4ac845a2
JA
1756 unsigned long flags;
1757
fc46379d 1758 WARN_ON(!list_empty(&cic->queue_list));
597bc485 1759
4ac845a2
JA
1760 spin_lock_irqsave(&ioc->lock, flags);
1761
4faa3c81 1762 BUG_ON(ioc->ioc_data == cic);
597bc485 1763
4ac845a2 1764 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 1765 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1766 spin_unlock_irqrestore(&ioc->lock, flags);
1767
1768 cfq_cic_free(cic);
dbecf3ab
OH
1769}
1770
e2d74ac0 1771static struct cfq_io_context *
4ac845a2 1772cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 1773{
e2d74ac0 1774 struct cfq_io_context *cic;
d6de8be7 1775 unsigned long flags;
4ac845a2 1776 void *k;
e2d74ac0 1777
91fac317
VT
1778 if (unlikely(!ioc))
1779 return NULL;
1780
d6de8be7
JA
1781 rcu_read_lock();
1782
597bc485
JA
1783 /*
1784 * we maintain a last-hit cache, to avoid browsing over the tree
1785 */
4ac845a2 1786 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
1787 if (cic && cic->key == cfqd) {
1788 rcu_read_unlock();
597bc485 1789 return cic;
d6de8be7 1790 }
597bc485 1791
4ac845a2 1792 do {
4ac845a2
JA
1793 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1794 rcu_read_unlock();
1795 if (!cic)
1796 break;
be3b0753
OH
1797 /* ->key must be copied to avoid race with cfq_exit_queue() */
1798 k = cic->key;
1799 if (unlikely(!k)) {
4ac845a2 1800 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 1801 rcu_read_lock();
4ac845a2 1802 continue;
dbecf3ab 1803 }
e2d74ac0 1804
d6de8be7 1805 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 1806 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 1807 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
1808 break;
1809 } while (1);
e2d74ac0 1810
4ac845a2 1811 return cic;
e2d74ac0
JA
1812}
1813
4ac845a2
JA
1814/*
1815 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1816 * the process specific cfq io context when entered from the block layer.
1817 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1818 */
febffd61
JA
1819static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1820 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 1821{
0261d688 1822 unsigned long flags;
4ac845a2 1823 int ret;
e2d74ac0 1824
4ac845a2
JA
1825 ret = radix_tree_preload(gfp_mask);
1826 if (!ret) {
1827 cic->ioc = ioc;
1828 cic->key = cfqd;
e2d74ac0 1829
4ac845a2
JA
1830 spin_lock_irqsave(&ioc->lock, flags);
1831 ret = radix_tree_insert(&ioc->radix_root,
1832 (unsigned long) cfqd, cic);
ffc4e759
JA
1833 if (!ret)
1834 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 1835 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 1836
4ac845a2
JA
1837 radix_tree_preload_end();
1838
1839 if (!ret) {
1840 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1841 list_add(&cic->queue_list, &cfqd->cic_list);
1842 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1843 }
e2d74ac0
JA
1844 }
1845
4ac845a2
JA
1846 if (ret)
1847 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 1848
4ac845a2 1849 return ret;
e2d74ac0
JA
1850}
1851
1da177e4
LT
1852/*
1853 * Setup general io context and cfq io context. There can be several cfq
1854 * io contexts per general io context, if this process is doing io to more
e2d74ac0 1855 * than one device managed by cfq.
