]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/cfq-iosched.c
cciss: make cciss_revalidate not loop through CISS_MAX_LUNS volumes unnecessarily.
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
5a0e3ad6 10#include <linux/slab.h>
1cc9be68
AV
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
ad5ebd2f 13#include <linux/jiffies.h>
1da177e4 14#include <linux/rbtree.h>
22e2c507 15#include <linux/ioprio.h>
7b679138 16#include <linux/blktrace_api.h>
e98ef89b 17#include "cfq.h"
1da177e4
LT
18
19/*
20 * tunables
21 */
fe094d98 22/* max queue in one round of service */
abc3c744 23static const int cfq_quantum = 8;
64100099 24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
64100099 29static const int cfq_slice_sync = HZ / 10;
3b18152c 30static int cfq_slice_async = HZ / 25;
64100099 31static const int cfq_slice_async_rq = 2;
caaa5f9f 32static int cfq_slice_idle = HZ / 125;
80bdf0c7 33static int cfq_group_idle = HZ / 125;
5db5d642
CZ
34static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35static const int cfq_hist_divisor = 4;
22e2c507 36
d9e7620e 37/*
0871714e 38 * offset from end of service tree
d9e7620e 39 */
0871714e 40#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
41
42/*
43 * below this threshold, we consider thinktime immediate
44 */
45#define CFQ_MIN_TT (2)
46
22e2c507 47#define CFQ_SLICE_SCALE (5)
45333d5a 48#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 49#define CFQ_SERVICE_SHIFT 12
22e2c507 50
3dde36dd 51#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 52#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 53#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 54#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 55
fe094d98
JA
56#define RQ_CIC(rq) \
57 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
7f1dc8a2 59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
1da177e4 60
e18b890b
CL
61static struct kmem_cache *cfq_pool;
62static struct kmem_cache *cfq_ioc_pool;
1da177e4 63
245b2e70 64static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 65static struct completion *ioc_gone;
9a11b4ed 66static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 67
80b15c73
KK
68static DEFINE_SPINLOCK(cic_index_lock);
69static DEFINE_IDA(cic_index_ida);
70
22e2c507
JA
71#define CFQ_PRIO_LISTS IOPRIO_BE_NR
72#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
73#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
206dc69b 75#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 76#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 77
cc09e299
JA
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
aa6f6a3d 87 unsigned count;
73e9ffdd 88 unsigned total_weight;
1fa8f6d6 89 u64 min_vdisktime;
cc09e299 90};
73e9ffdd
RK
91#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
cc09e299 93
6118b70b
JA
94/*
95 * Per process-grouping structure
96 */
97struct cfq_queue {
98 /* reference count */
30d7b944 99 int ref;
6118b70b
JA
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
dae739eb
VG
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
f75edf2d 125 unsigned int allocated_slice;
c4081ba5 126 unsigned int slice_dispatch;
dae739eb
VG
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
6118b70b
JA
129 unsigned long slice_end;
130 long slice_resid;
6118b70b
JA
131
132 /* pending metadata requests */
133 int meta_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
140
c4081ba5
RK
141 pid_t pid;
142
3dde36dd 143 u32 seek_history;
b2c18e1e
JM
144 sector_t last_request_pos;
145
aa6f6a3d 146 struct cfq_rb_root *service_tree;
df5fe3e8 147 struct cfq_queue *new_cfqq;
cdb16e8f 148 struct cfq_group *cfqg;
ae30c286 149 struct cfq_group *orig_cfqg;
c4e7893e
VG
150 /* Number of sectors dispatched from queue in single dispatch round */
151 unsigned long nr_sectors;
6118b70b
JA
152};
153
c0324a02 154/*
718eee05 155 * First index in the service_trees.
c0324a02
CZ
156 * IDLE is handled separately, so it has negative index
157 */
158enum wl_prio_t {
c0324a02 159 BE_WORKLOAD = 0,
615f0259
VG
160 RT_WORKLOAD = 1,
161 IDLE_WORKLOAD = 2,
b4627321 162 CFQ_PRIO_NR,
c0324a02
CZ
163};
164
718eee05
CZ
165/*
166 * Second index in the service_trees.
167 */
168enum wl_type_t {
169 ASYNC_WORKLOAD = 0,
170 SYNC_NOIDLE_WORKLOAD = 1,
171 SYNC_WORKLOAD = 2
172};
173
cdb16e8f
VG
174/* This is per cgroup per device grouping structure */
175struct cfq_group {
1fa8f6d6
VG
176 /* group service_tree member */
177 struct rb_node rb_node;
178
179 /* group service_tree key */
180 u64 vdisktime;
25bc6b07 181 unsigned int weight;
1fa8f6d6
VG
182
183 /* number of cfqq currently on this group */
184 int nr_cfqq;
185
cdb16e8f 186 /*
b4627321
VG
187 * Per group busy queus average. Useful for workload slice calc. We
188 * create the array for each prio class but at run time it is used
189 * only for RT and BE class and slot for IDLE class remains unused.
190 * This is primarily done to avoid confusion and a gcc warning.
191 */
192 unsigned int busy_queues_avg[CFQ_PRIO_NR];
193 /*
194 * rr lists of queues with requests. We maintain service trees for
195 * RT and BE classes. These trees are subdivided in subclasses
196 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
197 * class there is no subclassification and all the cfq queues go on
198 * a single tree service_tree_idle.
cdb16e8f
VG
199 * Counts are embedded in the cfq_rb_root
200 */
201 struct cfq_rb_root service_trees[2][3];
202 struct cfq_rb_root service_tree_idle;
dae739eb
VG
203
204 unsigned long saved_workload_slice;
205 enum wl_type_t saved_workload;
206 enum wl_prio_t saved_serving_prio;
25fb5169
VG
207 struct blkio_group blkg;
208#ifdef CONFIG_CFQ_GROUP_IOSCHED
209 struct hlist_node cfqd_node;
329a6781 210 int ref;
25fb5169 211#endif
80bdf0c7
VG
212 /* number of requests that are on the dispatch list or inside driver */
213 int dispatched;
cdb16e8f 214};
718eee05 215
22e2c507
JA
216/*
217 * Per block device queue structure
218 */
1da177e4 219struct cfq_data {
165125e1 220 struct request_queue *queue;
1fa8f6d6
VG
221 /* Root service tree for cfq_groups */
222 struct cfq_rb_root grp_service_tree;
cdb16e8f 223 struct cfq_group root_group;
22e2c507 224
c0324a02
CZ
225 /*
226 * The priority currently being served
22e2c507 227 */
c0324a02 228 enum wl_prio_t serving_prio;
718eee05
CZ
229 enum wl_type_t serving_type;
230 unsigned long workload_expires;
cdb16e8f 231 struct cfq_group *serving_group;
a36e71f9
JA
232
233 /*
234 * Each priority tree is sorted by next_request position. These
235 * trees are used when determining if two or more queues are
236 * interleaving requests (see cfq_close_cooperator).
237 */
238 struct rb_root prio_trees[CFQ_PRIO_LISTS];
239
22e2c507
JA
240 unsigned int busy_queues;
241
53c583d2
CZ
242 int rq_in_driver;
243 int rq_in_flight[2];
45333d5a
AC
244
245 /*
246 * queue-depth detection
247 */
248 int rq_queued;
25776e35 249 int hw_tag;
e459dd08
CZ
250 /*
251 * hw_tag can be
252 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
253 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
254 * 0 => no NCQ
255 */
256 int hw_tag_est_depth;
257 unsigned int hw_tag_samples;
1da177e4 258
22e2c507
JA
259 /*
260 * idle window management
261 */
262 struct timer_list idle_slice_timer;
23e018a1 263 struct work_struct unplug_work;
1da177e4 264
22e2c507
JA
265 struct cfq_queue *active_queue;
266 struct cfq_io_context *active_cic;
22e2c507 267
c2dea2d1
VT
268 /*
269 * async queue for each priority case
270 */
271 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
272 struct cfq_queue *async_idle_cfqq;
15c31be4 273
6d048f53 274 sector_t last_position;
1da177e4 275
1da177e4
LT
276 /*
277 * tunables, see top of file
278 */
279 unsigned int cfq_quantum;
22e2c507 280 unsigned int cfq_fifo_expire[2];
1da177e4
LT
281 unsigned int cfq_back_penalty;
282 unsigned int cfq_back_max;
22e2c507
JA
283 unsigned int cfq_slice[2];
284 unsigned int cfq_slice_async_rq;
285 unsigned int cfq_slice_idle;
80bdf0c7 286 unsigned int cfq_group_idle;
963b72fc 287 unsigned int cfq_latency;
ae30c286 288 unsigned int cfq_group_isolation;
d9ff4187 289
80b15c73 290 unsigned int cic_index;
d9ff4187 291 struct list_head cic_list;
1da177e4 292
6118b70b
JA
293 /*
294 * Fallback dummy cfqq for extreme OOM conditions
295 */
296 struct cfq_queue oom_cfqq;
365722bb 297
573412b2 298 unsigned long last_delayed_sync;
25fb5169
VG
299
300 /* List of cfq groups being managed on this device*/
301 struct hlist_head cfqg_list;
bb729bc9 302 struct rcu_head rcu;
1da177e4
LT
303};
304
25fb5169
VG
305static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
306
cdb16e8f
VG
307static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
308 enum wl_prio_t prio,
65b32a57 309 enum wl_type_t type)
c0324a02 310{
1fa8f6d6
VG
311 if (!cfqg)
312 return NULL;
313
c0324a02 314 if (prio == IDLE_WORKLOAD)
cdb16e8f 315 return &cfqg->service_tree_idle;
c0324a02 316
cdb16e8f 317 return &cfqg->service_trees[prio][type];
c0324a02
CZ
318}
319
3b18152c 320enum cfqq_state_flags {
b0b8d749
JA
321 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
322 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 323 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 324 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
325 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
326 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
327 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 328 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 329 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 330 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 331 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 332 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 333 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
334};
335
336#define CFQ_CFQQ_FNS(name) \
337static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
338{ \
fe094d98 339 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
340} \
341static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
342{ \
fe094d98 343 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
344} \
345static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
346{ \
fe094d98 347 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
348}
349
350CFQ_CFQQ_FNS(on_rr);
351CFQ_CFQQ_FNS(wait_request);
b029195d 352CFQ_CFQQ_FNS(must_dispatch);
3b18152c 353CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
354CFQ_CFQQ_FNS(fifo_expire);
355CFQ_CFQQ_FNS(idle_window);
356CFQ_CFQQ_FNS(prio_changed);
44f7c160 357CFQ_CFQQ_FNS(slice_new);
91fac317 358CFQ_CFQQ_FNS(sync);
a36e71f9 359CFQ_CFQQ_FNS(coop);
ae54abed 360CFQ_CFQQ_FNS(split_coop);
76280aff 361CFQ_CFQQ_FNS(deep);
f75edf2d 362CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
363#undef CFQ_CFQQ_FNS
364
afc24d49 365#ifdef CONFIG_CFQ_GROUP_IOSCHED
2868ef7b
VG
366#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
367 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
368 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
369 blkg_path(&(cfqq)->cfqg->blkg), ##args);
370
371#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
372 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
373 blkg_path(&(cfqg)->blkg), ##args); \
374
375#else
7b679138
JA
376#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
377 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
378#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
379#endif
7b679138
JA
380#define cfq_log(cfqd, fmt, args...) \
381 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
382
615f0259
VG
383/* Traverses through cfq group service trees */
384#define for_each_cfqg_st(cfqg, i, j, st) \
385 for (i = 0; i <= IDLE_WORKLOAD; i++) \
386 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
387 : &cfqg->service_tree_idle; \
388 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
389 (i == IDLE_WORKLOAD && j == 0); \
390 j++, st = i < IDLE_WORKLOAD ? \
391 &cfqg->service_trees[i][j]: NULL) \
392
393
02b35081
VG
394static inline bool iops_mode(struct cfq_data *cfqd)
395{
396 /*
397 * If we are not idling on queues and it is a NCQ drive, parallel
398 * execution of requests is on and measuring time is not possible
399 * in most of the cases until and unless we drive shallower queue
400 * depths and that becomes a performance bottleneck. In such cases
401 * switch to start providing fairness in terms of number of IOs.
402 */
403 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
404 return true;
405 else
406 return false;
407}
408
c0324a02
CZ
409static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
410{
411 if (cfq_class_idle(cfqq))
412 return IDLE_WORKLOAD;
413 if (cfq_class_rt(cfqq))
414 return RT_WORKLOAD;
415 return BE_WORKLOAD;
416}
417
718eee05
CZ
418
419static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
420{
421 if (!cfq_cfqq_sync(cfqq))
422 return ASYNC_WORKLOAD;
423 if (!cfq_cfqq_idle_window(cfqq))
424 return SYNC_NOIDLE_WORKLOAD;
425 return SYNC_WORKLOAD;
426}
427
58ff82f3
VG
428static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
429 struct cfq_data *cfqd,
430 struct cfq_group *cfqg)
c0324a02
CZ
431{
432 if (wl == IDLE_WORKLOAD)
cdb16e8f 433 return cfqg->service_tree_idle.count;
c0324a02 434
cdb16e8f
VG
435 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
436 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
437 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
438}
439
f26bd1f0
VG
440static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
441 struct cfq_group *cfqg)
442{
443 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
444 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
445}
446
165125e1 447static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 448static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 449 struct io_context *, gfp_t);
4ac845a2 450static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
451 struct io_context *);
452
453static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 454 bool is_sync)
91fac317 455{
a6151c3a 456 return cic->cfqq[is_sync];
91fac317
VT
457}
458
459static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 460 struct cfq_queue *cfqq, bool is_sync)
91fac317 461{
a6151c3a 462 cic->cfqq[is_sync] = cfqq;
91fac317
VT
463}
464
bca4b914 465#define CIC_DEAD_KEY 1ul
80b15c73 466#define CIC_DEAD_INDEX_SHIFT 1
bca4b914
KK
467
468static inline void *cfqd_dead_key(struct cfq_data *cfqd)
469{
80b15c73 470 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
bca4b914
KK
471}
472
473static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
474{
475 struct cfq_data *cfqd = cic->key;
476
477 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
478 return NULL;
479
480 return cfqd;
481}
482
91fac317
VT
483/*
484 * We regard a request as SYNC, if it's either a read or has the SYNC bit
485 * set (in which case it could also be direct WRITE).
486 */
a6151c3a 487static inline bool cfq_bio_sync(struct bio *bio)
91fac317 488{
7b6d91da 489 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
91fac317 490}
1da177e4 491
99f95e52
AM
492/*
493 * scheduler run of queue, if there are requests pending and no one in the
494 * driver that will restart queueing
495 */
23e018a1 496static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 497{
7b679138
JA
498 if (cfqd->busy_queues) {
499 cfq_log(cfqd, "schedule dispatch");
23e018a1 500 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 501 }
99f95e52
AM
502}
503
165125e1 504static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
505{
506 struct cfq_data *cfqd = q->elevator->elevator_data;
507
f04a6424 508 return !cfqd->rq_queued;
99f95e52
AM
509}
510
44f7c160
JA
511/*
512 * Scale schedule slice based on io priority. Use the sync time slice only
513 * if a queue is marked sync and has sync io queued. A sync queue with async
514 * io only, should not get full sync slice length.
515 */
a6151c3a 516static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 517 unsigned short prio)
44f7c160 518{
d9e7620e 519 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 520
d9e7620e
JA
521 WARN_ON(prio >= IOPRIO_BE_NR);
522
523 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
524}
44f7c160 525
d9e7620e
JA
526static inline int
527cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
528{
529 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
530}
531
25bc6b07
VG
532static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
533{
534 u64 d = delta << CFQ_SERVICE_SHIFT;
535
536 d = d * BLKIO_WEIGHT_DEFAULT;
537 do_div(d, cfqg->weight);
538 return d;
539}
540
541static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
542{
543 s64 delta = (s64)(vdisktime - min_vdisktime);
544 if (delta > 0)
545 min_vdisktime = vdisktime;
546
547 return min_vdisktime;
548}
549
550static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
551{
552 s64 delta = (s64)(vdisktime - min_vdisktime);
553 if (delta < 0)
554 min_vdisktime = vdisktime;
555
556 return min_vdisktime;
557}
558
559static void update_min_vdisktime(struct cfq_rb_root *st)
560{
561 u64 vdisktime = st->min_vdisktime;
562 struct cfq_group *cfqg;
563
25bc6b07
VG
564 if (st->left) {
565 cfqg = rb_entry_cfqg(st->left);
566 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
567 }
568
569 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
570}
571
5db5d642
CZ
572/*
573 * get averaged number of queues of RT/BE priority.
