]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/cfq-iosched.c
blkio: Implement per cfq group latency target and busy queue avg
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
25bc6b07 16#include "blk-cgroup.h"
1da177e4
LT
17
18/*
19 * tunables
20 */
fe094d98
JA
21/* max queue in one round of service */
22static const int cfq_quantum = 4;
64100099 23static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
24/* maximum backwards seek, in KiB */
25static const int cfq_back_max = 16 * 1024;
26/* penalty of a backwards seek */
27static const int cfq_back_penalty = 2;
64100099 28static const int cfq_slice_sync = HZ / 10;
3b18152c 29static int cfq_slice_async = HZ / 25;
64100099 30static const int cfq_slice_async_rq = 2;
caaa5f9f 31static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
32static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33static const int cfq_hist_divisor = 4;
22e2c507 34
d9e7620e 35/*
0871714e 36 * offset from end of service tree
d9e7620e 37 */
0871714e 38#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
39
40/*
41 * below this threshold, we consider thinktime immediate
42 */
43#define CFQ_MIN_TT (2)
44
e6c5bc73
JM
45/*
46 * Allow merged cfqqs to perform this amount of seeky I/O before
47 * deciding to break the queues up again.
48 */
49#define CFQQ_COOP_TOUT (HZ)
50
22e2c507 51#define CFQ_SLICE_SCALE (5)
45333d5a 52#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 53#define CFQ_SERVICE_SHIFT 12
22e2c507 54
fe094d98
JA
55#define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 57#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 58
e18b890b
CL
59static struct kmem_cache *cfq_pool;
60static struct kmem_cache *cfq_ioc_pool;
1da177e4 61
245b2e70 62static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 63static struct completion *ioc_gone;
9a11b4ed 64static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 65
22e2c507
JA
66#define CFQ_PRIO_LISTS IOPRIO_BE_NR
67#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
68#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
206dc69b 70#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 71#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 72
cc09e299
JA
73/*
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
78 */
79struct cfq_rb_root {
80 struct rb_root rb;
81 struct rb_node *left;
aa6f6a3d 82 unsigned count;
1fa8f6d6 83 u64 min_vdisktime;
25bc6b07 84 struct rb_node *active;
58ff82f3 85 unsigned total_weight;
cc09e299 86};
1fa8f6d6 87#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
cc09e299 88
6118b70b
JA
89/*
90 * Per process-grouping structure
91 */
92struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
118 unsigned long slice_end;
119 long slice_resid;
120 unsigned int slice_dispatch;
121
122 /* pending metadata requests */
123 int meta_pending;
124 /* number of requests that are on the dispatch list or inside driver */
125 int dispatched;
126
127 /* io prio of this group */
128 unsigned short ioprio, org_ioprio;
129 unsigned short ioprio_class, org_ioprio_class;
130
b2c18e1e
JM
131 unsigned int seek_samples;
132 u64 seek_total;
133 sector_t seek_mean;
134 sector_t last_request_pos;
e6c5bc73 135 unsigned long seeky_start;
b2c18e1e 136
6118b70b 137 pid_t pid;
df5fe3e8 138
aa6f6a3d 139 struct cfq_rb_root *service_tree;
df5fe3e8 140 struct cfq_queue *new_cfqq;
cdb16e8f 141 struct cfq_group *cfqg;
6118b70b
JA
142};
143
c0324a02 144/*
718eee05 145 * First index in the service_trees.
c0324a02
CZ
146 * IDLE is handled separately, so it has negative index
147 */
148enum wl_prio_t {
c0324a02 149 BE_WORKLOAD = 0,
615f0259
VG
150 RT_WORKLOAD = 1,
151 IDLE_WORKLOAD = 2,
c0324a02
CZ
152};
153
718eee05
CZ
154/*
155 * Second index in the service_trees.
156 */
157enum wl_type_t {
158 ASYNC_WORKLOAD = 0,
159 SYNC_NOIDLE_WORKLOAD = 1,
160 SYNC_WORKLOAD = 2
161};
162
cdb16e8f
VG
163/* This is per cgroup per device grouping structure */
164struct cfq_group {
1fa8f6d6
VG
165 /* group service_tree member */
166 struct rb_node rb_node;
167
168 /* group service_tree key */
169 u64 vdisktime;
25bc6b07 170 unsigned int weight;
1fa8f6d6
VG
171 bool on_st;
172
173 /* number of cfqq currently on this group */
174 int nr_cfqq;
175
58ff82f3
VG
176 /* Per group busy queus average. Useful for workload slice calc. */
177 unsigned int busy_queues_avg[2];
cdb16e8f
VG
178 /*
179 * rr lists of queues with requests, onle rr for each priority class.
180 * Counts are embedded in the cfq_rb_root
181 */
182 struct cfq_rb_root service_trees[2][3];
183 struct cfq_rb_root service_tree_idle;
184};
718eee05 185
22e2c507
JA
186/*
187 * Per block device queue structure
188 */
1da177e4 189struct cfq_data {
165125e1 190 struct request_queue *queue;
1fa8f6d6
VG
191 /* Root service tree for cfq_groups */
192 struct cfq_rb_root grp_service_tree;
cdb16e8f 193 struct cfq_group root_group;
58ff82f3
VG
194 /* Number of active cfq groups on group service tree */
195 int nr_groups;
22e2c507 196
c0324a02
CZ
197 /*
198 * The priority currently being served
22e2c507 199 */
c0324a02 200 enum wl_prio_t serving_prio;
718eee05
CZ
201 enum wl_type_t serving_type;
202 unsigned long workload_expires;
cdb16e8f 203 struct cfq_group *serving_group;
8e550632 204 bool noidle_tree_requires_idle;
a36e71f9
JA
205
206 /*
207 * Each priority tree is sorted by next_request position. These
208 * trees are used when determining if two or more queues are
209 * interleaving requests (see cfq_close_cooperator).
210 */
211 struct rb_root prio_trees[CFQ_PRIO_LISTS];
212
22e2c507
JA
213 unsigned int busy_queues;
214
5ad531db 215 int rq_in_driver[2];
3ed9a296 216 int sync_flight;
45333d5a
AC
217
218 /*
219 * queue-depth detection
220 */
221 int rq_queued;
25776e35 222 int hw_tag;
e459dd08
CZ
223 /*
224 * hw_tag can be
225 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
226 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
227 * 0 => no NCQ
228 */
229 int hw_tag_est_depth;
230 unsigned int hw_tag_samples;
1da177e4 231
22e2c507
JA
232 /*
233 * idle window management
234 */
235 struct timer_list idle_slice_timer;
23e018a1 236 struct work_struct unplug_work;
1da177e4 237
22e2c507
JA
238 struct cfq_queue *active_queue;
239 struct cfq_io_context *active_cic;
22e2c507 240
c2dea2d1
VT
241 /*
242 * async queue for each priority case
243 */
244 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
245 struct cfq_queue *async_idle_cfqq;
15c31be4 246
6d048f53 247 sector_t last_position;
1da177e4 248
1da177e4
LT
249 /*
250 * tunables, see top of file
251 */
252 unsigned int cfq_quantum;
22e2c507 253 unsigned int cfq_fifo_expire[2];
1da177e4
LT
254 unsigned int cfq_back_penalty;
255 unsigned int cfq_back_max;
22e2c507
JA
256 unsigned int cfq_slice[2];
257 unsigned int cfq_slice_async_rq;
258 unsigned int cfq_slice_idle;
963b72fc 259 unsigned int cfq_latency;
d9ff4187
AV
260
261 struct list_head cic_list;
1da177e4 262
6118b70b
JA
263 /*
264 * Fallback dummy cfqq for extreme OOM conditions
265 */
266 struct cfq_queue oom_cfqq;
365722bb
VG
267
268 unsigned long last_end_sync_rq;
1da177e4
LT
269};
270
cdb16e8f
VG
271static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
272 enum wl_prio_t prio,
718eee05 273 enum wl_type_t type,
c0324a02
CZ
274 struct cfq_data *cfqd)
275{
1fa8f6d6
VG
276 if (!cfqg)
277 return NULL;
278
c0324a02 279 if (prio == IDLE_WORKLOAD)
cdb16e8f 280 return &cfqg->service_tree_idle;
c0324a02 281
cdb16e8f 282 return &cfqg->service_trees[prio][type];
c0324a02
CZ
283}
284
3b18152c 285enum cfqq_state_flags {
b0b8d749
JA
286 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
287 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 288 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 289 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
290 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
291 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
292 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 293 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 294 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 295 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
76280aff 296 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
3b18152c
JA
297};
298
299#define CFQ_CFQQ_FNS(name) \
300static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
301{ \
fe094d98 302 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
303} \
304static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
305{ \
fe094d98 306 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
307} \
308static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
309{ \
fe094d98 310 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
311}
312
313CFQ_CFQQ_FNS(on_rr);
314CFQ_CFQQ_FNS(wait_request);
b029195d 315CFQ_CFQQ_FNS(must_dispatch);
3b18152c 316CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
317CFQ_CFQQ_FNS(fifo_expire);
318CFQ_CFQQ_FNS(idle_window);
319CFQ_CFQQ_FNS(prio_changed);
44f7c160 320CFQ_CFQQ_FNS(slice_new);
91fac317 321CFQ_CFQQ_FNS(sync);
a36e71f9 322CFQ_CFQQ_FNS(coop);
76280aff 323CFQ_CFQQ_FNS(deep);
3b18152c
JA
324#undef CFQ_CFQQ_FNS
325
7b679138
JA
326#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
327 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
328#define cfq_log(cfqd, fmt, args...) \
329 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
330
615f0259
VG
331/* Traverses through cfq group service trees */
332#define for_each_cfqg_st(cfqg, i, j, st) \
333 for (i = 0; i <= IDLE_WORKLOAD; i++) \
334 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
335 : &cfqg->service_tree_idle; \
336 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
337 (i == IDLE_WORKLOAD && j == 0); \
338 j++, st = i < IDLE_WORKLOAD ? \
339 &cfqg->service_trees[i][j]: NULL) \
340
341
c0324a02
CZ
342static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
343{
344 if (cfq_class_idle(cfqq))
345 return IDLE_WORKLOAD;
346 if (cfq_class_rt(cfqq))
347 return RT_WORKLOAD;
348 return BE_WORKLOAD;
349}
350
718eee05
CZ
351
352static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
353{
354 if (!cfq_cfqq_sync(cfqq))
355 return ASYNC_WORKLOAD;
356 if (!cfq_cfqq_idle_window(cfqq))
357 return SYNC_NOIDLE_WORKLOAD;
358 return SYNC_WORKLOAD;
359}
360
58ff82f3
VG
361static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
362 struct cfq_data *cfqd,
363 struct cfq_group *cfqg)
c0324a02
CZ
364{
365 if (wl == IDLE_WORKLOAD)
cdb16e8f 366 return cfqg->service_tree_idle.count;
c0324a02 367
cdb16e8f
VG
368 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
369 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
370 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
371}
372
165125e1 373static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 374static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 375 struct io_context *, gfp_t);
4ac845a2 376static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
377 struct io_context *);
378
5ad531db
JA
379static inline int rq_in_driver(struct cfq_data *cfqd)
380{
381 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
382}
383
91fac317 384static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 385 bool is_sync)
91fac317 386{
a6151c3a 387 return cic->cfqq[is_sync];
91fac317
VT
388}
389
390static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 391 struct cfq_queue *cfqq, bool is_sync)
91fac317 392{
a6151c3a 393 cic->cfqq[is_sync] = cfqq;
91fac317
VT
394}
395
396/*
397 * We regard a request as SYNC, if it's either a read or has the SYNC bit
398 * set (in which case it could also be direct WRITE).
399 */
a6151c3a 400static inline bool cfq_bio_sync(struct bio *bio)
91fac317 401{
a6151c3a 402 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 403}
1da177e4 404
99f95e52
AM
405/*
406 * scheduler run of queue, if there are requests pending and no one in the
407 * driver that will restart queueing
408 */
23e018a1 409static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 410{
7b679138
JA
411 if (cfqd->busy_queues) {
412 cfq_log(cfqd, "schedule dispatch");
23e018a1 413 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 414 }
99f95e52
AM
415}
416
165125e1 417static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
418{
419 struct cfq_data *cfqd = q->elevator->elevator_data;
420
f04a6424 421 return !cfqd->rq_queued;
99f95e52
AM
422}
423
44f7c160
JA
424/*
425 * Scale schedule slice based on io priority. Use the sync time slice only
426 * if a queue is marked sync and has sync io queued. A sync queue with async
427 * io only, should not get full sync slice length.
