]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/cfq-iosched.c
blkio: Implement macro to traverse each service tree in group
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
1da177e4
LT
16
17/*
18 * tunables
19 */
fe094d98
JA
20/* max queue in one round of service */
21static const int cfq_quantum = 4;
64100099 22static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
23/* maximum backwards seek, in KiB */
24static const int cfq_back_max = 16 * 1024;
25/* penalty of a backwards seek */
26static const int cfq_back_penalty = 2;
64100099 27static const int cfq_slice_sync = HZ / 10;
3b18152c 28static int cfq_slice_async = HZ / 25;
64100099 29static const int cfq_slice_async_rq = 2;
caaa5f9f 30static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
31static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
32static const int cfq_hist_divisor = 4;
22e2c507 33
d9e7620e 34/*
0871714e 35 * offset from end of service tree
d9e7620e 36 */
0871714e 37#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
38
39/*
40 * below this threshold, we consider thinktime immediate
41 */
42#define CFQ_MIN_TT (2)
43
e6c5bc73
JM
44/*
45 * Allow merged cfqqs to perform this amount of seeky I/O before
46 * deciding to break the queues up again.
47 */
48#define CFQQ_COOP_TOUT (HZ)
49
22e2c507 50#define CFQ_SLICE_SCALE (5)
45333d5a 51#define CFQ_HW_QUEUE_MIN (5)
22e2c507 52
fe094d98
JA
53#define RQ_CIC(rq) \
54 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 55#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 56
e18b890b
CL
57static struct kmem_cache *cfq_pool;
58static struct kmem_cache *cfq_ioc_pool;
1da177e4 59
245b2e70 60static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 61static struct completion *ioc_gone;
9a11b4ed 62static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 63
22e2c507
JA
64#define CFQ_PRIO_LISTS IOPRIO_BE_NR
65#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
66#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
206dc69b
JA
68#define sample_valid(samples) ((samples) > 80)
69
cc09e299
JA
70/*
71 * Most of our rbtree usage is for sorting with min extraction, so
72 * if we cache the leftmost node we don't have to walk down the tree
73 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
74 * move this into the elevator for the rq sorting as well.
75 */
76struct cfq_rb_root {
77 struct rb_root rb;
78 struct rb_node *left;
aa6f6a3d 79 unsigned count;
cc09e299 80};
aa6f6a3d 81#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
cc09e299 82
6118b70b
JA
83/*
84 * Per process-grouping structure
85 */
86struct cfq_queue {
87 /* reference count */
88 atomic_t ref;
89 /* various state flags, see below */
90 unsigned int flags;
91 /* parent cfq_data */
92 struct cfq_data *cfqd;
93 /* service_tree member */
94 struct rb_node rb_node;
95 /* service_tree key */
96 unsigned long rb_key;
97 /* prio tree member */
98 struct rb_node p_node;
99 /* prio tree root we belong to, if any */
100 struct rb_root *p_root;
101 /* sorted list of pending requests */
102 struct rb_root sort_list;
103 /* if fifo isn't expired, next request to serve */
104 struct request *next_rq;
105 /* requests queued in sort_list */
106 int queued[2];
107 /* currently allocated requests */
108 int allocated[2];
109 /* fifo list of requests in sort_list */
110 struct list_head fifo;
111
112 unsigned long slice_end;
113 long slice_resid;
114 unsigned int slice_dispatch;
115
116 /* pending metadata requests */
117 int meta_pending;
118 /* number of requests that are on the dispatch list or inside driver */
119 int dispatched;
120
121 /* io prio of this group */
122 unsigned short ioprio, org_ioprio;
123 unsigned short ioprio_class, org_ioprio_class;
124
b2c18e1e
JM
125 unsigned int seek_samples;
126 u64 seek_total;
127 sector_t seek_mean;
128 sector_t last_request_pos;
e6c5bc73 129 unsigned long seeky_start;
b2c18e1e 130
6118b70b 131 pid_t pid;
df5fe3e8 132
aa6f6a3d 133 struct cfq_rb_root *service_tree;
df5fe3e8 134 struct cfq_queue *new_cfqq;
cdb16e8f 135 struct cfq_group *cfqg;
6118b70b
JA
136};
137
c0324a02 138/*
718eee05 139 * First index in the service_trees.
c0324a02
CZ
140 * IDLE is handled separately, so it has negative index
141 */
142enum wl_prio_t {
c0324a02 143 BE_WORKLOAD = 0,
615f0259
VG
144 RT_WORKLOAD = 1,
145 IDLE_WORKLOAD = 2,
c0324a02
CZ
146};
147
718eee05
CZ
148/*
149 * Second index in the service_trees.
150 */
151enum wl_type_t {
152 ASYNC_WORKLOAD = 0,
153 SYNC_NOIDLE_WORKLOAD = 1,
154 SYNC_WORKLOAD = 2
155};
156
cdb16e8f
VG
157/* This is per cgroup per device grouping structure */
158struct cfq_group {
159 /*
160 * rr lists of queues with requests, onle rr for each priority class.
161 * Counts are embedded in the cfq_rb_root
162 */
163 struct cfq_rb_root service_trees[2][3];
164 struct cfq_rb_root service_tree_idle;
165};
718eee05 166
22e2c507
JA
167/*
168 * Per block device queue structure
169 */
1da177e4 170struct cfq_data {
165125e1 171 struct request_queue *queue;
cdb16e8f 172 struct cfq_group root_group;
22e2c507 173
c0324a02
CZ
174 /*
175 * The priority currently being served
22e2c507 176 */
c0324a02 177 enum wl_prio_t serving_prio;
718eee05
CZ
178 enum wl_type_t serving_type;
179 unsigned long workload_expires;
cdb16e8f 180 struct cfq_group *serving_group;
8e550632 181 bool noidle_tree_requires_idle;
a36e71f9
JA
182
183 /*
184 * Each priority tree is sorted by next_request position. These
185 * trees are used when determining if two or more queues are
186 * interleaving requests (see cfq_close_cooperator).
187 */
188 struct rb_root prio_trees[CFQ_PRIO_LISTS];
189
22e2c507 190 unsigned int busy_queues;
5db5d642 191 unsigned int busy_queues_avg[2];
22e2c507 192
5ad531db 193 int rq_in_driver[2];
3ed9a296 194 int sync_flight;
45333d5a
AC
195
196 /*
197 * queue-depth detection
198 */
199 int rq_queued;
25776e35 200 int hw_tag;
e459dd08
CZ
201 /*
202 * hw_tag can be
203 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
204 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
205 * 0 => no NCQ
206 */
207 int hw_tag_est_depth;
208 unsigned int hw_tag_samples;
1da177e4 209
22e2c507
JA
210 /*
211 * idle window management
212 */
213 struct timer_list idle_slice_timer;
23e018a1 214 struct work_struct unplug_work;
1da177e4 215
22e2c507
JA
216 struct cfq_queue *active_queue;
217 struct cfq_io_context *active_cic;
22e2c507 218
c2dea2d1
VT
219 /*
220 * async queue for each priority case
221 */
222 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
223 struct cfq_queue *async_idle_cfqq;
15c31be4 224
6d048f53 225 sector_t last_position;
1da177e4 226
1da177e4
LT
227 /*
228 * tunables, see top of file
229 */
230 unsigned int cfq_quantum;
22e2c507 231 unsigned int cfq_fifo_expire[2];
1da177e4
LT
232 unsigned int cfq_back_penalty;
233 unsigned int cfq_back_max;
22e2c507
JA
234 unsigned int cfq_slice[2];
235 unsigned int cfq_slice_async_rq;
236 unsigned int cfq_slice_idle;
963b72fc 237 unsigned int cfq_latency;
d9ff4187
AV
238
239 struct list_head cic_list;
1da177e4 240
6118b70b
JA
241 /*
242 * Fallback dummy cfqq for extreme OOM conditions
243 */
244 struct cfq_queue oom_cfqq;
365722bb
VG
245
246 unsigned long last_end_sync_rq;
1da177e4
LT
247};
248
cdb16e8f
VG
249static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
250 enum wl_prio_t prio,
718eee05 251 enum wl_type_t type,
c0324a02
CZ
252 struct cfq_data *cfqd)
253{
254 if (prio == IDLE_WORKLOAD)
cdb16e8f 255 return &cfqg->service_tree_idle;
c0324a02 256
cdb16e8f 257 return &cfqg->service_trees[prio][type];
c0324a02
CZ
258}
259
3b18152c 260enum cfqq_state_flags {
b0b8d749
JA
261 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
262 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 263 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 264 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
265 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
266 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
267 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 268 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 269 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 270 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
76280aff 271 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
3b18152c
JA
272};
273
274#define CFQ_CFQQ_FNS(name) \
275static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
276{ \
fe094d98 277 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
278} \
279static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
280{ \
fe094d98 281 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
282} \
283static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
284{ \
fe094d98 285 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
286}
287
288CFQ_CFQQ_FNS(on_rr);
289CFQ_CFQQ_FNS(wait_request);
b029195d 290CFQ_CFQQ_FNS(must_dispatch);
3b18152c 291CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
292CFQ_CFQQ_FNS(fifo_expire);
293CFQ_CFQQ_FNS(idle_window);
294CFQ_CFQQ_FNS(prio_changed);
44f7c160 295CFQ_CFQQ_FNS(slice_new);
91fac317 296CFQ_CFQQ_FNS(sync);
a36e71f9 297CFQ_CFQQ_FNS(coop);
76280aff 298CFQ_CFQQ_FNS(deep);
3b18152c
JA
299#undef CFQ_CFQQ_FNS
300
7b679138
JA
301#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
302 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
303#define cfq_log(cfqd, fmt, args...) \
304 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
305
615f0259
VG
306/* Traverses through cfq group service trees */
307#define for_each_cfqg_st(cfqg, i, j, st) \
308 for (i = 0; i <= IDLE_WORKLOAD; i++) \
309 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
310 : &cfqg->service_tree_idle; \
311 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
312 (i == IDLE_WORKLOAD && j == 0); \
313 j++, st = i < IDLE_WORKLOAD ? \
314 &cfqg->service_trees[i][j]: NULL) \
315
316
c0324a02
CZ
317static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
318{
319 if (cfq_class_idle(cfqq))
320 return IDLE_WORKLOAD;
321 if (cfq_class_rt(cfqq))
322 return RT_WORKLOAD;
323 return BE_WORKLOAD;
324}
325
718eee05
CZ
326
327static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
328{
329 if (!cfq_cfqq_sync(cfqq))
330 return ASYNC_WORKLOAD;
331 if (!cfq_cfqq_idle_window(cfqq))
332 return SYNC_NOIDLE_WORKLOAD;
333 return SYNC_WORKLOAD;
334}
335
c0324a02
CZ
336static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
337{
cdb16e8f
VG
338 struct cfq_group *cfqg = &cfqd->root_group;
339
c0324a02 340 if (wl == IDLE_WORKLOAD)
cdb16e8f 341 return cfqg->service_tree_idle.count;
c0324a02 342
cdb16e8f
VG
343 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
344 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
345 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
346}
347
165125e1 348static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 349static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 350 struct io_context *, gfp_t);
4ac845a2 351static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
352 struct io_context *);
353
5ad531db
JA
354static inline int rq_in_driver(struct cfq_data *cfqd)
355{
356 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
357}
358
91fac317 359static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 360 bool is_sync)
91fac317 361{
a6151c3a 362 return cic->cfqq[is_sync];
91fac317
VT
363}
364
365static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 366 struct cfq_queue *cfqq, bool is_sync)
91fac317 367{
a6151c3a 368 cic->cfqq[is_sync] = cfqq;
91fac317
VT
369}
370
371/*
372 * We regard a request as SYNC, if it's either a read or has the SYNC bit
373 * set (in which case it could also be direct WRITE).
374 */
a6151c3a 375static inline bool cfq_bio_sync(struct bio *bio)
91fac317 376{
a6151c3a 377 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 378}
1da177e4 379
99f95e52
AM
380/*
381 * scheduler run of queue, if there are requests pending and no one in the
382 * driver that will restart queueing
383 */
23e018a1 384static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 385{
7b679138
JA
386 if (cfqd->busy_queues) {
387 cfq_log(cfqd, "schedule dispatch");
23e018a1 388 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 389 }
99f95e52
AM
390}
391
165125e1 392static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
393{
394 struct cfq_data *cfqd = q->elevator->elevator_data;
395
b4878f24 396 return !cfqd->busy_queues;
99f95e52
AM
397}
398
44f7c160
JA
399/*
400 * Scale schedule slice based on io priority. Use the sync time slice only
401 * if a queue is marked sync and has sync io queued. A sync queue with async
402 * io only, should not get full sync slice length.