574 * average is updated, with a formula that gives more weight to higher numbers,
575 * to quickly follows sudden increases and decrease slowly
576 */
577
58ff82f3
VG
578static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
579 struct cfq_group *cfqg, bool rt)
5869619c 580{
5db5d642
CZ
581 unsigned min_q, max_q;
582 unsigned mult = cfq_hist_divisor - 1;
583 unsigned round = cfq_hist_divisor / 2;
58ff82f3 584 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 585
58ff82f3
VG
586 min_q = min(cfqg->busy_queues_avg[rt], busy);
587 max_q = max(cfqg->busy_queues_avg[rt], busy);
588 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 589 cfq_hist_divisor;
58ff82f3
VG
590 return cfqg->busy_queues_avg[rt];
591}
592
593static inline unsigned
594cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
595{
596 struct cfq_rb_root *st = &cfqd->grp_service_tree;
597
598 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
599}
600
c553f8e3
SL
601static inline unsigned
602cfq_scaled_group_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
44f7c160 603{
5db5d642
CZ
604 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
605 if (cfqd->cfq_latency) {
58ff82f3
VG
606 /*
607 * interested queues (we consider only the ones with the same
608 * priority class in the cfq group)
609 */
610 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
611 cfq_class_rt(cfqq));
5db5d642
CZ
612 unsigned sync_slice = cfqd->cfq_slice[1];
613 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
614 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
615
616 if (expect_latency > group_slice) {
5db5d642
CZ
617 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
618 /* scale low_slice according to IO priority
619 * and sync vs async */
620 unsigned low_slice =
621 min(slice, base_low_slice * slice / sync_slice);
622 /* the adapted slice value is scaled to fit all iqs
623 * into the target latency */
58ff82f3 624 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
625 low_slice);
626 }
627 }
c553f8e3
SL
628 return slice;
629}
630
631static inline void
632cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
633{
634 unsigned slice = cfq_scaled_group_slice(cfqd, cfqq);
635
dae739eb 636 cfqq->slice_start = jiffies;
5db5d642 637 cfqq->slice_end = jiffies + slice;
f75edf2d 638 cfqq->allocated_slice = slice;
7b679138 639 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
640}
641
642/*
643 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
644 * isn't valid until the first request from the dispatch is activated
645 * and the slice time set.
646 */
a6151c3a 647static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
648{
649 if (cfq_cfqq_slice_new(cfqq))
c1e44756 650 return false;
44f7c160 651 if (time_before(jiffies, cfqq->slice_end))
c1e44756 652 return false;
44f7c160 653
c1e44756 654 return true;
44f7c160
JA
655}
656
1da177e4 657/*
5e705374 658 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 659 * We choose the request that is closest to the head right now. Distance
e8a99053 660 * behind the head is penalized and only allowed to a certain extent.
1da177e4 661 */
5e705374 662static struct request *
cf7c25cf 663cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 664{
cf7c25cf 665 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 666 unsigned long back_max;
e8a99053
AM
667#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
668#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
669 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 670
5e705374
JA
671 if (rq1 == NULL || rq1 == rq2)
672 return rq2;
673 if (rq2 == NULL)
674 return rq1;
9c2c38a1 675
5e705374
JA
676 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
677 return rq1;
678 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
679 return rq2;
7b6d91da 680 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
374f84ac 681 return rq1;
7b6d91da
CH
682 else if ((rq2->cmd_flags & REQ_META) &&
683 !(rq1->cmd_flags & REQ_META))
374f84ac 684 return rq2;
1da177e4 685
83096ebf
TH
686 s1 = blk_rq_pos(rq1);
687 s2 = blk_rq_pos(rq2);
1da177e4 688
1da177e4
LT
689 /*
690 * by definition, 1KiB is 2 sectors
691 */
692 back_max = cfqd->cfq_back_max * 2;
693
694 /*
695 * Strict one way elevator _except_ in the case where we allow
696 * short backward seeks which are biased as twice the cost of a
697 * similar forward seek.
698 */
699 if (s1 >= last)
700 d1 = s1 - last;
701 else if (s1 + back_max >= last)
702 d1 = (last - s1) * cfqd->cfq_back_penalty;
703 else
e8a99053 704 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
705
706 if (s2 >= last)
707 d2 = s2 - last;
708 else if (s2 + back_max >= last)
709 d2 = (last - s2) * cfqd->cfq_back_penalty;
710 else
e8a99053 711 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
712
713 /* Found required data */
e8a99053
AM
714
715 /*
716 * By doing switch() on the bit mask "wrap" we avoid having to
717 * check two variables for all permutations: --> faster!
718 */
719 switch (wrap) {
5e705374 720 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 721 if (d1 < d2)
5e705374 722 return rq1;
e8a99053 723 else if (d2 < d1)
5e705374 724 return rq2;
e8a99053
AM
725 else {
726 if (s1 >= s2)
5e705374 727 return rq1;
e8a99053 728 else
5e705374 729 return rq2;
e8a99053 730 }
1da177e4 731
e8a99053 732 case CFQ_RQ2_WRAP:
5e705374 733 return rq1;
e8a99053 734 case CFQ_RQ1_WRAP:
5e705374
JA
735 return rq2;
736 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
737 default:
738 /*
739 * Since both rqs are wrapped,
740 * start with the one that's further behind head
741 * (--> only *one* back seek required),
742 * since back seek takes more time than forward.
743 */
744 if (s1 <= s2)
5e705374 745 return rq1;
1da177e4 746 else
5e705374 747 return rq2;
1da177e4
LT
748 }
749}
750
498d3aa2
JA
751/*
752 * The below is leftmost cache rbtree addon
753 */
0871714e 754static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 755{
615f0259
VG
756 /* Service tree is empty */
757 if (!root->count)
758 return NULL;
759
cc09e299
JA
760 if (!root->left)
761 root->left = rb_first(&root->rb);
762
0871714e
JA
763 if (root->left)
764 return rb_entry(root->left, struct cfq_queue, rb_node);
765
766 return NULL;
cc09e299
JA
767}
768
1fa8f6d6
VG
769static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
770{
771 if (!root->left)
772 root->left = rb_first(&root->rb);
773
774 if (root->left)
775 return rb_entry_cfqg(root->left);
776
777 return NULL;
778}
779
a36e71f9
JA
780static void rb_erase_init(struct rb_node *n, struct rb_root *root)
781{
782 rb_erase(n, root);
783 RB_CLEAR_NODE(n);
784}
785
cc09e299
JA
786static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
787{
788 if (root->left == n)
789 root->left = NULL;
a36e71f9 790 rb_erase_init(n, &root->rb);
aa6f6a3d 791 --root->count;
cc09e299
JA
792}
793
1da177e4
LT
794/*
795 * would be nice to take fifo expire time into account as well
796 */
5e705374
JA
797static struct request *
798cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
799 struct request *last)
1da177e4 800{
21183b07
JA
801 struct rb_node *rbnext = rb_next(&last->rb_node);
802 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 803 struct request *next = NULL, *prev = NULL;
1da177e4 804
21183b07 805 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
806
807 if (rbprev)
5e705374 808 prev = rb_entry_rq(rbprev);
1da177e4 809
21183b07 810 if (rbnext)
5e705374 811 next = rb_entry_rq(rbnext);
21183b07
JA
812 else {
813 rbnext = rb_first(&cfqq->sort_list);
814 if (rbnext && rbnext != &last->rb_node)
5e705374 815 next = rb_entry_rq(rbnext);
21183b07 816 }
1da177e4 817
cf7c25cf 818 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
819}
820
d9e7620e
JA
821static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
822 struct cfq_queue *cfqq)
1da177e4 823{
d9e7620e
JA
824 /*
825 * just an approximation, should be ok.
826 */
cdb16e8f 827 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 828 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
829}
830
1fa8f6d6
VG
831static inline s64
832cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
833{
834 return cfqg->vdisktime - st->min_vdisktime;
835}
836
837static void
838__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
839{
840 struct rb_node **node = &st->rb.rb_node;
841 struct rb_node *parent = NULL;
842 struct cfq_group *__cfqg;
843 s64 key = cfqg_key(st, cfqg);
844 int left = 1;
845
846 while (*node != NULL) {
847 parent = *node;
848 __cfqg = rb_entry_cfqg(parent);
849
850 if (key < cfqg_key(st, __cfqg))
851 node = &parent->rb_left;
852 else {
853 node = &parent->rb_right;
854 left = 0;
855 }
856 }
857
858 if (left)
859 st->left = &cfqg->rb_node;
860
861 rb_link_node(&cfqg->rb_node, parent, node);
862 rb_insert_color(&cfqg->rb_node, &st->rb);
863}
864
865static void
866cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
867{
868 struct cfq_rb_root *st = &cfqd->grp_service_tree;
869 struct cfq_group *__cfqg;
870 struct rb_node *n;
871
872 cfqg->nr_cfqq++;
760701bf 873 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1fa8f6d6
VG
874 return;
875
876 /*
877 * Currently put the group at the end. Later implement something
878 * so that groups get lesser vtime based on their weights, so that
879 * if group does not loose all if it was not continously backlogged.
880 */
881 n = rb_last(&st->rb);
882 if (n) {
883 __cfqg = rb_entry_cfqg(n);
884 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
885 } else
886 cfqg->vdisktime = st->min_vdisktime;
887
888 __cfq_group_service_tree_add(st, cfqg);
58ff82f3 889 st->total_weight += cfqg->weight;
1fa8f6d6
VG
890}
891
892static void
893cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
894{
895 struct cfq_rb_root *st = &cfqd->grp_service_tree;
896
897 BUG_ON(cfqg->nr_cfqq < 1);
898 cfqg->nr_cfqq--;
25bc6b07 899
1fa8f6d6
VG
900 /* If there are other cfq queues under this group, don't delete it */
901 if (cfqg->nr_cfqq)
902 return;
903
2868ef7b 904 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
58ff82f3 905 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
906 if (!RB_EMPTY_NODE(&cfqg->rb_node))
907 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 908 cfqg->saved_workload_slice = 0;
e98ef89b 909 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
910}
911
912static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
913{
f75edf2d 914 unsigned int slice_used;
dae739eb
VG
915
916 /*
917 * Queue got expired before even a single request completed or
918 * got expired immediately after first request completion.
919 */
920 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
921 /*
922 * Also charge the seek time incurred to the group, otherwise
923 * if there are mutiple queues in the group, each can dispatch
924 * a single request on seeky media and cause lots of seek time
925 * and group will never know it.
926 */
927 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
928 1);
929 } else {
930 slice_used = jiffies - cfqq->slice_start;
f75edf2d
VG
931 if (slice_used > cfqq->allocated_slice)
932 slice_used = cfqq->allocated_slice;
dae739eb
VG
933 }
934
dae739eb
VG
935 return slice_used;
936}
937
938static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
e5ff082e 939 struct cfq_queue *cfqq)
dae739eb
VG
940{
941 struct cfq_rb_root *st = &cfqd->grp_service_tree;
02b35081 942 unsigned int used_sl, charge;
f26bd1f0
VG
943 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
944 - cfqg->service_tree_idle.count;
945
946 BUG_ON(nr_sync < 0);
02b35081 947 used_sl = charge = cfq_cfqq_slice_usage(cfqq);
dae739eb 948
02b35081
VG
949 if (iops_mode(cfqd))
950 charge = cfqq->slice_dispatch;
951 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
952 charge = cfqq->allocated_slice;
dae739eb
VG
953
954 /* Can't update vdisktime while group is on service tree */
955 cfq_rb_erase(&cfqg->rb_node, st);
02b35081 956 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
dae739eb
VG
957 __cfq_group_service_tree_add(st, cfqg);
958
959 /* This group is being expired. Save the context */
960 if (time_after(cfqd->workload_expires, jiffies)) {
961 cfqg->saved_workload_slice = cfqd->workload_expires
962 - jiffies;
963 cfqg->saved_workload = cfqd->serving_type;
964 cfqg->saved_serving_prio = cfqd->serving_prio;
965 } else
966 cfqg->saved_workload_slice = 0;
2868ef7b
VG
967
968 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
969 st->min_vdisktime);
c4e7893e
VG
970 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
971 " sect=%u", used_sl, cfqq->slice_dispatch, charge,
972 iops_mode(cfqd), cfqq->nr_sectors);
e98ef89b
VG
973 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
974 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1fa8f6d6
VG
975}
976
25fb5169
VG
977#ifdef CONFIG_CFQ_GROUP_IOSCHED
978static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
979{
980 if (blkg)
981 return container_of(blkg, struct cfq_group, blkg);
982 return NULL;
983}
984
fe071437
VG
985void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
986 unsigned int weight)
f8d461d6
VG
987{
988 cfqg_of_blkg(blkg)->weight = weight;
989}
990
25fb5169
VG
991static struct cfq_group *
992cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
993{
994 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
995 struct cfq_group *cfqg = NULL;
996 void *key = cfqd;
997 int i, j;
998 struct cfq_rb_root *st;
22084190
VG
999 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1000 unsigned int major, minor;
25fb5169 1001
25fb5169 1002 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
a74b2ada
RB
1003 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1004 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1005 cfqg->blkg.dev = MKDEV(major, minor);
1006 goto done;
1007 }
25fb5169
VG
1008 if (cfqg || !create)
1009 goto done;
1010
1011 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1012 if (!cfqg)
1013 goto done;
1014
25fb5169
VG
1015 for_each_cfqg_st(cfqg, i, j, st)
1016 *st = CFQ_RB_ROOT;
1017 RB_CLEAR_NODE(&cfqg->rb_node);
1018
b1c35769
VG
1019 /*
1020 * Take the initial reference that will be released on destroy
1021 * This can be thought of a joint reference by cgroup and
1022 * elevator which will be dropped by either elevator exit
1023 * or cgroup deletion path depending on who is exiting first.
1024 */
329a6781 1025 cfqg->ref = 1;
b1c35769 1026
180be2a0
VG
1027 /*
1028 * Add group onto cgroup list. It might happen that bdi->dev is
b595076a 1029 * not initialized yet. Initialize this new group without major
180be2a0
VG
1030 * and minor info and this info will be filled in once a new thread
1031 * comes for IO. See code above.
1032 */
1033 if (bdi->dev) {
1034 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1035 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
22084190 1036 MKDEV(major, minor));
180be2a0
VG
1037 } else
1038 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1039 0);
1040
34d0f179 1041 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
25fb5169
VG
1042
1043 /* Add group on cfqd list */
1044 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1045
1046done:
25fb5169
VG
1047 return cfqg;
1048}
1049
1050/*
1051 * Search for the cfq group current task belongs to. If create = 1, then also
1052 * create the cfq group if it does not exist. request_queue lock must be held.
1053 */
1054static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1055{
1056 struct cgroup *cgroup;
1057 struct cfq_group *cfqg = NULL;
1058
1059 rcu_read_lock();
1060 cgroup = task_cgroup(current, blkio_subsys_id);
1061 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1062 if (!cfqg && create)
1063 cfqg = &cfqd->root_group;
1064 rcu_read_unlock();
1065 return cfqg;
1066}
1067
7f1dc8a2
VG
1068static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1069{
329a6781 1070 cfqg->ref++;
7f1dc8a2
VG
1071 return cfqg;
1072}
1073
25fb5169
VG
1074static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1075{
1076 /* Currently, all async queues are mapped to root group */
1077 if (!cfq_cfqq_sync(cfqq))
1078 cfqg = &cfqq->cfqd->root_group;
1079
1080 cfqq->cfqg = cfqg;
b1c35769 1081 /* cfqq reference on cfqg */
329a6781 1082 cfqq->cfqg->ref++;
b1c35769
VG
1083}
1084
1085static void cfq_put_cfqg(struct cfq_group *cfqg)
1086{
1087 struct cfq_rb_root *st;
1088 int i, j;
1089
329a6781
SL
1090 BUG_ON(cfqg->ref <= 0);
1091 cfqg->ref--;
1092 if (cfqg->ref)
b1c35769
VG
1093 return;
1094 for_each_cfqg_st(cfqg, i, j, st)
b54ce60e 1095 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
b1c35769
VG
1096 kfree(cfqg);
1097}
1098
1099static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1100{
1101 /* Something wrong if we are trying to remove same group twice */
1102 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1103
1104 hlist_del_init(&cfqg->cfqd_node);
1105
1106 /*
1107 * Put the reference taken at the time of creation so that when all
1108 * queues are gone, group can be destroyed.