428 */
a6151c3a 429static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 430 unsigned short prio)
44f7c160 431{
d9e7620e 432 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 433
d9e7620e
JA
434 WARN_ON(prio >= IOPRIO_BE_NR);
435
436 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
437}
44f7c160 438
d9e7620e
JA
439static inline int
440cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
441{
442 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
443}
444
25bc6b07
VG
445static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
446{
447 u64 d = delta << CFQ_SERVICE_SHIFT;
448
449 d = d * BLKIO_WEIGHT_DEFAULT;
450 do_div(d, cfqg->weight);
451 return d;
452}
453
454static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
455{
456 s64 delta = (s64)(vdisktime - min_vdisktime);
457 if (delta > 0)
458 min_vdisktime = vdisktime;
459
460 return min_vdisktime;
461}
462
463static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
464{
465 s64 delta = (s64)(vdisktime - min_vdisktime);
466 if (delta < 0)
467 min_vdisktime = vdisktime;
468
469 return min_vdisktime;
470}
471
472static void update_min_vdisktime(struct cfq_rb_root *st)
473{
474 u64 vdisktime = st->min_vdisktime;
475 struct cfq_group *cfqg;
476
477 if (st->active) {
478 cfqg = rb_entry_cfqg(st->active);
479 vdisktime = cfqg->vdisktime;
480 }
481
482 if (st->left) {
483 cfqg = rb_entry_cfqg(st->left);
484 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
485 }
486
487 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
488}
489
5db5d642
CZ
490/*
491 * get averaged number of queues of RT/BE priority.
492 * average is updated, with a formula that gives more weight to higher numbers,
493 * to quickly follows sudden increases and decrease slowly
494 */
495
58ff82f3
VG
496static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
497 struct cfq_group *cfqg, bool rt)
5869619c 498{
5db5d642
CZ
499 unsigned min_q, max_q;
500 unsigned mult = cfq_hist_divisor - 1;
501 unsigned round = cfq_hist_divisor / 2;
58ff82f3 502 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 503
58ff82f3
VG
504 min_q = min(cfqg->busy_queues_avg[rt], busy);
505 max_q = max(cfqg->busy_queues_avg[rt], busy);
506 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 507 cfq_hist_divisor;
58ff82f3
VG
508 return cfqg->busy_queues_avg[rt];
509}
510
511static inline unsigned
512cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
513{
514 struct cfq_rb_root *st = &cfqd->grp_service_tree;
515
516 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
517}
518
44f7c160
JA
519static inline void
520cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
521{
5db5d642
CZ
522 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
523 if (cfqd->cfq_latency) {
58ff82f3
VG
524 /*
525 * interested queues (we consider only the ones with the same
526 * priority class in the cfq group)
527 */
528 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
529 cfq_class_rt(cfqq));
5db5d642
CZ
530 unsigned sync_slice = cfqd->cfq_slice[1];
531 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
532 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
533
534 if (expect_latency > group_slice) {
5db5d642
CZ
535 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
536 /* scale low_slice according to IO priority
537 * and sync vs async */
538 unsigned low_slice =
539 min(slice, base_low_slice * slice / sync_slice);
540 /* the adapted slice value is scaled to fit all iqs
541 * into the target latency */
58ff82f3 542 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
543 low_slice);
544 }
545 }
546 cfqq->slice_end = jiffies + slice;
7b679138 547 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
548}
549
550/*
551 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
552 * isn't valid until the first request from the dispatch is activated
553 * and the slice time set.
554 */
a6151c3a 555static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
556{
557 if (cfq_cfqq_slice_new(cfqq))
558 return 0;
559 if (time_before(jiffies, cfqq->slice_end))
560 return 0;
561
562 return 1;
563}
564
1da177e4 565/*
5e705374 566 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 567 * We choose the request that is closest to the head right now. Distance
e8a99053 568 * behind the head is penalized and only allowed to a certain extent.
1da177e4 569 */
5e705374 570static struct request *
cf7c25cf 571cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 572{
cf7c25cf 573 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 574 unsigned long back_max;
e8a99053
AM
575#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
576#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
577 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 578
5e705374
JA
579 if (rq1 == NULL || rq1 == rq2)
580 return rq2;
581 if (rq2 == NULL)
582 return rq1;
9c2c38a1 583
5e705374
JA
584 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
585 return rq1;
586 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
587 return rq2;
374f84ac
JA
588 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
589 return rq1;
590 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
591 return rq2;
1da177e4 592
83096ebf
TH
593 s1 = blk_rq_pos(rq1);
594 s2 = blk_rq_pos(rq2);
1da177e4 595
1da177e4
LT
596 /*
597 * by definition, 1KiB is 2 sectors
598 */
599 back_max = cfqd->cfq_back_max * 2;
600
601 /*
602 * Strict one way elevator _except_ in the case where we allow
603 * short backward seeks which are biased as twice the cost of a
604 * similar forward seek.
605 */
606 if (s1 >= last)
607 d1 = s1 - last;
608 else if (s1 + back_max >= last)
609 d1 = (last - s1) * cfqd->cfq_back_penalty;
610 else
e8a99053 611 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
612
613 if (s2 >= last)
614 d2 = s2 - last;
615 else if (s2 + back_max >= last)
616 d2 = (last - s2) * cfqd->cfq_back_penalty;
617 else
e8a99053 618 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
619
620 /* Found required data */
e8a99053
AM
621
622 /*
623 * By doing switch() on the bit mask "wrap" we avoid having to
624 * check two variables for all permutations: --> faster!
625 */
626 switch (wrap) {
5e705374 627 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 628 if (d1 < d2)
5e705374 629 return rq1;
e8a99053 630 else if (d2 < d1)
5e705374 631 return rq2;
e8a99053
AM
632 else {
633 if (s1 >= s2)
5e705374 634 return rq1;
e8a99053 635 else
5e705374 636 return rq2;
e8a99053 637 }
1da177e4 638
e8a99053 639 case CFQ_RQ2_WRAP:
5e705374 640 return rq1;
e8a99053 641 case CFQ_RQ1_WRAP:
5e705374
JA
642 return rq2;
643 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
644 default:
645 /*
646 * Since both rqs are wrapped,
647 * start with the one that's further behind head
648 * (--> only *one* back seek required),
649 * since back seek takes more time than forward.
650 */
651 if (s1 <= s2)
5e705374 652 return rq1;
1da177e4 653 else
5e705374 654 return rq2;
1da177e4
LT
655 }
656}
657
498d3aa2
JA
658/*
659 * The below is leftmost cache rbtree addon
660 */
0871714e 661static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 662{
615f0259
VG
663 /* Service tree is empty */
664 if (!root->count)
665 return NULL;
666
cc09e299
JA
667 if (!root->left)
668 root->left = rb_first(&root->rb);
669
0871714e
JA
670 if (root->left)
671 return rb_entry(root->left, struct cfq_queue, rb_node);
672
673 return NULL;
cc09e299
JA
674}
675
1fa8f6d6
VG
676static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
677{
678 if (!root->left)
679 root->left = rb_first(&root->rb);
680
681 if (root->left)
682 return rb_entry_cfqg(root->left);
683
684 return NULL;
685}
686
a36e71f9
JA
687static void rb_erase_init(struct rb_node *n, struct rb_root *root)
688{
689 rb_erase(n, root);
690 RB_CLEAR_NODE(n);
691}
692
cc09e299
JA
693static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
694{
695 if (root->left == n)
696 root->left = NULL;
a36e71f9 697 rb_erase_init(n, &root->rb);
aa6f6a3d 698 --root->count;
cc09e299
JA
699}
700
1da177e4
LT
701/*
702 * would be nice to take fifo expire time into account as well
703 */
5e705374
JA
704static struct request *
705cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
706 struct request *last)
1da177e4 707{
21183b07
JA
708 struct rb_node *rbnext = rb_next(&last->rb_node);
709 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 710 struct request *next = NULL, *prev = NULL;
1da177e4 711
21183b07 712 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
713
714 if (rbprev)
5e705374 715 prev = rb_entry_rq(rbprev);
1da177e4 716
21183b07 717 if (rbnext)
5e705374 718 next = rb_entry_rq(rbnext);
21183b07
JA
719 else {
720 rbnext = rb_first(&cfqq->sort_list);
721 if (rbnext && rbnext != &last->rb_node)
5e705374 722 next = rb_entry_rq(rbnext);
21183b07 723 }
1da177e4 724
cf7c25cf 725 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
726}
727
d9e7620e
JA
728static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
729 struct cfq_queue *cfqq)
1da177e4 730{
d9e7620e
JA
731 /*
732 * just an approximation, should be ok.
733 */
cdb16e8f 734 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 735 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
736}
737
1fa8f6d6
VG
738static inline s64
739cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
740{
741 return cfqg->vdisktime - st->min_vdisktime;
742}
743
744static void
745__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
746{
747 struct rb_node **node = &st->rb.rb_node;
748 struct rb_node *parent = NULL;
749 struct cfq_group *__cfqg;
750 s64 key = cfqg_key(st, cfqg);
751 int left = 1;
752
753 while (*node != NULL) {
754 parent = *node;
755 __cfqg = rb_entry_cfqg(parent);
756
757 if (key < cfqg_key(st, __cfqg))
758 node = &parent->rb_left;
759 else {
760 node = &parent->rb_right;
761 left = 0;
762 }
763 }
764
765 if (left)
766 st->left = &cfqg->rb_node;
767
768 rb_link_node(&cfqg->rb_node, parent, node);
769 rb_insert_color(&cfqg->rb_node, &st->rb);
770}
771
772static void
773cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
774{
775 struct cfq_rb_root *st = &cfqd->grp_service_tree;
776 struct cfq_group *__cfqg;
777 struct rb_node *n;
778
779 cfqg->nr_cfqq++;
780 if (cfqg->on_st)
781 return;
782
783 /*
784 * Currently put the group at the end. Later implement something
785 * so that groups get lesser vtime based on their weights, so that
786 * if group does not loose all if it was not continously backlogged.
787 */
788 n = rb_last(&st->rb);
789 if (n) {
790 __cfqg = rb_entry_cfqg(n);
791 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
792 } else
793 cfqg->vdisktime = st->min_vdisktime;
794
795 __cfq_group_service_tree_add(st, cfqg);
796 cfqg->on_st = true;
58ff82f3
VG
797 cfqd->nr_groups++;
798 st->total_weight += cfqg->weight;
1fa8f6d6
VG
799}
800
801static void
802cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
803{
804 struct cfq_rb_root *st = &cfqd->grp_service_tree;
805
25bc6b07
VG
806 if (st->active == &cfqg->rb_node)
807 st->active = NULL;
808
1fa8f6d6
VG
809 BUG_ON(cfqg->nr_cfqq < 1);
810 cfqg->nr_cfqq--;
25bc6b07 811
1fa8f6d6
VG
812 /* If there are other cfq queues under this group, don't delete it */
813 if (cfqg->nr_cfqq)
814 return;
815
816 cfqg->on_st = false;
58ff82f3
VG
817 cfqd->nr_groups--;
818 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
819 if (!RB_EMPTY_NODE(&cfqg->rb_node))
820 cfq_rb_erase(&cfqg->rb_node, st);
821}
822
498d3aa2 823/*
c0324a02 824 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
825 * requests waiting to be processed. It is sorted in the order that
826 * we will service the queues.
827 */
a36e71f9 828static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 829 bool add_front)
d9e7620e 830{
0871714e
JA
831 struct rb_node **p, *parent;
832 struct cfq_queue *__cfqq;
d9e7620e 833 unsigned long rb_key;
c0324a02 834 struct cfq_rb_root *service_tree;
498d3aa2 835 int left;
d9e7620e 836
cdb16e8f
VG
837 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
838 cfqq_type(cfqq), cfqd);
0871714e
JA
839 if (cfq_class_idle(cfqq)) {
840 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 841 parent = rb_last(&service_tree->rb);
0871714e
JA
842 if (parent && parent != &cfqq->rb_node) {
843 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
844 rb_key += __cfqq->rb_key;
845 } else
846 rb_key += jiffies;
847 } else if (!add_front) {
b9c8946b
JA
848 /*
849 * Get our rb key offset. Subtract any residual slice
850 * value carried from last service. A negative resid
851 * count indicates slice overrun, and this should position
852 * the next service time further away in the tree.
853 */
edd75ffd 854 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 855 rb_key -= cfqq->slice_resid;
edd75ffd 856 cfqq->slice_resid = 0;
48e025e6
CZ
857 } else {
858 rb_key = -HZ;
aa6f6a3d 859 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
860 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
861 }
1da177e4 862
d9e7620e 863 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 864 /*
d9e7620e 865 * same position, nothing more to do
99f9628a 866 */
c0324a02
CZ
867 if (rb_key == cfqq->rb_key &&
868 cfqq->service_tree == service_tree)
d9e7620e 869 return;
1da177e4 870
aa6f6a3d
CZ
871 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
872 cfqq->service_tree = NULL;
1da177e4 873 }
d9e7620e 874
498d3aa2 875 left = 1;
0871714e 876 parent = NULL;
aa6f6a3d
CZ
877 cfqq->service_tree = service_tree;
878 p = &service_tree->rb.rb_node;
d9e7620e 879 while (*p) {
67060e37 880 struct rb_node **n;
cc09e299 881
d9e7620e
JA
882 parent = *p;
883 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
884
0c534e0a 885 /*
c0324a02 886 * sort by key, that represents service time.