1da177e4
LT
1856 */
1857static struct cfq_io_context *
e2d74ac0 1858cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1859{
22e2c507 1860 struct io_context *ioc = NULL;
1da177e4 1861 struct cfq_io_context *cic;
1da177e4 1862
22e2c507 1863 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 1864
b5deef90 1865 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
1866 if (!ioc)
1867 return NULL;
1868
4ac845a2 1869 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
1870 if (cic)
1871 goto out;
1da177e4 1872
e2d74ac0
JA
1873 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1874 if (cic == NULL)
1875 goto err;
1da177e4 1876
4ac845a2
JA
1877 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1878 goto err_free;
1879
1da177e4 1880out:
fc46379d
JA
1881 smp_read_barrier_depends();
1882 if (unlikely(ioc->ioprio_changed))
1883 cfq_ioc_set_ioprio(ioc);
1884
1da177e4 1885 return cic;
4ac845a2
JA
1886err_free:
1887 cfq_cic_free(cic);
1da177e4
LT
1888err:
1889 put_io_context(ioc);
1890 return NULL;
1891}
1892
22e2c507
JA
1893static void
1894cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 1895{
aaf1228d
JA
1896 unsigned long elapsed = jiffies - cic->last_end_request;
1897 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 1898
22e2c507
JA
1899 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1900 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1901 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1902}
1da177e4 1903
206dc69b 1904static void
6d048f53
JA
1905cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1906 struct request *rq)
206dc69b
JA
1907{
1908 sector_t sdist;
1909 u64 total;
1910
4d00aa47
JM
1911 if (!cic->last_request_pos)
1912 sdist = 0;
1913 else if (cic->last_request_pos < rq->sector)
5e705374 1914 sdist = rq->sector - cic->last_request_pos;
206dc69b 1915 else
5e705374 1916 sdist = cic->last_request_pos - rq->sector;
206dc69b
JA
1917
1918 /*
1919 * Don't allow the seek distance to get too large from the
1920 * odd fragment, pagein, etc
1921 */
1922 if (cic->seek_samples <= 60) /* second&third seek */
1923 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1924 else
1925 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1926
1927 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1928 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1929 total = cic->seek_total + (cic->seek_samples/2);
1930 do_div(total, cic->seek_samples);
1931 cic->seek_mean = (sector_t)total;
1932}
1da177e4 1933
22e2c507
JA
1934/*
1935 * Disable idle window if the process thinks too long or seeks so much that
1936 * it doesn't matter
1937 */
1938static void
1939cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1940 struct cfq_io_context *cic)
1941{
7b679138 1942 int old_idle, enable_idle;
1be92f2f 1943
0871714e
JA
1944 /*
1945 * Don't idle for async or idle io prio class
1946 */
1947 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
1948 return;
1949
c265a7f4 1950 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 1951
66dac98e 1952 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
caaa5f9f 1953 (cfqd->hw_tag && CIC_SEEKY(cic)))
22e2c507
JA
1954 enable_idle = 0;
1955 else if (sample_valid(cic->ttime_samples)) {
1956 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1957 enable_idle = 0;
1958 else
1959 enable_idle = 1;
1da177e4
LT
1960 }
1961
7b679138
JA
1962 if (old_idle != enable_idle) {
1963 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1964 if (enable_idle)
1965 cfq_mark_cfqq_idle_window(cfqq);
1966 else
1967 cfq_clear_cfqq_idle_window(cfqq);
1968 }
22e2c507 1969}
1da177e4 1970
22e2c507
JA
1971/*
1972 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1973 * no or if we aren't sure, a 1 will cause a preempt.
1974 */
1975static int
1976cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 1977 struct request *rq)
22e2c507 1978{
6d048f53 1979 struct cfq_queue *cfqq;
22e2c507 1980
6d048f53
JA
1981 cfqq = cfqd->active_queue;
1982 if (!cfqq)
22e2c507
JA
1983 return 0;
1984
6d048f53
JA
1985 if (cfq_slice_used(cfqq))
1986 return 1;
1987
1988 if (cfq_class_idle(new_cfqq))
caaa5f9f 1989 return 0;
22e2c507
JA
1990
1991 if (cfq_class_idle(cfqq))
1992 return 1;
1e3335de 1993
374f84ac
JA
1994 /*
1995 * if the new request is sync, but the currently running queue is
1996 * not, let the sync request have priority.
1997 */
5e705374 1998 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
22e2c507 1999 return 1;
1e3335de 2000
374f84ac
JA
2001 /*
2002 * So both queues are sync. Let the new request get disk time if
2003 * it's a metadata request and the current queue is doing regular IO.
2004 */
2005 if (rq_is_meta(rq) && !cfqq->meta_pending)
2006 return 1;
22e2c507 2007
3a9a3f6c
DS
2008 /*
2009 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2010 */
2011 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2012 return 1;
2013
1e3335de
JA
2014 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2015 return 0;
2016
2017 /*
2018 * if this request is as-good as one we would expect from the
2019 * current cfqq, let it preempt
2020 */
6d048f53 2021 if (cfq_rq_close(cfqd, rq))
1e3335de
JA
2022 return 1;
2023
22e2c507
JA
2024 return 0;
2025}
2026
2027/*
2028 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2029 * let it have half of its nominal slice.