1109 */
1110 cfq_put_cfqg(cfqg);
1111}
1112
1113static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1114{
1115 struct hlist_node *pos, *n;
1116 struct cfq_group *cfqg;
1117
1118 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1119 /*
1120 * If cgroup removal path got to blk_group first and removed
1121 * it from cgroup list, then it will take care of destroying
1122 * cfqg also.
1123 */
e98ef89b 1124 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
b1c35769
VG
1125 cfq_destroy_cfqg(cfqd, cfqg);
1126 }
25fb5169 1127}
b1c35769
VG
1128
1129/*
1130 * Blk cgroup controller notification saying that blkio_group object is being
1131 * delinked as associated cgroup object is going away. That also means that
1132 * no new IO will come in this group. So get rid of this group as soon as
1133 * any pending IO in the group is finished.
1134 *
1135 * This function is called under rcu_read_lock(). key is the rcu protected
1136 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1137 * read lock.
1138 *
1139 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1140 * it should not be NULL as even if elevator was exiting, cgroup deltion
1141 * path got to it first.
1142 */
1143void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1144{
1145 unsigned long flags;
1146 struct cfq_data *cfqd = key;
1147
1148 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1149 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1150 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1151}
1152
25fb5169
VG
1153#else /* GROUP_IOSCHED */
1154static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1155{
1156 return &cfqd->root_group;
1157}
7f1dc8a2
VG
1158
1159static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1160{
50eaeb32 1161 return cfqg;
7f1dc8a2
VG
1162}
1163
25fb5169
VG
1164static inline void
1165cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1166 cfqq->cfqg = cfqg;
1167}
1168
b1c35769
VG
1169static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1170static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1171
25fb5169
VG
1172#endif /* GROUP_IOSCHED */
1173
498d3aa2 1174/*
c0324a02 1175 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1176 * requests waiting to be processed. It is sorted in the order that
1177 * we will service the queues.
1178 */
a36e71f9 1179static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1180 bool add_front)
d9e7620e 1181{
0871714e
JA
1182 struct rb_node **p, *parent;
1183 struct cfq_queue *__cfqq;
d9e7620e 1184 unsigned long rb_key;
c0324a02 1185 struct cfq_rb_root *service_tree;
498d3aa2 1186 int left;
dae739eb 1187 int new_cfqq = 1;
ae30c286
VG
1188 int group_changed = 0;
1189
1190#ifdef CONFIG_CFQ_GROUP_IOSCHED
1191 if (!cfqd->cfq_group_isolation
1192 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1193 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1194 /* Move this cfq to root group */
1195 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1196 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1197 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1198 cfqq->orig_cfqg = cfqq->cfqg;
1199 cfqq->cfqg = &cfqd->root_group;
329a6781 1200 cfqd->root_group.ref++;
ae30c286
VG
1201 group_changed = 1;
1202 } else if (!cfqd->cfq_group_isolation
1203 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1204 /* cfqq is sequential now needs to go to its original group */
1205 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1206 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1207 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1208 cfq_put_cfqg(cfqq->cfqg);
1209 cfqq->cfqg = cfqq->orig_cfqg;
1210 cfqq->orig_cfqg = NULL;
1211 group_changed = 1;
1212 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1213 }
1214#endif
d9e7620e 1215
cdb16e8f 1216 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1217 cfqq_type(cfqq));
0871714e
JA
1218 if (cfq_class_idle(cfqq)) {
1219 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1220 parent = rb_last(&service_tree->rb);
0871714e
JA
1221 if (parent && parent != &cfqq->rb_node) {
1222 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1223 rb_key += __cfqq->rb_key;
1224 } else
1225 rb_key += jiffies;
1226 } else if (!add_front) {
b9c8946b
JA
1227 /*
1228 * Get our rb key offset. Subtract any residual slice
1229 * value carried from last service. A negative resid
1230 * count indicates slice overrun, and this should position
1231 * the next service time further away in the tree.
1232 */
edd75ffd 1233 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1234 rb_key -= cfqq->slice_resid;
edd75ffd 1235 cfqq->slice_resid = 0;
48e025e6
CZ
1236 } else {
1237 rb_key = -HZ;
aa6f6a3d 1238 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1239 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1240 }
1da177e4 1241
d9e7620e 1242 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1243 new_cfqq = 0;
99f9628a 1244 /*
d9e7620e 1245 * same position, nothing more to do
99f9628a 1246 */
c0324a02
CZ
1247 if (rb_key == cfqq->rb_key &&
1248 cfqq->service_tree == service_tree)
d9e7620e 1249 return;
1da177e4 1250
aa6f6a3d
CZ
1251 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1252 cfqq->service_tree = NULL;
1da177e4 1253 }
d9e7620e 1254
498d3aa2 1255 left = 1;
0871714e 1256 parent = NULL;
aa6f6a3d
CZ
1257 cfqq->service_tree = service_tree;
1258 p = &service_tree->rb.rb_node;
d9e7620e 1259 while (*p) {
67060e37 1260 struct rb_node **n;
cc09e299 1261
d9e7620e
JA
1262 parent = *p;
1263 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1264
0c534e0a 1265 /*
c0324a02 1266 * sort by key, that represents service time.
0c534e0a 1267 */
c0324a02 1268 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1269 n = &(*p)->rb_left;
c0324a02 1270 else {
67060e37 1271 n = &(*p)->rb_right;
cc09e299 1272 left = 0;
c0324a02 1273 }
67060e37
JA
1274
1275 p = n;
d9e7620e
JA
1276 }
1277
cc09e299 1278 if (left)
aa6f6a3d 1279 service_tree->left = &cfqq->rb_node;
cc09e299 1280
d9e7620e
JA
1281 cfqq->rb_key = rb_key;
1282 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1283 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1284 service_tree->count++;
ae30c286 1285 if ((add_front || !new_cfqq) && !group_changed)
dae739eb 1286 return;
1fa8f6d6 1287 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1288}
1289
a36e71f9 1290static struct cfq_queue *
f2d1f0ae
JA
1291cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1292 sector_t sector, struct rb_node **ret_parent,
1293 struct rb_node ***rb_link)
a36e71f9 1294{
a36e71f9
JA
1295 struct rb_node **p, *parent;
1296 struct cfq_queue *cfqq = NULL;
1297
1298 parent = NULL;
1299 p = &root->rb_node;
1300 while (*p) {
1301 struct rb_node **n;
1302
1303 parent = *p;
1304 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1305
1306 /*
1307 * Sort strictly based on sector. Smallest to the left,
1308 * largest to the right.
1309 */
2e46e8b2 1310 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1311 n = &(*p)->rb_right;
2e46e8b2 1312 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1313 n = &(*p)->rb_left;
1314 else
1315 break;
1316 p = n;
3ac6c9f8 1317 cfqq = NULL;
a36e71f9
JA
1318 }
1319
1320 *ret_parent = parent;
1321 if (rb_link)
1322 *rb_link = p;
3ac6c9f8 1323 return cfqq;
a36e71f9
JA
1324}
1325
1326static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1327{
a36e71f9
JA
1328 struct rb_node **p, *parent;
1329 struct cfq_queue *__cfqq;
1330
f2d1f0ae
JA
1331 if (cfqq->p_root) {
1332 rb_erase(&cfqq->p_node, cfqq->p_root);
1333 cfqq->p_root = NULL;
1334 }
a36e71f9
JA
1335
1336 if (cfq_class_idle(cfqq))
1337 return;
1338 if (!cfqq->next_rq)
1339 return;
1340
f2d1f0ae 1341 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1342 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1343 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1344 if (!__cfqq) {
1345 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1346 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1347 } else
1348 cfqq->p_root = NULL;
a36e71f9
JA
1349}
1350
498d3aa2
JA
1351/*
1352 * Update cfqq's position in the service tree.
1353 */
edd75ffd 1354static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1355{
6d048f53
JA
1356 /*
1357 * Resorting requires the cfqq to be on the RR list already.
1358 */
a36e71f9 1359 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1360 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1361 cfq_prio_tree_add(cfqd, cfqq);
1362 }
6d048f53
JA
1363}
1364
1da177e4
LT
1365/*
1366 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1367 * the pending list according to last request service
1da177e4 1368 */
febffd61 1369static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1370{
7b679138 1371 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1372 BUG_ON(cfq_cfqq_on_rr(cfqq));
1373 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1374 cfqd->busy_queues++;
1375
edd75ffd 1376 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1377}
1378
498d3aa2
JA
1379/*
1380 * Called when the cfqq no longer has requests pending, remove it from
1381 * the service tree.
1382 */
febffd61 1383static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1384{
7b679138 1385 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1386 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1387 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1388
aa6f6a3d
CZ
1389 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1390 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1391 cfqq->service_tree = NULL;
1392 }
f2d1f0ae
JA
1393 if (cfqq->p_root) {
1394 rb_erase(&cfqq->p_node, cfqq->p_root);
1395 cfqq->p_root = NULL;
1396 }
d9e7620e 1397
1fa8f6d6 1398 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1399 BUG_ON(!cfqd->busy_queues);
1400 cfqd->busy_queues--;
1401}
1402
1403/*
1404 * rb tree support functions
1405 */
febffd61 1406static void cfq_del_rq_rb(struct request *rq)
1da177e4 1407{
5e705374 1408 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1409 const int sync = rq_is_sync(rq);
1da177e4 1410
b4878f24
JA
1411 BUG_ON(!cfqq->queued[sync]);
1412 cfqq->queued[sync]--;
1da177e4 1413
5e705374 1414 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1415
f04a6424
VG
1416 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1417 /*
1418 * Queue will be deleted from service tree when we actually
1419 * expire it later. Right now just remove it from prio tree
1420 * as it is empty.
1421 */
1422 if (cfqq->p_root) {
1423 rb_erase(&cfqq->p_node, cfqq->p_root);
1424 cfqq->p_root = NULL;
1425 }
1426 }
1da177e4
LT
1427}
1428
5e705374 1429static void cfq_add_rq_rb(struct request *rq)
1da177e4 1430{
5e705374 1431 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1432 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1433 struct request *__alias, *prev;
1da177e4 1434
5380a101 1435 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1436
1437 /*
1438 * looks a little odd, but the first insert might return an alias.
1439 * if that happens, put the alias on the dispatch list
1440 */
21183b07 1441 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1442 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1443
1444 if (!cfq_cfqq_on_rr(cfqq))
1445 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1446
1447 /*
1448 * check if this request is a better next-serve candidate
1449 */
a36e71f9 1450 prev = cfqq->next_rq;
cf7c25cf 1451 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1452
1453 /*
1454 * adjust priority tree position, if ->next_rq changes
1455 */
1456 if (prev != cfqq->next_rq)
1457 cfq_prio_tree_add(cfqd, cfqq);
1458
5044eed4 1459 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1460}
1461
febffd61 1462static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1463{
5380a101
JA
1464 elv_rb_del(&cfqq->sort_list, rq);
1465 cfqq->queued[rq_is_sync(rq)]--;
e98ef89b
VG
1466 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1467 rq_data_dir(rq), rq_is_sync(rq));
5e705374 1468 cfq_add_rq_rb(rq);
e98ef89b 1469 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
7f1dc8a2
VG
1470 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1471 rq_is_sync(rq));
1da177e4
LT
1472}
1473
206dc69b
JA
1474static struct request *
1475cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1476{
206dc69b 1477 struct task_struct *tsk = current;
91fac317 1478 struct cfq_io_context *cic;
206dc69b 1479 struct cfq_queue *cfqq;
1da177e4 1480
4ac845a2 1481 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1482 if (!cic)
1483 return NULL;
1484
1485 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1486 if (cfqq) {
1487 sector_t sector = bio->bi_sector + bio_sectors(bio);
1488
21183b07 1489 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1490 }
1da177e4 1491
1da177e4
LT
1492 return NULL;
1493}
1494
165125e1 1495static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1496{
22e2c507 1497 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1498
53c583d2 1499 cfqd->rq_in_driver++;
7b679138 1500 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1501 cfqd->rq_in_driver);
25776e35 1502
5b93629b 1503 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1504}
1505
165125e1 1506static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1507{
b4878f24
JA
1508 struct cfq_data *cfqd = q->elevator->elevator_data;
1509
53c583d2
CZ
1510 WARN_ON(!cfqd->rq_in_driver);
1511 cfqd->rq_in_driver--;
7b679138 1512 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1513 cfqd->rq_in_driver);
1da177e4
LT
1514}
1515
b4878f24 1516static void cfq_remove_request(struct request *rq)
1da177e4 1517{
5e705374 1518 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1519
5e705374
JA
1520 if (cfqq->next_rq == rq)
1521 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1522
b4878f24 1523 list_del_init(&rq->queuelist);
5e705374 1524 cfq_del_rq_rb(rq);
374f84ac 1525
45333d5a 1526 cfqq->cfqd->rq_queued--;
e98ef89b
VG
1527 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1528 rq_data_dir(rq), rq_is_sync(rq));
7b6d91da 1529 if (rq->cmd_flags & REQ_META) {
374f84ac
JA
1530 WARN_ON(!cfqq->meta_pending);
1531 cfqq->meta_pending--;
1532 }
1da177e4
LT
1533}
1534
165125e1
JA
1535static int cfq_merge(struct request_queue *q, struct request **req,
1536 struct bio *bio)
1da177e4
LT
1537{
1538 struct cfq_data *cfqd = q->elevator->elevator_data;
1539 struct request *__rq;
1da177e4 1540
206dc69b 1541 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1542 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1543 *req = __rq;
1544 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1545 }
1546
1547 return ELEVATOR_NO_MERGE;
1da177e4
LT
1548}
1549
165125e1 1550static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1551 int type)
1da177e4 1552{
21183b07 1553 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1554 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1555
5e705374 1556 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1557 }
1da177e4
LT
1558}
1559
812d4026
DS
1560static void cfq_bio_merged(struct request_queue *q, struct request *req,
1561 struct bio *bio)
1562{
e98ef89b
VG
1563 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1564 bio_data_dir(bio), cfq_bio_sync(bio));
812d4026
DS
1565}
1566
1da177e4 1567static void
165125e1 1568cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1569 struct request *next)
1570{
cf7c25cf 1571 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1572 /*
1573 * reposition in fifo if next is older than rq
1574 */
1575 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1576 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1577 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1578 rq_set_fifo_time(rq, rq_fifo_time(next));
1579 }
22e2c507 1580
cf7c25cf
CZ
1581 if (cfqq->next_rq == next)
1582 cfqq->next_rq = rq;
b4878f24 1583 cfq_remove_request(next);
e98ef89b
VG
1584 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1585 rq_data_dir(next), rq_is_sync(next));
22e2c507
JA
1586}
1587
165125e1 1588static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1589 struct bio *bio)
1590{
1591 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1592 struct cfq_io_context *cic;
da775265 1593 struct cfq_queue *cfqq;
da775265
JA
1594
1595 /*
ec8acb69 1596 * Disallow merge of a sync bio into an async request.
da775265 1597 */
91fac317 1598 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1599 return false;
da775265
JA
1600
1601 /*
719d3402
JA
1602 * Lookup the cfqq that this bio will be queued with. Allow
1603 * merge only if rq is queued there.
da775265 1604 */
4ac845a2 1605 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1606 if (!cic)
a6151c3a 1607 return false;
719d3402 1608
91fac317 1609 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1610 return cfqq == RQ_CFQQ(rq);
da775265
JA
1611}
1612
812df48d
DS
1613static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1614{
1615 del_timer(&cfqd->idle_slice_timer);
e98ef89b 1616 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
812df48d
DS
1617}
1618
febffd61
JA
1619static void __cfq_set_active_queue(struct cfq_data *cfqd,
1620 struct cfq_queue *cfqq)
22e2c507
JA
1621{
1622 if (cfqq) {
b1ffe737
DS
1623 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1624 cfqd->serving_prio, cfqd->serving_type);
e98ef89b 1625 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
dae739eb
VG
1626 cfqq->slice_start = 0;
1627 cfqq->dispatch_start = jiffies;
f75edf2d 1628 cfqq->allocated_slice = 0;
22e2c507 1629 cfqq->slice_end = 0;
2f5cb738 1630 cfqq->slice_dispatch = 0;
c4e7893e 1631 cfqq->nr_sectors = 0;
2f5cb738 1632
2f5cb738 1633 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1634 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1635 cfq_clear_cfqq_must_alloc_slice(cfqq);
1636 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1637 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738 1638
812df48d 1639 cfq_del_timer(cfqd, cfqq);
22e2c507
JA
1640 }
1641
1642 cfqd->active_queue = cfqq;
1643}
1644
7b14e3b5
JA
1645/*
1646 * current cfqq expired its slice (or was too idle), select new one
1647 */
1648static void
1649__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e5ff082e 1650 bool timed_out)
7b14e3b5 1651{
7b679138
JA
1652 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1653
7b14e3b5 1654 if (cfq_cfqq_wait_request(cfqq))
812df48d 1655 cfq_del_timer(cfqd, cfqq);
7b14e3b5 1656
7b14e3b5 1657 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1658 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1659
ae54abed
SL
1660 /*
1661 * If this cfqq is shared between multiple processes, check to
1662 * make sure that those processes are still issuing I/Os within
1663 * the mean seek distance. If not, it may be time to break the
1664 * queues apart again.