0c534e0a 887 */
c0324a02 888 if (time_before(rb_key, __cfqq->rb_key))
67060e37 889 n = &(*p)->rb_left;
c0324a02 890 else {
67060e37 891 n = &(*p)->rb_right;
cc09e299 892 left = 0;
c0324a02 893 }
67060e37
JA
894
895 p = n;
d9e7620e
JA
896 }
897
cc09e299 898 if (left)
aa6f6a3d 899 service_tree->left = &cfqq->rb_node;
cc09e299 900
d9e7620e
JA
901 cfqq->rb_key = rb_key;
902 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
903 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
904 service_tree->count++;
1fa8f6d6 905 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
906}
907
a36e71f9 908static struct cfq_queue *
f2d1f0ae
JA
909cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
910 sector_t sector, struct rb_node **ret_parent,
911 struct rb_node ***rb_link)
a36e71f9 912{
a36e71f9
JA
913 struct rb_node **p, *parent;
914 struct cfq_queue *cfqq = NULL;
915
916 parent = NULL;
917 p = &root->rb_node;
918 while (*p) {
919 struct rb_node **n;
920
921 parent = *p;
922 cfqq = rb_entry(parent, struct cfq_queue, p_node);
923
924 /*
925 * Sort strictly based on sector. Smallest to the left,
926 * largest to the right.
927 */
2e46e8b2 928 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 929 n = &(*p)->rb_right;
2e46e8b2 930 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
931 n = &(*p)->rb_left;
932 else
933 break;
934 p = n;
3ac6c9f8 935 cfqq = NULL;
a36e71f9
JA
936 }
937
938 *ret_parent = parent;
939 if (rb_link)
940 *rb_link = p;
3ac6c9f8 941 return cfqq;
a36e71f9
JA
942}
943
944static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
945{
a36e71f9
JA
946 struct rb_node **p, *parent;
947 struct cfq_queue *__cfqq;
948
f2d1f0ae
JA
949 if (cfqq->p_root) {
950 rb_erase(&cfqq->p_node, cfqq->p_root);
951 cfqq->p_root = NULL;
952 }
a36e71f9
JA
953
954 if (cfq_class_idle(cfqq))
955 return;
956 if (!cfqq->next_rq)
957 return;
958
f2d1f0ae 959 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
960 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
961 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
962 if (!__cfqq) {
963 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
964 rb_insert_color(&cfqq->p_node, cfqq->p_root);
965 } else
966 cfqq->p_root = NULL;
a36e71f9
JA
967}
968
498d3aa2
JA
969/*
970 * Update cfqq's position in the service tree.
971 */
edd75ffd 972static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 973{
6d048f53
JA
974 /*
975 * Resorting requires the cfqq to be on the RR list already.
976 */
a36e71f9 977 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 978 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
979 cfq_prio_tree_add(cfqd, cfqq);
980 }
6d048f53
JA
981}
982
1da177e4
LT
983/*
984 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 985 * the pending list according to last request service
1da177e4 986 */
febffd61 987static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 988{
7b679138 989 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
990 BUG_ON(cfq_cfqq_on_rr(cfqq));
991 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
992 cfqd->busy_queues++;
993
edd75ffd 994 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
995}
996
498d3aa2
JA
997/*
998 * Called when the cfqq no longer has requests pending, remove it from
999 * the service tree.
1000 */
febffd61 1001static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1002{
7b679138 1003 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1004 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1005 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1006
aa6f6a3d
CZ
1007 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1008 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1009 cfqq->service_tree = NULL;
1010 }
f2d1f0ae
JA
1011 if (cfqq->p_root) {
1012 rb_erase(&cfqq->p_node, cfqq->p_root);
1013 cfqq->p_root = NULL;
1014 }
d9e7620e 1015
1fa8f6d6 1016 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1017 BUG_ON(!cfqd->busy_queues);
1018 cfqd->busy_queues--;
1019}
1020
1021/*
1022 * rb tree support functions
1023 */
febffd61 1024static void cfq_del_rq_rb(struct request *rq)
1da177e4 1025{
5e705374 1026 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1027 const int sync = rq_is_sync(rq);
1da177e4 1028
b4878f24
JA
1029 BUG_ON(!cfqq->queued[sync]);
1030 cfqq->queued[sync]--;
1da177e4 1031
5e705374 1032 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1033
f04a6424
VG
1034 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1035 /*
1036 * Queue will be deleted from service tree when we actually
1037 * expire it later. Right now just remove it from prio tree
1038 * as it is empty.
1039 */
1040 if (cfqq->p_root) {
1041 rb_erase(&cfqq->p_node, cfqq->p_root);
1042 cfqq->p_root = NULL;
1043 }
1044 }
1da177e4
LT
1045}
1046
5e705374 1047static void cfq_add_rq_rb(struct request *rq)
1da177e4 1048{
5e705374 1049 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1050 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1051 struct request *__alias, *prev;
1da177e4 1052
5380a101 1053 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1054
1055 /*
1056 * looks a little odd, but the first insert might return an alias.
1057 * if that happens, put the alias on the dispatch list
1058 */
21183b07 1059 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1060 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1061
1062 if (!cfq_cfqq_on_rr(cfqq))
1063 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1064
1065 /*
1066 * check if this request is a better next-serve candidate
1067 */
a36e71f9 1068 prev = cfqq->next_rq;
cf7c25cf 1069 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1070
1071 /*
1072 * adjust priority tree position, if ->next_rq changes
1073 */
1074 if (prev != cfqq->next_rq)
1075 cfq_prio_tree_add(cfqd, cfqq);
1076
5044eed4 1077 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1078}
1079
febffd61 1080static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1081{
5380a101
JA
1082 elv_rb_del(&cfqq->sort_list, rq);
1083 cfqq->queued[rq_is_sync(rq)]--;
5e705374 1084 cfq_add_rq_rb(rq);
1da177e4
LT
1085}
1086
206dc69b
JA
1087static struct request *
1088cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1089{
206dc69b 1090 struct task_struct *tsk = current;
91fac317 1091 struct cfq_io_context *cic;
206dc69b 1092 struct cfq_queue *cfqq;
1da177e4 1093
4ac845a2 1094 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1095 if (!cic)
1096 return NULL;
1097
1098 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1099 if (cfqq) {
1100 sector_t sector = bio->bi_sector + bio_sectors(bio);
1101
21183b07 1102 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1103 }
1da177e4 1104
1da177e4
LT
1105 return NULL;
1106}
1107
165125e1 1108static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1109{
22e2c507 1110 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1111
5ad531db 1112 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 1113 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 1114 rq_in_driver(cfqd));
25776e35 1115
5b93629b 1116 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1117}
1118
165125e1 1119static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1120{
b4878f24 1121 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 1122 const int sync = rq_is_sync(rq);
b4878f24 1123
5ad531db
JA
1124 WARN_ON(!cfqd->rq_in_driver[sync]);
1125 cfqd->rq_in_driver[sync]--;
7b679138 1126 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 1127 rq_in_driver(cfqd));
1da177e4
LT
1128}
1129
b4878f24 1130static void cfq_remove_request(struct request *rq)
1da177e4 1131{
5e705374 1132 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1133
5e705374
JA
1134 if (cfqq->next_rq == rq)
1135 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1136
b4878f24 1137 list_del_init(&rq->queuelist);
5e705374 1138 cfq_del_rq_rb(rq);
374f84ac 1139
45333d5a 1140 cfqq->cfqd->rq_queued--;
374f84ac
JA
1141 if (rq_is_meta(rq)) {
1142 WARN_ON(!cfqq->meta_pending);
1143 cfqq->meta_pending--;
1144 }
1da177e4
LT
1145}
1146
165125e1
JA
1147static int cfq_merge(struct request_queue *q, struct request **req,
1148 struct bio *bio)
1da177e4
LT
1149{
1150 struct cfq_data *cfqd = q->elevator->elevator_data;
1151 struct request *__rq;
1da177e4 1152
206dc69b 1153 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1154 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1155 *req = __rq;
1156 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1157 }
1158
1159 return ELEVATOR_NO_MERGE;
1da177e4
LT
1160}
1161
165125e1 1162static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1163 int type)
1da177e4 1164{
21183b07 1165 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1166 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1167
5e705374 1168 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1169 }
1da177e4
LT
1170}
1171
1172static void
165125e1 1173cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1174 struct request *next)
1175{
cf7c25cf 1176 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1177 /*
1178 * reposition in fifo if next is older than rq
1179 */
1180 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1181 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1182 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1183 rq_set_fifo_time(rq, rq_fifo_time(next));
1184 }
22e2c507 1185
cf7c25cf
CZ
1186 if (cfqq->next_rq == next)
1187 cfqq->next_rq = rq;
b4878f24 1188 cfq_remove_request(next);
22e2c507
JA
1189}
1190
165125e1 1191static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1192 struct bio *bio)
1193{
1194 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1195 struct cfq_io_context *cic;
da775265 1196 struct cfq_queue *cfqq;
da775265
JA
1197
1198 /*
ec8acb69 1199 * Disallow merge of a sync bio into an async request.
da775265 1200 */
91fac317 1201 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1202 return false;
da775265
JA
1203
1204 /*
719d3402
JA
1205 * Lookup the cfqq that this bio will be queued with. Allow
1206 * merge only if rq is queued there.
da775265 1207 */
4ac845a2 1208 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1209 if (!cic)
a6151c3a 1210 return false;
719d3402 1211
91fac317 1212 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1213 return cfqq == RQ_CFQQ(rq);
da775265
JA
1214}
1215
febffd61
JA
1216static void __cfq_set_active_queue(struct cfq_data *cfqd,
1217 struct cfq_queue *cfqq)
22e2c507
JA
1218{
1219 if (cfqq) {
7b679138 1220 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 1221 cfqq->slice_end = 0;
2f5cb738
JA
1222 cfqq->slice_dispatch = 0;
1223
2f5cb738 1224 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1225 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1226 cfq_clear_cfqq_must_alloc_slice(cfqq);
1227 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1228 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1229
1230 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1231 }
1232
1233 cfqd->active_queue = cfqq;
1234}
1235
7b14e3b5
JA
1236/*
1237 * current cfqq expired its slice (or was too idle), select new one
1238 */
1239static void
1240__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1241 bool timed_out)
7b14e3b5 1242{
7b679138
JA
1243 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1244
7b14e3b5
JA
1245 if (cfq_cfqq_wait_request(cfqq))
1246 del_timer(&cfqd->idle_slice_timer);
1247
7b14e3b5
JA
1248 cfq_clear_cfqq_wait_request(cfqq);
1249
1250 /*
6084cdda 1251 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1252 */
7b679138 1253 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1254 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1255 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1256 }
7b14e3b5 1257
f04a6424
VG
1258 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1259 cfq_del_cfqq_rr(cfqd, cfqq);
1260
edd75ffd 1261 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1262
1263 if (cfqq == cfqd->active_queue)
1264 cfqd->active_queue = NULL;
1265
1266 if (cfqd->active_cic) {
1267 put_io_context(cfqd->active_cic->ioc);
1268 cfqd->active_cic = NULL;
1269 }
7b14e3b5
JA
1270}
1271
a6151c3a 1272static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1273{
1274 struct cfq_queue *cfqq = cfqd->active_queue;
1275
1276 if (cfqq)
6084cdda 1277 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1278}
1279
498d3aa2
JA
1280/*
1281 * Get next queue for service. Unless we have a queue preemption,
1282 * we'll simply select the first cfqq in the service tree.
1283 */
6d048f53 1284static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1285{
c0324a02 1286 struct cfq_rb_root *service_tree =
cdb16e8f
VG
1287 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1288 cfqd->serving_type, cfqd);
d9e7620e 1289
f04a6424
VG
1290 if (!cfqd->rq_queued)
1291 return NULL;
1292
1fa8f6d6
VG
1293 /* There is nothing to dispatch */
1294 if (!service_tree)
1295 return NULL;
c0324a02
CZ
1296 if (RB_EMPTY_ROOT(&service_tree->rb))
1297 return NULL;
1298 return cfq_rb_first(service_tree);
6d048f53
JA
1299}
1300
f04a6424
VG
1301static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1302{
1303 struct cfq_group *cfqg = &cfqd->root_group;
1304 struct cfq_queue *cfqq;
1305 int i, j;
1306 struct cfq_rb_root *st;
1307
1308 if (!cfqd->rq_queued)
1309 return NULL;
1310
1311 for_each_cfqg_st(cfqg, i, j, st)
1312 if ((cfqq = cfq_rb_first(st)) != NULL)
1313 return cfqq;
1314 return NULL;
1315}
1316
498d3aa2
JA
1317/*
1318 * Get and set a new active queue for service.