2030 */
2031static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2032{
7b679138 2033 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2034 cfq_slice_expired(cfqd, 1);
22e2c507 2035
bf572256
JA
2036 /*
2037 * Put the new queue at the front of the of the current list,
2038 * so we know that it will be selected next.
2039 */
2040 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2041
2042 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2043
44f7c160
JA
2044 cfqq->slice_end = 0;
2045 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2046}
2047
22e2c507 2048/*
5e705374 2049 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2050 * something we should do about it
2051 */
2052static void
5e705374
JA
2053cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2054 struct request *rq)
22e2c507 2055{
5e705374 2056 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2057
45333d5a 2058 cfqd->rq_queued++;
374f84ac
JA
2059 if (rq_is_meta(rq))
2060 cfqq->meta_pending++;
2061
9c2c38a1 2062 cfq_update_io_thinktime(cfqd, cic);
6d048f53 2063 cfq_update_io_seektime(cfqd, cic, rq);
9c2c38a1
JA
2064 cfq_update_idle_window(cfqd, cfqq, cic);
2065
5e705374 2066 cic->last_request_pos = rq->sector + rq->nr_sectors;
22e2c507
JA
2067
2068 if (cfqq == cfqd->active_queue) {
2069 /*
b029195d
JA
2070 * Remember that we saw a request from this process, but
2071 * don't start queuing just yet. Otherwise we risk seeing lots
2072 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2073 * and merging. If the request is already larger than a single
2074 * page, let it rip immediately. For that case we assume that
2d870722
JA
2075 * merging is already done. Ditto for a busy system that
2076 * has other work pending, don't risk delaying until the
2077 * idle timer unplug to continue working.
22e2c507 2078 */
d6ceb25e 2079 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2080 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2081 cfqd->busy_queues > 1) {
d6ceb25e
JA
2082 del_timer(&cfqd->idle_slice_timer);
2083 blk_start_queueing(cfqd->queue);
2084 }
b029195d 2085 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2086 }
5e705374 2087 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2088 /*
2089 * not the active queue - expire current slice if it is
2090 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2091 * has some old slice time left and is of higher priority or
2092 * this new queue is RT and the current one is BE
22e2c507
JA
2093 */
2094 cfq_preempt_queue(cfqd, cfqq);
dc72ef4a 2095 blk_start_queueing(cfqd->queue);
22e2c507 2096 }
1da177e4
LT
2097}
2098
165125e1 2099static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2100{
b4878f24 2101 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2102 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2103
7b679138 2104 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2105 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2106
5e705374 2107 cfq_add_rq_rb(rq);
1da177e4 2108
22e2c507
JA
2109 list_add_tail(&rq->queuelist, &cfqq->fifo);
2110
5e705374 2111 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2112}
2113
45333d5a
AC
2114/*
2115 * Update hw_tag based on peak queue depth over 50 samples under
2116 * sufficient load.
2117 */
2118static void cfq_update_hw_tag(struct cfq_data *cfqd)
2119{
2120 if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
2121 cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
2122
2123 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2124 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
2125 return;
2126
2127 if (cfqd->hw_tag_samples++ < 50)
2128 return;
2129
2130 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2131 cfqd->hw_tag = 1;
2132 else
2133 cfqd->hw_tag = 0;
2134
2135 cfqd->hw_tag_samples = 0;
2136 cfqd->rq_in_driver_peak = 0;
2137}
2138
165125e1 2139static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2140{
5e705374 2141 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2142 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2143 const int sync = rq_is_sync(rq);
b4878f24 2144 unsigned long now;
1da177e4 2145
b4878f24 2146 now = jiffies;
7b679138 2147 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2148
45333d5a
AC
2149 cfq_update_hw_tag(cfqd);
2150
b4878f24 2151 WARN_ON(!cfqd->rq_in_driver);
6d048f53 2152 WARN_ON(!cfqq->dispatched);
b4878f24 2153 cfqd->rq_in_driver--;
6d048f53 2154 cfqq->dispatched--;
1da177e4 2155
3ed9a296
JA
2156 if (cfq_cfqq_sync(cfqq))
2157 cfqd->sync_flight--;
2158
b4878f24
JA
2159 if (!cfq_class_idle(cfqq))
2160 cfqd->last_end_request = now;
3b18152c 2161
caaa5f9f 2162 if (sync)
5e705374 2163 RQ_CIC(rq)->last_end_request = now;
caaa5f9f
JA
2164
2165 /*
2166 * If this is the active queue, check if it needs to be expired,
2167 * or if we want to idle in case it has no pending requests.