1665 */
1666 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1667 cfq_mark_cfqq_split_coop(cfqq);
1668
7b14e3b5 1669 /*
6084cdda 1670 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1671 */
c553f8e3
SL
1672 if (timed_out) {
1673 if (cfq_cfqq_slice_new(cfqq))
1674 cfqq->slice_resid = cfq_scaled_group_slice(cfqd, cfqq);
1675 else
1676 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1677 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1678 }
7b14e3b5 1679
e5ff082e 1680 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
dae739eb 1681
f04a6424
VG
1682 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1683 cfq_del_cfqq_rr(cfqd, cfqq);
1684
edd75ffd 1685 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1686
1687 if (cfqq == cfqd->active_queue)
1688 cfqd->active_queue = NULL;
1689
1690 if (cfqd->active_cic) {
1691 put_io_context(cfqd->active_cic->ioc);
1692 cfqd->active_cic = NULL;
1693 }
7b14e3b5
JA
1694}
1695
e5ff082e 1696static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1697{
1698 struct cfq_queue *cfqq = cfqd->active_queue;
1699
1700 if (cfqq)
e5ff082e 1701 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1702}
1703
498d3aa2
JA
1704/*
1705 * Get next queue for service. Unless we have a queue preemption,
1706 * we'll simply select the first cfqq in the service tree.
1707 */
6d048f53 1708static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1709{
c0324a02 1710 struct cfq_rb_root *service_tree =
cdb16e8f 1711 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1712 cfqd->serving_type);
d9e7620e 1713
f04a6424
VG
1714 if (!cfqd->rq_queued)
1715 return NULL;
1716
1fa8f6d6
VG
1717 /* There is nothing to dispatch */
1718 if (!service_tree)
1719 return NULL;
c0324a02
CZ
1720 if (RB_EMPTY_ROOT(&service_tree->rb))
1721 return NULL;
1722 return cfq_rb_first(service_tree);
6d048f53
JA
1723}
1724
f04a6424
VG
1725static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1726{
25fb5169 1727 struct cfq_group *cfqg;
f04a6424
VG
1728 struct cfq_queue *cfqq;
1729 int i, j;
1730 struct cfq_rb_root *st;
1731
1732 if (!cfqd->rq_queued)
1733 return NULL;
1734
25fb5169
VG
1735 cfqg = cfq_get_next_cfqg(cfqd);
1736 if (!cfqg)
1737 return NULL;
1738
f04a6424
VG
1739 for_each_cfqg_st(cfqg, i, j, st)
1740 if ((cfqq = cfq_rb_first(st)) != NULL)
1741 return cfqq;
1742 return NULL;
1743}
1744
498d3aa2
JA
1745/*
1746 * Get and set a new active queue for service.
1747 */
a36e71f9
JA
1748static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1749 struct cfq_queue *cfqq)
6d048f53 1750{
e00ef799 1751 if (!cfqq)
a36e71f9 1752 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1753
22e2c507 1754 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1755 return cfqq;
22e2c507
JA
1756}
1757
d9e7620e
JA
1758static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1759 struct request *rq)
1760{
83096ebf
TH
1761 if (blk_rq_pos(rq) >= cfqd->last_position)
1762 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1763 else
83096ebf 1764 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1765}
1766
b2c18e1e 1767static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1768 struct request *rq)
6d048f53 1769{
e9ce335d 1770 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1771}
1772
a36e71f9
JA
1773static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1774 struct cfq_queue *cur_cfqq)
1775{
f2d1f0ae 1776 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1777 struct rb_node *parent, *node;
1778 struct cfq_queue *__cfqq;
1779 sector_t sector = cfqd->last_position;
1780
1781 if (RB_EMPTY_ROOT(root))
1782 return NULL;
1783
1784 /*
1785 * First, if we find a request starting at the end of the last
1786 * request, choose it.
1787 */
f2d1f0ae 1788 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1789 if (__cfqq)
1790 return __cfqq;
1791
1792 /*
1793 * If the exact sector wasn't found, the parent of the NULL leaf
1794 * will contain the closest sector.
1795 */
1796 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1797 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1798 return __cfqq;
1799
2e46e8b2 1800 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1801 node = rb_next(&__cfqq->p_node);
1802 else
1803 node = rb_prev(&__cfqq->p_node);
1804 if (!node)
1805 return NULL;
1806
1807 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1808 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1809 return __cfqq;
1810
1811 return NULL;
1812}
1813
1814/*
1815 * cfqd - obvious
1816 * cur_cfqq - passed in so that we don't decide that the current queue is
1817 * closely cooperating with itself.
1818 *
1819 * So, basically we're assuming that that cur_cfqq has dispatched at least
1820 * one request, and that cfqd->last_position reflects a position on the disk
1821 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1822 * assumption.
1823 */
1824static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1825 struct cfq_queue *cur_cfqq)
6d048f53 1826{
a36e71f9
JA
1827 struct cfq_queue *cfqq;
1828
39c01b21
DS
1829 if (cfq_class_idle(cur_cfqq))
1830 return NULL;
e6c5bc73
JM
1831 if (!cfq_cfqq_sync(cur_cfqq))
1832 return NULL;
1833 if (CFQQ_SEEKY(cur_cfqq))
1834 return NULL;
1835
b9d8f4c7
GJ
1836 /*
1837 * Don't search priority tree if it's the only queue in the group.
1838 */
1839 if (cur_cfqq->cfqg->nr_cfqq == 1)
1840 return NULL;
1841
6d048f53 1842 /*
d9e7620e
JA
1843 * We should notice if some of the queues are cooperating, eg
1844 * working closely on the same area of the disk. In that case,
1845 * we can group them together and don't waste time idling.
6d048f53 1846 */
a36e71f9
JA
1847 cfqq = cfqq_close(cfqd, cur_cfqq);
1848 if (!cfqq)
1849 return NULL;
1850
8682e1f1
VG
1851 /* If new queue belongs to different cfq_group, don't choose it */
1852 if (cur_cfqq->cfqg != cfqq->cfqg)
1853 return NULL;
1854
df5fe3e8
JM
1855 /*
1856 * It only makes sense to merge sync queues.
1857 */
1858 if (!cfq_cfqq_sync(cfqq))
1859 return NULL;
e6c5bc73
JM
1860 if (CFQQ_SEEKY(cfqq))
1861 return NULL;
df5fe3e8 1862
c0324a02
CZ
1863 /*
1864 * Do not merge queues of different priority classes
1865 */
1866 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1867 return NULL;
1868
a36e71f9 1869 return cfqq;
6d048f53
JA
1870}
1871
a6d44e98
CZ
1872/*
1873 * Determine whether we should enforce idle window for this queue.
1874 */
1875
1876static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1877{
1878 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1879 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1880
f04a6424
VG
1881 BUG_ON(!service_tree);
1882 BUG_ON(!service_tree->count);
1883
b6508c16
VG
1884 if (!cfqd->cfq_slice_idle)
1885 return false;
1886
a6d44e98
CZ
1887 /* We never do for idle class queues. */
1888 if (prio == IDLE_WORKLOAD)
1889 return false;
1890
1891 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1892 if (cfq_cfqq_idle_window(cfqq) &&
1893 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1894 return true;
1895
1896 /*
1897 * Otherwise, we do only if they are the last ones
1898 * in their service tree.
1899 */
b1ffe737 1900 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
c1e44756 1901 return true;
b1ffe737
DS
1902 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1903 service_tree->count);
c1e44756 1904 return false;
a6d44e98
CZ
1905}
1906
6d048f53 1907static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1908{
1792669c 1909 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1910 struct cfq_io_context *cic;
80bdf0c7 1911 unsigned long sl, group_idle = 0;
7b14e3b5 1912
a68bbddb 1913 /*
f7d7b7a7
JA
1914 * SSD device without seek penalty, disable idling. But only do so
1915 * for devices that support queuing, otherwise we still have a problem
1916 * with sync vs async workloads.
a68bbddb 1917 */
f7d7b7a7 1918 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1919 return;
1920
dd67d051 1921 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1922 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1923
1924 /*
1925 * idle is disabled, either manually or by past process history
1926 */
80bdf0c7
VG
1927 if (!cfq_should_idle(cfqd, cfqq)) {
1928 /* no queue idling. Check for group idling */
1929 if (cfqd->cfq_group_idle)
1930 group_idle = cfqd->cfq_group_idle;
1931 else
1932 return;
1933 }
6d048f53 1934
7b679138 1935 /*
8e550632 1936 * still active requests from this queue, don't idle
7b679138 1937 */
8e550632 1938 if (cfqq->dispatched)
7b679138
JA
1939 return;
1940
22e2c507
JA
1941 /*
1942 * task has exited, don't wait
1943 */
206dc69b 1944 cic = cfqd->active_cic;
66dac98e 1945 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1946 return;
1947
355b659c
CZ
1948 /*
1949 * If our average think time is larger than the remaining time
1950 * slice, then don't idle. This avoids overrunning the allotted
1951 * time slice.
1952 */
1953 if (sample_valid(cic->ttime_samples) &&
b1ffe737
DS
1954 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1955 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1956 cic->ttime_mean);
355b659c 1957 return;
b1ffe737 1958 }
355b659c 1959
80bdf0c7
VG
1960 /* There are other queues in the group, don't do group idle */
1961 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
1962 return;
1963
3b18152c 1964 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1965
80bdf0c7
VG
1966 if (group_idle)
1967 sl = cfqd->cfq_group_idle;
1968 else
1969 sl = cfqd->cfq_slice_idle;
206dc69b 1970
7b14e3b5 1971 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
e98ef89b 1972 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
80bdf0c7
VG
1973 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
1974 group_idle ? 1 : 0);
1da177e4
LT
1975}
1976
498d3aa2
JA
1977/*
1978 * Move request from internal lists to the request queue dispatch list.
1979 */
165125e1 1980static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1981{
3ed9a296 1982 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1983 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1984
7b679138
JA
1985 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1986
06d21886 1987 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1988 cfq_remove_request(rq);
6d048f53 1989 cfqq->dispatched++;
80bdf0c7 1990 (RQ_CFQG(rq))->dispatched++;
5380a101 1991 elv_dispatch_sort(q, rq);
3ed9a296 1992
53c583d2 1993 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
c4e7893e 1994 cfqq->nr_sectors += blk_rq_sectors(rq);
e98ef89b 1995 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
84c124da 1996 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
1997}
1998
1999/*
2000 * return expired entry, or NULL to just start from scratch in rbtree
2001 */
febffd61 2002static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 2003{
30996f40 2004 struct request *rq = NULL;
1da177e4 2005
3b18152c 2006 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 2007 return NULL;
cb887411
JA
2008
2009 cfq_mark_cfqq_fifo_expire(cfqq);
2010
89850f7e
JA
2011 if (list_empty(&cfqq->fifo))
2012 return NULL;
1da177e4 2013
89850f7e 2014 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 2015 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 2016 rq = NULL;
1da177e4 2017
30996f40 2018 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 2019 return rq;
1da177e4
LT
2020}
2021
22e2c507
JA
2022static inline int
2023cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2024{
2025 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 2026
22e2c507 2027 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 2028
22e2c507 2029 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
2030}
2031
df5fe3e8
JM
2032/*
2033 * Must be called with the queue_lock held.
2034 */
2035static int cfqq_process_refs(struct cfq_queue *cfqq)
2036{
2037 int process_refs, io_refs;
2038
2039 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
30d7b944 2040 process_refs = cfqq->ref - io_refs;
df5fe3e8
JM
2041 BUG_ON(process_refs < 0);
2042 return process_refs;
2043}
2044
2045static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2046{
e6c5bc73 2047 int process_refs, new_process_refs;
df5fe3e8
JM
2048 struct cfq_queue *__cfqq;
2049
c10b61f0
JM
2050 /*
2051 * If there are no process references on the new_cfqq, then it is
2052 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2053 * chain may have dropped their last reference (not just their
2054 * last process reference).
2055 */
2056 if (!cfqq_process_refs(new_cfqq))
2057 return;
2058
df5fe3e8
JM
2059 /* Avoid a circular list and skip interim queue merges */
2060 while ((__cfqq = new_cfqq->new_cfqq)) {
2061 if (__cfqq == cfqq)
2062 return;
2063 new_cfqq = __cfqq;
2064 }
2065
2066 process_refs = cfqq_process_refs(cfqq);
c10b61f0 2067 new_process_refs = cfqq_process_refs(new_cfqq);
df5fe3e8
JM
2068 /*
2069 * If the process for the cfqq has gone away, there is no
2070 * sense in merging the queues.
2071 */
c10b61f0 2072 if (process_refs == 0 || new_process_refs == 0)
df5fe3e8
JM
2073 return;
2074
e6c5bc73
JM
2075 /*
2076 * Merge in the direction of the lesser amount of work.
2077 */
e6c5bc73
JM
2078 if (new_process_refs >= process_refs) {
2079 cfqq->new_cfqq = new_cfqq;
30d7b944 2080 new_cfqq->ref += process_refs;
e6c5bc73
JM
2081 } else {
2082 new_cfqq->new_cfqq = cfqq;
30d7b944 2083 cfqq->ref += new_process_refs;
e6c5bc73 2084 }
df5fe3e8
JM
2085}
2086
cdb16e8f 2087static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 2088 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
2089{
2090 struct cfq_queue *queue;
2091 int i;
2092 bool key_valid = false;
2093 unsigned long lowest_key = 0;
2094 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2095
65b32a57
VG
2096 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2097 /* select the one with lowest rb_key */
2098 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
2099 if (queue &&
2100 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2101 lowest_key = queue->rb_key;
2102 cur_best = i;
2103 key_valid = true;
2104 }
2105 }
2106
2107 return cur_best;
2108}
2109
cdb16e8f 2110static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 2111{
718eee05
CZ
2112 unsigned slice;
2113 unsigned count;
cdb16e8f 2114 struct cfq_rb_root *st;
58ff82f3 2115 unsigned group_slice;
e4ea0c16 2116 enum wl_prio_t original_prio = cfqd->serving_prio;
1fa8f6d6 2117
718eee05 2118 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2119 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2120 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2121 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2122 cfqd->serving_prio = BE_WORKLOAD;
2123 else {
2124 cfqd->serving_prio = IDLE_WORKLOAD;
2125 cfqd->workload_expires = jiffies + 1;
2126 return;
2127 }
2128
e4ea0c16
SL
2129 if (original_prio != cfqd->serving_prio)
2130 goto new_workload;
2131
718eee05
CZ
2132 /*
2133 * For RT and BE, we have to choose also the type
2134 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2135 * expiration time
2136 */
65b32a57 2137 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2138 count = st->count;
718eee05
CZ
2139
2140 /*
65b32a57 2141 * check workload expiration, and that we still have other queues ready
718eee05 2142 */
65b32a57 2143 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2144 return;
2145
e4ea0c16 2146new_workload:
718eee05
CZ
2147 /* otherwise select new workload type */
2148 cfqd->serving_type =
65b32a57
VG
2149 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2150 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2151 count = st->count;
718eee05
CZ
2152
2153 /*
2154 * the workload slice is computed as a fraction of target latency
2155 * proportional to the number of queues in that workload, over
2156 * all the queues in the same priority class
2157 */
58ff82f3
VG
2158 group_slice = cfq_group_slice(cfqd, cfqg);
2159
2160 slice = group_slice * count /
2161 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2162 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2163
f26bd1f0
VG
2164 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2165 unsigned int tmp;
2166
2167 /*
2168 * Async queues are currently system wide. Just taking
2169 * proportion of queues with-in same group will lead to higher
2170 * async ratio system wide as generally root group is going
2171 * to have higher weight. A more accurate thing would be to
2172 * calculate system wide asnc/sync ratio.