1319 */
a36e71f9
JA
1320static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1321 struct cfq_queue *cfqq)
6d048f53 1322{
e00ef799 1323 if (!cfqq)
a36e71f9 1324 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1325
22e2c507 1326 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1327 return cfqq;
22e2c507
JA
1328}
1329
d9e7620e
JA
1330static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1331 struct request *rq)
1332{
83096ebf
TH
1333 if (blk_rq_pos(rq) >= cfqd->last_position)
1334 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1335 else
83096ebf 1336 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1337}
1338
b2c18e1e
JM
1339#define CFQQ_SEEK_THR 8 * 1024
1340#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 1341
b2c18e1e
JM
1342static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1343 struct request *rq)
6d048f53 1344{
b2c18e1e 1345 sector_t sdist = cfqq->seek_mean;
6d048f53 1346
b2c18e1e
JM
1347 if (!sample_valid(cfqq->seek_samples))
1348 sdist = CFQQ_SEEK_THR;
6d048f53 1349
04dc6e71 1350 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
1351}
1352
a36e71f9
JA
1353static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1354 struct cfq_queue *cur_cfqq)
1355{
f2d1f0ae 1356 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1357 struct rb_node *parent, *node;
1358 struct cfq_queue *__cfqq;
1359 sector_t sector = cfqd->last_position;
1360
1361 if (RB_EMPTY_ROOT(root))
1362 return NULL;
1363
1364 /*
1365 * First, if we find a request starting at the end of the last
1366 * request, choose it.
1367 */
f2d1f0ae 1368 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1369 if (__cfqq)
1370 return __cfqq;
1371
1372 /*
1373 * If the exact sector wasn't found, the parent of the NULL leaf
1374 * will contain the closest sector.
1375 */
1376 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1377 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1378 return __cfqq;
1379
2e46e8b2 1380 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1381 node = rb_next(&__cfqq->p_node);
1382 else
1383 node = rb_prev(&__cfqq->p_node);
1384 if (!node)
1385 return NULL;
1386
1387 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1388 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1389 return __cfqq;
1390
1391 return NULL;
1392}
1393
1394/*
1395 * cfqd - obvious
1396 * cur_cfqq - passed in so that we don't decide that the current queue is
1397 * closely cooperating with itself.
1398 *
1399 * So, basically we're assuming that that cur_cfqq has dispatched at least
1400 * one request, and that cfqd->last_position reflects a position on the disk
1401 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1402 * assumption.
1403 */
1404static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1405 struct cfq_queue *cur_cfqq)
6d048f53 1406{
a36e71f9
JA
1407 struct cfq_queue *cfqq;
1408
e6c5bc73
JM
1409 if (!cfq_cfqq_sync(cur_cfqq))
1410 return NULL;
1411 if (CFQQ_SEEKY(cur_cfqq))
1412 return NULL;
1413
6d048f53 1414 /*
d9e7620e
JA
1415 * We should notice if some of the queues are cooperating, eg
1416 * working closely on the same area of the disk. In that case,
1417 * we can group them together and don't waste time idling.
6d048f53 1418 */
a36e71f9
JA
1419 cfqq = cfqq_close(cfqd, cur_cfqq);
1420 if (!cfqq)
1421 return NULL;
1422
df5fe3e8
JM
1423 /*
1424 * It only makes sense to merge sync queues.
1425 */
1426 if (!cfq_cfqq_sync(cfqq))
1427 return NULL;
e6c5bc73
JM
1428 if (CFQQ_SEEKY(cfqq))
1429 return NULL;
df5fe3e8 1430
c0324a02
CZ
1431 /*
1432 * Do not merge queues of different priority classes
1433 */
1434 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1435 return NULL;
1436
a36e71f9 1437 return cfqq;
6d048f53
JA
1438}
1439
a6d44e98
CZ
1440/*
1441 * Determine whether we should enforce idle window for this queue.
1442 */
1443
1444static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1445{
1446 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1447 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1448
f04a6424
VG
1449 BUG_ON(!service_tree);
1450 BUG_ON(!service_tree->count);
1451
a6d44e98
CZ
1452 /* We never do for idle class queues. */
1453 if (prio == IDLE_WORKLOAD)
1454 return false;
1455
1456 /* We do for queues that were marked with idle window flag. */
1457 if (cfq_cfqq_idle_window(cfqq))
1458 return true;
1459
1460 /*
1461 * Otherwise, we do only if they are the last ones
1462 * in their service tree.
1463 */
f04a6424 1464 return service_tree->count == 1;
a6d44e98
CZ
1465}
1466
6d048f53 1467static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1468{
1792669c 1469 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1470 struct cfq_io_context *cic;
7b14e3b5
JA
1471 unsigned long sl;
1472
a68bbddb 1473 /*
f7d7b7a7
JA
1474 * SSD device without seek penalty, disable idling. But only do so
1475 * for devices that support queuing, otherwise we still have a problem
1476 * with sync vs async workloads.
a68bbddb 1477 */
f7d7b7a7 1478 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1479 return;
1480
dd67d051 1481 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1482 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1483
1484 /*
1485 * idle is disabled, either manually or by past process history
1486 */
a6d44e98 1487 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1488 return;
1489
7b679138 1490 /*
8e550632 1491 * still active requests from this queue, don't idle
7b679138 1492 */
8e550632 1493 if (cfqq->dispatched)
7b679138
JA
1494 return;
1495
22e2c507
JA
1496 /*
1497 * task has exited, don't wait
1498 */
206dc69b 1499 cic = cfqd->active_cic;
66dac98e 1500 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1501 return;
1502
355b659c
CZ
1503 /*
1504 * If our average think time is larger than the remaining time
1505 * slice, then don't idle. This avoids overrunning the allotted
1506 * time slice.
1507 */
1508 if (sample_valid(cic->ttime_samples) &&
1509 (cfqq->slice_end - jiffies < cic->ttime_mean))
1510 return;
1511
3b18152c 1512 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1513
6d048f53 1514 sl = cfqd->cfq_slice_idle;
206dc69b 1515
7b14e3b5 1516 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1517 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1518}
1519
498d3aa2
JA
1520/*
1521 * Move request from internal lists to the request queue dispatch list.
1522 */
165125e1 1523static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1524{
3ed9a296 1525 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1526 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1527
7b679138
JA
1528 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1529
06d21886 1530 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1531 cfq_remove_request(rq);
6d048f53 1532 cfqq->dispatched++;
5380a101 1533 elv_dispatch_sort(q, rq);
3ed9a296
JA
1534
1535 if (cfq_cfqq_sync(cfqq))
1536 cfqd->sync_flight++;
1da177e4
LT
1537}
1538
1539/*
1540 * return expired entry, or NULL to just start from scratch in rbtree
1541 */
febffd61 1542static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1543{
30996f40 1544 struct request *rq = NULL;
1da177e4 1545
3b18152c 1546 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1547 return NULL;
cb887411
JA
1548
1549 cfq_mark_cfqq_fifo_expire(cfqq);
1550
89850f7e
JA
1551 if (list_empty(&cfqq->fifo))
1552 return NULL;
1da177e4 1553
89850f7e 1554 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1555 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1556 rq = NULL;
1da177e4 1557
30996f40 1558 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1559 return rq;
1da177e4
LT
1560}
1561
22e2c507
JA
1562static inline int
1563cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1564{
1565 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1566
22e2c507 1567 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1568
22e2c507 1569 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1570}
1571
df5fe3e8
JM
1572/*
1573 * Must be called with the queue_lock held.
1574 */
1575static int cfqq_process_refs(struct cfq_queue *cfqq)
1576{
1577 int process_refs, io_refs;
1578
1579 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1580 process_refs = atomic_read(&cfqq->ref) - io_refs;
1581 BUG_ON(process_refs < 0);
1582 return process_refs;
1583}
1584
1585static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1586{
e6c5bc73 1587 int process_refs, new_process_refs;
df5fe3e8
JM
1588 struct cfq_queue *__cfqq;
1589
1590 /* Avoid a circular list and skip interim queue merges */
1591 while ((__cfqq = new_cfqq->new_cfqq)) {
1592 if (__cfqq == cfqq)
1593 return;
1594 new_cfqq = __cfqq;
1595 }
1596
1597 process_refs = cfqq_process_refs(cfqq);
1598 /*
1599 * If the process for the cfqq has gone away, there is no
1600 * sense in merging the queues.
1601 */
1602 if (process_refs == 0)
1603 return;
1604
e6c5bc73
JM
1605 /*
1606 * Merge in the direction of the lesser amount of work.
1607 */
1608 new_process_refs = cfqq_process_refs(new_cfqq);
1609 if (new_process_refs >= process_refs) {
1610 cfqq->new_cfqq = new_cfqq;
1611 atomic_add(process_refs, &new_cfqq->ref);
1612 } else {
1613 new_cfqq->new_cfqq = cfqq;
1614 atomic_add(new_process_refs, &cfqq->ref);
1615 }
df5fe3e8
JM
1616}
1617
cdb16e8f
VG
1618static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1619 struct cfq_group *cfqg, enum wl_prio_t prio,
1620 bool prio_changed)
718eee05
CZ
1621{
1622 struct cfq_queue *queue;
1623 int i;
1624 bool key_valid = false;
1625 unsigned long lowest_key = 0;
1626 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1627
1628 if (prio_changed) {
1629 /*
1630 * When priorities switched, we prefer starting
1631 * from SYNC_NOIDLE (first choice), or just SYNC
1632 * over ASYNC
1633 */
cdb16e8f 1634 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1635 return cur_best;
1636 cur_best = SYNC_WORKLOAD;
cdb16e8f 1637 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1638 return cur_best;
1639
1640 return ASYNC_WORKLOAD;
1641 }
1642
1643 for (i = 0; i < 3; ++i) {
1644 /* otherwise, select the one with lowest rb_key */
cdb16e8f 1645 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
718eee05
CZ
1646 if (queue &&
1647 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1648 lowest_key = queue->rb_key;
1649 cur_best = i;
1650 key_valid = true;
1651 }
1652 }
1653
1654 return cur_best;
1655}
1656
cdb16e8f 1657static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05
CZ
1658{
1659 enum wl_prio_t previous_prio = cfqd->serving_prio;
1660 bool prio_changed;
1661 unsigned slice;
1662 unsigned count;
cdb16e8f 1663 struct cfq_rb_root *st;
58ff82f3 1664 unsigned group_slice;
718eee05 1665
1fa8f6d6
VG
1666 if (!cfqg) {
1667 cfqd->serving_prio = IDLE_WORKLOAD;
1668 cfqd->workload_expires = jiffies + 1;
1669 return;
1670 }
1671
718eee05 1672 /* Choose next priority. RT > BE > IDLE */
58ff82f3 1673 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 1674 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 1675 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
1676 cfqd->serving_prio = BE_WORKLOAD;
1677 else {
1678 cfqd->serving_prio = IDLE_WORKLOAD;
1679 cfqd->workload_expires = jiffies + 1;
1680 return;
1681 }
1682
1683 /*
1684 * For RT and BE, we have to choose also the type
1685 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1686 * expiration time
1687 */
1688 prio_changed = (cfqd->serving_prio != previous_prio);
cdb16e8f
VG
1689 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1690 cfqd);
1691 count = st->count;
718eee05
CZ
1692
1693 /*
1694 * If priority didn't change, check workload expiration,
1695 * and that we still have other queues ready
1696 */
1697 if (!prio_changed && count &&
1698 !time_after(jiffies, cfqd->workload_expires))
1699 return;
1700
1701 /* otherwise select new workload type */
1702 cfqd->serving_type =
cdb16e8f
VG
1703 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
1704 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1705 cfqd);
1706 count = st->count;
718eee05
CZ
1707
1708 /*
1709 * the workload slice is computed as a fraction of target latency
1710 * proportional to the number of queues in that workload, over
1711 * all the queues in the same priority class
1712 */
58ff82f3
VG
1713 group_slice = cfq_group_slice(cfqd, cfqg);
1714
1715 slice = group_slice * count /
1716 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
1717 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05
CZ
1718
1719 if (cfqd->serving_type == ASYNC_WORKLOAD)
1720 /* async workload slice is scaled down according to
1721 * the sync/async slice ratio. */
1722 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1723 else
1724 /* sync workload slice is at least 2 * cfq_slice_idle */
1725 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1726
1727 slice = max_t(unsigned, slice, CFQ_MIN_TT);
1728 cfqd->workload_expires = jiffies + slice;
8e550632 1729 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
1730}
1731
1fa8f6d6
VG
1732static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
1733{
1734 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 1735 struct cfq_group *cfqg;
1fa8f6d6
VG
1736
1737 if (RB_EMPTY_ROOT(&st->rb))
1738 return NULL;
25bc6b07
VG
1739 cfqg = cfq_rb_first_group(st);
1740 st->active = &cfqg->rb_node;
1741 update_min_vdisktime(st);
1742 return cfqg;
1fa8f6d6
VG
1743}
1744
cdb16e8f
VG
1745static void cfq_choose_cfqg(struct cfq_data *cfqd)
1746{
1fa8f6d6
VG
1747 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
1748
1749 cfqd->serving_group = cfqg;
1750 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
1751}
1752
22e2c507 1753/*
498d3aa2
JA
1754 * Select a queue for service. If we have a current active queue,
1755 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1756 */
1b5ed5e1 1757static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1758{
a36e71f9 1759 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1760
22e2c507
JA
1761 cfqq = cfqd->active_queue;
1762 if (!cfqq)
1763 goto new_queue;
1da177e4 1764
f04a6424
VG
1765 if (!cfqd->rq_queued)
1766 return NULL;
22e2c507 1767 /*
6d048f53 1768 * The active queue has run out of time, expire it and select new.