2168 */
2169 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2170 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2171
44f7c160
JA
2172 if (cfq_cfqq_slice_new(cfqq)) {
2173 cfq_set_prio_slice(cfqd, cfqq);
2174 cfq_clear_cfqq_slice_new(cfqq);
2175 }
a36e71f9
JA
2176 /*
2177 * If there are no requests waiting in this queue, and
2178 * there are other queues ready to issue requests, AND
2179 * those other queues are issuing requests within our
2180 * mean seek distance, give them a chance to run instead
2181 * of idling.
2182 */
0871714e 2183 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2184 cfq_slice_expired(cfqd, 1);
a36e71f9
JA
2185 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2186 sync && !rq_noidle(rq))
6d048f53 2187 cfq_arm_slice_timer(cfqd);
caaa5f9f 2188 }
6d048f53
JA
2189
2190 if (!cfqd->rq_in_driver)
2191 cfq_schedule_dispatch(cfqd);
1da177e4
LT
2192}
2193
22e2c507
JA
2194/*
2195 * we temporarily boost lower priority queues if they are holding fs exclusive
2196 * resources. they are boosted to normal prio (CLASS_BE/4)
2197 */
2198static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2199{
22e2c507
JA
2200 if (has_fs_excl()) {
2201 /*
2202 * boost idle prio on transactions that would lock out other
2203 * users of the filesystem
2204 */
2205 if (cfq_class_idle(cfqq))
2206 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2207 if (cfqq->ioprio > IOPRIO_NORM)
2208 cfqq->ioprio = IOPRIO_NORM;
2209 } else {
2210 /*
2211 * check if we need to unboost the queue
2212 */
2213 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2214 cfqq->ioprio_class = cfqq->org_ioprio_class;
2215 if (cfqq->ioprio != cfqq->org_ioprio)
2216 cfqq->ioprio = cfqq->org_ioprio;
2217 }
22e2c507 2218}
1da177e4 2219
89850f7e 2220static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2221{
3b18152c 2222 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
99f95e52 2223 !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2224 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2225 return ELV_MQUEUE_MUST;
3b18152c 2226 }
1da177e4 2227
22e2c507 2228 return ELV_MQUEUE_MAY;
22e2c507
JA
2229}
2230
165125e1 2231static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2232{
2233 struct cfq_data *cfqd = q->elevator->elevator_data;
2234 struct task_struct *tsk = current;
91fac317 2235 struct cfq_io_context *cic;
22e2c507
JA
2236 struct cfq_queue *cfqq;
2237
2238 /*
2239 * don't force setup of a queue from here, as a call to may_queue
2240 * does not necessarily imply that a request actually will be queued.
2241 * so just lookup a possibly existing queue, or return 'may queue'
2242 * if that fails
2243 */
4ac845a2 2244 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2245 if (!cic)
2246 return ELV_MQUEUE_MAY;
2247
b0b78f81 2248 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2249 if (cfqq) {
fd0928df 2250 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2251 cfq_prio_boost(cfqq);
2252
89850f7e 2253 return __cfq_may_queue(cfqq);
22e2c507
JA
2254 }
2255
2256 return ELV_MQUEUE_MAY;
1da177e4
LT
2257}
2258
1da177e4
LT
2259/*
2260 * queue lock held here
2261 */
bb37b94c 2262static void cfq_put_request(struct request *rq)
1da177e4 2263{
5e705374 2264 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2265
5e705374 2266 if (cfqq) {
22e2c507 2267 const int rw = rq_data_dir(rq);
1da177e4 2268
22e2c507
JA
2269 BUG_ON(!cfqq->allocated[rw]);
2270 cfqq->allocated[rw]--;
1da177e4 2271
5e705374 2272 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2273
1da177e4 2274 rq->elevator_private = NULL;
5e705374 2275 rq->elevator_private2 = NULL;
1da177e4 2276
1da177e4
LT
2277 cfq_put_queue(cfqq);
2278 }
2279}
2280
2281/*
22e2c507 2282 * Allocate cfq data structures associated with this request.