2173 */
2174 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2175 tmp = tmp/cfqd->busy_queues;
2176 slice = min_t(unsigned, slice, tmp);
2177
718eee05
CZ
2178 /* async workload slice is scaled down according to
2179 * the sync/async slice ratio. */
2180 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2181 } else
718eee05
CZ
2182 /* sync workload slice is at least 2 * cfq_slice_idle */
2183 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2184
2185 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2186 cfq_log(cfqd, "workload slice:%d", slice);
718eee05
CZ
2187 cfqd->workload_expires = jiffies + slice;
2188}
2189
1fa8f6d6
VG
2190static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2191{
2192 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2193 struct cfq_group *cfqg;
1fa8f6d6
VG
2194
2195 if (RB_EMPTY_ROOT(&st->rb))
2196 return NULL;
25bc6b07 2197 cfqg = cfq_rb_first_group(st);
25bc6b07
VG
2198 update_min_vdisktime(st);
2199 return cfqg;
1fa8f6d6
VG
2200}
2201
cdb16e8f
VG
2202static void cfq_choose_cfqg(struct cfq_data *cfqd)
2203{
1fa8f6d6
VG
2204 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2205
2206 cfqd->serving_group = cfqg;
dae739eb
VG
2207
2208 /* Restore the workload type data */
2209 if (cfqg->saved_workload_slice) {
2210 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2211 cfqd->serving_type = cfqg->saved_workload;
2212 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2213 } else
2214 cfqd->workload_expires = jiffies - 1;
2215
1fa8f6d6 2216 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2217}
2218
22e2c507 2219/*
498d3aa2
JA
2220 * Select a queue for service. If we have a current active queue,
2221 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2222 */
1b5ed5e1 2223static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2224{
a36e71f9 2225 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2226
22e2c507
JA
2227 cfqq = cfqd->active_queue;
2228 if (!cfqq)
2229 goto new_queue;
1da177e4 2230
f04a6424
VG
2231 if (!cfqd->rq_queued)
2232 return NULL;
c244bb50
VG
2233
2234 /*
2235 * We were waiting for group to get backlogged. Expire the queue
2236 */
2237 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2238 goto expire;
2239
22e2c507 2240 /*
6d048f53 2241 * The active queue has run out of time, expire it and select new.
22e2c507 2242 */
7667aa06
VG
2243 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2244 /*
2245 * If slice had not expired at the completion of last request
2246 * we might not have turned on wait_busy flag. Don't expire
2247 * the queue yet. Allow the group to get backlogged.
2248 *
2249 * The very fact that we have used the slice, that means we
2250 * have been idling all along on this queue and it should be
2251 * ok to wait for this request to complete.
2252 */
82bbbf28
VG
2253 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2254 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2255 cfqq = NULL;
7667aa06 2256 goto keep_queue;
82bbbf28 2257 } else
80bdf0c7 2258 goto check_group_idle;
7667aa06 2259 }
1da177e4 2260
22e2c507 2261 /*
6d048f53
JA
2262 * The active queue has requests and isn't expired, allow it to
2263 * dispatch.
22e2c507 2264 */
dd67d051 2265 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2266 goto keep_queue;
6d048f53 2267
a36e71f9
JA
2268 /*
2269 * If another queue has a request waiting within our mean seek
2270 * distance, let it run. The expire code will check for close
2271 * cooperators and put the close queue at the front of the service
df5fe3e8 2272 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2273 */
b3b6d040 2274 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2275 if (new_cfqq) {
2276 if (!cfqq->new_cfqq)
2277 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2278 goto expire;
df5fe3e8 2279 }
a36e71f9 2280
6d048f53
JA
2281 /*
2282 * No requests pending. If the active queue still has requests in
2283 * flight or is idling for a new request, allow either of these
2284 * conditions to happen (or time out) before selecting a new queue.
2285 */
80bdf0c7
VG
2286 if (timer_pending(&cfqd->idle_slice_timer)) {
2287 cfqq = NULL;
2288 goto keep_queue;
2289 }
2290
8e1ac665
SL
2291 /*
2292 * This is a deep seek queue, but the device is much faster than
2293 * the queue can deliver, don't idle
2294 **/
2295 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2296 (cfq_cfqq_slice_new(cfqq) ||
2297 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2298 cfq_clear_cfqq_deep(cfqq);
2299 cfq_clear_cfqq_idle_window(cfqq);
2300 }
2301
80bdf0c7
VG
2302 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2303 cfqq = NULL;
2304 goto keep_queue;
2305 }
2306
2307 /*
2308 * If group idle is enabled and there are requests dispatched from
2309 * this group, wait for requests to complete.
2310 */
2311check_group_idle:
2312 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2313 && cfqq->cfqg->dispatched) {
caaa5f9f
JA
2314 cfqq = NULL;
2315 goto keep_queue;
22e2c507
JA
2316 }
2317
3b18152c 2318expire:
e5ff082e 2319 cfq_slice_expired(cfqd, 0);
3b18152c 2320new_queue:
718eee05
CZ
2321 /*
2322 * Current queue expired. Check if we have to switch to a new
2323 * service tree
2324 */
2325 if (!new_cfqq)
cdb16e8f 2326 cfq_choose_cfqg(cfqd);
718eee05 2327
a36e71f9 2328 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2329keep_queue:
3b18152c 2330 return cfqq;
22e2c507
JA
2331}
2332
febffd61 2333static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2334{
2335 int dispatched = 0;
2336
2337 while (cfqq->next_rq) {
2338 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2339 dispatched++;
2340 }
2341
2342 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2343
2344 /* By default cfqq is not expired if it is empty. Do it explicitly */
e5ff082e 2345 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2346 return dispatched;
2347}
2348
498d3aa2
JA
2349/*
2350 * Drain our current requests. Used for barriers and when switching
2351 * io schedulers on-the-fly.
2352 */
d9e7620e 2353static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2354{
0871714e 2355 struct cfq_queue *cfqq;
d9e7620e 2356 int dispatched = 0;
cdb16e8f 2357
3440c49f 2358 /* Expire the timeslice of the current active queue first */
e5ff082e 2359 cfq_slice_expired(cfqd, 0);
3440c49f
DS
2360 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2361 __cfq_set_active_queue(cfqd, cfqq);
f04a6424 2362 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3440c49f 2363 }
1b5ed5e1 2364
1b5ed5e1
TH
2365 BUG_ON(cfqd->busy_queues);
2366
6923715a 2367 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2368 return dispatched;
2369}
2370
abc3c744
SL
2371static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2372 struct cfq_queue *cfqq)
2373{
2374 /* the queue hasn't finished any request, can't estimate */
2375 if (cfq_cfqq_slice_new(cfqq))
c1e44756 2376 return true;
abc3c744
SL
2377 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2378 cfqq->slice_end))
c1e44756 2379 return true;
abc3c744 2380
c1e44756 2381 return false;
abc3c744
SL
2382}
2383
0b182d61 2384static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2385{
2f5cb738 2386 unsigned int max_dispatch;
22e2c507 2387
5ad531db
JA
2388 /*
2389 * Drain async requests before we start sync IO
2390 */
53c583d2 2391 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2392 return false;
5ad531db 2393
2f5cb738
JA
2394 /*
2395 * If this is an async queue and we have sync IO in flight, let it wait
2396 */
53c583d2 2397 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2398 return false;
2f5cb738 2399
abc3c744 2400 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2401 if (cfq_class_idle(cfqq))
2402 max_dispatch = 1;
b4878f24 2403
2f5cb738
JA
2404 /*
2405 * Does this cfqq already have too much IO in flight?
2406 */
2407 if (cfqq->dispatched >= max_dispatch) {
2408 /*
2409 * idle queue must always only have a single IO in flight
2410 */
3ed9a296 2411 if (cfq_class_idle(cfqq))
0b182d61 2412 return false;
3ed9a296 2413
2f5cb738
JA
2414 /*
2415 * We have other queues, don't allow more IO from this one
2416 */
abc3c744 2417 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
0b182d61 2418 return false;
9ede209e 2419
365722bb 2420 /*
474b18cc 2421 * Sole queue user, no limit
365722bb 2422 */
abc3c744
SL
2423 if (cfqd->busy_queues == 1)
2424 max_dispatch = -1;
2425 else
2426 /*
2427 * Normally we start throttling cfqq when cfq_quantum/2
2428 * requests have been dispatched. But we can drive
2429 * deeper queue depths at the beginning of slice
2430 * subjected to upper limit of cfq_quantum.
2431 * */
2432 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2433 }
2434
2435 /*
2436 * Async queues must wait a bit before being allowed dispatch.
2437 * We also ramp up the dispatch depth gradually for async IO,
2438 * based on the last sync IO we serviced
2439 */
963b72fc 2440 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2441 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2442 unsigned int depth;
365722bb 2443
61f0c1dc 2444 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2445 if (!depth && !cfqq->dispatched)
2446 depth = 1;
8e296755
JA
2447 if (depth < max_dispatch)
2448 max_dispatch = depth;
2f5cb738 2449 }
3ed9a296 2450
0b182d61
JA
2451 /*
2452 * If we're below the current max, allow a dispatch
2453 */
2454 return cfqq->dispatched < max_dispatch;
2455}
2456
2457/*
2458 * Dispatch a request from cfqq, moving them to the request queue
2459 * dispatch list.
2460 */
2461static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2462{
2463 struct request *rq;
2464
2465 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2466
2467 if (!cfq_may_dispatch(cfqd, cfqq))
2468 return false;
2469
2470 /*
2471 * follow expired path, else get first next available
2472 */
2473 rq = cfq_check_fifo(cfqq);
2474 if (!rq)
2475 rq = cfqq->next_rq;
2476
2477 /*
2478 * insert request into driver dispatch list
2479 */
2480 cfq_dispatch_insert(cfqd->queue, rq);
2481
2482 if (!cfqd->active_cic) {
2483 struct cfq_io_context *cic = RQ_CIC(rq);
2484
2485 atomic_long_inc(&cic->ioc->refcount);
2486 cfqd->active_cic = cic;
2487 }
2488
2489 return true;
2490}
2491
2492/*
2493 * Find the cfqq that we need to service and move a request from that to the
2494 * dispatch list
2495 */
2496static int cfq_dispatch_requests(struct request_queue *q, int force)
2497{
2498 struct cfq_data *cfqd = q->elevator->elevator_data;
2499 struct cfq_queue *cfqq;
2500
2501 if (!cfqd->busy_queues)
2502 return 0;
2503
2504 if (unlikely(force))
2505 return cfq_forced_dispatch(cfqd);
2506
2507 cfqq = cfq_select_queue(cfqd);
2508 if (!cfqq)
8e296755
JA
2509 return 0;
2510
2f5cb738 2511 /*
0b182d61 2512 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2513 */
0b182d61
JA
2514 if (!cfq_dispatch_request(cfqd, cfqq))
2515 return 0;
2516
2f5cb738 2517 cfqq->slice_dispatch++;
b029195d 2518 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2519
2f5cb738
JA
2520 /*
2521 * expire an async queue immediately if it has used up its slice. idle
2522 * queue always expire after 1 dispatch round.
2523 */
2524 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2525 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2526 cfq_class_idle(cfqq))) {
2527 cfqq->slice_end = jiffies + 1;
e5ff082e 2528 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2529 }
2530
b217a903 2531 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2532 return 1;
1da177e4
LT
2533}
2534
1da177e4 2535/*
5e705374
JA
2536 * task holds one reference to the queue, dropped when task exits. each rq
2537 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2538 *
b1c35769 2539 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2540 * queue lock must be held here.
2541 */
2542static void cfq_put_queue(struct cfq_queue *cfqq)
2543{
22e2c507 2544 struct cfq_data *cfqd = cfqq->cfqd;
878eaddd 2545 struct cfq_group *cfqg, *orig_cfqg;
22e2c507 2546
30d7b944 2547 BUG_ON(cfqq->ref <= 0);
1da177e4 2548
30d7b944
SL
2549 cfqq->ref--;
2550 if (cfqq->ref)
1da177e4
LT
2551 return;
2552
7b679138 2553 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2554 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2555 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2556 cfqg = cfqq->cfqg;
878eaddd 2557 orig_cfqg = cfqq->orig_cfqg;
1da177e4 2558
28f95cbc 2559 if (unlikely(cfqd->active_queue == cfqq)) {
e5ff082e 2560 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2561 cfq_schedule_dispatch(cfqd);
28f95cbc 2562 }
22e2c507 2563
f04a6424 2564 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2565 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2566 cfq_put_cfqg(cfqg);
878eaddd
VG
2567 if (orig_cfqg)
2568 cfq_put_cfqg(orig_cfqg);
1da177e4
LT
2569}
2570
d6de8be7
JA
2571/*
2572 * Must always be called with the rcu_read_lock() held
2573 */
07416d29
JA
2574static void
2575__call_for_each_cic(struct io_context *ioc,
2576 void (*func)(struct io_context *, struct cfq_io_context *))
2577{
2578 struct cfq_io_context *cic;
2579 struct hlist_node *n;
2580
2581 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2582 func(ioc, cic);
2583}
2584
4ac845a2 2585/*
34e6bbf2 2586 * Call func for each cic attached to this ioc.
4ac845a2 2587 */
34e6bbf2 2588static void
4ac845a2
JA
2589call_for_each_cic(struct io_context *ioc,
2590 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2591{
4ac845a2 2592 rcu_read_lock();
07416d29 2593 __call_for_each_cic(ioc, func);
4ac845a2 2594 rcu_read_unlock();
34e6bbf2
FC
2595}
2596
2597static void cfq_cic_free_rcu(struct rcu_head *head)
2598{
2599 struct cfq_io_context *cic;
2600
2601 cic = container_of(head, struct cfq_io_context, rcu_head);
2602
2603 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2604 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2605
9a11b4ed
JA
2606 if (ioc_gone) {
2607 /*
2608 * CFQ scheduler is exiting, grab exit lock and check
2609 * the pending io context count. If it hits zero,
2610 * complete ioc_gone and set it back to NULL
2611 */
2612 spin_lock(&ioc_gone_lock);
245b2e70 2613 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2614 complete(ioc_gone);
2615 ioc_gone = NULL;
2616 }
2617 spin_unlock(&ioc_gone_lock);
2618 }
34e6bbf2 2619}
4ac845a2 2620
34e6bbf2
FC
2621static void cfq_cic_free(struct cfq_io_context *cic)
2622{
2623 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2624}
2625
2626static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2627{
2628 unsigned long flags;
bca4b914 2629 unsigned long dead_key = (unsigned long) cic->key;
4ac845a2 2630
bca4b914 2631 BUG_ON(!(dead_key & CIC_DEAD_KEY));
4ac845a2
JA
2632
2633 spin_lock_irqsave(&ioc->lock, flags);
80b15c73 2634 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
ffc4e759 2635 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2636 spin_unlock_irqrestore(&ioc->lock, flags);
2637
34e6bbf2 2638 cfq_cic_free(cic);
4ac845a2
JA
2639}
2640
d6de8be7
JA
2641/*
2642 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2643 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2644 * and ->trim() which is called with the task lock held
2645 */
4ac845a2
JA
2646static void cfq_free_io_context(struct io_context *ioc)
2647{
4ac845a2 2648 /*
34e6bbf2
FC
2649 * ioc->refcount is zero here, or we are called from elv_unregister(),
2650 * so no more cic's are allowed to be linked into this ioc. So it
2651 * should be ok to iterate over the known list, we will see all cic's
2652 * since no new ones are added.