403 */
a6151c3a 404static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 405 unsigned short prio)
44f7c160 406{
d9e7620e 407 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 408
d9e7620e
JA
409 WARN_ON(prio >= IOPRIO_BE_NR);
410
411 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
412}
44f7c160 413
d9e7620e
JA
414static inline int
415cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
416{
417 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
418}
419
5db5d642
CZ
420/*
421 * get averaged number of queues of RT/BE priority.
422 * average is updated, with a formula that gives more weight to higher numbers,
423 * to quickly follows sudden increases and decrease slowly
424 */
425
5869619c
JA
426static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
427{
5db5d642
CZ
428 unsigned min_q, max_q;
429 unsigned mult = cfq_hist_divisor - 1;
430 unsigned round = cfq_hist_divisor / 2;
c0324a02 431 unsigned busy = cfq_busy_queues_wl(rt, cfqd);
5db5d642
CZ
432
433 min_q = min(cfqd->busy_queues_avg[rt], busy);
434 max_q = max(cfqd->busy_queues_avg[rt], busy);
435 cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
436 cfq_hist_divisor;
437 return cfqd->busy_queues_avg[rt];
438}
439
44f7c160
JA
440static inline void
441cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
442{
5db5d642
CZ
443 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
444 if (cfqd->cfq_latency) {
445 /* interested queues (we consider only the ones with the same
446 * priority class) */
447 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
448 unsigned sync_slice = cfqd->cfq_slice[1];
449 unsigned expect_latency = sync_slice * iq;
450 if (expect_latency > cfq_target_latency) {
451 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
452 /* scale low_slice according to IO priority
453 * and sync vs async */
454 unsigned low_slice =
455 min(slice, base_low_slice * slice / sync_slice);
456 /* the adapted slice value is scaled to fit all iqs
457 * into the target latency */
458 slice = max(slice * cfq_target_latency / expect_latency,
459 low_slice);
460 }
461 }
462 cfqq->slice_end = jiffies + slice;
7b679138 463 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
464}
465
466/*
467 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
468 * isn't valid until the first request from the dispatch is activated
469 * and the slice time set.
470 */
a6151c3a 471static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
472{
473 if (cfq_cfqq_slice_new(cfqq))
474 return 0;
475 if (time_before(jiffies, cfqq->slice_end))
476 return 0;
477
478 return 1;
479}
480
1da177e4 481/*
5e705374 482 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 483 * We choose the request that is closest to the head right now. Distance
e8a99053 484 * behind the head is penalized and only allowed to a certain extent.
1da177e4 485 */
5e705374 486static struct request *
cf7c25cf 487cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 488{
cf7c25cf 489 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 490 unsigned long back_max;
e8a99053
AM
491#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
492#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
493 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 494
5e705374
JA
495 if (rq1 == NULL || rq1 == rq2)
496 return rq2;
497 if (rq2 == NULL)
498 return rq1;
9c2c38a1 499
5e705374
JA
500 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
501 return rq1;
502 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
503 return rq2;
374f84ac
JA
504 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
505 return rq1;
506 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
507 return rq2;
1da177e4 508
83096ebf
TH
509 s1 = blk_rq_pos(rq1);
510 s2 = blk_rq_pos(rq2);
1da177e4 511
1da177e4
LT
512 /*
513 * by definition, 1KiB is 2 sectors
514 */
515 back_max = cfqd->cfq_back_max * 2;
516
517 /*
518 * Strict one way elevator _except_ in the case where we allow
519 * short backward seeks which are biased as twice the cost of a
520 * similar forward seek.
521 */
522 if (s1 >= last)
523 d1 = s1 - last;
524 else if (s1 + back_max >= last)
525 d1 = (last - s1) * cfqd->cfq_back_penalty;
526 else
e8a99053 527 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
528
529 if (s2 >= last)
530 d2 = s2 - last;
531 else if (s2 + back_max >= last)
532 d2 = (last - s2) * cfqd->cfq_back_penalty;
533 else
e8a99053 534 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
535
536 /* Found required data */
e8a99053
AM
537
538 /*
539 * By doing switch() on the bit mask "wrap" we avoid having to
540 * check two variables for all permutations: --> faster!
541 */
542 switch (wrap) {
5e705374 543 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 544 if (d1 < d2)
5e705374 545 return rq1;
e8a99053 546 else if (d2 < d1)
5e705374 547 return rq2;
e8a99053
AM
548 else {
549 if (s1 >= s2)
5e705374 550 return rq1;
e8a99053 551 else
5e705374 552 return rq2;
e8a99053 553 }
1da177e4 554
e8a99053 555 case CFQ_RQ2_WRAP:
5e705374 556 return rq1;
e8a99053 557 case CFQ_RQ1_WRAP:
5e705374
JA
558 return rq2;
559 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
560 default:
561 /*
562 * Since both rqs are wrapped,
563 * start with the one that's further behind head
564 * (--> only *one* back seek required),
565 * since back seek takes more time than forward.
566 */
567 if (s1 <= s2)
5e705374 568 return rq1;
1da177e4 569 else
5e705374 570 return rq2;
1da177e4
LT
571 }
572}
573
498d3aa2
JA
574/*
575 * The below is leftmost cache rbtree addon
576 */
0871714e 577static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 578{
615f0259
VG
579 /* Service tree is empty */
580 if (!root->count)
581 return NULL;
582
cc09e299
JA
583 if (!root->left)
584 root->left = rb_first(&root->rb);
585
0871714e
JA
586 if (root->left)
587 return rb_entry(root->left, struct cfq_queue, rb_node);
588
589 return NULL;
cc09e299
JA
590}
591
a36e71f9
JA
592static void rb_erase_init(struct rb_node *n, struct rb_root *root)
593{
594 rb_erase(n, root);
595 RB_CLEAR_NODE(n);
596}
597
cc09e299
JA
598static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
599{
600 if (root->left == n)
601 root->left = NULL;
a36e71f9 602 rb_erase_init(n, &root->rb);
aa6f6a3d 603 --root->count;
cc09e299
JA
604}
605
1da177e4
LT
606/*
607 * would be nice to take fifo expire time into account as well
608 */
5e705374
JA
609static struct request *
610cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
611 struct request *last)
1da177e4 612{
21183b07
JA
613 struct rb_node *rbnext = rb_next(&last->rb_node);
614 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 615 struct request *next = NULL, *prev = NULL;
1da177e4 616
21183b07 617 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
618
619 if (rbprev)
5e705374 620 prev = rb_entry_rq(rbprev);
1da177e4 621
21183b07 622 if (rbnext)
5e705374 623 next = rb_entry_rq(rbnext);
21183b07
JA
624 else {
625 rbnext = rb_first(&cfqq->sort_list);
626 if (rbnext && rbnext != &last->rb_node)
5e705374 627 next = rb_entry_rq(rbnext);
21183b07 628 }
1da177e4 629
cf7c25cf 630 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
631}
632
d9e7620e
JA
633static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
634 struct cfq_queue *cfqq)
1da177e4 635{
d9e7620e
JA
636 /*
637 * just an approximation, should be ok.
638 */
cdb16e8f 639 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 640 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
641}
642
498d3aa2 643/*
c0324a02 644 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
645 * requests waiting to be processed. It is sorted in the order that
646 * we will service the queues.
647 */
a36e71f9 648static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 649 bool add_front)
d9e7620e 650{
0871714e
JA
651 struct rb_node **p, *parent;
652 struct cfq_queue *__cfqq;
d9e7620e 653 unsigned long rb_key;
c0324a02 654 struct cfq_rb_root *service_tree;
498d3aa2 655 int left;
d9e7620e 656
cdb16e8f
VG
657 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
658 cfqq_type(cfqq), cfqd);
0871714e
JA
659 if (cfq_class_idle(cfqq)) {
660 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 661 parent = rb_last(&service_tree->rb);
0871714e
JA
662 if (parent && parent != &cfqq->rb_node) {
663 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
664 rb_key += __cfqq->rb_key;
665 } else
666 rb_key += jiffies;
667 } else if (!add_front) {
b9c8946b
JA
668 /*
669 * Get our rb key offset. Subtract any residual slice
670 * value carried from last service. A negative resid
671 * count indicates slice overrun, and this should position
672 * the next service time further away in the tree.
673 */
edd75ffd 674 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 675 rb_key -= cfqq->slice_resid;
edd75ffd 676 cfqq->slice_resid = 0;
48e025e6
CZ
677 } else {
678 rb_key = -HZ;
aa6f6a3d 679 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
680 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
681 }
1da177e4 682
d9e7620e 683 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 684 /*
d9e7620e 685 * same position, nothing more to do
99f9628a 686 */
c0324a02
CZ
687 if (rb_key == cfqq->rb_key &&
688 cfqq->service_tree == service_tree)
d9e7620e 689 return;
1da177e4 690
aa6f6a3d
CZ
691 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
692 cfqq->service_tree = NULL;
1da177e4 693 }
d9e7620e 694
498d3aa2 695 left = 1;
0871714e 696 parent = NULL;
aa6f6a3d
CZ
697 cfqq->service_tree = service_tree;
698 p = &service_tree->rb.rb_node;
d9e7620e 699 while (*p) {
67060e37 700 struct rb_node **n;
cc09e299 701
d9e7620e
JA
702 parent = *p;
703 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
704
0c534e0a 705 /*
c0324a02 706 * sort by key, that represents service time.
0c534e0a 707 */
c0324a02 708 if (time_before(rb_key, __cfqq->rb_key))
67060e37 709 n = &(*p)->rb_left;
c0324a02 710 else {
67060e37 711 n = &(*p)->rb_right;
cc09e299 712 left = 0;
c0324a02 713 }
67060e37
JA
714
715 p = n;
d9e7620e
JA
716 }
717
cc09e299 718 if (left)
aa6f6a3d 719 service_tree->left = &cfqq->rb_node;
cc09e299 720
d9e7620e
JA
721 cfqq->rb_key = rb_key;
722 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
723 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
724 service_tree->count++;
1da177e4
LT
725}
726
a36e71f9 727static struct cfq_queue *
f2d1f0ae
JA
728cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
729 sector_t sector, struct rb_node **ret_parent,
730 struct rb_node ***rb_link)
a36e71f9 731{
a36e71f9
JA
732 struct rb_node **p, *parent;
733 struct cfq_queue *cfqq = NULL;
734
735 parent = NULL;
736 p = &root->rb_node;
737 while (*p) {
738 struct rb_node **n;
739
740 parent = *p;
741 cfqq = rb_entry(parent, struct cfq_queue, p_node);
742
743 /*
744 * Sort strictly based on sector. Smallest to the left,
745 * largest to the right.
746 */
2e46e8b2 747 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 748 n = &(*p)->rb_right;
2e46e8b2 749 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
750 n = &(*p)->rb_left;
751 else
752 break;
753 p = n;
3ac6c9f8 754 cfqq = NULL;
a36e71f9
JA
755 }
756
757 *ret_parent = parent;
758 if (rb_link)
759 *rb_link = p;
3ac6c9f8 760 return cfqq;
a36e71f9
JA
761}
762
763static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
764{
a36e71f9
JA
765 struct rb_node **p, *parent;
766 struct cfq_queue *__cfqq;
767
f2d1f0ae
JA
768 if (cfqq->p_root) {
769 rb_erase(&cfqq->p_node, cfqq->p_root);
770 cfqq->p_root = NULL;
771 }
a36e71f9
JA
772
773 if (cfq_class_idle(cfqq))
774 return;
775 if (!cfqq->next_rq)
776 return;
777
f2d1f0ae 778 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
779 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
780 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
781 if (!__cfqq) {
782 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
783 rb_insert_color(&cfqq->p_node, cfqq->p_root);
784 } else
785 cfqq->p_root = NULL;
a36e71f9
JA
786}
787
498d3aa2
JA
788/*
789 * Update cfqq's position in the service tree.
790 */
edd75ffd 791static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 792{
6d048f53
JA
793 /*
794 * Resorting requires the cfqq to be on the RR list already.