1da177e4 2283 */
22e2c507 2284static int
165125e1 2285cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2286{
2287 struct cfq_data *cfqd = q->elevator->elevator_data;
2288 struct cfq_io_context *cic;
2289 const int rw = rq_data_dir(rq);
7749a8d4 2290 const int is_sync = rq_is_sync(rq);
22e2c507 2291 struct cfq_queue *cfqq;
1da177e4
LT
2292 unsigned long flags;
2293
2294 might_sleep_if(gfp_mask & __GFP_WAIT);
2295
e2d74ac0 2296 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2297
1da177e4
LT
2298 spin_lock_irqsave(q->queue_lock, flags);
2299
22e2c507
JA
2300 if (!cic)
2301 goto queue_fail;
2302
91fac317
VT
2303 cfqq = cic_to_cfqq(cic, is_sync);
2304 if (!cfqq) {
fd0928df 2305 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 2306
22e2c507
JA
2307 if (!cfqq)
2308 goto queue_fail;
1da177e4 2309
91fac317
VT
2310 cic_set_cfqq(cic, cfqq, is_sync);
2311 }
1da177e4
LT
2312
2313 cfqq->allocated[rw]++;
3b18152c 2314 cfq_clear_cfqq_must_alloc(cfqq);
22e2c507 2315 atomic_inc(&cfqq->ref);
1da177e4 2316
5e705374 2317 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 2318
5e705374
JA
2319 rq->elevator_private = cic;
2320 rq->elevator_private2 = cfqq;
2321 return 0;
1da177e4 2322
22e2c507
JA
2323queue_fail:
2324 if (cic)
2325 put_io_context(cic->ioc);
89850f7e 2326
3b18152c 2327 cfq_schedule_dispatch(cfqd);
1da177e4 2328 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 2329 cfq_log(cfqd, "set_request fail");
1da177e4
LT
2330 return 1;
2331}
2332
65f27f38 2333static void cfq_kick_queue(struct work_struct *work)
22e2c507 2334{
65f27f38
DH
2335 struct cfq_data *cfqd =
2336 container_of(work, struct cfq_data, unplug_work);
165125e1 2337 struct request_queue *q = cfqd->queue;
22e2c507 2338
40bb54d1 2339 spin_lock_irq(q->queue_lock);
dc72ef4a 2340 blk_start_queueing(q);
40bb54d1 2341 spin_unlock_irq(q->queue_lock);
22e2c507
JA
2342}
2343
2344/*
2345 * Timer running if the active_queue is currently idling inside its time slice
2346 */
2347static void cfq_idle_slice_timer(unsigned long data)
2348{
2349 struct cfq_data *cfqd = (struct cfq_data *) data;
2350 struct cfq_queue *cfqq;
2351 unsigned long flags;
3c6bd2f8 2352 int timed_out = 1;
22e2c507 2353
7b679138
JA
2354 cfq_log(cfqd, "idle timer fired");
2355
22e2c507
JA
2356 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2357
fe094d98
JA
2358 cfqq = cfqd->active_queue;
2359 if (cfqq) {
3c6bd2f8
JA
2360 timed_out = 0;
2361
b029195d
JA
2362 /*
2363 * We saw a request before the queue expired, let it through
2364 */
2365 if (cfq_cfqq_must_dispatch(cfqq))
2366 goto out_kick;
2367
22e2c507
JA
2368 /*
2369 * expired
2370 */
44f7c160 2371 if (cfq_slice_used(cfqq))
22e2c507
JA
2372 goto expire;
2373
2374 /*
2375 * only expire and reinvoke request handler, if there are
2376 * other queues with pending requests
2377 */
caaa5f9f 2378 if (!cfqd->busy_queues)
22e2c507 2379 goto out_cont;
22e2c507
JA
2380
2381 /*
2382 * not expired and it has a request pending, let it dispatch
2383 */
75e50984 2384 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2385 goto out_kick;
22e2c507
JA
2386 }
2387expire:
6084cdda 2388 cfq_slice_expired(cfqd, timed_out);
22e2c507 2389out_kick:
3b18152c 2390 cfq_schedule_dispatch(cfqd);
22e2c507
JA
2391out_cont:
2392 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2393}
2394
3b18152c
JA
2395static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2396{
2397 del_timer_sync(&cfqd->idle_slice_timer);
64d01dc9 2398 cancel_work_sync(&cfqd->unplug_work);
3b18152c 2399}
22e2c507 2400
c2dea2d1
VT
2401static void cfq_put_async_queues(struct cfq_data *cfqd)
2402{
2403 int i;
2404
2405 for (i = 0; i < IOPRIO_BE_NR; i++) {
2406 if (cfqd->async_cfqq[0][i])
2407 cfq_put_queue(cfqd->async_cfqq[0][i]);
2408 if (cfqd->async_cfqq[1][i])
2409 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2410 }
2389d1ef
ON
2411
2412 if (cfqd->async_idle_cfqq)
2413 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2414}
2415
b374d18a 2416static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 2417{