4ac845a2 2653 */
07416d29 2654 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2655}
2656
d02a2c07 2657static void cfq_put_cooperator(struct cfq_queue *cfqq)
1da177e4 2658{
df5fe3e8
JM
2659 struct cfq_queue *__cfqq, *next;
2660
df5fe3e8
JM
2661 /*
2662 * If this queue was scheduled to merge with another queue, be
2663 * sure to drop the reference taken on that queue (and others in
2664 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2665 */
2666 __cfqq = cfqq->new_cfqq;
2667 while (__cfqq) {
2668 if (__cfqq == cfqq) {
2669 WARN(1, "cfqq->new_cfqq loop detected\n");
2670 break;
2671 }
2672 next = __cfqq->new_cfqq;
2673 cfq_put_queue(__cfqq);
2674 __cfqq = next;
2675 }
d02a2c07
SL
2676}
2677
2678static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2679{
2680 if (unlikely(cfqq == cfqd->active_queue)) {
2681 __cfq_slice_expired(cfqd, cfqq, 0);
2682 cfq_schedule_dispatch(cfqd);
2683 }
2684
2685 cfq_put_cooperator(cfqq);
df5fe3e8 2686
89850f7e
JA
2687 cfq_put_queue(cfqq);
2688}
22e2c507 2689
89850f7e
JA
2690static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2691 struct cfq_io_context *cic)
2692{
4faa3c81
FC
2693 struct io_context *ioc = cic->ioc;
2694
fc46379d 2695 list_del_init(&cic->queue_list);
4ac845a2
JA
2696
2697 /*
bca4b914 2698 * Make sure dead mark is seen for dead queues
4ac845a2 2699 */
fc46379d 2700 smp_wmb();
bca4b914 2701 cic->key = cfqd_dead_key(cfqd);
fc46379d 2702
4faa3c81
FC
2703 if (ioc->ioc_data == cic)
2704 rcu_assign_pointer(ioc->ioc_data, NULL);
2705
ff6657c6
JA
2706 if (cic->cfqq[BLK_RW_ASYNC]) {
2707 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2708 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2709 }
2710
ff6657c6
JA
2711 if (cic->cfqq[BLK_RW_SYNC]) {
2712 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2713 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2714 }
89850f7e
JA
2715}
2716
4ac845a2
JA
2717static void cfq_exit_single_io_context(struct io_context *ioc,
2718 struct cfq_io_context *cic)
89850f7e 2719{
bca4b914 2720 struct cfq_data *cfqd = cic_to_cfqd(cic);
89850f7e 2721
89850f7e 2722 if (cfqd) {
165125e1 2723 struct request_queue *q = cfqd->queue;
4ac845a2 2724 unsigned long flags;
89850f7e 2725
4ac845a2 2726 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2727
2728 /*
2729 * Ensure we get a fresh copy of the ->key to prevent
2730 * race between exiting task and queue
2731 */
2732 smp_read_barrier_depends();
bca4b914 2733 if (cic->key == cfqd)
62c1fe9d
JA
2734 __cfq_exit_single_io_context(cfqd, cic);
2735
4ac845a2 2736 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2737 }
1da177e4
LT
2738}
2739
498d3aa2
JA
2740/*
2741 * The process that ioc belongs to has exited, we need to clean up
2742 * and put the internal structures we have that belongs to that process.
2743 */
e2d74ac0 2744static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2745{
4ac845a2 2746 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2747}
2748
22e2c507 2749static struct cfq_io_context *
8267e268 2750cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2751{
b5deef90 2752 struct cfq_io_context *cic;
1da177e4 2753
94f6030c
CL
2754 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2755 cfqd->queue->node);
1da177e4 2756 if (cic) {
22e2c507 2757 cic->last_end_request = jiffies;
553698f9 2758 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2759 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2760 cic->dtor = cfq_free_io_context;
2761 cic->exit = cfq_exit_io_context;
245b2e70 2762 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2763 }
2764
2765 return cic;
2766}
2767
fd0928df 2768static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2769{
2770 struct task_struct *tsk = current;
2771 int ioprio_class;
2772
3b18152c 2773 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2774 return;
2775
fd0928df 2776 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2777 switch (ioprio_class) {
fe094d98
JA
2778 default:
2779 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2780 case IOPRIO_CLASS_NONE:
2781 /*
6d63c275 2782 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2783 */
2784 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2785 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2786 break;
2787 case IOPRIO_CLASS_RT:
2788 cfqq->ioprio = task_ioprio(ioc);
2789 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2790 break;
2791 case IOPRIO_CLASS_BE:
2792 cfqq->ioprio = task_ioprio(ioc);
2793 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2794 break;
2795 case IOPRIO_CLASS_IDLE:
2796 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2797 cfqq->ioprio = 7;
2798 cfq_clear_cfqq_idle_window(cfqq);
2799 break;
22e2c507
JA
2800 }
2801
2802 /*
2803 * keep track of original prio settings in case we have to temporarily
2804 * elevate the priority of this queue
2805 */
2806 cfqq->org_ioprio = cfqq->ioprio;
2807 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2808 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2809}
2810
febffd61 2811static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2812{
bca4b914 2813 struct cfq_data *cfqd = cic_to_cfqd(cic);
478a82b0 2814 struct cfq_queue *cfqq;
c1b707d2 2815 unsigned long flags;
35e6077c 2816
caaa5f9f
JA
2817 if (unlikely(!cfqd))
2818 return;
2819
c1b707d2 2820 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2821
ff6657c6 2822 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2823 if (cfqq) {
2824 struct cfq_queue *new_cfqq;
ff6657c6
JA
2825 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2826 GFP_ATOMIC);
caaa5f9f 2827 if (new_cfqq) {
ff6657c6 2828 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2829 cfq_put_queue(cfqq);
2830 }
22e2c507 2831 }
caaa5f9f 2832
ff6657c6 2833 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2834 if (cfqq)
2835 cfq_mark_cfqq_prio_changed(cfqq);
2836
c1b707d2 2837 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2838}
2839
fc46379d 2840static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2841{
4ac845a2 2842 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2843 ioc->ioprio_changed = 0;
22e2c507
JA
2844}
2845
d5036d77 2846static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2847 pid_t pid, bool is_sync)
d5036d77
JA
2848{
2849 RB_CLEAR_NODE(&cfqq->rb_node);
2850 RB_CLEAR_NODE(&cfqq->p_node);
2851 INIT_LIST_HEAD(&cfqq->fifo);
2852
30d7b944 2853 cfqq->ref = 0;
d5036d77
JA
2854 cfqq->cfqd = cfqd;
2855
2856 cfq_mark_cfqq_prio_changed(cfqq);
2857
2858 if (is_sync) {
2859 if (!cfq_class_idle(cfqq))
2860 cfq_mark_cfqq_idle_window(cfqq);
2861 cfq_mark_cfqq_sync(cfqq);
2862 }
2863 cfqq->pid = pid;
2864}
2865
24610333
VG
2866#ifdef CONFIG_CFQ_GROUP_IOSCHED
2867static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2868{
2869 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
bca4b914 2870 struct cfq_data *cfqd = cic_to_cfqd(cic);
24610333
VG
2871 unsigned long flags;
2872 struct request_queue *q;
2873
2874 if (unlikely(!cfqd))
2875 return;
2876
2877 q = cfqd->queue;
2878
2879 spin_lock_irqsave(q->queue_lock, flags);
2880
2881 if (sync_cfqq) {
2882 /*
2883 * Drop reference to sync queue. A new sync queue will be
2884 * assigned in new group upon arrival of a fresh request.
2885 */
2886 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2887 cic_set_cfqq(cic, NULL, 1);
2888 cfq_put_queue(sync_cfqq);
2889 }
2890
2891 spin_unlock_irqrestore(q->queue_lock, flags);
2892}
2893
2894static void cfq_ioc_set_cgroup(struct io_context *ioc)
2895{
2896 call_for_each_cic(ioc, changed_cgroup);
2897 ioc->cgroup_changed = 0;
2898}
2899#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2900
22e2c507 2901static struct cfq_queue *
a6151c3a 2902cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2903 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2904{
22e2c507 2905 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2906 struct cfq_io_context *cic;
cdb16e8f 2907 struct cfq_group *cfqg;
22e2c507
JA
2908
2909retry:
cdb16e8f 2910 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2911 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2912 /* cic always exists here */
2913 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2914
6118b70b
JA
2915 /*
2916 * Always try a new alloc if we fell back to the OOM cfqq
2917 * originally, since it should just be a temporary situation.
2918 */
2919 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2920 cfqq = NULL;
22e2c507
JA
2921 if (new_cfqq) {
2922 cfqq = new_cfqq;
2923 new_cfqq = NULL;
2924 } else if (gfp_mask & __GFP_WAIT) {
2925 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2926 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2927 gfp_mask | __GFP_ZERO,
94f6030c 2928 cfqd->queue->node);
22e2c507 2929 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2930 if (new_cfqq)
2931 goto retry;
22e2c507 2932 } else {
94f6030c
CL
2933 cfqq = kmem_cache_alloc_node(cfq_pool,
2934 gfp_mask | __GFP_ZERO,
2935 cfqd->queue->node);
22e2c507
JA
2936 }
2937
6118b70b
JA
2938 if (cfqq) {
2939 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2940 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2941 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2942 cfq_log_cfqq(cfqd, cfqq, "alloced");
2943 } else
2944 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2945 }
2946
2947 if (new_cfqq)
2948 kmem_cache_free(cfq_pool, new_cfqq);
2949
22e2c507
JA
2950 return cfqq;
2951}
2952
c2dea2d1
VT
2953static struct cfq_queue **
2954cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2955{
fe094d98 2956 switch (ioprio_class) {
c2dea2d1
VT
2957 case IOPRIO_CLASS_RT:
2958 return &cfqd->async_cfqq[0][ioprio];
2959 case IOPRIO_CLASS_BE:
2960 return &cfqd->async_cfqq[1][ioprio];
2961 case IOPRIO_CLASS_IDLE:
2962 return &cfqd->async_idle_cfqq;
2963 default:
2964 BUG();
2965 }
2966}
2967
15c31be4 2968static struct cfq_queue *
a6151c3a 2969cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2970 gfp_t gfp_mask)
2971{
fd0928df
JA
2972 const int ioprio = task_ioprio(ioc);
2973 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2974 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2975 struct cfq_queue *cfqq = NULL;
2976
c2dea2d1
VT
2977 if (!is_sync) {
2978 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2979 cfqq = *async_cfqq;
2980 }
2981
6118b70b 2982 if (!cfqq)
fd0928df 2983 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2984
2985 /*
2986 * pin the queue now that it's allocated, scheduler exit will prune it
2987 */
c2dea2d1 2988 if (!is_sync && !(*async_cfqq)) {
30d7b944 2989 cfqq->ref++;
c2dea2d1 2990 *async_cfqq = cfqq;
15c31be4
JA
2991 }
2992
30d7b944 2993 cfqq->ref++;
15c31be4
JA
2994 return cfqq;
2995}
2996
498d3aa2
JA
2997/*
2998 * We drop cfq io contexts lazily, so we may find a dead one.
2999 */
dbecf3ab 3000static void
4ac845a2
JA
3001cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3002 struct cfq_io_context *cic)
dbecf3ab 3003{
4ac845a2
JA
3004 unsigned long flags;
3005
fc46379d 3006 WARN_ON(!list_empty(&cic->queue_list));
bca4b914 3007 BUG_ON(cic->key != cfqd_dead_key(cfqd));
597bc485 3008
4ac845a2
JA
3009 spin_lock_irqsave(&ioc->lock, flags);
3010
4faa3c81 3011 BUG_ON(ioc->ioc_data == cic);
597bc485 3012
80b15c73 3013 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
ffc4e759 3014 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
3015 spin_unlock_irqrestore(&ioc->lock, flags);
3016
3017 cfq_cic_free(cic);
dbecf3ab
OH
3018}
3019
e2d74ac0 3020static struct cfq_io_context *
4ac845a2 3021cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 3022{
e2d74ac0 3023 struct cfq_io_context *cic;
d6de8be7 3024 unsigned long flags;
e2d74ac0 3025
91fac317
VT
3026 if (unlikely(!ioc))
3027 return NULL;
3028
d6de8be7
JA
3029 rcu_read_lock();
3030
597bc485
JA
3031 /*
3032 * we maintain a last-hit cache, to avoid browsing over the tree
3033 */
4ac845a2 3034 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
3035 if (cic && cic->key == cfqd) {
3036 rcu_read_unlock();
597bc485 3037 return cic;
d6de8be7 3038 }
597bc485 3039
4ac845a2 3040 do {
80b15c73 3041 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
4ac845a2
JA
3042 rcu_read_unlock();
3043 if (!cic)
3044 break;
bca4b914 3045 if (unlikely(cic->key != cfqd)) {
4ac845a2 3046 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 3047 rcu_read_lock();
4ac845a2 3048 continue;
dbecf3ab 3049 }
e2d74ac0 3050
d6de8be7 3051 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 3052 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 3053 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
3054 break;
3055 } while (1);
e2d74ac0 3056
4ac845a2 3057 return cic;
e2d74ac0
JA
3058}
3059
4ac845a2
JA
3060/*
3061 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3062 * the process specific cfq io context when entered from the block layer.
3063 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3064 */
febffd61
JA
3065static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3066 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 3067{
0261d688 3068 unsigned long flags;
4ac845a2 3069 int ret;
e2d74ac0 3070
4ac845a2
JA
3071 ret = radix_tree_preload(gfp_mask);
3072 if (!ret) {
3073 cic->ioc = ioc;
3074 cic->key = cfqd;
e2d74ac0 3075
4ac845a2
JA
3076 spin_lock_irqsave(&ioc->lock, flags);
3077 ret = radix_tree_insert(&ioc->radix_root,
80b15c73 3078 cfqd->cic_index, cic);
ffc4e759
JA
3079 if (!ret)
3080 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 3081 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 3082
4ac845a2
JA
3083 radix_tree_preload_end();
3084
3085 if (!ret) {
3086 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3087 list_add(&cic->queue_list, &cfqd->cic_list);
3088 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3089 }
e2d74ac0
JA
3090 }
3091
4ac845a2
JA
3092 if (ret)
3093 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 3094
4ac845a2 3095 return ret;
e2d74ac0
JA
3096}
3097
1da177e4
LT
3098/*
3099 * Setup general io context and cfq io context. There can be several cfq
3100 * io contexts per general io context, if this process is doing io to more
e2d74ac0 3101 * than one device managed by cfq.