22e2c507 1769 */
b029195d 1770 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1771 goto expire;
1da177e4 1772
22e2c507 1773 /*
6d048f53
JA
1774 * The active queue has requests and isn't expired, allow it to
1775 * dispatch.
22e2c507 1776 */
dd67d051 1777 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1778 goto keep_queue;
6d048f53 1779
a36e71f9
JA
1780 /*
1781 * If another queue has a request waiting within our mean seek
1782 * distance, let it run. The expire code will check for close
1783 * cooperators and put the close queue at the front of the service
df5fe3e8 1784 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 1785 */
b3b6d040 1786 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
1787 if (new_cfqq) {
1788 if (!cfqq->new_cfqq)
1789 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 1790 goto expire;
df5fe3e8 1791 }
a36e71f9 1792
6d048f53
JA
1793 /*
1794 * No requests pending. If the active queue still has requests in
1795 * flight or is idling for a new request, allow either of these
1796 * conditions to happen (or time out) before selecting a new queue.
1797 */
cc197479 1798 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 1799 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
1800 cfqq = NULL;
1801 goto keep_queue;
22e2c507
JA
1802 }
1803
3b18152c 1804expire:
6084cdda 1805 cfq_slice_expired(cfqd, 0);
3b18152c 1806new_queue:
718eee05
CZ
1807 /*
1808 * Current queue expired. Check if we have to switch to a new
1809 * service tree
1810 */
1811 if (!new_cfqq)
cdb16e8f 1812 cfq_choose_cfqg(cfqd);
718eee05 1813
a36e71f9 1814 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1815keep_queue:
3b18152c 1816 return cfqq;
22e2c507
JA
1817}
1818
febffd61 1819static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1820{
1821 int dispatched = 0;
1822
1823 while (cfqq->next_rq) {
1824 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1825 dispatched++;
1826 }
1827
1828 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
1829
1830 /* By default cfqq is not expired if it is empty. Do it explicitly */
1831 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
1832 return dispatched;
1833}
1834
498d3aa2
JA
1835/*
1836 * Drain our current requests. Used for barriers and when switching
1837 * io schedulers on-the-fly.
1838 */
d9e7620e 1839static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1840{
0871714e 1841 struct cfq_queue *cfqq;
d9e7620e 1842 int dispatched = 0;
cdb16e8f 1843
f04a6424
VG
1844 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
1845 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1846
6084cdda 1847 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1848 BUG_ON(cfqd->busy_queues);
1849
6923715a 1850 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
1851 return dispatched;
1852}
1853
0b182d61 1854static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 1855{
2f5cb738 1856 unsigned int max_dispatch;
22e2c507 1857
5ad531db
JA
1858 /*
1859 * Drain async requests before we start sync IO
1860 */
a6d44e98 1861 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 1862 return false;
5ad531db 1863
2f5cb738
JA
1864 /*
1865 * If this is an async queue and we have sync IO in flight, let it wait
1866 */
1867 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 1868 return false;
2f5cb738
JA
1869
1870 max_dispatch = cfqd->cfq_quantum;
1871 if (cfq_class_idle(cfqq))
1872 max_dispatch = 1;
b4878f24 1873
2f5cb738
JA
1874 /*
1875 * Does this cfqq already have too much IO in flight?
1876 */
1877 if (cfqq->dispatched >= max_dispatch) {
1878 /*
1879 * idle queue must always only have a single IO in flight
1880 */
3ed9a296 1881 if (cfq_class_idle(cfqq))
0b182d61 1882 return false;
3ed9a296 1883
2f5cb738
JA
1884 /*
1885 * We have other queues, don't allow more IO from this one
1886 */
1887 if (cfqd->busy_queues > 1)
0b182d61 1888 return false;
9ede209e 1889
365722bb 1890 /*
474b18cc 1891 * Sole queue user, no limit
365722bb 1892 */
474b18cc 1893 max_dispatch = -1;
8e296755
JA
1894 }
1895
1896 /*
1897 * Async queues must wait a bit before being allowed dispatch.
1898 * We also ramp up the dispatch depth gradually for async IO,
1899 * based on the last sync IO we serviced
1900 */
963b72fc 1901 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
1902 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1903 unsigned int depth;
365722bb 1904
61f0c1dc 1905 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
1906 if (!depth && !cfqq->dispatched)
1907 depth = 1;
8e296755
JA
1908 if (depth < max_dispatch)
1909 max_dispatch = depth;
2f5cb738 1910 }
3ed9a296 1911
0b182d61
JA
1912 /*
1913 * If we're below the current max, allow a dispatch
1914 */
1915 return cfqq->dispatched < max_dispatch;
1916}
1917
1918/*
1919 * Dispatch a request from cfqq, moving them to the request queue
1920 * dispatch list.
1921 */
1922static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1923{
1924 struct request *rq;
1925
1926 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1927
1928 if (!cfq_may_dispatch(cfqd, cfqq))
1929 return false;
1930
1931 /*
1932 * follow expired path, else get first next available
1933 */
1934 rq = cfq_check_fifo(cfqq);
1935 if (!rq)
1936 rq = cfqq->next_rq;
1937
1938 /*
1939 * insert request into driver dispatch list
1940 */
1941 cfq_dispatch_insert(cfqd->queue, rq);
1942
1943 if (!cfqd->active_cic) {
1944 struct cfq_io_context *cic = RQ_CIC(rq);
1945
1946 atomic_long_inc(&cic->ioc->refcount);
1947 cfqd->active_cic = cic;
1948 }
1949
1950 return true;
1951}
1952
1953/*
1954 * Find the cfqq that we need to service and move a request from that to the
1955 * dispatch list
1956 */
1957static int cfq_dispatch_requests(struct request_queue *q, int force)
1958{
1959 struct cfq_data *cfqd = q->elevator->elevator_data;
1960 struct cfq_queue *cfqq;
1961
1962 if (!cfqd->busy_queues)
1963 return 0;
1964
1965 if (unlikely(force))
1966 return cfq_forced_dispatch(cfqd);
1967
1968 cfqq = cfq_select_queue(cfqd);
1969 if (!cfqq)
8e296755
JA
1970 return 0;
1971
2f5cb738 1972 /*
0b182d61 1973 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 1974 */
0b182d61
JA
1975 if (!cfq_dispatch_request(cfqd, cfqq))
1976 return 0;
1977
2f5cb738 1978 cfqq->slice_dispatch++;
b029195d 1979 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1980
2f5cb738
JA
1981 /*
1982 * expire an async queue immediately if it has used up its slice. idle
1983 * queue always expire after 1 dispatch round.
1984 */
1985 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1986 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1987 cfq_class_idle(cfqq))) {
1988 cfqq->slice_end = jiffies + 1;
1989 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1990 }
1991
b217a903 1992 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 1993 return 1;
1da177e4
LT
1994}
1995
1da177e4 1996/*
5e705374
JA
1997 * task holds one reference to the queue, dropped when task exits. each rq
1998 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1999 *
2000 * queue lock must be held here.
2001 */
2002static void cfq_put_queue(struct cfq_queue *cfqq)
2003{
22e2c507
JA
2004 struct cfq_data *cfqd = cfqq->cfqd;
2005
2006 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2007
2008 if (!atomic_dec_and_test(&cfqq->ref))
2009 return;
2010
7b679138 2011 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2012 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2013 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1da177e4 2014
28f95cbc 2015 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 2016 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2017 cfq_schedule_dispatch(cfqd);
28f95cbc 2018 }
22e2c507 2019
f04a6424 2020 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4
LT
2021 kmem_cache_free(cfq_pool, cfqq);
2022}
2023
d6de8be7
JA
2024/*
2025 * Must always be called with the rcu_read_lock() held
2026 */
07416d29
JA
2027static void
2028__call_for_each_cic(struct io_context *ioc,
2029 void (*func)(struct io_context *, struct cfq_io_context *))
2030{
2031 struct cfq_io_context *cic;
2032 struct hlist_node *n;
2033
2034 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2035 func(ioc, cic);
2036}
2037
4ac845a2 2038/*
34e6bbf2 2039 * Call func for each cic attached to this ioc.
4ac845a2 2040 */
34e6bbf2 2041static void
4ac845a2
JA
2042call_for_each_cic(struct io_context *ioc,
2043 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2044{
4ac845a2 2045 rcu_read_lock();
07416d29 2046 __call_for_each_cic(ioc, func);
4ac845a2 2047 rcu_read_unlock();
34e6bbf2
FC
2048}
2049
2050static void cfq_cic_free_rcu(struct rcu_head *head)
2051{
2052 struct cfq_io_context *cic;
2053
2054 cic = container_of(head, struct cfq_io_context, rcu_head);
2055
2056 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2057 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2058
9a11b4ed
JA
2059 if (ioc_gone) {
2060 /*
2061 * CFQ scheduler is exiting, grab exit lock and check
2062 * the pending io context count. If it hits zero,
2063 * complete ioc_gone and set it back to NULL
2064 */
2065 spin_lock(&ioc_gone_lock);
245b2e70 2066 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2067 complete(ioc_gone);
2068 ioc_gone = NULL;
2069 }
2070 spin_unlock(&ioc_gone_lock);
2071 }
34e6bbf2 2072}
4ac845a2 2073
34e6bbf2
FC
2074static void cfq_cic_free(struct cfq_io_context *cic)
2075{
2076 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2077}
2078
2079static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2080{
2081 unsigned long flags;
2082
2083 BUG_ON(!cic->dead_key);
2084
2085 spin_lock_irqsave(&ioc->lock, flags);
2086 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 2087 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2088 spin_unlock_irqrestore(&ioc->lock, flags);
2089
34e6bbf2 2090 cfq_cic_free(cic);
4ac845a2
JA
2091}
2092
d6de8be7
JA
2093/*
2094 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2095 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2096 * and ->trim() which is called with the task lock held
2097 */
4ac845a2
JA
2098static void cfq_free_io_context(struct io_context *ioc)
2099{
4ac845a2 2100 /*
34e6bbf2
FC
2101 * ioc->refcount is zero here, or we are called from elv_unregister(),
2102 * so no more cic's are allowed to be linked into this ioc. So it
2103 * should be ok to iterate over the known list, we will see all cic's
2104 * since no new ones are added.
4ac845a2 2105 */
07416d29 2106 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2107}
2108
89850f7e 2109static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 2110{
df5fe3e8
JM
2111 struct cfq_queue *__cfqq, *next;
2112
28f95cbc 2113 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 2114 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2115 cfq_schedule_dispatch(cfqd);
28f95cbc 2116 }
22e2c507 2117
df5fe3e8
JM
2118 /*
2119 * If this queue was scheduled to merge with another queue, be
2120 * sure to drop the reference taken on that queue (and others in
2121 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2122 */
2123 __cfqq = cfqq->new_cfqq;
2124 while (__cfqq) {
2125 if (__cfqq == cfqq) {
2126 WARN(1, "cfqq->new_cfqq loop detected\n");
2127 break;
2128 }
2129 next = __cfqq->new_cfqq;
2130 cfq_put_queue(__cfqq);
2131 __cfqq = next;
2132 }
2133
89850f7e
JA
2134 cfq_put_queue(cfqq);
2135}
22e2c507 2136
89850f7e
JA
2137static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2138 struct cfq_io_context *cic)
2139{
4faa3c81
FC
2140 struct io_context *ioc = cic->ioc;
2141
fc46379d 2142 list_del_init(&cic->queue_list);
4ac845a2
JA
2143
2144 /*
2145 * Make sure key == NULL is seen for dead queues
2146 */
fc46379d 2147 smp_wmb();
4ac845a2 2148 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
2149 cic->key = NULL;
2150
4faa3c81
FC
2151 if (ioc->ioc_data == cic)
2152 rcu_assign_pointer(ioc->ioc_data, NULL);
2153
ff6657c6
JA
2154 if (cic->cfqq[BLK_RW_ASYNC]) {
2155 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2156 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2157 }
2158
ff6657c6
JA
2159 if (cic->cfqq[BLK_RW_SYNC]) {
2160 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2161 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2162 }
89850f7e
JA
2163}
2164
4ac845a2
JA
2165static void cfq_exit_single_io_context(struct io_context *ioc,
2166 struct cfq_io_context *cic)
89850f7e
JA
2167{
2168 struct cfq_data *cfqd = cic->key;
2169
89850f7e 2170 if (cfqd) {
165125e1 2171 struct request_queue *q = cfqd->queue;
4ac845a2 2172 unsigned long flags;
89850f7e 2173
4ac845a2 2174 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2175
2176 /*
2177 * Ensure we get a fresh copy of the ->key to prevent
2178 * race between exiting task and queue
2179 */
2180 smp_read_barrier_depends();
2181 if (cic->key)
2182 __cfq_exit_single_io_context(cfqd, cic);
2183
4ac845a2 2184 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2185 }
1da177e4
LT
2186}
2187
498d3aa2
JA
2188/*
2189 * The process that ioc belongs to has exited, we need to clean up
2190 * and put the internal structures we have that belongs to that process.