795 */
a36e71f9 796 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 797 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
798 cfq_prio_tree_add(cfqd, cfqq);
799 }
6d048f53
JA
800}
801
1da177e4
LT
802/*
803 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 804 * the pending list according to last request service
1da177e4 805 */
febffd61 806static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 807{
7b679138 808 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
809 BUG_ON(cfq_cfqq_on_rr(cfqq));
810 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
811 cfqd->busy_queues++;
812
edd75ffd 813 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
814}
815
498d3aa2
JA
816/*
817 * Called when the cfqq no longer has requests pending, remove it from
818 * the service tree.
819 */
febffd61 820static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 821{
7b679138 822 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
823 BUG_ON(!cfq_cfqq_on_rr(cfqq));
824 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 825
aa6f6a3d
CZ
826 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
827 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
828 cfqq->service_tree = NULL;
829 }
f2d1f0ae
JA
830 if (cfqq->p_root) {
831 rb_erase(&cfqq->p_node, cfqq->p_root);
832 cfqq->p_root = NULL;
833 }
d9e7620e 834
1da177e4
LT
835 BUG_ON(!cfqd->busy_queues);
836 cfqd->busy_queues--;
837}
838
839/*
840 * rb tree support functions
841 */
febffd61 842static void cfq_del_rq_rb(struct request *rq)
1da177e4 843{
5e705374 844 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 845 struct cfq_data *cfqd = cfqq->cfqd;
5e705374 846 const int sync = rq_is_sync(rq);
1da177e4 847
b4878f24
JA
848 BUG_ON(!cfqq->queued[sync]);
849 cfqq->queued[sync]--;
1da177e4 850
5e705374 851 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 852
dd67d051 853 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
b4878f24 854 cfq_del_cfqq_rr(cfqd, cfqq);
1da177e4
LT
855}
856
5e705374 857static void cfq_add_rq_rb(struct request *rq)
1da177e4 858{
5e705374 859 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 860 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 861 struct request *__alias, *prev;
1da177e4 862
5380a101 863 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
864
865 /*
866 * looks a little odd, but the first insert might return an alias.
867 * if that happens, put the alias on the dispatch list
868 */
21183b07 869 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 870 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
871
872 if (!cfq_cfqq_on_rr(cfqq))
873 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
874
875 /*
876 * check if this request is a better next-serve candidate
877 */
a36e71f9 878 prev = cfqq->next_rq;
cf7c25cf 879 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
880
881 /*
882 * adjust priority tree position, if ->next_rq changes
883 */
884 if (prev != cfqq->next_rq)
885 cfq_prio_tree_add(cfqd, cfqq);
886
5044eed4 887 BUG_ON(!cfqq->next_rq);
1da177e4
LT
888}
889
febffd61 890static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 891{
5380a101
JA
892 elv_rb_del(&cfqq->sort_list, rq);
893 cfqq->queued[rq_is_sync(rq)]--;
5e705374 894 cfq_add_rq_rb(rq);
1da177e4
LT
895}
896
206dc69b
JA
897static struct request *
898cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 899{
206dc69b 900 struct task_struct *tsk = current;
91fac317 901 struct cfq_io_context *cic;
206dc69b 902 struct cfq_queue *cfqq;
1da177e4 903
4ac845a2 904 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
905 if (!cic)
906 return NULL;
907
908 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
909 if (cfqq) {
910 sector_t sector = bio->bi_sector + bio_sectors(bio);
911
21183b07 912 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 913 }
1da177e4 914
1da177e4
LT
915 return NULL;
916}
917
165125e1 918static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 919{
22e2c507 920 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 921
5ad531db 922 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 923 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 924 rq_in_driver(cfqd));
25776e35 925
5b93629b 926 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
927}
928
165125e1 929static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 930{
b4878f24 931 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 932 const int sync = rq_is_sync(rq);
b4878f24 933
5ad531db
JA
934 WARN_ON(!cfqd->rq_in_driver[sync]);
935 cfqd->rq_in_driver[sync]--;
7b679138 936 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 937 rq_in_driver(cfqd));
1da177e4
LT
938}
939
b4878f24 940static void cfq_remove_request(struct request *rq)
1da177e4 941{
5e705374 942 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 943
5e705374
JA
944 if (cfqq->next_rq == rq)
945 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 946
b4878f24 947 list_del_init(&rq->queuelist);
5e705374 948 cfq_del_rq_rb(rq);
374f84ac 949
45333d5a 950 cfqq->cfqd->rq_queued--;
374f84ac
JA
951 if (rq_is_meta(rq)) {
952 WARN_ON(!cfqq->meta_pending);
953 cfqq->meta_pending--;
954 }
1da177e4
LT
955}
956
165125e1
JA
957static int cfq_merge(struct request_queue *q, struct request **req,
958 struct bio *bio)
1da177e4
LT
959{
960 struct cfq_data *cfqd = q->elevator->elevator_data;
961 struct request *__rq;
1da177e4 962
206dc69b 963 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 964 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
965 *req = __rq;
966 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
967 }
968
969 return ELEVATOR_NO_MERGE;
1da177e4
LT
970}
971
165125e1 972static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 973 int type)
1da177e4 974{
21183b07 975 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 976 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 977
5e705374 978 cfq_reposition_rq_rb(cfqq, req);
1da177e4 979 }
1da177e4
LT
980}
981
982static void
165125e1 983cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
984 struct request *next)
985{
cf7c25cf 986 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
987 /*
988 * reposition in fifo if next is older than rq
989 */
990 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 991 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 992 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
993 rq_set_fifo_time(rq, rq_fifo_time(next));
994 }
22e2c507 995
cf7c25cf
CZ
996 if (cfqq->next_rq == next)
997 cfqq->next_rq = rq;
b4878f24 998 cfq_remove_request(next);
22e2c507
JA
999}
1000
165125e1 1001static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1002 struct bio *bio)
1003{
1004 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1005 struct cfq_io_context *cic;
da775265 1006 struct cfq_queue *cfqq;
da775265
JA
1007
1008 /*
ec8acb69 1009 * Disallow merge of a sync bio into an async request.
da775265 1010 */
91fac317 1011 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1012 return false;
da775265
JA
1013
1014 /*
719d3402
JA
1015 * Lookup the cfqq that this bio will be queued with. Allow
1016 * merge only if rq is queued there.
da775265 1017 */
4ac845a2 1018 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1019 if (!cic)
a6151c3a 1020 return false;
719d3402 1021
91fac317 1022 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1023 return cfqq == RQ_CFQQ(rq);
da775265
JA
1024}
1025
febffd61
JA
1026static void __cfq_set_active_queue(struct cfq_data *cfqd,
1027 struct cfq_queue *cfqq)
22e2c507
JA
1028{
1029 if (cfqq) {
7b679138 1030 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 1031 cfqq->slice_end = 0;
2f5cb738
JA
1032 cfqq->slice_dispatch = 0;
1033
2f5cb738 1034 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1035 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1036 cfq_clear_cfqq_must_alloc_slice(cfqq);
1037 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1038 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1039
1040 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1041 }
1042
1043 cfqd->active_queue = cfqq;
1044}
1045
7b14e3b5
JA
1046/*
1047 * current cfqq expired its slice (or was too idle), select new one
1048 */
1049static void
1050__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1051 bool timed_out)
7b14e3b5 1052{
7b679138
JA
1053 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1054
7b14e3b5
JA
1055 if (cfq_cfqq_wait_request(cfqq))
1056 del_timer(&cfqd->idle_slice_timer);
1057
7b14e3b5
JA
1058 cfq_clear_cfqq_wait_request(cfqq);
1059
1060 /*
6084cdda 1061 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1062 */
7b679138 1063 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1064 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1065 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1066 }
7b14e3b5 1067
edd75ffd 1068 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1069
1070 if (cfqq == cfqd->active_queue)
1071 cfqd->active_queue = NULL;
1072
1073 if (cfqd->active_cic) {
1074 put_io_context(cfqd->active_cic->ioc);
1075 cfqd->active_cic = NULL;
1076 }
7b14e3b5
JA
1077}
1078
a6151c3a 1079static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1080{
1081 struct cfq_queue *cfqq = cfqd->active_queue;
1082
1083 if (cfqq)
6084cdda 1084 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1085}
1086
498d3aa2
JA
1087/*
1088 * Get next queue for service. Unless we have a queue preemption,
1089 * we'll simply select the first cfqq in the service tree.
1090 */
6d048f53 1091static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1092{
c0324a02 1093 struct cfq_rb_root *service_tree =
cdb16e8f
VG
1094 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1095 cfqd->serving_type, cfqd);
d9e7620e 1096
c0324a02
CZ
1097 if (RB_EMPTY_ROOT(&service_tree->rb))
1098 return NULL;
1099 return cfq_rb_first(service_tree);
6d048f53
JA
1100}
1101
498d3aa2
JA
1102/*
1103 * Get and set a new active queue for service.
1104 */
a36e71f9
JA
1105static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1106 struct cfq_queue *cfqq)
6d048f53 1107{
e00ef799 1108 if (!cfqq)
a36e71f9 1109 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1110
22e2c507 1111 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1112 return cfqq;
22e2c507
JA
1113}
1114
d9e7620e
JA
1115static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1116 struct request *rq)
1117{
83096ebf
TH
1118 if (blk_rq_pos(rq) >= cfqd->last_position)
1119 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1120 else
83096ebf 1121 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1122}
1123
b2c18e1e
JM
1124#define CFQQ_SEEK_THR 8 * 1024
1125#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 1126
b2c18e1e
JM
1127static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1128 struct request *rq)
6d048f53 1129{
b2c18e1e 1130 sector_t sdist = cfqq->seek_mean;
6d048f53 1131
b2c18e1e
JM
1132 if (!sample_valid(cfqq->seek_samples))
1133 sdist = CFQQ_SEEK_THR;
6d048f53 1134
04dc6e71 1135 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
1136}
1137
a36e71f9
JA
1138static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1139 struct cfq_queue *cur_cfqq)
1140{
f2d1f0ae 1141 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1142 struct rb_node *parent, *node;
1143 struct cfq_queue *__cfqq;
1144 sector_t sector = cfqd->last_position;
1145
1146 if (RB_EMPTY_ROOT(root))
1147 return NULL;
1148
1149 /*
1150 * First, if we find a request starting at the end of the last
1151 * request, choose it.
1152 */
f2d1f0ae 1153 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1154 if (__cfqq)
1155 return __cfqq;
1156
1157 /*
1158 * If the exact sector wasn't found, the parent of the NULL leaf
1159 * will contain the closest sector.
1160 */
1161 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1162 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1163 return __cfqq;
1164
2e46e8b2 1165 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1166 node = rb_next(&__cfqq->p_node);
1167 else
1168 node = rb_prev(&__cfqq->p_node);
1169 if (!node)
1170 return NULL;
1171
1172 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1173 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1174 return __cfqq;
1175
1176 return NULL;
1177}
1178
1179/*
1180 * cfqd - obvious
1181 * cur_cfqq - passed in so that we don't decide that the current queue is
1182 * closely cooperating with itself.
1183 *
1184 * So, basically we're assuming that that cur_cfqq has dispatched at least
1185 * one request, and that cfqd->last_position reflects a position on the disk
1186 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1187 * assumption.
1188 */
1189static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1190 struct cfq_queue *cur_cfqq)
6d048f53 1191{
a36e71f9
JA
1192 struct cfq_queue *cfqq;
1193
e6c5bc73
JM
1194 if (!cfq_cfqq_sync(cur_cfqq))
1195 return NULL;
1196 if (CFQQ_SEEKY(cur_cfqq))
1197 return NULL;
1198
6d048f53 1199 /*
d9e7620e
JA
1200 * We should notice if some of the queues are cooperating, eg
1201 * working closely on the same area of the disk. In that case,
1202 * we can group them together and don't waste time idling.
6d048f53 1203 */
a36e71f9
JA
1204 cfqq = cfqq_close(cfqd, cur_cfqq);
1205 if (!cfqq)
1206 return NULL;
1207
df5fe3e8
JM
1208 /*
1209 * It only makes sense to merge sync queues.
1210 */
1211 if (!cfq_cfqq_sync(cfqq))
1212 return NULL;
e6c5bc73
JM
1213 if (CFQQ_SEEKY(cfqq))
1214 return NULL;
df5fe3e8 1215
c0324a02
CZ
1216 /*
1217 * Do not merge queues of different priority classes
1218 */
1219 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1220 return NULL;
1221
a36e71f9 1222 return cfqq;
6d048f53
JA
1223}
1224
a6d44e98
CZ
1225/*
1226 * Determine whether we should enforce idle window for this queue.