1da177e4
LT
3102 */
3103static struct cfq_io_context *
e2d74ac0 3104cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 3105{
22e2c507 3106 struct io_context *ioc = NULL;
1da177e4 3107 struct cfq_io_context *cic;
1da177e4 3108
22e2c507 3109 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 3110
b5deef90 3111 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
3112 if (!ioc)
3113 return NULL;
3114
4ac845a2 3115 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
3116 if (cic)
3117 goto out;
1da177e4 3118
e2d74ac0
JA
3119 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3120 if (cic == NULL)
3121 goto err;
1da177e4 3122
4ac845a2
JA
3123 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3124 goto err_free;
3125
1da177e4 3126out:
fc46379d
JA
3127 smp_read_barrier_depends();
3128 if (unlikely(ioc->ioprio_changed))
3129 cfq_ioc_set_ioprio(ioc);
3130
24610333
VG
3131#ifdef CONFIG_CFQ_GROUP_IOSCHED
3132 if (unlikely(ioc->cgroup_changed))
3133 cfq_ioc_set_cgroup(ioc);
3134#endif
1da177e4 3135 return cic;
4ac845a2
JA
3136err_free:
3137 cfq_cic_free(cic);
1da177e4
LT
3138err:
3139 put_io_context(ioc);
3140 return NULL;
3141}
3142
22e2c507
JA
3143static void
3144cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 3145{
aaf1228d
JA
3146 unsigned long elapsed = jiffies - cic->last_end_request;
3147 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 3148
22e2c507
JA
3149 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3150 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3151 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3152}
1da177e4 3153
206dc69b 3154static void
b2c18e1e 3155cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3156 struct request *rq)
206dc69b 3157{
3dde36dd 3158 sector_t sdist = 0;
41647e7a 3159 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3160 if (cfqq->last_request_pos) {
3161 if (cfqq->last_request_pos < blk_rq_pos(rq))
3162 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3163 else
3164 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3165 }
206dc69b 3166
3dde36dd 3167 cfqq->seek_history <<= 1;
41647e7a
CZ
3168 if (blk_queue_nonrot(cfqd->queue))
3169 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3170 else
3171 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3172}
1da177e4 3173
22e2c507
JA
3174/*
3175 * Disable idle window if the process thinks too long or seeks so much that
3176 * it doesn't matter
3177 */
3178static void
3179cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3180 struct cfq_io_context *cic)
3181{
7b679138 3182 int old_idle, enable_idle;
1be92f2f 3183
0871714e
JA
3184 /*
3185 * Don't idle for async or idle io prio class
3186 */
3187 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3188 return;
3189
c265a7f4 3190 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3191
76280aff
CZ
3192 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3193 cfq_mark_cfqq_deep(cfqq);
3194
749ef9f8
CZ
3195 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3196 enable_idle = 0;
3197 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3198 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3199 enable_idle = 0;
3200 else if (sample_valid(cic->ttime_samples)) {
718eee05 3201 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3202 enable_idle = 0;
3203 else
3204 enable_idle = 1;
1da177e4
LT
3205 }
3206
7b679138
JA
3207 if (old_idle != enable_idle) {
3208 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3209 if (enable_idle)
3210 cfq_mark_cfqq_idle_window(cfqq);
3211 else
3212 cfq_clear_cfqq_idle_window(cfqq);
3213 }
22e2c507 3214}
1da177e4 3215
22e2c507
JA
3216/*
3217 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3218 * no or if we aren't sure, a 1 will cause a preempt.
3219 */
a6151c3a 3220static bool
22e2c507 3221cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3222 struct request *rq)
22e2c507 3223{
6d048f53 3224 struct cfq_queue *cfqq;
22e2c507 3225
6d048f53
JA
3226 cfqq = cfqd->active_queue;
3227 if (!cfqq)
a6151c3a 3228 return false;
22e2c507 3229
6d048f53 3230 if (cfq_class_idle(new_cfqq))
a6151c3a 3231 return false;
22e2c507
JA
3232
3233 if (cfq_class_idle(cfqq))
a6151c3a 3234 return true;
1e3335de 3235
875feb63
DS
3236 /*
3237 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3238 */
3239 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3240 return false;
3241
374f84ac
JA
3242 /*
3243 * if the new request is sync, but the currently running queue is
3244 * not, let the sync request have priority.
3245 */
5e705374 3246 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3247 return true;
1e3335de 3248
8682e1f1
VG
3249 if (new_cfqq->cfqg != cfqq->cfqg)
3250 return false;
3251
3252 if (cfq_slice_used(cfqq))
3253 return true;
3254
3255 /* Allow preemption only if we are idling on sync-noidle tree */
3256 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3257 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3258 new_cfqq->service_tree->count == 2 &&
3259 RB_EMPTY_ROOT(&cfqq->sort_list))
3260 return true;
3261
374f84ac
JA
3262 /*
3263 * So both queues are sync. Let the new request get disk time if
3264 * it's a metadata request and the current queue is doing regular IO.
3265 */
7b6d91da 3266 if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
e6ec4fe2 3267 return true;
22e2c507 3268
3a9a3f6c
DS
3269 /*
3270 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3271 */
3272 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3273 return true;
3a9a3f6c 3274
d2d59e18
SL
3275 /* An idle queue should not be idle now for some reason */
3276 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3277 return true;
3278
1e3335de 3279 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3280 return false;
1e3335de
JA
3281
3282 /*
3283 * if this request is as-good as one we would expect from the
3284 * current cfqq, let it preempt
3285 */
e9ce335d 3286 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3287 return true;
1e3335de 3288
a6151c3a 3289 return false;
22e2c507
JA
3290}
3291
3292/*
3293 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3294 * let it have half of its nominal slice.
3295 */
3296static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3297{
f8ae6e3e
SL
3298 struct cfq_queue *old_cfqq = cfqd->active_queue;
3299
7b679138 3300 cfq_log_cfqq(cfqd, cfqq, "preempt");
e5ff082e 3301 cfq_slice_expired(cfqd, 1);
22e2c507 3302
f8ae6e3e
SL
3303 /*
3304 * workload type is changed, don't save slice, otherwise preempt
3305 * doesn't happen
3306 */
3307 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3308 cfqq->cfqg->saved_workload_slice = 0;
3309
bf572256
JA
3310 /*
3311 * Put the new queue at the front of the of the current list,
3312 * so we know that it will be selected next.
3313 */
3314 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3315
3316 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3317
44f7c160
JA
3318 cfqq->slice_end = 0;
3319 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3320}
3321
22e2c507 3322/*
5e705374 3323 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3324 * something we should do about it
3325 */
3326static void
5e705374
JA
3327cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3328 struct request *rq)
22e2c507 3329{
5e705374 3330 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3331
45333d5a 3332 cfqd->rq_queued++;
7b6d91da 3333 if (rq->cmd_flags & REQ_META)
374f84ac
JA
3334 cfqq->meta_pending++;
3335
9c2c38a1 3336 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3337 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3338 cfq_update_idle_window(cfqd, cfqq, cic);
3339
b2c18e1e 3340 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3341
3342 if (cfqq == cfqd->active_queue) {
3343 /*
b029195d
JA
3344 * Remember that we saw a request from this process, but
3345 * don't start queuing just yet. Otherwise we risk seeing lots
3346 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3347 * and merging. If the request is already larger than a single
3348 * page, let it rip immediately. For that case we assume that
2d870722
JA
3349 * merging is already done. Ditto for a busy system that
3350 * has other work pending, don't risk delaying until the
3351 * idle timer unplug to continue working.
22e2c507 3352 */
d6ceb25e 3353 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3354 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3355 cfqd->busy_queues > 1) {
812df48d 3356 cfq_del_timer(cfqd, cfqq);
554554f6 3357 cfq_clear_cfqq_wait_request(cfqq);
bf791937 3358 __blk_run_queue(cfqd->queue);
a11cdaa7 3359 } else {
e98ef89b 3360 cfq_blkiocg_update_idle_time_stats(
a11cdaa7 3361 &cfqq->cfqg->blkg);
bf791937 3362 cfq_mark_cfqq_must_dispatch(cfqq);
a11cdaa7 3363 }
d6ceb25e 3364 }
5e705374 3365 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3366 /*
3367 * not the active queue - expire current slice if it is
3368 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3369 * has some old slice time left and is of higher priority or
3370 * this new queue is RT and the current one is BE
22e2c507
JA
3371 */
3372 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3373 __blk_run_queue(cfqd->queue);
22e2c507 3374 }
1da177e4
LT
3375}
3376
165125e1 3377static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3378{
b4878f24 3379 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3380 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3381
7b679138 3382 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3383 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3384
30996f40 3385 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3386 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3387 cfq_add_rq_rb(rq);
e98ef89b 3388 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
cdc1184c
DS
3389 &cfqd->serving_group->blkg, rq_data_dir(rq),
3390 rq_is_sync(rq));
5e705374 3391 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3392}
3393
45333d5a
AC
3394/*
3395 * Update hw_tag based on peak queue depth over 50 samples under
3396 * sufficient load.
3397 */
3398static void cfq_update_hw_tag(struct cfq_data *cfqd)
3399{
1a1238a7
SL
3400 struct cfq_queue *cfqq = cfqd->active_queue;
3401
53c583d2
CZ
3402 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3403 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3404
3405 if (cfqd->hw_tag == 1)
3406 return;
45333d5a
AC
3407
3408 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3409 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3410 return;
3411
1a1238a7
SL
3412 /*
3413 * If active queue hasn't enough requests and can idle, cfq might not
3414 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3415 * case
3416 */
3417 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3418 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3419 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3420 return;
3421
45333d5a
AC
3422 if (cfqd->hw_tag_samples++ < 50)
3423 return;
3424
e459dd08 3425 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3426 cfqd->hw_tag = 1;
3427 else
3428 cfqd->hw_tag = 0;
45333d5a
AC
3429}
3430
7667aa06
VG
3431static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3432{
3433 struct cfq_io_context *cic = cfqd->active_cic;
3434
3435 /* If there are other queues in the group, don't wait */
3436 if (cfqq->cfqg->nr_cfqq > 1)
3437 return false;
3438
3439 if (cfq_slice_used(cfqq))
3440 return true;
3441
3442 /* if slice left is less than think time, wait busy */
3443 if (cic && sample_valid(cic->ttime_samples)
3444 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3445 return true;
3446
3447 /*
3448 * If think times is less than a jiffy than ttime_mean=0 and above
3449 * will not be true. It might happen that slice has not expired yet
3450 * but will expire soon (4-5 ns) during select_queue(). To cover the
3451 * case where think time is less than a jiffy, mark the queue wait
3452 * busy if only 1 jiffy is left in the slice.
3453 */
3454 if (cfqq->slice_end - jiffies == 1)
3455 return true;
3456
3457 return false;
3458}
3459
165125e1 3460static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3461{
5e705374 3462 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3463 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3464 const int sync = rq_is_sync(rq);
b4878f24 3465 unsigned long now;
1da177e4 3466
b4878f24 3467 now = jiffies;
33659ebb
CH
3468 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3469 !!(rq->cmd_flags & REQ_NOIDLE));
1da177e4 3470
45333d5a
AC
3471 cfq_update_hw_tag(cfqd);
3472
53c583d2 3473 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3474 WARN_ON(!cfqq->dispatched);
53c583d2 3475 cfqd->rq_in_driver--;
6d048f53 3476 cfqq->dispatched--;
80bdf0c7 3477 (RQ_CFQG(rq))->dispatched--;
e98ef89b
VG
3478 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3479 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3480 rq_data_dir(rq), rq_is_sync(rq));
1da177e4 3481
53c583d2 3482 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3483
365722bb 3484 if (sync) {
5e705374 3485 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3486 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3487 cfqd->last_delayed_sync = now;
365722bb 3488 }
caaa5f9f
JA
3489
3490 /*
3491 * If this is the active queue, check if it needs to be expired,
3492 * or if we want to idle in case it has no pending requests.
3493 */
3494 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3495 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3496
44f7c160
JA
3497 if (cfq_cfqq_slice_new(cfqq)) {
3498 cfq_set_prio_slice(cfqd, cfqq);
3499 cfq_clear_cfqq_slice_new(cfqq);
3500 }
f75edf2d
VG
3501
3502 /*
7667aa06
VG
3503 * Should we wait for next request to come in before we expire
3504 * the queue.
f75edf2d 3505 */
7667aa06 3506 if (cfq_should_wait_busy(cfqd, cfqq)) {
80bdf0c7
VG
3507 unsigned long extend_sl = cfqd->cfq_slice_idle;
3508 if (!cfqd->cfq_slice_idle)
3509 extend_sl = cfqd->cfq_group_idle;
3510 cfqq->slice_end = jiffies + extend_sl;
f75edf2d 3511 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3512 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3513 }
3514
a36e71f9 3515 /*
8e550632
CZ
3516 * Idling is not enabled on:
3517 * - expired queues
3518 * - idle-priority queues
3519 * - async queues
3520 * - queues with still some requests queued
3521 * - when there is a close cooperator
a36e71f9 3522 */
0871714e 3523 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
e5ff082e 3524 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3525 else if (sync && cfqq_empty &&
3526 !cfq_close_cooperator(cfqd, cfqq)) {
749ef9f8 3527 cfq_arm_slice_timer(cfqd);
8e550632 3528 }
caaa5f9f 3529 }
6d048f53 3530
53c583d2 3531 if (!cfqd->rq_in_driver)
23e018a1 3532 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3533}
3534
22e2c507
JA
3535/*
3536 * we temporarily boost lower priority queues if they are holding fs exclusive
3537 * resources. they are boosted to normal prio (CLASS_BE/4)
3538 */
3539static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3540{
22e2c507
JA
3541 if (has_fs_excl()) {
3542 /*
3543 * boost idle prio on transactions that would lock out other
3544 * users of the filesystem
3545 */
3546 if (cfq_class_idle(cfqq))
3547 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3548 if (cfqq->ioprio > IOPRIO_NORM)
3549 cfqq->ioprio = IOPRIO_NORM;
3550 } else {
3551 /*
dddb7451 3552 * unboost the queue (if needed)
22e2c507 3553 */
dddb7451
CZ
3554 cfqq->ioprio_class = cfqq->org_ioprio_class;
3555 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3556 }
22e2c507 3557}
1da177e4 3558
89850f7e 3559static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3560{
1b379d8d 3561 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3562 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3563 return ELV_MQUEUE_MUST;
3b18152c 3564 }
1da177e4 3565
22e2c507 3566 return ELV_MQUEUE_MAY;
22e2c507
JA
3567}
3568
165125e1 3569static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3570{
3571 struct cfq_data *cfqd = q->elevator->elevator_data;
3572 struct task_struct *tsk = current;
91fac317 3573 struct cfq_io_context *cic;
22e2c507
JA
3574 struct cfq_queue *cfqq;
3575
3576 /*
3577 * don't force setup of a queue from here, as a call to may_queue
3578 * does not necessarily imply that a request actually will be queued.
3579 * so just lookup a possibly existing queue, or return 'may queue'
3580 * if that fails
3581 */
4ac845a2 3582 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3583 if (!cic)
3584 return ELV_MQUEUE_MAY;
3585
b0b78f81 3586 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3587 if (cfqq) {
fd0928df 3588 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3589 cfq_prio_boost(cfqq);
3590
89850f7e 3591 return __cfq_may_queue(cfqq);
22e2c507
JA
3592 }
3593
3594 return ELV_MQUEUE_MAY;
1da177e4
LT
3595}
3596
1da177e4
LT
3597/*
3598 * queue lock held here
3599 */
bb37b94c 3600static void cfq_put_request(struct request *rq)
1da177e4 3601{
5e705374 3602 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3603
5e705374 3604 if (cfqq) {
22e2c507 3605 const int rw = rq_data_dir(rq);
1da177e4 3606
22e2c507
JA
3607 BUG_ON(!cfqq->allocated[rw]);
3608 cfqq->allocated[rw]--;
1da177e4 3609
5e705374 3610 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3611
1da177e4 3612 rq->elevator_private = NULL;
5e705374 3613 rq->elevator_private2 = NULL;
1da177e4 3614
7f1dc8a2
VG
3615 /* Put down rq reference on cfqg */
3616 cfq_put_cfqg(RQ_CFQG(rq));
3617 rq->elevator_private3 = NULL;
3618
1da177e4
LT
3619 cfq_put_queue(cfqq);
3620 }
3621}
3622
df5fe3e8
JM
3623static struct cfq_queue *
3624cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3625 struct cfq_queue *cfqq)
3626{
3627 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3628 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3629 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3630 cfq_put_queue(cfqq);
3631 return cic_to_cfqq(cic, 1);
3632}
3633
e6c5bc73
JM
3634/*
3635 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3636 * was the last process referring to said cfqq.
3637 */
3638static struct cfq_queue *
3639split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3640{
3641 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3642 cfqq->pid = current->pid;
3643 cfq_clear_cfqq_coop(cfqq);
ae54abed 3644 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3645 return cfqq;
3646 }
3647
3648 cic_set_cfqq(cic, NULL, 1);
d02a2c07
SL
3649
3650 cfq_put_cooperator(cfqq);
3651
e6c5bc73
JM
3652 cfq_put_queue(cfqq);
3653 return NULL;
3654}
1da177e4 3655/*
22e2c507 3656 * Allocate cfq data structures associated with this request.