2191 */
e2d74ac0 2192static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2193{
4ac845a2 2194 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2195}
2196
22e2c507 2197static struct cfq_io_context *
8267e268 2198cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2199{
b5deef90 2200 struct cfq_io_context *cic;
1da177e4 2201
94f6030c
CL
2202 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2203 cfqd->queue->node);
1da177e4 2204 if (cic) {
22e2c507 2205 cic->last_end_request = jiffies;
553698f9 2206 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2207 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2208 cic->dtor = cfq_free_io_context;
2209 cic->exit = cfq_exit_io_context;
245b2e70 2210 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2211 }
2212
2213 return cic;
2214}
2215
fd0928df 2216static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2217{
2218 struct task_struct *tsk = current;
2219 int ioprio_class;
2220
3b18152c 2221 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2222 return;
2223
fd0928df 2224 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2225 switch (ioprio_class) {
fe094d98
JA
2226 default:
2227 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2228 case IOPRIO_CLASS_NONE:
2229 /*
6d63c275 2230 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2231 */
2232 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2233 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2234 break;
2235 case IOPRIO_CLASS_RT:
2236 cfqq->ioprio = task_ioprio(ioc);
2237 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2238 break;
2239 case IOPRIO_CLASS_BE:
2240 cfqq->ioprio = task_ioprio(ioc);
2241 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2242 break;
2243 case IOPRIO_CLASS_IDLE:
2244 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2245 cfqq->ioprio = 7;
2246 cfq_clear_cfqq_idle_window(cfqq);
2247 break;
22e2c507
JA
2248 }
2249
2250 /*
2251 * keep track of original prio settings in case we have to temporarily
2252 * elevate the priority of this queue
2253 */
2254 cfqq->org_ioprio = cfqq->ioprio;
2255 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2256 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2257}
2258
febffd61 2259static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2260{
478a82b0
AV
2261 struct cfq_data *cfqd = cic->key;
2262 struct cfq_queue *cfqq;
c1b707d2 2263 unsigned long flags;
35e6077c 2264
caaa5f9f
JA
2265 if (unlikely(!cfqd))
2266 return;
2267
c1b707d2 2268 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2269
ff6657c6 2270 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2271 if (cfqq) {
2272 struct cfq_queue *new_cfqq;
ff6657c6
JA
2273 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2274 GFP_ATOMIC);
caaa5f9f 2275 if (new_cfqq) {
ff6657c6 2276 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2277 cfq_put_queue(cfqq);
2278 }
22e2c507 2279 }
caaa5f9f 2280
ff6657c6 2281 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2282 if (cfqq)
2283 cfq_mark_cfqq_prio_changed(cfqq);
2284
c1b707d2 2285 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2286}
2287
fc46379d 2288static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2289{
4ac845a2 2290 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2291 ioc->ioprio_changed = 0;
22e2c507
JA
2292}
2293
d5036d77 2294static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2295 pid_t pid, bool is_sync)
d5036d77
JA
2296{
2297 RB_CLEAR_NODE(&cfqq->rb_node);
2298 RB_CLEAR_NODE(&cfqq->p_node);
2299 INIT_LIST_HEAD(&cfqq->fifo);
2300
2301 atomic_set(&cfqq->ref, 0);
2302 cfqq->cfqd = cfqd;
2303
2304 cfq_mark_cfqq_prio_changed(cfqq);
2305
2306 if (is_sync) {
2307 if (!cfq_class_idle(cfqq))
2308 cfq_mark_cfqq_idle_window(cfqq);
2309 cfq_mark_cfqq_sync(cfqq);
2310 }
2311 cfqq->pid = pid;
2312}
2313
cdb16e8f
VG
2314static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
2315{
2316 cfqq->cfqg = cfqg;
2317}
2318
2319static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
2320{
2321 return &cfqd->root_group;
2322}
2323
22e2c507 2324static struct cfq_queue *
a6151c3a 2325cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2326 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2327{
22e2c507 2328 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2329 struct cfq_io_context *cic;
cdb16e8f 2330 struct cfq_group *cfqg;
22e2c507
JA
2331
2332retry:
cdb16e8f 2333 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2334 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2335 /* cic always exists here */
2336 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2337
6118b70b
JA
2338 /*
2339 * Always try a new alloc if we fell back to the OOM cfqq
2340 * originally, since it should just be a temporary situation.
2341 */
2342 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2343 cfqq = NULL;
22e2c507
JA
2344 if (new_cfqq) {
2345 cfqq = new_cfqq;
2346 new_cfqq = NULL;
2347 } else if (gfp_mask & __GFP_WAIT) {
2348 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2349 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2350 gfp_mask | __GFP_ZERO,
94f6030c 2351 cfqd->queue->node);
22e2c507 2352 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2353 if (new_cfqq)
2354 goto retry;
22e2c507 2355 } else {
94f6030c
CL
2356 cfqq = kmem_cache_alloc_node(cfq_pool,
2357 gfp_mask | __GFP_ZERO,
2358 cfqd->queue->node);
22e2c507
JA
2359 }
2360
6118b70b
JA
2361 if (cfqq) {
2362 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2363 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2364 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2365 cfq_log_cfqq(cfqd, cfqq, "alloced");
2366 } else
2367 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2368 }
2369
2370 if (new_cfqq)
2371 kmem_cache_free(cfq_pool, new_cfqq);
2372
22e2c507
JA
2373 return cfqq;
2374}
2375
c2dea2d1
VT
2376static struct cfq_queue **
2377cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2378{
fe094d98 2379 switch (ioprio_class) {
c2dea2d1
VT
2380 case IOPRIO_CLASS_RT:
2381 return &cfqd->async_cfqq[0][ioprio];
2382 case IOPRIO_CLASS_BE:
2383 return &cfqd->async_cfqq[1][ioprio];
2384 case IOPRIO_CLASS_IDLE:
2385 return &cfqd->async_idle_cfqq;
2386 default:
2387 BUG();
2388 }
2389}
2390
15c31be4 2391static struct cfq_queue *
a6151c3a 2392cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2393 gfp_t gfp_mask)
2394{
fd0928df
JA
2395 const int ioprio = task_ioprio(ioc);
2396 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2397 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2398 struct cfq_queue *cfqq = NULL;
2399
c2dea2d1
VT
2400 if (!is_sync) {
2401 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2402 cfqq = *async_cfqq;
2403 }
2404
6118b70b 2405 if (!cfqq)
fd0928df 2406 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2407
2408 /*
2409 * pin the queue now that it's allocated, scheduler exit will prune it
2410 */
c2dea2d1 2411 if (!is_sync && !(*async_cfqq)) {
15c31be4 2412 atomic_inc(&cfqq->ref);
c2dea2d1 2413 *async_cfqq = cfqq;
15c31be4
JA
2414 }
2415
2416 atomic_inc(&cfqq->ref);
2417 return cfqq;
2418}
2419
498d3aa2
JA
2420/*
2421 * We drop cfq io contexts lazily, so we may find a dead one.
2422 */
dbecf3ab 2423static void
4ac845a2
JA
2424cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2425 struct cfq_io_context *cic)
dbecf3ab 2426{
4ac845a2
JA
2427 unsigned long flags;
2428
fc46379d 2429 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2430
4ac845a2
JA
2431 spin_lock_irqsave(&ioc->lock, flags);
2432
4faa3c81 2433 BUG_ON(ioc->ioc_data == cic);
597bc485 2434
4ac845a2 2435 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2436 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2437 spin_unlock_irqrestore(&ioc->lock, flags);
2438
2439 cfq_cic_free(cic);
dbecf3ab
OH
2440}
2441
e2d74ac0 2442static struct cfq_io_context *
4ac845a2 2443cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2444{
e2d74ac0 2445 struct cfq_io_context *cic;
d6de8be7 2446 unsigned long flags;
4ac845a2 2447 void *k;
e2d74ac0 2448
91fac317
VT
2449 if (unlikely(!ioc))
2450 return NULL;
2451
d6de8be7
JA
2452 rcu_read_lock();
2453
597bc485
JA
2454 /*
2455 * we maintain a last-hit cache, to avoid browsing over the tree
2456 */
4ac845a2 2457 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2458 if (cic && cic->key == cfqd) {
2459 rcu_read_unlock();
597bc485 2460 return cic;
d6de8be7 2461 }
597bc485 2462
4ac845a2 2463 do {
4ac845a2
JA
2464 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2465 rcu_read_unlock();
2466 if (!cic)
2467 break;
be3b0753
OH
2468 /* ->key must be copied to avoid race with cfq_exit_queue() */
2469 k = cic->key;
2470 if (unlikely(!k)) {
4ac845a2 2471 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2472 rcu_read_lock();
4ac845a2 2473 continue;
dbecf3ab 2474 }
e2d74ac0 2475
d6de8be7 2476 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2477 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2478 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2479 break;
2480 } while (1);
e2d74ac0 2481
4ac845a2 2482 return cic;
e2d74ac0
JA
2483}
2484
4ac845a2
JA
2485/*
2486 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2487 * the process specific cfq io context when entered from the block layer.
2488 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2489 */
febffd61
JA
2490static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2491 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2492{
0261d688 2493 unsigned long flags;
4ac845a2 2494 int ret;
e2d74ac0 2495
4ac845a2
JA
2496 ret = radix_tree_preload(gfp_mask);
2497 if (!ret) {
2498 cic->ioc = ioc;
2499 cic->key = cfqd;
e2d74ac0 2500
4ac845a2
JA
2501 spin_lock_irqsave(&ioc->lock, flags);
2502 ret = radix_tree_insert(&ioc->radix_root,
2503 (unsigned long) cfqd, cic);
ffc4e759
JA
2504 if (!ret)
2505 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2506 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2507
4ac845a2
JA
2508 radix_tree_preload_end();
2509
2510 if (!ret) {
2511 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2512 list_add(&cic->queue_list, &cfqd->cic_list);
2513 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2514 }
e2d74ac0
JA
2515 }
2516
4ac845a2
JA
2517 if (ret)
2518 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2519
4ac845a2 2520 return ret;
e2d74ac0
JA
2521}
2522
1da177e4
LT
2523/*
2524 * Setup general io context and cfq io context. There can be several cfq
2525 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2526 * than one device managed by cfq.
1da177e4
LT
2527 */
2528static struct cfq_io_context *
e2d74ac0 2529cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2530{
22e2c507 2531 struct io_context *ioc = NULL;
1da177e4 2532 struct cfq_io_context *cic;
1da177e4 2533
22e2c507 2534 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2535
b5deef90 2536 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2537 if (!ioc)
2538 return NULL;
2539
4ac845a2 2540 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2541 if (cic)
2542 goto out;
1da177e4 2543
e2d74ac0
JA
2544 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2545 if (cic == NULL)
2546 goto err;
1da177e4 2547
4ac845a2
JA
2548 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2549 goto err_free;
2550
1da177e4 2551out:
fc46379d
JA
2552 smp_read_barrier_depends();
2553 if (unlikely(ioc->ioprio_changed))
2554 cfq_ioc_set_ioprio(ioc);
2555
1da177e4 2556 return cic;
4ac845a2
JA
2557err_free:
2558 cfq_cic_free(cic);
1da177e4
LT
2559err:
2560 put_io_context(ioc);
2561 return NULL;
2562}
2563
22e2c507
JA
2564static void
2565cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2566{
aaf1228d
JA
2567 unsigned long elapsed = jiffies - cic->last_end_request;
2568 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2569
22e2c507
JA
2570 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2571 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2572 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2573}
1da177e4 2574
206dc69b 2575static void
b2c18e1e 2576cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2577 struct request *rq)
206dc69b
JA
2578{
2579 sector_t sdist;
2580 u64 total;
2581
b2c18e1e 2582 if (!cfqq->last_request_pos)
4d00aa47 2583 sdist = 0;
b2c18e1e
JM
2584 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2585 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 2586 else
b2c18e1e 2587 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
2588
2589 /*
2590 * Don't allow the seek distance to get too large from the
2591 * odd fragment, pagein, etc
2592 */
b2c18e1e
JM
2593 if (cfqq->seek_samples <= 60) /* second&third seek */
2594 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 2595 else
b2c18e1e 2596 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 2597
b2c18e1e
JM
2598 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2599 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2600 total = cfqq->seek_total + (cfqq->seek_samples/2);
2601 do_div(total, cfqq->seek_samples);
2602 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
2603
2604 /*
2605 * If this cfqq is shared between multiple processes, check to
2606 * make sure that those processes are still issuing I/Os within
2607 * the mean seek distance. If not, it may be time to break the
2608 * queues apart again.