1227 */
1228
1229static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1230{
1231 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1232 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98
CZ
1233
1234 /* We never do for idle class queues. */
1235 if (prio == IDLE_WORKLOAD)
1236 return false;
1237
1238 /* We do for queues that were marked with idle window flag. */
1239 if (cfq_cfqq_idle_window(cfqq))
1240 return true;
1241
1242 /*
1243 * Otherwise, we do only if they are the last ones
1244 * in their service tree.
1245 */
718eee05 1246 if (!service_tree)
cdb16e8f
VG
1247 service_tree = service_tree_for(cfqq->cfqg, prio,
1248 cfqq_type(cfqq), cfqd);
718eee05 1249
a6d44e98
CZ
1250 if (service_tree->count == 0)
1251 return true;
1252
1253 return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
1254}
1255
6d048f53 1256static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1257{
1792669c 1258 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1259 struct cfq_io_context *cic;
7b14e3b5
JA
1260 unsigned long sl;
1261
a68bbddb 1262 /*
f7d7b7a7
JA
1263 * SSD device without seek penalty, disable idling. But only do so
1264 * for devices that support queuing, otherwise we still have a problem
1265 * with sync vs async workloads.
a68bbddb 1266 */
f7d7b7a7 1267 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1268 return;
1269
dd67d051 1270 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1271 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1272
1273 /*
1274 * idle is disabled, either manually or by past process history
1275 */
a6d44e98 1276 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1277 return;
1278
7b679138 1279 /*
8e550632 1280 * still active requests from this queue, don't idle
7b679138 1281 */
8e550632 1282 if (cfqq->dispatched)
7b679138
JA
1283 return;
1284
22e2c507
JA
1285 /*
1286 * task has exited, don't wait
1287 */
206dc69b 1288 cic = cfqd->active_cic;
66dac98e 1289 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1290 return;
1291
355b659c
CZ
1292 /*
1293 * If our average think time is larger than the remaining time
1294 * slice, then don't idle. This avoids overrunning the allotted
1295 * time slice.
1296 */
1297 if (sample_valid(cic->ttime_samples) &&
1298 (cfqq->slice_end - jiffies < cic->ttime_mean))
1299 return;
1300
3b18152c 1301 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1302
6d048f53 1303 sl = cfqd->cfq_slice_idle;
206dc69b 1304
7b14e3b5 1305 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1306 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1307}
1308
498d3aa2
JA
1309/*
1310 * Move request from internal lists to the request queue dispatch list.
1311 */
165125e1 1312static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1313{
3ed9a296 1314 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1315 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1316
7b679138
JA
1317 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1318
06d21886 1319 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1320 cfq_remove_request(rq);
6d048f53 1321 cfqq->dispatched++;
5380a101 1322 elv_dispatch_sort(q, rq);
3ed9a296
JA
1323
1324 if (cfq_cfqq_sync(cfqq))
1325 cfqd->sync_flight++;
1da177e4
LT
1326}
1327
1328/*
1329 * return expired entry, or NULL to just start from scratch in rbtree
1330 */
febffd61 1331static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1332{
30996f40 1333 struct request *rq = NULL;
1da177e4 1334
3b18152c 1335 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1336 return NULL;
cb887411
JA
1337
1338 cfq_mark_cfqq_fifo_expire(cfqq);
1339
89850f7e
JA
1340 if (list_empty(&cfqq->fifo))
1341 return NULL;
1da177e4 1342
89850f7e 1343 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1344 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1345 rq = NULL;
1da177e4 1346
30996f40 1347 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1348 return rq;
1da177e4
LT
1349}
1350
22e2c507
JA
1351static inline int
1352cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1353{
1354 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1355
22e2c507 1356 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1357
22e2c507 1358 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1359}
1360
df5fe3e8
JM
1361/*
1362 * Must be called with the queue_lock held.
1363 */
1364static int cfqq_process_refs(struct cfq_queue *cfqq)
1365{
1366 int process_refs, io_refs;
1367
1368 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1369 process_refs = atomic_read(&cfqq->ref) - io_refs;
1370 BUG_ON(process_refs < 0);
1371 return process_refs;
1372}
1373
1374static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1375{
e6c5bc73 1376 int process_refs, new_process_refs;
df5fe3e8
JM
1377 struct cfq_queue *__cfqq;
1378
1379 /* Avoid a circular list and skip interim queue merges */
1380 while ((__cfqq = new_cfqq->new_cfqq)) {
1381 if (__cfqq == cfqq)
1382 return;
1383 new_cfqq = __cfqq;
1384 }
1385
1386 process_refs = cfqq_process_refs(cfqq);
1387 /*
1388 * If the process for the cfqq has gone away, there is no
1389 * sense in merging the queues.
1390 */
1391 if (process_refs == 0)
1392 return;
1393
e6c5bc73
JM
1394 /*
1395 * Merge in the direction of the lesser amount of work.
1396 */
1397 new_process_refs = cfqq_process_refs(new_cfqq);
1398 if (new_process_refs >= process_refs) {
1399 cfqq->new_cfqq = new_cfqq;
1400 atomic_add(process_refs, &new_cfqq->ref);
1401 } else {
1402 new_cfqq->new_cfqq = cfqq;
1403 atomic_add(new_process_refs, &cfqq->ref);
1404 }
df5fe3e8
JM
1405}
1406
cdb16e8f
VG
1407static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1408 struct cfq_group *cfqg, enum wl_prio_t prio,
1409 bool prio_changed)
718eee05
CZ
1410{
1411 struct cfq_queue *queue;
1412 int i;
1413 bool key_valid = false;
1414 unsigned long lowest_key = 0;
1415 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1416
1417 if (prio_changed) {
1418 /*
1419 * When priorities switched, we prefer starting
1420 * from SYNC_NOIDLE (first choice), or just SYNC
1421 * over ASYNC
1422 */
cdb16e8f 1423 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1424 return cur_best;
1425 cur_best = SYNC_WORKLOAD;
cdb16e8f 1426 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1427 return cur_best;
1428
1429 return ASYNC_WORKLOAD;
1430 }
1431
1432 for (i = 0; i < 3; ++i) {
1433 /* otherwise, select the one with lowest rb_key */
cdb16e8f 1434 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
718eee05
CZ
1435 if (queue &&
1436 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1437 lowest_key = queue->rb_key;
1438 cur_best = i;
1439 key_valid = true;
1440 }
1441 }
1442
1443 return cur_best;
1444}
1445
cdb16e8f 1446static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05
CZ
1447{
1448 enum wl_prio_t previous_prio = cfqd->serving_prio;
1449 bool prio_changed;
1450 unsigned slice;
1451 unsigned count;
cdb16e8f 1452 struct cfq_rb_root *st;
718eee05
CZ
1453
1454 /* Choose next priority. RT > BE > IDLE */
1455 if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1456 cfqd->serving_prio = RT_WORKLOAD;
1457 else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1458 cfqd->serving_prio = BE_WORKLOAD;
1459 else {
1460 cfqd->serving_prio = IDLE_WORKLOAD;
1461 cfqd->workload_expires = jiffies + 1;
1462 return;
1463 }
1464
1465 /*
1466 * For RT and BE, we have to choose also the type
1467 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1468 * expiration time
1469 */
1470 prio_changed = (cfqd->serving_prio != previous_prio);
cdb16e8f
VG
1471 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1472 cfqd);
1473 count = st->count;
718eee05
CZ
1474
1475 /*
1476 * If priority didn't change, check workload expiration,
1477 * and that we still have other queues ready
1478 */
1479 if (!prio_changed && count &&
1480 !time_after(jiffies, cfqd->workload_expires))
1481 return;
1482
1483 /* otherwise select new workload type */
1484 cfqd->serving_type =
cdb16e8f
VG
1485 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
1486 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1487 cfqd);
1488 count = st->count;
718eee05
CZ
1489
1490 /*
1491 * the workload slice is computed as a fraction of target latency
1492 * proportional to the number of queues in that workload, over
1493 * all the queues in the same priority class
1494 */
1495 slice = cfq_target_latency * count /
1496 max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
1497 cfq_busy_queues_wl(cfqd->serving_prio, cfqd));
1498
1499 if (cfqd->serving_type == ASYNC_WORKLOAD)
1500 /* async workload slice is scaled down according to
1501 * the sync/async slice ratio. */
1502 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1503 else
1504 /* sync workload slice is at least 2 * cfq_slice_idle */
1505 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1506
1507 slice = max_t(unsigned, slice, CFQ_MIN_TT);
1508 cfqd->workload_expires = jiffies + slice;
8e550632 1509 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
1510}
1511
cdb16e8f
VG
1512static void cfq_choose_cfqg(struct cfq_data *cfqd)
1513{
1514 cfqd->serving_group = &cfqd->root_group;
1515 choose_service_tree(cfqd, &cfqd->root_group);
1516}
1517
22e2c507 1518/*
498d3aa2
JA
1519 * Select a queue for service. If we have a current active queue,
1520 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1521 */
1b5ed5e1 1522static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1523{
a36e71f9 1524 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1525
22e2c507
JA
1526 cfqq = cfqd->active_queue;
1527 if (!cfqq)
1528 goto new_queue;
1da177e4 1529
22e2c507 1530 /*
6d048f53 1531 * The active queue has run out of time, expire it and select new.
22e2c507 1532 */
b029195d 1533 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1534 goto expire;
1da177e4 1535
22e2c507 1536 /*
6d048f53
JA
1537 * The active queue has requests and isn't expired, allow it to
1538 * dispatch.
22e2c507 1539 */
dd67d051 1540 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1541 goto keep_queue;
6d048f53 1542
a36e71f9
JA
1543 /*
1544 * If another queue has a request waiting within our mean seek
1545 * distance, let it run. The expire code will check for close
1546 * cooperators and put the close queue at the front of the service
df5fe3e8 1547 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 1548 */
b3b6d040 1549 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
1550 if (new_cfqq) {
1551 if (!cfqq->new_cfqq)
1552 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 1553 goto expire;
df5fe3e8 1554 }
a36e71f9 1555
6d048f53
JA
1556 /*
1557 * No requests pending. If the active queue still has requests in
1558 * flight or is idling for a new request, allow either of these
1559 * conditions to happen (or time out) before selecting a new queue.
1560 */
cc197479 1561 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 1562 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
1563 cfqq = NULL;
1564 goto keep_queue;
22e2c507
JA
1565 }
1566
3b18152c 1567expire:
6084cdda 1568 cfq_slice_expired(cfqd, 0);
3b18152c 1569new_queue:
718eee05
CZ
1570 /*
1571 * Current queue expired. Check if we have to switch to a new
1572 * service tree
1573 */
1574 if (!new_cfqq)
cdb16e8f 1575 cfq_choose_cfqg(cfqd);
718eee05 1576
a36e71f9 1577 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1578keep_queue:
3b18152c 1579 return cfqq;
22e2c507
JA
1580}
1581
febffd61 1582static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1583{
1584 int dispatched = 0;
1585
1586 while (cfqq->next_rq) {
1587 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1588 dispatched++;
1589 }
1590
1591 BUG_ON(!list_empty(&cfqq->fifo));
1592 return dispatched;
1593}
1594
498d3aa2
JA
1595/*
1596 * Drain our current requests. Used for barriers and when switching
1597 * io schedulers on-the-fly.
1598 */
d9e7620e 1599static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1600{
0871714e 1601 struct cfq_queue *cfqq;
d9e7620e 1602 int dispatched = 0;
718eee05 1603 int i, j;
cdb16e8f 1604 struct cfq_group *cfqg = &cfqd->root_group;
615f0259 1605 struct cfq_rb_root *st;
cdb16e8f 1606
615f0259
VG
1607 for_each_cfqg_st(cfqg, i, j, st) {
1608 while ((cfqq = cfq_rb_first(st)) != NULL)
1609 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1610 }
1b5ed5e1 1611
6084cdda 1612 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1613 BUG_ON(cfqd->busy_queues);
1614
6923715a 1615 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
1616 return dispatched;
1617}
1618
0b182d61 1619static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 1620{
2f5cb738 1621 unsigned int max_dispatch;
22e2c507 1622
5ad531db
JA
1623 /*
1624 * Drain async requests before we start sync IO
1625 */
a6d44e98 1626 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 1627 return false;
5ad531db 1628
2f5cb738
JA
1629 /*
1630 * If this is an async queue and we have sync IO in flight, let it wait
1631 */
1632 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 1633 return false;
2f5cb738
JA
1634
1635 max_dispatch = cfqd->cfq_quantum;
1636 if (cfq_class_idle(cfqq))
1637 max_dispatch = 1;
b4878f24 1638
2f5cb738
JA
1639 /*
1640 * Does this cfqq already have too much IO in flight?