22e2c507 2418 struct cfq_data *cfqd = e->elevator_data;
165125e1 2419 struct request_queue *q = cfqd->queue;
22e2c507 2420
3b18152c 2421 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2422
d9ff4187 2423 spin_lock_irq(q->queue_lock);
e2d74ac0 2424
d9ff4187 2425 if (cfqd->active_queue)
6084cdda 2426 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2427
2428 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2429 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2430 struct cfq_io_context,
2431 queue_list);
89850f7e
JA
2432
2433 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2434 }
e2d74ac0 2435
c2dea2d1 2436 cfq_put_async_queues(cfqd);
15c31be4 2437
d9ff4187 2438 spin_unlock_irq(q->queue_lock);
a90d742e
AV
2439
2440 cfq_shutdown_timer_wq(cfqd);
2441
a90d742e 2442 kfree(cfqd);
1da177e4
LT
2443}
2444
165125e1 2445static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
2446{
2447 struct cfq_data *cfqd;
1da177e4 2448
94f6030c 2449 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 2450 if (!cfqd)
bc1c1169 2451 return NULL;
1da177e4 2452
cc09e299 2453 cfqd->service_tree = CFQ_RB_ROOT;
d9ff4187 2454 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 2455
1da177e4 2456 cfqd->queue = q;
1da177e4 2457
22e2c507
JA
2458 init_timer(&cfqd->idle_slice_timer);
2459 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2460 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2461
65f27f38 2462 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 2463
b70c864d 2464 cfqd->last_end_request = jiffies;
1da177e4 2465 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
2466 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2467 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
2468 cfqd->cfq_back_max = cfq_back_max;
2469 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
2470 cfqd->cfq_slice[0] = cfq_slice_async;
2471 cfqd->cfq_slice[1] = cfq_slice_sync;
2472 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2473 cfqd->cfq_slice_idle = cfq_slice_idle;
45333d5a 2474 cfqd->hw_tag = 1;
3b18152c 2475
bc1c1169 2476 return cfqd;
1da177e4
LT
2477}
2478
2479static void cfq_slab_kill(void)
2480{
d6de8be7
JA
2481 /*
2482 * Caller already ensured that pending RCU callbacks are completed,
2483 * so we should have no busy allocations at this point.
2484 */
1da177e4
LT
2485 if (cfq_pool)
2486 kmem_cache_destroy(cfq_pool);
2487 if (cfq_ioc_pool)
2488 kmem_cache_destroy(cfq_ioc_pool);
2489}
2490
2491static int __init cfq_slab_setup(void)
2492{
0a31bd5f 2493 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
2494 if (!cfq_pool)
2495 goto fail;
2496
34e6bbf2 2497 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
2498 if (!cfq_ioc_pool)
2499 goto fail;
2500
2501 return 0;
2502fail:
2503 cfq_slab_kill();
2504 return -ENOMEM;
2505}
2506
1da177e4
LT
2507/*
2508 * sysfs parts below -->
2509 */
1da177e4
LT
2510static ssize_t
2511cfq_var_show(unsigned int var, char *page)
2512{
2513 return sprintf(page, "%d\n", var);
2514}
2515
2516static ssize_t
2517cfq_var_store(unsigned int *var, const char *page, size_t count)
2518{
2519 char *p = (char *) page;
2520
2521 *var = simple_strtoul(p, &p, 10);
2522 return count;
2523}
2524
1da177e4 2525#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 2526static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 2527{ \
3d1ab40f 2528 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2529 unsigned int __data = __VAR; \
2530 if (__CONV) \
2531 __data = jiffies_to_msecs(__data); \
2532 return cfq_var_show(__data, (page)); \
2533}
2534SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
2535SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2536SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
2537SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2538SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
2539SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2540SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2541SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2542SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