2609 */
2610 if (cfq_cfqq_coop(cfqq)) {
2611 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2612 cfqq->seeky_start = jiffies;
2613 else if (!CFQQ_SEEKY(cfqq))
2614 cfqq->seeky_start = 0;
2615 }
206dc69b 2616}
1da177e4 2617
22e2c507
JA
2618/*
2619 * Disable idle window if the process thinks too long or seeks so much that
2620 * it doesn't matter
2621 */
2622static void
2623cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2624 struct cfq_io_context *cic)
2625{
7b679138 2626 int old_idle, enable_idle;
1be92f2f 2627
0871714e
JA
2628 /*
2629 * Don't idle for async or idle io prio class
2630 */
2631 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
2632 return;
2633
c265a7f4 2634 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 2635
76280aff
CZ
2636 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2637 cfq_mark_cfqq_deep(cfqq);
2638
66dac98e 2639 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
76280aff
CZ
2640 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2641 && CFQQ_SEEKY(cfqq)))
22e2c507
JA
2642 enable_idle = 0;
2643 else if (sample_valid(cic->ttime_samples)) {
718eee05 2644 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
2645 enable_idle = 0;
2646 else
2647 enable_idle = 1;
1da177e4
LT
2648 }
2649
7b679138
JA
2650 if (old_idle != enable_idle) {
2651 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2652 if (enable_idle)
2653 cfq_mark_cfqq_idle_window(cfqq);
2654 else
2655 cfq_clear_cfqq_idle_window(cfqq);
2656 }
22e2c507 2657}
1da177e4 2658
22e2c507
JA
2659/*
2660 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2661 * no or if we aren't sure, a 1 will cause a preempt.
2662 */
a6151c3a 2663static bool
22e2c507 2664cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2665 struct request *rq)
22e2c507 2666{
6d048f53 2667 struct cfq_queue *cfqq;
22e2c507 2668
6d048f53
JA
2669 cfqq = cfqd->active_queue;
2670 if (!cfqq)
a6151c3a 2671 return false;
22e2c507 2672
6d048f53 2673 if (cfq_slice_used(cfqq))
a6151c3a 2674 return true;
6d048f53
JA
2675
2676 if (cfq_class_idle(new_cfqq))
a6151c3a 2677 return false;
22e2c507
JA
2678
2679 if (cfq_class_idle(cfqq))
a6151c3a 2680 return true;
1e3335de 2681
f04a6424 2682 /* Allow preemption only if we are idling on sync-noidle tree */
e4a22919
CZ
2683 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2684 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
f04a6424
VG
2685 new_cfqq->service_tree->count == 2 &&
2686 RB_EMPTY_ROOT(&cfqq->sort_list))
718eee05
CZ
2687 return true;
2688
374f84ac
JA
2689 /*
2690 * if the new request is sync, but the currently running queue is
2691 * not, let the sync request have priority.
2692 */
5e705374 2693 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 2694 return true;
1e3335de 2695
374f84ac
JA
2696 /*
2697 * So both queues are sync. Let the new request get disk time if
2698 * it's a metadata request and the current queue is doing regular IO.
2699 */
2700 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 2701 return true;
22e2c507 2702
3a9a3f6c
DS
2703 /*
2704 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2705 */
2706 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 2707 return true;
3a9a3f6c 2708
1e3335de 2709 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 2710 return false;
1e3335de
JA
2711
2712 /*
2713 * if this request is as-good as one we would expect from the
2714 * current cfqq, let it preempt
2715 */
e00ef799 2716 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 2717 return true;
1e3335de 2718
a6151c3a 2719 return false;
22e2c507
JA
2720}
2721
2722/*
2723 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2724 * let it have half of its nominal slice.
2725 */
2726static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2727{
7b679138 2728 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2729 cfq_slice_expired(cfqd, 1);
22e2c507 2730
bf572256
JA
2731 /*
2732 * Put the new queue at the front of the of the current list,
2733 * so we know that it will be selected next.
2734 */
2735 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2736
2737 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2738
44f7c160
JA
2739 cfqq->slice_end = 0;
2740 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2741}
2742
22e2c507 2743/*
5e705374 2744 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2745 * something we should do about it
2746 */
2747static void
5e705374
JA
2748cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2749 struct request *rq)
22e2c507 2750{
5e705374 2751 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2752
45333d5a 2753 cfqd->rq_queued++;
374f84ac
JA
2754 if (rq_is_meta(rq))
2755 cfqq->meta_pending++;
2756
9c2c38a1 2757 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 2758 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
2759 cfq_update_idle_window(cfqd, cfqq, cic);
2760
b2c18e1e 2761 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2762
2763 if (cfqq == cfqd->active_queue) {
2764 /*
b029195d
JA
2765 * Remember that we saw a request from this process, but
2766 * don't start queuing just yet. Otherwise we risk seeing lots
2767 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2768 * and merging. If the request is already larger than a single
2769 * page, let it rip immediately. For that case we assume that
2d870722
JA
2770 * merging is already done. Ditto for a busy system that
2771 * has other work pending, don't risk delaying until the
2772 * idle timer unplug to continue working.
22e2c507 2773 */
d6ceb25e 2774 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2775 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2776 cfqd->busy_queues > 1) {
d6ceb25e 2777 del_timer(&cfqd->idle_slice_timer);
bf791937
VG
2778 __blk_run_queue(cfqd->queue);
2779 } else
2780 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2781 }
5e705374 2782 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2783 /*
2784 * not the active queue - expire current slice if it is
2785 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2786 * has some old slice time left and is of higher priority or
2787 * this new queue is RT and the current one is BE
22e2c507
JA
2788 */
2789 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2790 __blk_run_queue(cfqd->queue);
22e2c507 2791 }
1da177e4
LT
2792}
2793
165125e1 2794static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2795{
b4878f24 2796 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2797 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2798
7b679138 2799 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2800 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2801
30996f40 2802 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 2803 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 2804 cfq_add_rq_rb(rq);
22e2c507 2805
5e705374 2806 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2807}
2808
45333d5a
AC
2809/*
2810 * Update hw_tag based on peak queue depth over 50 samples under
2811 * sufficient load.
2812 */
2813static void cfq_update_hw_tag(struct cfq_data *cfqd)
2814{
1a1238a7
SL
2815 struct cfq_queue *cfqq = cfqd->active_queue;
2816
e459dd08
CZ
2817 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
2818 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
2819
2820 if (cfqd->hw_tag == 1)
2821 return;
45333d5a
AC
2822
2823 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2824 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2825 return;
2826
1a1238a7
SL
2827 /*
2828 * If active queue hasn't enough requests and can idle, cfq might not
2829 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2830 * case
2831 */
2832 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2833 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2834 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2835 return;
2836
45333d5a
AC
2837 if (cfqd->hw_tag_samples++ < 50)
2838 return;
2839
e459dd08 2840 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2841 cfqd->hw_tag = 1;
2842 else
2843 cfqd->hw_tag = 0;
45333d5a
AC
2844}
2845
165125e1 2846static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2847{
5e705374 2848 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2849 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2850 const int sync = rq_is_sync(rq);
b4878f24 2851 unsigned long now;
1da177e4 2852
b4878f24 2853 now = jiffies;
7b679138 2854 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2855
45333d5a
AC
2856 cfq_update_hw_tag(cfqd);
2857
5ad531db 2858 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 2859 WARN_ON(!cfqq->dispatched);
5ad531db 2860 cfqd->rq_in_driver[sync]--;
6d048f53 2861 cfqq->dispatched--;
1da177e4 2862
3ed9a296
JA
2863 if (cfq_cfqq_sync(cfqq))
2864 cfqd->sync_flight--;
2865
365722bb 2866 if (sync) {
5e705374 2867 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
2868 cfqd->last_end_sync_rq = now;
2869 }
caaa5f9f
JA
2870
2871 /*
2872 * If this is the active queue, check if it needs to be expired,
2873 * or if we want to idle in case it has no pending requests.
2874 */
2875 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2876 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2877
44f7c160
JA
2878 if (cfq_cfqq_slice_new(cfqq)) {
2879 cfq_set_prio_slice(cfqd, cfqq);
2880 cfq_clear_cfqq_slice_new(cfqq);
2881 }
a36e71f9 2882 /*
8e550632
CZ
2883 * Idling is not enabled on:
2884 * - expired queues
2885 * - idle-priority queues
2886 * - async queues
2887 * - queues with still some requests queued
2888 * - when there is a close cooperator
a36e71f9 2889 */
0871714e 2890 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2891 cfq_slice_expired(cfqd, 1);
8e550632
CZ
2892 else if (sync && cfqq_empty &&
2893 !cfq_close_cooperator(cfqd, cfqq)) {
2894 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
2895 /*
2896 * Idling is enabled for SYNC_WORKLOAD.
2897 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
2898 * only if we processed at least one !rq_noidle request
2899 */
2900 if (cfqd->serving_type == SYNC_WORKLOAD
2901 || cfqd->noidle_tree_requires_idle)
2902 cfq_arm_slice_timer(cfqd);
2903 }
caaa5f9f 2904 }
6d048f53 2905
5ad531db 2906 if (!rq_in_driver(cfqd))
23e018a1 2907 cfq_schedule_dispatch(cfqd);
1da177e4
LT
2908}
2909
22e2c507
JA
2910/*
2911 * we temporarily boost lower priority queues if they are holding fs exclusive
2912 * resources. they are boosted to normal prio (CLASS_BE/4)
2913 */
2914static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2915{
22e2c507
JA
2916 if (has_fs_excl()) {
2917 /*
2918 * boost idle prio on transactions that would lock out other
2919 * users of the filesystem
2920 */
2921 if (cfq_class_idle(cfqq))
2922 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2923 if (cfqq->ioprio > IOPRIO_NORM)
2924 cfqq->ioprio = IOPRIO_NORM;
2925 } else {
2926 /*
dddb7451 2927 * unboost the queue (if needed)
22e2c507 2928 */
dddb7451
CZ
2929 cfqq->ioprio_class = cfqq->org_ioprio_class;
2930 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 2931 }
22e2c507 2932}
1da177e4 2933
89850f7e 2934static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2935{
1b379d8d 2936 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2937 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2938 return ELV_MQUEUE_MUST;
3b18152c 2939 }
1da177e4 2940
22e2c507 2941 return ELV_MQUEUE_MAY;
22e2c507
JA
2942}
2943
165125e1 2944static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2945{
2946 struct cfq_data *cfqd = q->elevator->elevator_data;
2947 struct task_struct *tsk = current;
91fac317 2948 struct cfq_io_context *cic;
22e2c507
JA
2949 struct cfq_queue *cfqq;
2950
2951 /*
2952 * don't force setup of a queue from here, as a call to may_queue
2953 * does not necessarily imply that a request actually will be queued.
2954 * so just lookup a possibly existing queue, or return 'may queue'
2955 * if that fails
2956 */
4ac845a2 2957 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2958 if (!cic)
2959 return ELV_MQUEUE_MAY;
2960
b0b78f81 2961 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2962 if (cfqq) {
fd0928df 2963 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2964 cfq_prio_boost(cfqq);
2965
89850f7e 2966 return __cfq_may_queue(cfqq);
22e2c507
JA
2967 }
2968
2969 return ELV_MQUEUE_MAY;
1da177e4
LT
2970}
2971
1da177e4
LT
2972/*
2973 * queue lock held here
2974 */
bb37b94c 2975static void cfq_put_request(struct request *rq)
1da177e4 2976{
5e705374 2977 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2978
5e705374 2979 if (cfqq) {
22e2c507 2980 const int rw = rq_data_dir(rq);
1da177e4 2981
22e2c507
JA
2982 BUG_ON(!cfqq->allocated[rw]);
2983 cfqq->allocated[rw]--;
1da177e4 2984
5e705374 2985 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2986
1da177e4 2987 rq->elevator_private = NULL;
5e705374 2988 rq->elevator_private2 = NULL;
1da177e4 2989
1da177e4
LT
2990 cfq_put_queue(cfqq);
2991 }
2992}
2993
df5fe3e8
JM
2994static struct cfq_queue *
2995cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2996 struct cfq_queue *cfqq)
2997{
2998 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2999 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3000 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3001 cfq_put_queue(cfqq);
3002 return cic_to_cfqq(cic, 1);
3003}
3004
e6c5bc73
JM
3005static int should_split_cfqq(struct cfq_queue *cfqq)
3006{
3007 if (cfqq->seeky_start &&
3008 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3009 return 1;
3010 return 0;
3011}
3012
3013/*
3014 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3015 * was the last process referring to said cfqq.
3016 */
3017static struct cfq_queue *
3018split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3019{
3020 if (cfqq_process_refs(cfqq) == 1) {
3021 cfqq->seeky_start = 0;
3022 cfqq->pid = current->pid;
3023 cfq_clear_cfqq_coop(cfqq);
3024 return cfqq;
3025 }
3026
3027 cic_set_cfqq(cic, NULL, 1);
3028 cfq_put_queue(cfqq);
3029 return NULL;
3030}
1da177e4 3031/*
22e2c507 3032 * Allocate cfq data structures associated with this request.
1da177e4 3033 */
22e2c507 3034static int
165125e1 3035cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3036{
3037 struct cfq_data *cfqd = q->elevator->elevator_data;
3038 struct cfq_io_context *cic;
3039 const int rw = rq_data_dir(rq);
a6151c3a 3040 const bool is_sync = rq_is_sync(rq);
22e2c507 3041 struct cfq_queue *cfqq;
1da177e4
LT
3042 unsigned long flags;
3043
3044 might_sleep_if(gfp_mask & __GFP_WAIT);
3045
e2d74ac0 3046 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3047
1da177e4
LT
3048 spin_lock_irqsave(q->queue_lock, flags);
3049
22e2c507
JA
3050 if (!cic)
3051 goto queue_fail;
3052
e6c5bc73 3053new_queue:
91fac317 3054 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3055 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3056 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3057 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3058 } else {
e6c5bc73
JM
3059 /*
3060 * If the queue was seeky for too long, break it apart.