1641 */
1642 if (cfqq->dispatched >= max_dispatch) {
1643 /*
1644 * idle queue must always only have a single IO in flight
1645 */
3ed9a296 1646 if (cfq_class_idle(cfqq))
0b182d61 1647 return false;
3ed9a296 1648
2f5cb738
JA
1649 /*
1650 * We have other queues, don't allow more IO from this one
1651 */
1652 if (cfqd->busy_queues > 1)
0b182d61 1653 return false;
9ede209e 1654
365722bb 1655 /*
474b18cc 1656 * Sole queue user, no limit
365722bb 1657 */
474b18cc 1658 max_dispatch = -1;
8e296755
JA
1659 }
1660
1661 /*
1662 * Async queues must wait a bit before being allowed dispatch.
1663 * We also ramp up the dispatch depth gradually for async IO,
1664 * based on the last sync IO we serviced
1665 */
963b72fc 1666 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
1667 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1668 unsigned int depth;
365722bb 1669
61f0c1dc 1670 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
1671 if (!depth && !cfqq->dispatched)
1672 depth = 1;
8e296755
JA
1673 if (depth < max_dispatch)
1674 max_dispatch = depth;
2f5cb738 1675 }
3ed9a296 1676
0b182d61
JA
1677 /*
1678 * If we're below the current max, allow a dispatch
1679 */
1680 return cfqq->dispatched < max_dispatch;
1681}
1682
1683/*
1684 * Dispatch a request from cfqq, moving them to the request queue
1685 * dispatch list.
1686 */
1687static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1688{
1689 struct request *rq;
1690
1691 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1692
1693 if (!cfq_may_dispatch(cfqd, cfqq))
1694 return false;
1695
1696 /*
1697 * follow expired path, else get first next available
1698 */
1699 rq = cfq_check_fifo(cfqq);
1700 if (!rq)
1701 rq = cfqq->next_rq;
1702
1703 /*
1704 * insert request into driver dispatch list
1705 */
1706 cfq_dispatch_insert(cfqd->queue, rq);
1707
1708 if (!cfqd->active_cic) {
1709 struct cfq_io_context *cic = RQ_CIC(rq);
1710
1711 atomic_long_inc(&cic->ioc->refcount);
1712 cfqd->active_cic = cic;
1713 }
1714
1715 return true;
1716}
1717
1718/*
1719 * Find the cfqq that we need to service and move a request from that to the
1720 * dispatch list
1721 */
1722static int cfq_dispatch_requests(struct request_queue *q, int force)
1723{
1724 struct cfq_data *cfqd = q->elevator->elevator_data;
1725 struct cfq_queue *cfqq;
1726
1727 if (!cfqd->busy_queues)
1728 return 0;
1729
1730 if (unlikely(force))
1731 return cfq_forced_dispatch(cfqd);
1732
1733 cfqq = cfq_select_queue(cfqd);
1734 if (!cfqq)
8e296755
JA
1735 return 0;
1736
2f5cb738 1737 /*
0b182d61 1738 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 1739 */
0b182d61
JA
1740 if (!cfq_dispatch_request(cfqd, cfqq))
1741 return 0;
1742
2f5cb738 1743 cfqq->slice_dispatch++;
b029195d 1744 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1745
2f5cb738
JA
1746 /*
1747 * expire an async queue immediately if it has used up its slice. idle
1748 * queue always expire after 1 dispatch round.
1749 */
1750 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1751 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1752 cfq_class_idle(cfqq))) {
1753 cfqq->slice_end = jiffies + 1;
1754 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1755 }
1756
b217a903 1757 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 1758 return 1;
1da177e4
LT
1759}
1760
1da177e4 1761/*
5e705374
JA
1762 * task holds one reference to the queue, dropped when task exits. each rq
1763 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1764 *
1765 * queue lock must be held here.
1766 */
1767static void cfq_put_queue(struct cfq_queue *cfqq)
1768{
22e2c507
JA
1769 struct cfq_data *cfqd = cfqq->cfqd;
1770
1771 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1772
1773 if (!atomic_dec_and_test(&cfqq->ref))
1774 return;
1775
7b679138 1776 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1777 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1778 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3b18152c 1779 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 1780
28f95cbc 1781 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1782 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1783 cfq_schedule_dispatch(cfqd);
28f95cbc 1784 }
22e2c507 1785
1da177e4
LT
1786 kmem_cache_free(cfq_pool, cfqq);
1787}
1788
d6de8be7
JA
1789/*
1790 * Must always be called with the rcu_read_lock() held
1791 */
07416d29
JA
1792static void
1793__call_for_each_cic(struct io_context *ioc,
1794 void (*func)(struct io_context *, struct cfq_io_context *))
1795{
1796 struct cfq_io_context *cic;
1797 struct hlist_node *n;
1798
1799 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1800 func(ioc, cic);
1801}
1802
4ac845a2 1803/*
34e6bbf2 1804 * Call func for each cic attached to this ioc.
4ac845a2 1805 */
34e6bbf2 1806static void
4ac845a2
JA
1807call_for_each_cic(struct io_context *ioc,
1808 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1809{
4ac845a2 1810 rcu_read_lock();
07416d29 1811 __call_for_each_cic(ioc, func);
4ac845a2 1812 rcu_read_unlock();
34e6bbf2
FC
1813}
1814
1815static void cfq_cic_free_rcu(struct rcu_head *head)
1816{
1817 struct cfq_io_context *cic;
1818
1819 cic = container_of(head, struct cfq_io_context, rcu_head);
1820
1821 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 1822 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 1823
9a11b4ed
JA
1824 if (ioc_gone) {
1825 /*
1826 * CFQ scheduler is exiting, grab exit lock and check
1827 * the pending io context count. If it hits zero,
1828 * complete ioc_gone and set it back to NULL
1829 */
1830 spin_lock(&ioc_gone_lock);
245b2e70 1831 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
1832 complete(ioc_gone);
1833 ioc_gone = NULL;
1834 }
1835 spin_unlock(&ioc_gone_lock);
1836 }
34e6bbf2 1837}
4ac845a2 1838
34e6bbf2
FC
1839static void cfq_cic_free(struct cfq_io_context *cic)
1840{
1841 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1842}
1843
1844static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1845{
1846 unsigned long flags;
1847
1848 BUG_ON(!cic->dead_key);
1849
1850 spin_lock_irqsave(&ioc->lock, flags);
1851 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 1852 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1853 spin_unlock_irqrestore(&ioc->lock, flags);
1854
34e6bbf2 1855 cfq_cic_free(cic);
4ac845a2
JA
1856}
1857
d6de8be7
JA
1858/*
1859 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1860 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1861 * and ->trim() which is called with the task lock held
1862 */
4ac845a2
JA
1863static void cfq_free_io_context(struct io_context *ioc)
1864{
4ac845a2 1865 /*
34e6bbf2
FC
1866 * ioc->refcount is zero here, or we are called from elv_unregister(),
1867 * so no more cic's are allowed to be linked into this ioc. So it
1868 * should be ok to iterate over the known list, we will see all cic's
1869 * since no new ones are added.
4ac845a2 1870 */
07416d29 1871 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
1872}
1873
89850f7e 1874static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1875{
df5fe3e8
JM
1876 struct cfq_queue *__cfqq, *next;
1877
28f95cbc 1878 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1879 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1880 cfq_schedule_dispatch(cfqd);
28f95cbc 1881 }
22e2c507 1882
df5fe3e8
JM
1883 /*
1884 * If this queue was scheduled to merge with another queue, be
1885 * sure to drop the reference taken on that queue (and others in
1886 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
1887 */
1888 __cfqq = cfqq->new_cfqq;
1889 while (__cfqq) {
1890 if (__cfqq == cfqq) {
1891 WARN(1, "cfqq->new_cfqq loop detected\n");
1892 break;
1893 }
1894 next = __cfqq->new_cfqq;
1895 cfq_put_queue(__cfqq);
1896 __cfqq = next;
1897 }
1898
89850f7e
JA
1899 cfq_put_queue(cfqq);
1900}
22e2c507 1901
89850f7e
JA
1902static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1903 struct cfq_io_context *cic)
1904{
4faa3c81
FC
1905 struct io_context *ioc = cic->ioc;
1906
fc46379d 1907 list_del_init(&cic->queue_list);
4ac845a2
JA
1908
1909 /*
1910 * Make sure key == NULL is seen for dead queues
1911 */
fc46379d 1912 smp_wmb();
4ac845a2 1913 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1914 cic->key = NULL;
1915
4faa3c81
FC
1916 if (ioc->ioc_data == cic)
1917 rcu_assign_pointer(ioc->ioc_data, NULL);
1918
ff6657c6
JA
1919 if (cic->cfqq[BLK_RW_ASYNC]) {
1920 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1921 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
1922 }
1923
ff6657c6
JA
1924 if (cic->cfqq[BLK_RW_SYNC]) {
1925 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1926 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 1927 }
89850f7e
JA
1928}
1929
4ac845a2
JA
1930static void cfq_exit_single_io_context(struct io_context *ioc,
1931 struct cfq_io_context *cic)
89850f7e
JA
1932{
1933 struct cfq_data *cfqd = cic->key;
1934
89850f7e 1935 if (cfqd) {
165125e1 1936 struct request_queue *q = cfqd->queue;
4ac845a2 1937 unsigned long flags;
89850f7e 1938
4ac845a2 1939 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
1940
1941 /*
1942 * Ensure we get a fresh copy of the ->key to prevent
1943 * race between exiting task and queue
1944 */
1945 smp_read_barrier_depends();
1946 if (cic->key)
1947 __cfq_exit_single_io_context(cfqd, cic);
1948
4ac845a2 1949 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1950 }
1da177e4
LT
1951}
1952
498d3aa2
JA
1953/*
1954 * The process that ioc belongs to has exited, we need to clean up
1955 * and put the internal structures we have that belongs to that process.