1da177e4
LT
2543#undef SHOW_FUNCTION
2544
2545#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 2546static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 2547{ \
3d1ab40f 2548 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2549 unsigned int __data; \
2550 int ret = cfq_var_store(&__data, (page), count); \
2551 if (__data < (MIN)) \
2552 __data = (MIN); \
2553 else if (__data > (MAX)) \
2554 __data = (MAX); \
2555 if (__CONV) \
2556 *(__PTR) = msecs_to_jiffies(__data); \
2557 else \
2558 *(__PTR) = __data; \
2559 return ret; \
2560}
2561STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
2562STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2563 UINT_MAX, 1);
2564STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2565 UINT_MAX, 1);
e572ec7e 2566STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
2567STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2568 UINT_MAX, 0);
22e2c507
JA
2569STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2570STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2571STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
2572STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2573 UINT_MAX, 0);
1da177e4
LT
2574#undef STORE_FUNCTION
2575
e572ec7e
AV
2576#define CFQ_ATTR(name) \
2577 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2578
2579static struct elv_fs_entry cfq_attrs[] = {
2580 CFQ_ATTR(quantum),
e572ec7e
AV
2581 CFQ_ATTR(fifo_expire_sync),
2582 CFQ_ATTR(fifo_expire_async),
2583 CFQ_ATTR(back_seek_max),
2584 CFQ_ATTR(back_seek_penalty),
2585 CFQ_ATTR(slice_sync),
2586 CFQ_ATTR(slice_async),
2587 CFQ_ATTR(slice_async_rq),
2588 CFQ_ATTR(slice_idle),
e572ec7e 2589 __ATTR_NULL
1da177e4
LT
2590};
2591
1da177e4
LT
2592static struct elevator_type iosched_cfq = {
2593 .ops = {
2594 .elevator_merge_fn = cfq_merge,
2595 .elevator_merged_fn = cfq_merged_request,
2596 .elevator_merge_req_fn = cfq_merged_requests,
da775265 2597 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 2598 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 2599 .elevator_add_req_fn = cfq_insert_request,
b4878f24 2600 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
2601 .elevator_deactivate_req_fn = cfq_deactivate_request,
2602 .elevator_queue_empty_fn = cfq_queue_empty,
2603 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
2604 .elevator_former_req_fn = elv_rb_former_request,
2605 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
2606 .elevator_set_req_fn = cfq_set_request,
2607 .elevator_put_req_fn = cfq_put_request,
2608 .elevator_may_queue_fn = cfq_may_queue,
2609 .elevator_init_fn = cfq_init_queue,
2610 .elevator_exit_fn = cfq_exit_queue,
fc46379d 2611 .trim = cfq_free_io_context,
1da177e4 2612 },
3d1ab40f 2613 .elevator_attrs = cfq_attrs,
1da177e4
LT
2614 .elevator_name = "cfq",
2615 .elevator_owner = THIS_MODULE,
2616};
2617
2618static int __init cfq_init(void)
2619{
22e2c507
JA
2620 /*
2621 * could be 0 on HZ < 1000 setups
2622 */
2623 if (!cfq_slice_async)
2624 cfq_slice_async = 1;
2625 if (!cfq_slice_idle)
2626 cfq_slice_idle = 1;
2627
1da177e4
LT
2628 if (cfq_slab_setup())
2629 return -ENOMEM;
2630
2fdd82bd 2631 elv_register(&iosched_cfq);
1da177e4 2632
2fdd82bd 2633 return 0;
1da177e4
LT
2634}
2635
2636static void __exit cfq_exit(void)
2637{
6e9a4738 2638 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 2639 elv_unregister(&iosched_cfq);
334e94de 2640 ioc_gone = &all_gone;
fba82272
OH
2641 /* ioc_gone's update must be visible before reading ioc_count */
2642 smp_wmb();
d6de8be7
JA
2643
2644 /*
2645 * this also protects us from entering cfq_slab_kill() with
2646 * pending RCU callbacks
2647 */
4050cf16 2648 if (elv_ioc_count_read(ioc_count))
9a11b4ed 2649 wait_for_completion(&all_gone);
83521d3e 2650 cfq_slab_kill();
1da177e4
LT
2651}
2652
2653module_init(cfq_init);
2654module_exit(cfq_exit);
2655
2656MODULE_AUTHOR("Jens Axboe");
2657MODULE_LICENSE("GPL");
2658MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");