3061 */
3062 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3063 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3064 cfqq = split_cfqq(cic, cfqq);
3065 if (!cfqq)
3066 goto new_queue;
3067 }
3068
df5fe3e8
JM
3069 /*
3070 * Check to see if this queue is scheduled to merge with
3071 * another, closely cooperating queue. The merging of
3072 * queues happens here as it must be done in process context.
3073 * The reference on new_cfqq was taken in merge_cfqqs.
3074 */
3075 if (cfqq->new_cfqq)
3076 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3077 }
1da177e4
LT
3078
3079 cfqq->allocated[rw]++;
22e2c507 3080 atomic_inc(&cfqq->ref);
1da177e4 3081
5e705374 3082 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3083
5e705374
JA
3084 rq->elevator_private = cic;
3085 rq->elevator_private2 = cfqq;
3086 return 0;
1da177e4 3087
22e2c507
JA
3088queue_fail:
3089 if (cic)
3090 put_io_context(cic->ioc);
89850f7e 3091
23e018a1 3092 cfq_schedule_dispatch(cfqd);
1da177e4 3093 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3094 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3095 return 1;
3096}
3097
65f27f38 3098static void cfq_kick_queue(struct work_struct *work)
22e2c507 3099{
65f27f38 3100 struct cfq_data *cfqd =
23e018a1 3101 container_of(work, struct cfq_data, unplug_work);
165125e1 3102 struct request_queue *q = cfqd->queue;
22e2c507 3103
40bb54d1 3104 spin_lock_irq(q->queue_lock);
a7f55792 3105 __blk_run_queue(cfqd->queue);
40bb54d1 3106 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3107}
3108
3109/*
3110 * Timer running if the active_queue is currently idling inside its time slice
3111 */
3112static void cfq_idle_slice_timer(unsigned long data)
3113{
3114 struct cfq_data *cfqd = (struct cfq_data *) data;
3115 struct cfq_queue *cfqq;
3116 unsigned long flags;
3c6bd2f8 3117 int timed_out = 1;
22e2c507 3118
7b679138
JA
3119 cfq_log(cfqd, "idle timer fired");
3120
22e2c507
JA
3121 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3122
fe094d98
JA
3123 cfqq = cfqd->active_queue;
3124 if (cfqq) {
3c6bd2f8
JA
3125 timed_out = 0;
3126
b029195d
JA
3127 /*
3128 * We saw a request before the queue expired, let it through
3129 */
3130 if (cfq_cfqq_must_dispatch(cfqq))
3131 goto out_kick;
3132
22e2c507
JA
3133 /*
3134 * expired
3135 */
44f7c160 3136 if (cfq_slice_used(cfqq))
22e2c507
JA
3137 goto expire;
3138
3139 /*
3140 * only expire and reinvoke request handler, if there are
3141 * other queues with pending requests
3142 */
caaa5f9f 3143 if (!cfqd->busy_queues)
22e2c507 3144 goto out_cont;
22e2c507
JA
3145
3146 /*
3147 * not expired and it has a request pending, let it dispatch
3148 */
75e50984 3149 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3150 goto out_kick;
76280aff
CZ
3151
3152 /*
3153 * Queue depth flag is reset only when the idle didn't succeed
3154 */
3155 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3156 }
3157expire:
6084cdda 3158 cfq_slice_expired(cfqd, timed_out);
22e2c507 3159out_kick:
23e018a1 3160 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3161out_cont:
3162 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3163}
3164
3b18152c
JA
3165static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3166{
3167 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3168 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3169}
22e2c507 3170
c2dea2d1
VT
3171static void cfq_put_async_queues(struct cfq_data *cfqd)
3172{
3173 int i;
3174
3175 for (i = 0; i < IOPRIO_BE_NR; i++) {
3176 if (cfqd->async_cfqq[0][i])
3177 cfq_put_queue(cfqd->async_cfqq[0][i]);
3178 if (cfqd->async_cfqq[1][i])
3179 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3180 }
2389d1ef
ON
3181
3182 if (cfqd->async_idle_cfqq)
3183 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3184}
3185
b374d18a 3186static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3187{
22e2c507 3188 struct cfq_data *cfqd = e->elevator_data;
165125e1 3189 struct request_queue *q = cfqd->queue;
22e2c507 3190
3b18152c 3191 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3192
d9ff4187 3193 spin_lock_irq(q->queue_lock);
e2d74ac0 3194
d9ff4187 3195 if (cfqd->active_queue)
6084cdda 3196 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3197
3198 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3199 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3200 struct cfq_io_context,
3201 queue_list);
89850f7e
JA
3202
3203 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3204 }
e2d74ac0 3205
c2dea2d1 3206 cfq_put_async_queues(cfqd);
15c31be4 3207
d9ff4187 3208 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3209
3210 cfq_shutdown_timer_wq(cfqd);
3211
a90d742e 3212 kfree(cfqd);
1da177e4
LT
3213}
3214
165125e1 3215static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3216{
3217 struct cfq_data *cfqd;
718eee05 3218 int i, j;
cdb16e8f 3219 struct cfq_group *cfqg;
615f0259 3220 struct cfq_rb_root *st;
1da177e4 3221
94f6030c 3222 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3223 if (!cfqd)
bc1c1169 3224 return NULL;
1da177e4 3225
1fa8f6d6
VG
3226 /* Init root service tree */
3227 cfqd->grp_service_tree = CFQ_RB_ROOT;
3228
cdb16e8f
VG
3229 /* Init root group */
3230 cfqg = &cfqd->root_group;
615f0259
VG
3231 for_each_cfqg_st(cfqg, i, j, st)
3232 *st = CFQ_RB_ROOT;
1fa8f6d6 3233 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3234
25bc6b07
VG
3235 /* Give preference to root group over other groups */
3236 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3237
26a2ac00
JA
3238 /*
3239 * Not strictly needed (since RB_ROOT just clears the node and we
3240 * zeroed cfqd on alloc), but better be safe in case someone decides
3241 * to add magic to the rb code
3242 */
3243 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3244 cfqd->prio_trees[i] = RB_ROOT;
3245
6118b70b
JA
3246 /*
3247 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3248 * Grab a permanent reference to it, so that the normal code flow
3249 * will not attempt to free it.
3250 */
3251 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3252 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3253 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3254
d9ff4187 3255 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3256
1da177e4 3257 cfqd->queue = q;
1da177e4 3258
22e2c507
JA
3259 init_timer(&cfqd->idle_slice_timer);
3260 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3261 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3262
23e018a1 3263 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3264
1da177e4 3265 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3266 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3267 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3268 cfqd->cfq_back_max = cfq_back_max;
3269 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3270 cfqd->cfq_slice[0] = cfq_slice_async;
3271 cfqd->cfq_slice[1] = cfq_slice_sync;
3272 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3273 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3274 cfqd->cfq_latency = 1;
e459dd08 3275 cfqd->hw_tag = -1;
365722bb 3276 cfqd->last_end_sync_rq = jiffies;
bc1c1169 3277 return cfqd;
1da177e4
LT
3278}
3279
3280static void cfq_slab_kill(void)
3281{
d6de8be7
JA
3282 /*
3283 * Caller already ensured that pending RCU callbacks are completed,
3284 * so we should have no busy allocations at this point.
3285 */
1da177e4
LT
3286 if (cfq_pool)
3287 kmem_cache_destroy(cfq_pool);
3288 if (cfq_ioc_pool)
3289 kmem_cache_destroy(cfq_ioc_pool);
3290}
3291
3292static int __init cfq_slab_setup(void)
3293{
0a31bd5f 3294 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3295 if (!cfq_pool)
3296 goto fail;
3297
34e6bbf2 3298 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3299 if (!cfq_ioc_pool)
3300 goto fail;
3301
3302 return 0;
3303fail:
3304 cfq_slab_kill();
3305 return -ENOMEM;
3306}
3307
1da177e4
LT
3308/*
3309 * sysfs parts below -->
3310 */
1da177e4
LT
3311static ssize_t
3312cfq_var_show(unsigned int var, char *page)
3313{
3314 return sprintf(page, "%d\n", var);
3315}
3316
3317static ssize_t
3318cfq_var_store(unsigned int *var, const char *page, size_t count)
3319{
3320 char *p = (char *) page;
3321
3322 *var = simple_strtoul(p, &p, 10);
3323 return count;
3324}
3325
1da177e4 3326#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3327static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3328{ \
3d1ab40f 3329 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3330 unsigned int __data = __VAR; \
3331 if (__CONV) \
3332 __data = jiffies_to_msecs(__data); \
3333 return cfq_var_show(__data, (page)); \
3334}
3335SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3336SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3337SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3338SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3339SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3340SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3341SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3342SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3343SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3344SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
3345#undef SHOW_FUNCTION
3346
3347#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3348static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3349{ \
3d1ab40f 3350 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3351 unsigned int __data; \
3352 int ret = cfq_var_store(&__data, (page), count); \
3353 if (__data < (MIN)) \
3354 __data = (MIN); \
3355 else if (__data > (MAX)) \
3356 __data = (MAX); \
3357 if (__CONV) \
3358 *(__PTR) = msecs_to_jiffies(__data); \
3359 else \
3360 *(__PTR) = __data; \
3361 return ret; \
3362}
3363STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3364STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3365 UINT_MAX, 1);
3366STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3367 UINT_MAX, 1);
e572ec7e 3368STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3369STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3370 UINT_MAX, 0);
22e2c507
JA
3371STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3372STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3373STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3374STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3375 UINT_MAX, 0);
963b72fc 3376STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
3377#undef STORE_FUNCTION
3378
e572ec7e
AV
3379#define CFQ_ATTR(name) \
3380 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3381
3382static struct elv_fs_entry cfq_attrs[] = {
3383 CFQ_ATTR(quantum),
e572ec7e
AV
3384 CFQ_ATTR(fifo_expire_sync),
3385 CFQ_ATTR(fifo_expire_async),
3386 CFQ_ATTR(back_seek_max),
3387 CFQ_ATTR(back_seek_penalty),
3388 CFQ_ATTR(slice_sync),
3389 CFQ_ATTR(slice_async),
3390 CFQ_ATTR(slice_async_rq),
3391 CFQ_ATTR(slice_idle),
963b72fc 3392 CFQ_ATTR(low_latency),
e572ec7e 3393 __ATTR_NULL
1da177e4
LT
3394};
3395
1da177e4
LT
3396static struct elevator_type iosched_cfq = {
3397 .ops = {
3398 .elevator_merge_fn = cfq_merge,
3399 .elevator_merged_fn = cfq_merged_request,
3400 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3401 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3402 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3403 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3404 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3405 .elevator_deactivate_req_fn = cfq_deactivate_request,
3406 .elevator_queue_empty_fn = cfq_queue_empty,
3407 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3408 .elevator_former_req_fn = elv_rb_former_request,
3409 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3410 .elevator_set_req_fn = cfq_set_request,
3411 .elevator_put_req_fn = cfq_put_request,
3412 .elevator_may_queue_fn = cfq_may_queue,
3413 .elevator_init_fn = cfq_init_queue,
3414 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3415 .trim = cfq_free_io_context,
1da177e4 3416 },
3d1ab40f 3417 .elevator_attrs = cfq_attrs,
1da177e4
LT
3418 .elevator_name = "cfq",
3419 .elevator_owner = THIS_MODULE,
3420};
3421
3422static int __init cfq_init(void)
3423{
22e2c507
JA
3424 /*
3425 * could be 0 on HZ < 1000 setups
3426 */
3427 if (!cfq_slice_async)
3428 cfq_slice_async = 1;
3429 if (!cfq_slice_idle)
3430 cfq_slice_idle = 1;
3431
1da177e4
LT
3432 if (cfq_slab_setup())
3433 return -ENOMEM;
3434
2fdd82bd 3435 elv_register(&iosched_cfq);
1da177e4 3436
2fdd82bd 3437 return 0;
1da177e4
LT
3438}
3439
3440static void __exit cfq_exit(void)
3441{
6e9a4738 3442 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 3443 elv_unregister(&iosched_cfq);
334e94de 3444 ioc_gone = &all_gone;
fba82272
OH
3445 /* ioc_gone's update must be visible before reading ioc_count */
3446 smp_wmb();
d6de8be7
JA
3447
3448 /*
3449 * this also protects us from entering cfq_slab_kill() with
3450 * pending RCU callbacks
3451 */
245b2e70 3452 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3453 wait_for_completion(&all_gone);
83521d3e 3454 cfq_slab_kill();
1da177e4
LT
3455}
3456
3457module_init(cfq_init);
3458module_exit(cfq_exit);
3459
3460MODULE_AUTHOR("Jens Axboe");
3461MODULE_LICENSE("GPL");
3462MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");