1956 */
e2d74ac0 1957static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1958{
4ac845a2 1959 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1960}
1961
22e2c507 1962static struct cfq_io_context *
8267e268 1963cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1964{
b5deef90 1965 struct cfq_io_context *cic;
1da177e4 1966
94f6030c
CL
1967 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1968 cfqd->queue->node);
1da177e4 1969 if (cic) {
22e2c507 1970 cic->last_end_request = jiffies;
553698f9 1971 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 1972 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
1973 cic->dtor = cfq_free_io_context;
1974 cic->exit = cfq_exit_io_context;
245b2e70 1975 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
1976 }
1977
1978 return cic;
1979}
1980
fd0928df 1981static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
1982{
1983 struct task_struct *tsk = current;
1984 int ioprio_class;
1985
3b18152c 1986 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
1987 return;
1988
fd0928df 1989 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 1990 switch (ioprio_class) {
fe094d98
JA
1991 default:
1992 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1993 case IOPRIO_CLASS_NONE:
1994 /*
6d63c275 1995 * no prio set, inherit CPU scheduling settings
fe094d98
JA
1996 */
1997 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 1998 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
1999 break;
2000 case IOPRIO_CLASS_RT:
2001 cfqq->ioprio = task_ioprio(ioc);
2002 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2003 break;
2004 case IOPRIO_CLASS_BE:
2005 cfqq->ioprio = task_ioprio(ioc);
2006 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2007 break;
2008 case IOPRIO_CLASS_IDLE:
2009 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2010 cfqq->ioprio = 7;
2011 cfq_clear_cfqq_idle_window(cfqq);
2012 break;
22e2c507
JA
2013 }
2014
2015 /*
2016 * keep track of original prio settings in case we have to temporarily
2017 * elevate the priority of this queue
2018 */
2019 cfqq->org_ioprio = cfqq->ioprio;
2020 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2021 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2022}
2023
febffd61 2024static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2025{
478a82b0
AV
2026 struct cfq_data *cfqd = cic->key;
2027 struct cfq_queue *cfqq;
c1b707d2 2028 unsigned long flags;
35e6077c 2029
caaa5f9f
JA
2030 if (unlikely(!cfqd))
2031 return;
2032
c1b707d2 2033 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2034
ff6657c6 2035 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2036 if (cfqq) {
2037 struct cfq_queue *new_cfqq;
ff6657c6
JA
2038 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2039 GFP_ATOMIC);
caaa5f9f 2040 if (new_cfqq) {
ff6657c6 2041 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2042 cfq_put_queue(cfqq);
2043 }
22e2c507 2044 }
caaa5f9f 2045
ff6657c6 2046 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2047 if (cfqq)
2048 cfq_mark_cfqq_prio_changed(cfqq);
2049
c1b707d2 2050 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2051}
2052
fc46379d 2053static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2054{
4ac845a2 2055 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2056 ioc->ioprio_changed = 0;
22e2c507
JA
2057}
2058
d5036d77 2059static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2060 pid_t pid, bool is_sync)
d5036d77
JA
2061{
2062 RB_CLEAR_NODE(&cfqq->rb_node);
2063 RB_CLEAR_NODE(&cfqq->p_node);
2064 INIT_LIST_HEAD(&cfqq->fifo);
2065
2066 atomic_set(&cfqq->ref, 0);
2067 cfqq->cfqd = cfqd;
2068
2069 cfq_mark_cfqq_prio_changed(cfqq);
2070
2071 if (is_sync) {
2072 if (!cfq_class_idle(cfqq))
2073 cfq_mark_cfqq_idle_window(cfqq);
2074 cfq_mark_cfqq_sync(cfqq);
2075 }
2076 cfqq->pid = pid;
2077}
2078
cdb16e8f
VG
2079static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
2080{
2081 cfqq->cfqg = cfqg;
2082}
2083
2084static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
2085{
2086 return &cfqd->root_group;
2087}
2088
22e2c507 2089static struct cfq_queue *
a6151c3a 2090cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2091 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2092{
22e2c507 2093 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2094 struct cfq_io_context *cic;
cdb16e8f 2095 struct cfq_group *cfqg;
22e2c507
JA
2096
2097retry:
cdb16e8f 2098 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2099 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2100 /* cic always exists here */
2101 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2102
6118b70b
JA
2103 /*
2104 * Always try a new alloc if we fell back to the OOM cfqq
2105 * originally, since it should just be a temporary situation.
2106 */
2107 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2108 cfqq = NULL;
22e2c507
JA
2109 if (new_cfqq) {
2110 cfqq = new_cfqq;
2111 new_cfqq = NULL;
2112 } else if (gfp_mask & __GFP_WAIT) {
2113 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2114 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2115 gfp_mask | __GFP_ZERO,
94f6030c 2116 cfqd->queue->node);
22e2c507 2117 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2118 if (new_cfqq)
2119 goto retry;
22e2c507 2120 } else {
94f6030c
CL
2121 cfqq = kmem_cache_alloc_node(cfq_pool,
2122 gfp_mask | __GFP_ZERO,
2123 cfqd->queue->node);
22e2c507
JA
2124 }
2125
6118b70b
JA
2126 if (cfqq) {
2127 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2128 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2129 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2130 cfq_log_cfqq(cfqd, cfqq, "alloced");
2131 } else
2132 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2133 }
2134
2135 if (new_cfqq)
2136 kmem_cache_free(cfq_pool, new_cfqq);
2137
22e2c507
JA
2138 return cfqq;
2139}
2140
c2dea2d1
VT
2141static struct cfq_queue **
2142cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2143{
fe094d98 2144 switch (ioprio_class) {
c2dea2d1
VT
2145 case IOPRIO_CLASS_RT:
2146 return &cfqd->async_cfqq[0][ioprio];
2147 case IOPRIO_CLASS_BE:
2148 return &cfqd->async_cfqq[1][ioprio];
2149 case IOPRIO_CLASS_IDLE:
2150 return &cfqd->async_idle_cfqq;
2151 default:
2152 BUG();
2153 }
2154}
2155
15c31be4 2156static struct cfq_queue *
a6151c3a 2157cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2158 gfp_t gfp_mask)
2159{
fd0928df
JA
2160 const int ioprio = task_ioprio(ioc);
2161 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2162 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2163 struct cfq_queue *cfqq = NULL;
2164
c2dea2d1
VT
2165 if (!is_sync) {
2166 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2167 cfqq = *async_cfqq;
2168 }
2169
6118b70b 2170 if (!cfqq)
fd0928df 2171 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2172
2173 /*
2174 * pin the queue now that it's allocated, scheduler exit will prune it
2175 */
c2dea2d1 2176 if (!is_sync && !(*async_cfqq)) {
15c31be4 2177 atomic_inc(&cfqq->ref);
c2dea2d1 2178 *async_cfqq = cfqq;
15c31be4
JA
2179 }
2180
2181 atomic_inc(&cfqq->ref);
2182 return cfqq;
2183}
2184
498d3aa2
JA
2185/*
2186 * We drop cfq io contexts lazily, so we may find a dead one.
2187 */
dbecf3ab 2188static void
4ac845a2
JA
2189cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2190 struct cfq_io_context *cic)
dbecf3ab 2191{
4ac845a2
JA
2192 unsigned long flags;
2193
fc46379d 2194 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2195
4ac845a2
JA
2196 spin_lock_irqsave(&ioc->lock, flags);
2197
4faa3c81 2198 BUG_ON(ioc->ioc_data == cic);
597bc485 2199
4ac845a2 2200 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2201 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2202 spin_unlock_irqrestore(&ioc->lock, flags);
2203
2204 cfq_cic_free(cic);
dbecf3ab
OH
2205}
2206
e2d74ac0 2207static struct cfq_io_context *
4ac845a2 2208cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2209{
e2d74ac0 2210 struct cfq_io_context *cic;
d6de8be7 2211 unsigned long flags;
4ac845a2 2212 void *k;
e2d74ac0 2213
91fac317
VT
2214 if (unlikely(!ioc))
2215 return NULL;
2216
d6de8be7
JA
2217 rcu_read_lock();
2218
597bc485
JA
2219 /*
2220 * we maintain a last-hit cache, to avoid browsing over the tree
2221 */
4ac845a2 2222 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2223 if (cic && cic->key == cfqd) {
2224 rcu_read_unlock();
597bc485 2225 return cic;
d6de8be7 2226 }
597bc485 2227
4ac845a2 2228 do {
4ac845a2
JA
2229 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2230 rcu_read_unlock();
2231 if (!cic)
2232 break;
be3b0753
OH
2233 /* ->key must be copied to avoid race with cfq_exit_queue() */
2234 k = cic->key;
2235 if (unlikely(!k)) {
4ac845a2 2236 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2237 rcu_read_lock();
4ac845a2 2238 continue;
dbecf3ab 2239 }
e2d74ac0 2240
d6de8be7 2241 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2242 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2243 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2244 break;
2245 } while (1);
e2d74ac0 2246
4ac845a2 2247 return cic;
e2d74ac0
JA
2248}
2249
4ac845a2
JA
2250/*
2251 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2252 * the process specific cfq io context when entered from the block layer.
2253 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2254 */
febffd61
JA
2255static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2256 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2257{
0261d688 2258 unsigned long flags;
4ac845a2 2259 int ret;
e2d74ac0 2260
4ac845a2
JA
2261 ret = radix_tree_preload(gfp_mask);
2262 if (!ret) {
2263 cic->ioc = ioc;
2264 cic->key = cfqd;
e2d74ac0 2265
4ac845a2
JA
2266 spin_lock_irqsave(&ioc->lock, flags);
2267 ret = radix_tree_insert(&ioc->radix_root,
2268 (unsigned long) cfqd, cic);
ffc4e759
JA
2269 if (!ret)
2270 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2271 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2272
4ac845a2
JA
2273 radix_tree_preload_end();
2274
2275 if (!ret) {
2276 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2277 list_add(&cic->queue_list, &cfqd->cic_list);
2278 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2279 }
e2d74ac0
JA
2280 }
2281
4ac845a2
JA
2282 if (ret)
2283 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2284
4ac845a2 2285 return ret;
e2d74ac0
JA
2286}
2287
1da177e4
LT
2288/*
2289 * Setup general io context and cfq io context. There can be several cfq
2290 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2291 * than one device managed by cfq.
1da177e4
LT
2292 */
2293static struct cfq_io_context *
e2d74ac0 2294cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2295{
22e2c507 2296 struct io_context *ioc = NULL;
1da177e4 2297 struct cfq_io_context *cic;
1da177e4 2298
22e2c507 2299 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2300
b5deef90 2301 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2302 if (!ioc)
2303 return NULL;
2304
4ac845a2 2305 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2306 if (cic)
2307 goto out;
1da177e4 2308
e2d74ac0
JA
2309 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2310 if (cic == NULL)
2311 goto err;
1da177e4 2312
4ac845a2
JA
2313 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2314 goto err_free;
2315
1da177e4 2316out:
fc46379d
JA
2317 smp_read_barrier_depends();
2318 if (unlikely(ioc->ioprio_changed))
2319 cfq_ioc_set_ioprio(ioc);
2320
1da177e4 2321 return cic;
4ac845a2
JA
2322err_free:
2323 cfq_cic_free(cic);
1da177e4
LT
2324err:
2325 put_io_context(ioc);
2326 return NULL;
2327}
2328
22e2c507
JA
2329static void
2330cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2331{
aaf1228d
JA
2332 unsigned long elapsed = jiffies - cic->last_end_request;
2333 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2334
22e2c507
JA
2335 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2336 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2337 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2338}
1da177e4 2339
206dc69b 2340static void
b2c18e1e 2341cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2342 struct request *rq)
206dc69b
JA
2343{
2344 sector_t sdist;
2345 u64 total;
2346
b2c18e1e 2347 if (!cfqq->last_request_pos)
4d00aa47 2348 sdist = 0;
b2c18e1e
JM
2349 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2350 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 2351 else
b2c18e1e 2352 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
2353
2354 /*
2355 * Don't allow the seek distance to get too large from the
2356 * odd fragment, pagein, etc
2357 */
b2c18e1e
JM
2358 if (cfqq->seek_samples <= 60) /* second&third seek */
2359 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 2360 else
b2c18e1e 2361 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 2362
b2c18e1e
JM
2363 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2364 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2365 total = cfqq->seek_total + (cfqq->seek_samples/2);
2366 do_div(total, cfqq->seek_samples);
2367 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
2368
2369 /*
2370 * If this cfqq is shared between multiple processes, check to
2371 * make sure that those processes are still issuing I/Os within
2372 * the mean seek distance. If not, it may be time to break the
2373 * queues apart again.
2374 */
2375 if (cfq_cfqq_coop(cfqq)) {
2376 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2377 cfqq->seeky_start = jiffies;
2378 else if (!CFQQ_SEEKY(cfqq))
2379 cfqq->seeky_start = 0;
2380 }
206dc69b 2381}
1da177e4 2382
22e2c507
JA
2383/*
2384 * Disable idle window if the process thinks too long or seeks so much that
2385 * it doesn't matter
2386 */
2387static void
2388cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2389 struct cfq_io_context *cic)
2390{
7b679138 2391 int old_idle, enable_idle;
1be92f2f 2392
0871714e
JA
2393 /*
2394 * Don't idle for async or idle io prio class
2395 */
2396 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
2397 return;
2398
c265a7f4 2399 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 2400
76280aff
CZ
2401 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2402 cfq_mark_cfqq_deep(cfqq);
2403
66dac98e 2404 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
76280aff
CZ
2405 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2406 && CFQQ_SEEKY(cfqq)))
22e2c507
JA
2407 enable_idle = 0;
2408 else if (sample_valid(cic->ttime_samples)) {
718eee05 2409 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
2410 enable_idle = 0;
2411 else
2412 enable_idle = 1;
1da177e4
LT
2413 }
2414
7b679138
JA
2415 if (old_idle != enable_idle) {
2416 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2417 if (enable_idle)
2418 cfq_mark_cfqq_idle_window(cfqq);
2419 else
2420 cfq_clear_cfqq_idle_window(cfqq);
2421 }
22e2c507 2422}
1da177e4 2423
22e2c507
JA
2424/*
2425 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2426 * no or if we aren't sure, a 1 will cause a preempt.
2427 */
a6151c3a 2428static bool
22e2c507 2429cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2430 struct request *rq)
22e2c507 2431{
6d048f53 2432 struct cfq_queue *cfqq;
22e2c507 2433
6d048f53
JA
2434 cfqq = cfqd->active_queue;
2435 if (!cfqq)
a6151c3a 2436 return false;
22e2c507 2437
6d048f53 2438 if (cfq_slice_used(cfqq))
a6151c3a 2439 return true;
6d048f53
JA
2440
2441 if (cfq_class_idle(new_cfqq))
a6151c3a 2442 return false;
22e2c507
JA
2443
2444 if (cfq_class_idle(cfqq))
a6151c3a 2445 return true;
1e3335de 2446
e4a22919
CZ
2447 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2448 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2449 new_cfqq->service_tree->count == 1)
718eee05
CZ
2450 return true;
2451
374f84ac
JA
2452 /*
2453 * if the new request is sync, but the currently running queue is
2454 * not, let the sync request have priority.
2455 */
5e705374 2456 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 2457 return true;
1e3335de 2458
374f84ac
JA
2459 /*
2460 * So both queues are sync. Let the new request get disk time if
2461 * it's a metadata request and the current queue is doing regular IO.
2462 */
2463 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 2464 return true;
22e2c507 2465
3a9a3f6c
DS
2466 /*
2467 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2468 */
2469 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 2470 return true;
3a9a3f6c 2471
1e3335de 2472 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 2473 return false;
1e3335de
JA
2474
2475 /*
2476 * if this request is as-good as one we would expect from the
2477 * current cfqq, let it preempt
2478 */
e00ef799 2479 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 2480 return true;
1e3335de 2481
a6151c3a 2482 return false;
22e2c507
JA
2483}
2484
2485/*
2486 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2487 * let it have half of its nominal slice.
2488 */
2489static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2490{
7b679138 2491 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2492 cfq_slice_expired(cfqd, 1);
22e2c507 2493
bf572256
JA
2494 /*
2495 * Put the new queue at the front of the of the current list,
2496 * so we know that it will be selected next.
2497 */
2498 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2499
2500 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2501
44f7c160
JA
2502 cfqq->slice_end = 0;
2503 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2504}
2505
22e2c507 2506/*
5e705374 2507 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2508 * something we should do about it
2509 */
2510static void
5e705374
JA
2511cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2512 struct request *rq)
22e2c507 2513{
5e705374 2514 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2515
45333d5a 2516 cfqd->rq_queued++;
374f84ac
JA
2517 if (rq_is_meta(rq))
2518 cfqq->meta_pending++;
2519
9c2c38a1 2520 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 2521 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
2522 cfq_update_idle_window(cfqd, cfqq, cic);
2523
b2c18e1e 2524 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2525
2526 if (cfqq == cfqd->active_queue) {
2527 /*
b029195d
JA
2528 * Remember that we saw a request from this process, but
2529 * don't start queuing just yet. Otherwise we risk seeing lots
2530 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2531 * and merging. If the request is already larger than a single
2532 * page, let it rip immediately. For that case we assume that
2d870722
JA
2533 * merging is already done. Ditto for a busy system that
2534 * has other work pending, don't risk delaying until the
2535 * idle timer unplug to continue working.
22e2c507 2536 */
d6ceb25e 2537 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2538 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2539 cfqd->busy_queues > 1) {
d6ceb25e 2540 del_timer(&cfqd->idle_slice_timer);
bf791937
VG
2541 __blk_run_queue(cfqd->queue);
2542 } else
2543 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2544 }
5e705374 2545 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2546 /*
2547 * not the active queue - expire current slice if it is
2548 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2549 * has some old slice time left and is of higher priority or
2550 * this new queue is RT and the current one is BE
22e2c507
JA
2551 */
2552 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2553 __blk_run_queue(cfqd->queue);
22e2c507 2554 }
1da177e4
LT
2555}
2556
165125e1 2557static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2558{
b4878f24 2559 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2560 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2561
7b679138 2562 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2563 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2564
30996f40 2565 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 2566 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 2567 cfq_add_rq_rb(rq);
22e2c507 2568
5e705374 2569 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2570}
2571
45333d5a
AC
2572/*
2573 * Update hw_tag based on peak queue depth over 50 samples under
2574 * sufficient load.
2575 */
2576static void cfq_update_hw_tag(struct cfq_data *cfqd)
2577{
1a1238a7
SL
2578 struct cfq_queue *cfqq = cfqd->active_queue;
2579
e459dd08
CZ
2580 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
2581 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
2582
2583 if (cfqd->hw_tag == 1)
2584 return;
45333d5a
AC
2585
2586 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2587 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2588 return;
2589
1a1238a7
SL
2590 /*
2591 * If active queue hasn't enough requests and can idle, cfq might not
2592 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2593 * case
2594 */
2595 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2596 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2597 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2598 return;
2599
45333d5a
AC
2600 if (cfqd->hw_tag_samples++ < 50)
2601 return;
2602
e459dd08 2603 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2604 cfqd->hw_tag = 1;
2605 else
2606 cfqd->hw_tag = 0;
45333d5a
AC
2607}
2608
165125e1 2609static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2610{
5e705374 2611 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2612 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2613 const int sync = rq_is_sync(rq);
b4878f24 2614 unsigned long now;
1da177e4 2615
b4878f24 2616 now = jiffies;
7b679138 2617 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2618
45333d5a
AC
2619 cfq_update_hw_tag(cfqd);
2620
5ad531db 2621 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 2622 WARN_ON(!cfqq->dispatched);
5ad531db 2623 cfqd->rq_in_driver[sync]--;
6d048f53 2624 cfqq->dispatched--;
1da177e4 2625
3ed9a296
JA
2626 if (cfq_cfqq_sync(cfqq))
2627 cfqd->sync_flight--;
2628
365722bb 2629 if (sync) {
5e705374 2630 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
2631 cfqd->last_end_sync_rq = now;
2632 }
caaa5f9f
JA
2633
2634 /*
2635 * If this is the active queue, check if it needs to be expired,
2636 * or if we want to idle in case it has no pending requests.
2637 */
2638 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2639 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2640
44f7c160
JA
2641 if (cfq_cfqq_slice_new(cfqq)) {
2642 cfq_set_prio_slice(cfqd, cfqq);
2643 cfq_clear_cfqq_slice_new(cfqq);
2644 }
a36e71f9 2645 /*
8e550632
CZ
2646 * Idling is not enabled on:
2647 * - expired queues
2648 * - idle-priority queues
2649 * - async queues
2650 * - queues with still some requests queued
2651 * - when there is a close cooperator
a36e71f9 2652 */
0871714e 2653 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2654 cfq_slice_expired(cfqd, 1);
8e550632
CZ
2655 else if (sync && cfqq_empty &&
2656 !cfq_close_cooperator(cfqd, cfqq)) {
2657 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
2658 /*
2659 * Idling is enabled for SYNC_WORKLOAD.
2660 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
2661 * only if we processed at least one !rq_noidle request
2662 */
2663 if (cfqd->serving_type == SYNC_WORKLOAD
2664 || cfqd->noidle_tree_requires_idle)
2665 cfq_arm_slice_timer(cfqd);
2666 }
caaa5f9f 2667 }
6d048f53 2668
5ad531db 2669 if (!rq_in_driver(cfqd))
23e018a1 2670 cfq_schedule_dispatch(cfqd);
1da177e4
LT
2671}
2672
22e2c507
JA
2673/*
2674 * we temporarily boost lower priority queues if they are holding fs exclusive
2675 * resources. they are boosted to normal prio (CLASS_BE/4)
2676 */
2677static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2678{
22e2c507
JA
2679 if (has_fs_excl()) {
2680 /*
2681 * boost idle prio on transactions that would lock out other
2682 * users of the filesystem
2683 */
2684 if (cfq_class_idle(cfqq))
2685 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2686 if (cfqq->ioprio > IOPRIO_NORM)
2687 cfqq->ioprio = IOPRIO_NORM;
2688 } else {
2689 /*
dddb7451 2690 * unboost the queue (if needed)
22e2c507 2691 */
dddb7451
CZ
2692 cfqq->ioprio_class = cfqq->org_ioprio_class;
2693 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 2694 }
22e2c507 2695}
1da177e4 2696
89850f7e 2697static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2698{
1b379d8d 2699 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2700 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2701 return ELV_MQUEUE_MUST;
3b18152c 2702 }
1da177e4 2703
22e2c507 2704 return ELV_MQUEUE_MAY;
22e2c507
JA
2705}
2706
165125e1 2707static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2708{
2709 struct cfq_data *cfqd = q->elevator->elevator_data;
2710 struct task_struct *tsk = current;
91fac317 2711 struct cfq_io_context *cic;
22e2c507
JA
2712 struct cfq_queue *cfqq;
2713
2714 /*
2715 * don't force setup of a queue from here, as a call to may_queue
2716 * does not necessarily imply that a request actually will be queued.
2717 * so just lookup a possibly existing queue, or return 'may queue'
2718 * if that fails
2719 */
4ac845a2 2720 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2721 if (!cic)
2722 return ELV_MQUEUE_MAY;
2723
b0b78f81 2724 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2725 if (cfqq) {
fd0928df 2726 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2727 cfq_prio_boost(cfqq);
2728
89850f7e 2729 return __cfq_may_queue(cfqq);
22e2c507
JA
2730 }
2731
2732 return ELV_MQUEUE_MAY;
1da177e4
LT
2733}
2734
1da177e4
LT
2735/*
2736 * queue lock held here
2737 */
bb37b94c 2738static void cfq_put_request(struct request *rq)
1da177e4 2739{
5e705374 2740 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2741
5e705374 2742 if (cfqq) {
22e2c507 2743 const int rw = rq_data_dir(rq);
1da177e4 2744
22e2c507
JA
2745 BUG_ON(!cfqq->allocated[rw]);
2746 cfqq->allocated[rw]--;
1da177e4 2747
5e705374 2748 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2749
1da177e4 2750 rq->elevator_private = NULL;
5e705374 2751 rq->elevator_private2 = NULL;
1da177e4 2752
1da177e4
LT
2753 cfq_put_queue(cfqq);
2754 }
2755}
2756
df5fe3e8
JM
2757static struct cfq_queue *
2758cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2759 struct cfq_queue *cfqq)
2760{
2761 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2762 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 2763 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
2764 cfq_put_queue(cfqq);
2765 return cic_to_cfqq(cic, 1);
2766}
2767
e6c5bc73
JM
2768static int should_split_cfqq(struct cfq_queue *cfqq)
2769{
2770 if (cfqq->seeky_start &&
2771 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2772 return 1;
2773 return 0;
2774}
2775
2776/*
2777 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2778 * was the last process referring to said cfqq.
2779 */
2780static struct cfq_queue *
2781split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2782{
2783 if (cfqq_process_refs(cfqq) == 1) {
2784 cfqq->seeky_start = 0;
2785 cfqq->pid = current->pid;
2786 cfq_clear_cfqq_coop(cfqq);
2787 return cfqq;
2788 }
2789
2790 cic_set_cfqq(cic, NULL, 1);
2791 cfq_put_queue(cfqq);
2792 return NULL;
2793}
1da177e4 2794/*
22e2c507 2795 * Allocate cfq data structures associated with this request.
1da177e4 2796 */
22e2c507 2797static int
165125e1 2798cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2799{
2800 struct cfq_data *cfqd = q->elevator->elevator_data;
2801 struct cfq_io_context *cic;
2802 const int rw = rq_data_dir(rq);
a6151c3a 2803 const bool is_sync = rq_is_sync(rq);
22e2c507 2804 struct cfq_queue *cfqq;
1da177e4
LT
2805 unsigned long flags;
2806
2807 might_sleep_if(gfp_mask & __GFP_WAIT);
2808
e2d74ac0 2809 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2810
1da177e4
LT
2811 spin_lock_irqsave(q->queue_lock, flags);
2812
22e2c507
JA
2813 if (!cic)
2814 goto queue_fail;
2815
e6c5bc73 2816new_queue:
91fac317 2817 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 2818 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 2819 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 2820 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 2821 } else {
e6c5bc73
JM
2822 /*
2823 * If the queue was seeky for too long, break it apart.
2824 */
2825 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2826 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2827 cfqq = split_cfqq(cic, cfqq);
2828 if (!cfqq)
2829 goto new_queue;
2830 }
2831
df5fe3e8
JM
2832 /*
2833 * Check to see if this queue is scheduled to merge with
2834 * another, closely cooperating queue. The merging of
2835 * queues happens here as it must be done in process context.
2836 * The reference on new_cfqq was taken in merge_cfqqs.
2837 */
2838 if (cfqq->new_cfqq)
2839 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 2840 }
1da177e4
LT
2841
2842 cfqq->allocated[rw]++;
22e2c507 2843 atomic_inc(&cfqq->ref);
1da177e4 2844
5e705374 2845 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 2846
5e705374
JA
2847 rq->elevator_private = cic;
2848 rq->elevator_private2 = cfqq;
2849 return 0;
1da177e4 2850
22e2c507
JA
2851queue_fail:
2852 if (cic)
2853 put_io_context(cic->ioc);
89850f7e 2854
23e018a1 2855 cfq_schedule_dispatch(cfqd);
1da177e4 2856 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 2857 cfq_log(cfqd, "set_request fail");
1da177e4
LT
2858 return 1;
2859}
2860
65f27f38 2861static void cfq_kick_queue(struct work_struct *work)
22e2c507 2862{
65f27f38 2863 struct cfq_data *cfqd =
23e018a1 2864 container_of(work, struct cfq_data, unplug_work);
165125e1 2865 struct request_queue *q = cfqd->queue;
22e2c507 2866
40bb54d1 2867 spin_lock_irq(q->queue_lock);
a7f55792 2868 __blk_run_queue(cfqd->queue);
40bb54d1 2869 spin_unlock_irq(q->queue_lock);
22e2c507
JA
2870}
2871
2872/*
2873 * Timer running if the active_queue is currently idling inside its time slice
2874 */
2875static void cfq_idle_slice_timer(unsigned long data)
2876{
2877 struct cfq_data *cfqd = (struct cfq_data *) data;
2878 struct cfq_queue *cfqq;
2879 unsigned long flags;
3c6bd2f8 2880 int timed_out = 1;
22e2c507 2881
7b679138
JA
2882 cfq_log(cfqd, "idle timer fired");
2883
22e2c507
JA
2884 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2885
fe094d98
JA
2886 cfqq = cfqd->active_queue;
2887 if (cfqq) {
3c6bd2f8
JA
2888 timed_out = 0;
2889
b029195d
JA
2890 /*
2891 * We saw a request before the queue expired, let it through
2892 */
2893 if (cfq_cfqq_must_dispatch(cfqq))
2894 goto out_kick;
2895
22e2c507
JA
2896 /*
2897 * expired
2898 */
44f7c160 2899 if (cfq_slice_used(cfqq))
22e2c507
JA
2900 goto expire;
2901
2902 /*
2903 * only expire and reinvoke request handler, if there are
2904 * other queues with pending requests
2905 */
caaa5f9f 2906 if (!cfqd->busy_queues)
22e2c507 2907 goto out_cont;
22e2c507
JA
2908
2909 /*
2910 * not expired and it has a request pending, let it dispatch
2911 */
75e50984 2912 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2913 goto out_kick;
76280aff
CZ
2914
2915 /*
2916 * Queue depth flag is reset only when the idle didn't succeed
2917 */
2918 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
2919 }
2920expire:
6084cdda 2921 cfq_slice_expired(cfqd, timed_out);
22e2c507 2922out_kick:
23e018a1 2923 cfq_schedule_dispatch(cfqd);
22e2c507
JA
2924out_cont:
2925 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2926}
2927
3b18152c
JA
2928static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2929{
2930 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 2931 cancel_work_sync(&cfqd->unplug_work);
3b18152c 2932}
22e2c507 2933
c2dea2d1
VT
2934static void cfq_put_async_queues(struct cfq_data *cfqd)
2935{
2936 int i;
2937
2938 for (i = 0; i < IOPRIO_BE_NR; i++) {
2939 if (cfqd->async_cfqq[0][i])
2940 cfq_put_queue(cfqd->async_cfqq[0][i]);
2941 if (cfqd->async_cfqq[1][i])
2942 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2943 }
2389d1ef
ON
2944
2945 if (cfqd->async_idle_cfqq)
2946 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2947}
2948
b374d18a 2949static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 2950{
22e2c507 2951 struct cfq_data *cfqd = e->elevator_data;
165125e1 2952 struct request_queue *q = cfqd->queue;
22e2c507 2953
3b18152c 2954 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2955
d9ff4187 2956 spin_lock_irq(q->queue_lock);
e2d74ac0 2957
d9ff4187 2958 if (cfqd->active_queue)
6084cdda 2959 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2960
2961 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2962 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2963 struct cfq_io_context,
2964 queue_list);
89850f7e
JA
2965
2966 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2967 }
e2d74ac0 2968
c2dea2d1 2969 cfq_put_async_queues(cfqd);
15c31be4 2970
d9ff4187 2971 spin_unlock_irq(q->queue_lock);
a90d742e
AV
2972
2973 cfq_shutdown_timer_wq(cfqd);
2974
a90d742e 2975 kfree(cfqd);
1da177e4
LT
2976}
2977
165125e1 2978static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
2979{
2980 struct cfq_data *cfqd;
718eee05 2981 int i, j;
cdb16e8f 2982 struct cfq_group *cfqg;
615f0259 2983 struct cfq_rb_root *st;
1da177e4 2984
94f6030c 2985 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 2986 if (!cfqd)
bc1c1169 2987 return NULL;
1da177e4 2988
cdb16e8f
VG
2989 /* Init root group */
2990 cfqg = &cfqd->root_group;
615f0259
VG
2991 for_each_cfqg_st(cfqg, i, j, st)
2992 *st = CFQ_RB_ROOT;
26a2ac00
JA
2993
2994 /*
2995 * Not strictly needed (since RB_ROOT just clears the node and we
2996 * zeroed cfqd on alloc), but better be safe in case someone decides
2997 * to add magic to the rb code
2998 */
2999 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3000 cfqd->prio_trees[i] = RB_ROOT;
3001
6118b70b
JA
3002 /*
3003 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3004 * Grab a permanent reference to it, so that the normal code flow
3005 * will not attempt to free it.
3006 */
3007 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3008 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3009 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3010
d9ff4187 3011 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3012
1da177e4 3013 cfqd->queue = q;
1da177e4 3014
22e2c507
JA
3015 init_timer(&cfqd->idle_slice_timer);
3016 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3017 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3018
23e018a1 3019 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3020
1da177e4 3021 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3022 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3023 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3024 cfqd->cfq_back_max = cfq_back_max;
3025 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3026 cfqd->cfq_slice[0] = cfq_slice_async;
3027 cfqd->cfq_slice[1] = cfq_slice_sync;
3028 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3029 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3030 cfqd->cfq_latency = 1;
e459dd08 3031 cfqd->hw_tag = -1;
365722bb 3032 cfqd->last_end_sync_rq = jiffies;
bc1c1169 3033 return cfqd;
1da177e4
LT
3034}
3035
3036static void cfq_slab_kill(void)
3037{
d6de8be7
JA
3038 /*
3039 * Caller already ensured that pending RCU callbacks are completed,
3040 * so we should have no busy allocations at this point.
3041 */
1da177e4
LT
3042 if (cfq_pool)
3043 kmem_cache_destroy(cfq_pool);
3044 if (cfq_ioc_pool)
3045 kmem_cache_destroy(cfq_ioc_pool);
3046}
3047
3048static int __init cfq_slab_setup(void)
3049{
0a31bd5f 3050 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3051 if (!cfq_pool)
3052 goto fail;
3053
34e6bbf2 3054 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3055 if (!cfq_ioc_pool)
3056 goto fail;
3057
3058 return 0;
3059fail:
3060 cfq_slab_kill();
3061 return -ENOMEM;
3062}
3063
1da177e4
LT
3064/*
3065 * sysfs parts below -->
3066 */
1da177e4
LT
3067static ssize_t
3068cfq_var_show(unsigned int var, char *page)
3069{
3070 return sprintf(page, "%d\n", var);
3071}
3072
3073static ssize_t
3074cfq_var_store(unsigned int *var, const char *page, size_t count)
3075{
3076 char *p = (char *) page;
3077
3078 *var = simple_strtoul(p, &p, 10);
3079 return count;
3080}
3081
1da177e4 3082#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3083static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3084{ \
3d1ab40f 3085 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3086 unsigned int __data = __VAR; \
3087 if (__CONV) \
3088 __data = jiffies_to_msecs(__data); \
3089 return cfq_var_show(__data, (page)); \
3090}
3091SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3092SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3093SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3094SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3095SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3096SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3097SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3098SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3099SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3100SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
3101#undef SHOW_FUNCTION
3102
3103#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3104static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3105{ \
3d1ab40f 3106 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3107 unsigned int __data; \
3108 int ret = cfq_var_store(&__data, (page), count); \
3109 if (__data < (MIN)) \
3110 __data = (MIN); \
3111 else if (__data > (MAX)) \
3112 __data = (MAX); \
3113 if (__CONV) \
3114 *(__PTR) = msecs_to_jiffies(__data); \
3115 else \
3116 *(__PTR) = __data; \
3117 return ret; \
3118}
3119STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3120STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3121 UINT_MAX, 1);
3122STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3123 UINT_MAX, 1);
e572ec7e 3124STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3125STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3126 UINT_MAX, 0);
22e2c507
JA
3127STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3128STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3129STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3130STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3131 UINT_MAX, 0);
963b72fc 3132STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
3133#undef STORE_FUNCTION
3134
e572ec7e
AV
3135#define CFQ_ATTR(name) \
3136 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3137
3138static struct elv_fs_entry cfq_attrs[] = {
3139 CFQ_ATTR(quantum),
e572ec7e
AV
3140 CFQ_ATTR(fifo_expire_sync),
3141 CFQ_ATTR(fifo_expire_async),
3142 CFQ_ATTR(back_seek_max),
3143 CFQ_ATTR(back_seek_penalty),
3144 CFQ_ATTR(slice_sync),
3145 CFQ_ATTR(slice_async),
3146 CFQ_ATTR(slice_async_rq),
3147 CFQ_ATTR(slice_idle),
963b72fc 3148 CFQ_ATTR(low_latency),
e572ec7e 3149 __ATTR_NULL
1da177e4
LT
3150};
3151
1da177e4
LT
3152static struct elevator_type iosched_cfq = {
3153 .ops = {
3154 .elevator_merge_fn = cfq_merge,
3155 .elevator_merged_fn = cfq_merged_request,
3156 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3157 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3158 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3159 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3160 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3161 .elevator_deactivate_req_fn = cfq_deactivate_request,
3162 .elevator_queue_empty_fn = cfq_queue_empty,
3163 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3164 .elevator_former_req_fn = elv_rb_former_request,
3165 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3166 .elevator_set_req_fn = cfq_set_request,
3167 .elevator_put_req_fn = cfq_put_request,
3168 .elevator_may_queue_fn = cfq_may_queue,
3169 .elevator_init_fn = cfq_init_queue,
3170 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3171 .trim = cfq_free_io_context,
1da177e4 3172 },
3d1ab40f 3173 .elevator_attrs = cfq_attrs,
1da177e4
LT
3174 .elevator_name = "cfq",
3175 .elevator_owner = THIS_MODULE,
3176};
3177
3178static int __init cfq_init(void)
3179{
22e2c507
JA
3180 /*
3181 * could be 0 on HZ < 1000 setups
3182 */
3183 if (!cfq_slice_async)
3184 cfq_slice_async = 1;
3185 if (!cfq_slice_idle)
3186 cfq_slice_idle = 1;
3187
1da177e4
LT
3188 if (cfq_slab_setup())
3189 return -ENOMEM;
3190
2fdd82bd 3191 elv_register(&iosched_cfq);
1da177e4 3192
2fdd82bd 3193 return 0;
1da177e4
LT
3194}
3195
3196static void __exit cfq_exit(void)
3197{
6e9a4738 3198 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 3199 elv_unregister(&iosched_cfq);
334e94de 3200 ioc_gone = &all_gone;
fba82272
OH
3201 /* ioc_gone's update must be visible before reading ioc_count */
3202 smp_wmb();
d6de8be7
JA
3203
3204 /*
3205 * this also protects us from entering cfq_slab_kill() with
3206 * pending RCU callbacks
3207 */
245b2e70 3208 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3209 wait_for_completion(&all_gone);
83521d3e 3210 cfq_slab_kill();
1da177e4
LT
3211}
3212
3213module_init(cfq_init);
3214module_exit(cfq_exit);
3215
3216MODULE_AUTHOR("Jens Axboe");
3217MODULE_LICENSE("GPL");
3218MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");