1da177e4 3657 */
22e2c507 3658static int
165125e1 3659cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3660{
3661 struct cfq_data *cfqd = q->elevator->elevator_data;
3662 struct cfq_io_context *cic;
3663 const int rw = rq_data_dir(rq);
a6151c3a 3664 const bool is_sync = rq_is_sync(rq);
22e2c507 3665 struct cfq_queue *cfqq;
1da177e4
LT
3666 unsigned long flags;
3667
3668 might_sleep_if(gfp_mask & __GFP_WAIT);
3669
e2d74ac0 3670 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3671
1da177e4
LT
3672 spin_lock_irqsave(q->queue_lock, flags);
3673
22e2c507
JA
3674 if (!cic)
3675 goto queue_fail;
3676
e6c5bc73 3677new_queue:
91fac317 3678 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3679 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3680 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3681 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3682 } else {
e6c5bc73
JM
3683 /*
3684 * If the queue was seeky for too long, break it apart.
3685 */
ae54abed 3686 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3687 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3688 cfqq = split_cfqq(cic, cfqq);
3689 if (!cfqq)
3690 goto new_queue;
3691 }
3692
df5fe3e8
JM
3693 /*
3694 * Check to see if this queue is scheduled to merge with
3695 * another, closely cooperating queue. The merging of
3696 * queues happens here as it must be done in process context.
3697 * The reference on new_cfqq was taken in merge_cfqqs.
3698 */
3699 if (cfqq->new_cfqq)
3700 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3701 }
1da177e4
LT
3702
3703 cfqq->allocated[rw]++;
30d7b944 3704 cfqq->ref++;
5e705374
JA
3705 rq->elevator_private = cic;
3706 rq->elevator_private2 = cfqq;
7f1dc8a2 3707 rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
329a6781
SL
3708
3709 spin_unlock_irqrestore(q->queue_lock, flags);
3710
5e705374 3711 return 0;
1da177e4 3712
22e2c507
JA
3713queue_fail:
3714 if (cic)
3715 put_io_context(cic->ioc);
89850f7e 3716
23e018a1 3717 cfq_schedule_dispatch(cfqd);
1da177e4 3718 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3719 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3720 return 1;
3721}
3722
65f27f38 3723static void cfq_kick_queue(struct work_struct *work)
22e2c507 3724{
65f27f38 3725 struct cfq_data *cfqd =
23e018a1 3726 container_of(work, struct cfq_data, unplug_work);
165125e1 3727 struct request_queue *q = cfqd->queue;
22e2c507 3728
40bb54d1 3729 spin_lock_irq(q->queue_lock);
a7f55792 3730 __blk_run_queue(cfqd->queue);
40bb54d1 3731 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3732}
3733
3734/*
3735 * Timer running if the active_queue is currently idling inside its time slice
3736 */
3737static void cfq_idle_slice_timer(unsigned long data)
3738{
3739 struct cfq_data *cfqd = (struct cfq_data *) data;
3740 struct cfq_queue *cfqq;
3741 unsigned long flags;
3c6bd2f8 3742 int timed_out = 1;
22e2c507 3743
7b679138
JA
3744 cfq_log(cfqd, "idle timer fired");
3745
22e2c507
JA
3746 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3747
fe094d98
JA
3748 cfqq = cfqd->active_queue;
3749 if (cfqq) {
3c6bd2f8
JA
3750 timed_out = 0;
3751
b029195d
JA
3752 /*
3753 * We saw a request before the queue expired, let it through
3754 */
3755 if (cfq_cfqq_must_dispatch(cfqq))
3756 goto out_kick;
3757
22e2c507
JA
3758 /*
3759 * expired
3760 */
44f7c160 3761 if (cfq_slice_used(cfqq))
22e2c507
JA
3762 goto expire;
3763
3764 /*
3765 * only expire and reinvoke request handler, if there are
3766 * other queues with pending requests
3767 */
caaa5f9f 3768 if (!cfqd->busy_queues)
22e2c507 3769 goto out_cont;
22e2c507
JA
3770
3771 /*
3772 * not expired and it has a request pending, let it dispatch
3773 */
75e50984 3774 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3775 goto out_kick;
76280aff
CZ
3776
3777 /*
3778 * Queue depth flag is reset only when the idle didn't succeed
3779 */
3780 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3781 }
3782expire:
e5ff082e 3783 cfq_slice_expired(cfqd, timed_out);
22e2c507 3784out_kick:
23e018a1 3785 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3786out_cont:
3787 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3788}
3789
3b18152c
JA
3790static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3791{
3792 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3793 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3794}
22e2c507 3795
c2dea2d1
VT
3796static void cfq_put_async_queues(struct cfq_data *cfqd)
3797{
3798 int i;
3799
3800 for (i = 0; i < IOPRIO_BE_NR; i++) {
3801 if (cfqd->async_cfqq[0][i])
3802 cfq_put_queue(cfqd->async_cfqq[0][i]);
3803 if (cfqd->async_cfqq[1][i])
3804 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3805 }
2389d1ef
ON
3806
3807 if (cfqd->async_idle_cfqq)
3808 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3809}
3810
bb729bc9
JA
3811static void cfq_cfqd_free(struct rcu_head *head)
3812{
3813 kfree(container_of(head, struct cfq_data, rcu));
3814}
3815
b374d18a 3816static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3817{
22e2c507 3818 struct cfq_data *cfqd = e->elevator_data;
165125e1 3819 struct request_queue *q = cfqd->queue;
22e2c507 3820
3b18152c 3821 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3822
d9ff4187 3823 spin_lock_irq(q->queue_lock);
e2d74ac0 3824
d9ff4187 3825 if (cfqd->active_queue)
e5ff082e 3826 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3827
3828 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3829 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3830 struct cfq_io_context,
3831 queue_list);
89850f7e
JA
3832
3833 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3834 }
e2d74ac0 3835
c2dea2d1 3836 cfq_put_async_queues(cfqd);
b1c35769 3837 cfq_release_cfq_groups(cfqd);
e98ef89b 3838 cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3839
d9ff4187 3840 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3841
3842 cfq_shutdown_timer_wq(cfqd);
3843
80b15c73
KK
3844 spin_lock(&cic_index_lock);
3845 ida_remove(&cic_index_ida, cfqd->cic_index);
3846 spin_unlock(&cic_index_lock);
3847
b1c35769 3848 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
bb729bc9 3849 call_rcu(&cfqd->rcu, cfq_cfqd_free);
1da177e4
LT
3850}
3851
80b15c73
KK
3852static int cfq_alloc_cic_index(void)
3853{
3854 int index, error;
3855
3856 do {
3857 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3858 return -ENOMEM;
3859
3860 spin_lock(&cic_index_lock);
3861 error = ida_get_new(&cic_index_ida, &index);
3862 spin_unlock(&cic_index_lock);
3863 if (error && error != -EAGAIN)
3864 return error;
3865 } while (error);
3866
3867 return index;
3868}
3869
165125e1 3870static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3871{
3872 struct cfq_data *cfqd;
718eee05 3873 int i, j;
cdb16e8f 3874 struct cfq_group *cfqg;
615f0259 3875 struct cfq_rb_root *st;
1da177e4 3876
80b15c73
KK
3877 i = cfq_alloc_cic_index();
3878 if (i < 0)
3879 return NULL;
3880
94f6030c 3881 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3882 if (!cfqd)
bc1c1169 3883 return NULL;
1da177e4 3884
30d7b944
SL
3885 /*
3886 * Don't need take queue_lock in the routine, since we are
3887 * initializing the ioscheduler, and nobody is using cfqd
3888 */
80b15c73
KK
3889 cfqd->cic_index = i;
3890
1fa8f6d6
VG
3891 /* Init root service tree */
3892 cfqd->grp_service_tree = CFQ_RB_ROOT;
3893
cdb16e8f
VG
3894 /* Init root group */
3895 cfqg = &cfqd->root_group;
615f0259
VG
3896 for_each_cfqg_st(cfqg, i, j, st)
3897 *st = CFQ_RB_ROOT;
1fa8f6d6 3898 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3899
25bc6b07
VG
3900 /* Give preference to root group over other groups */
3901 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3902
25fb5169 3903#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3904 /*
3905 * Take a reference to root group which we never drop. This is just
3906 * to make sure that cfq_put_cfqg() does not try to kfree root group
3907 */
329a6781 3908 cfqg->ref = 1;
dcf097b2 3909 rcu_read_lock();
e98ef89b
VG
3910 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3911 (void *)cfqd, 0);
dcf097b2 3912 rcu_read_unlock();
25fb5169 3913#endif
26a2ac00
JA
3914 /*
3915 * Not strictly needed (since RB_ROOT just clears the node and we
3916 * zeroed cfqd on alloc), but better be safe in case someone decides
3917 * to add magic to the rb code
3918 */
3919 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3920 cfqd->prio_trees[i] = RB_ROOT;
3921
6118b70b
JA
3922 /*
3923 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3924 * Grab a permanent reference to it, so that the normal code flow
3925 * will not attempt to free it.
3926 */
3927 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
30d7b944 3928 cfqd->oom_cfqq.ref++;
cdb16e8f 3929 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3930
d9ff4187 3931 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3932
1da177e4 3933 cfqd->queue = q;
1da177e4 3934
22e2c507
JA
3935 init_timer(&cfqd->idle_slice_timer);
3936 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3937 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3938
23e018a1 3939 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3940
1da177e4 3941 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3942 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3943 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3944 cfqd->cfq_back_max = cfq_back_max;
3945 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3946 cfqd->cfq_slice[0] = cfq_slice_async;
3947 cfqd->cfq_slice[1] = cfq_slice_sync;
3948 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3949 cfqd->cfq_slice_idle = cfq_slice_idle;
80bdf0c7 3950 cfqd->cfq_group_idle = cfq_group_idle;
963b72fc 3951 cfqd->cfq_latency = 1;
ae30c286 3952 cfqd->cfq_group_isolation = 0;
e459dd08 3953 cfqd->hw_tag = -1;
edc71131
CZ
3954 /*
3955 * we optimistically start assuming sync ops weren't delayed in last
3956 * second, in order to have larger depth for async operations.
3957 */
573412b2 3958 cfqd->last_delayed_sync = jiffies - HZ;
bc1c1169 3959 return cfqd;
1da177e4
LT
3960}
3961
3962static void cfq_slab_kill(void)
3963{
d6de8be7
JA
3964 /*
3965 * Caller already ensured that pending RCU callbacks are completed,
3966 * so we should have no busy allocations at this point.
3967 */
1da177e4
LT
3968 if (cfq_pool)
3969 kmem_cache_destroy(cfq_pool);
3970 if (cfq_ioc_pool)
3971 kmem_cache_destroy(cfq_ioc_pool);
3972}
3973
3974static int __init cfq_slab_setup(void)
3975{
0a31bd5f 3976 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3977 if (!cfq_pool)
3978 goto fail;
3979
34e6bbf2 3980 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3981 if (!cfq_ioc_pool)
3982 goto fail;
3983
3984 return 0;
3985fail:
3986 cfq_slab_kill();
3987 return -ENOMEM;
3988}
3989
1da177e4
LT
3990/*
3991 * sysfs parts below -->
3992 */
1da177e4
LT
3993static ssize_t
3994cfq_var_show(unsigned int var, char *page)
3995{
3996 return sprintf(page, "%d\n", var);
3997}
3998
3999static ssize_t
4000cfq_var_store(unsigned int *var, const char *page, size_t count)
4001{
4002 char *p = (char *) page;
4003
4004 *var = simple_strtoul(p, &p, 10);
4005 return count;
4006}
4007
1da177e4 4008#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 4009static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 4010{ \
3d1ab40f 4011 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4012 unsigned int __data = __VAR; \
4013 if (__CONV) \
4014 __data = jiffies_to_msecs(__data); \
4015 return cfq_var_show(__data, (page)); \
4016}
4017SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
4018SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4019SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
4020SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4021SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507 4022SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
80bdf0c7 4023SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
22e2c507
JA
4024SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4025SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4026SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 4027SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
ae30c286 4028SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
1da177e4
LT
4029#undef SHOW_FUNCTION
4030
4031#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 4032static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 4033{ \
3d1ab40f 4034 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4035 unsigned int __data; \
4036 int ret = cfq_var_store(&__data, (page), count); \
4037 if (__data < (MIN)) \
4038 __data = (MIN); \
4039 else if (__data > (MAX)) \
4040 __data = (MAX); \
4041 if (__CONV) \
4042 *(__PTR) = msecs_to_jiffies(__data); \
4043 else \
4044 *(__PTR) = __data; \
4045 return ret; \
4046}
4047STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
4048STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4049 UINT_MAX, 1);
4050STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4051 UINT_MAX, 1);
e572ec7e 4052STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
4053STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4054 UINT_MAX, 0);
22e2c507 4055STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
80bdf0c7 4056STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
22e2c507
JA
4057STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4058STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
4059STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4060 UINT_MAX, 0);
963b72fc 4061STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
ae30c286 4062STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
1da177e4
LT
4063#undef STORE_FUNCTION
4064
e572ec7e
AV
4065#define CFQ_ATTR(name) \
4066 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4067
4068static struct elv_fs_entry cfq_attrs[] = {
4069 CFQ_ATTR(quantum),
e572ec7e
AV
4070 CFQ_ATTR(fifo_expire_sync),
4071 CFQ_ATTR(fifo_expire_async),
4072 CFQ_ATTR(back_seek_max),
4073 CFQ_ATTR(back_seek_penalty),
4074 CFQ_ATTR(slice_sync),
4075 CFQ_ATTR(slice_async),
4076 CFQ_ATTR(slice_async_rq),
4077 CFQ_ATTR(slice_idle),
80bdf0c7 4078 CFQ_ATTR(group_idle),
963b72fc 4079 CFQ_ATTR(low_latency),
ae30c286 4080 CFQ_ATTR(group_isolation),
e572ec7e 4081 __ATTR_NULL
1da177e4
LT
4082};
4083
1da177e4
LT
4084static struct elevator_type iosched_cfq = {
4085 .ops = {
4086 .elevator_merge_fn = cfq_merge,
4087 .elevator_merged_fn = cfq_merged_request,
4088 .elevator_merge_req_fn = cfq_merged_requests,
da775265 4089 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 4090 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 4091 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 4092 .elevator_add_req_fn = cfq_insert_request,
b4878f24 4093 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
4094 .elevator_deactivate_req_fn = cfq_deactivate_request,
4095 .elevator_queue_empty_fn = cfq_queue_empty,
4096 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
4097 .elevator_former_req_fn = elv_rb_former_request,
4098 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
4099 .elevator_set_req_fn = cfq_set_request,
4100 .elevator_put_req_fn = cfq_put_request,
4101 .elevator_may_queue_fn = cfq_may_queue,
4102 .elevator_init_fn = cfq_init_queue,
4103 .elevator_exit_fn = cfq_exit_queue,
fc46379d 4104 .trim = cfq_free_io_context,
1da177e4 4105 },
3d1ab40f 4106 .elevator_attrs = cfq_attrs,
1da177e4
LT
4107 .elevator_name = "cfq",
4108 .elevator_owner = THIS_MODULE,
4109};
4110
3e252066
VG
4111#ifdef CONFIG_CFQ_GROUP_IOSCHED
4112static struct blkio_policy_type blkio_policy_cfq = {
4113 .ops = {
4114 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4115 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4116 },
062a644d 4117 .plid = BLKIO_POLICY_PROP,
3e252066
VG
4118};
4119#else
4120static struct blkio_policy_type blkio_policy_cfq;
4121#endif
4122
1da177e4
LT
4123static int __init cfq_init(void)
4124{
22e2c507
JA
4125 /*
4126 * could be 0 on HZ < 1000 setups
4127 */
4128 if (!cfq_slice_async)
4129 cfq_slice_async = 1;
4130 if (!cfq_slice_idle)
4131 cfq_slice_idle = 1;
4132
80bdf0c7
VG
4133#ifdef CONFIG_CFQ_GROUP_IOSCHED
4134 if (!cfq_group_idle)
4135 cfq_group_idle = 1;
4136#else
4137 cfq_group_idle = 0;
4138#endif
1da177e4
LT
4139 if (cfq_slab_setup())
4140 return -ENOMEM;
4141
2fdd82bd 4142 elv_register(&iosched_cfq);
3e252066 4143 blkio_policy_register(&blkio_policy_cfq);
1da177e4 4144
2fdd82bd 4145 return 0;
1da177e4
LT
4146}
4147
4148static void __exit cfq_exit(void)
4149{
6e9a4738 4150 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 4151 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 4152 elv_unregister(&iosched_cfq);
334e94de 4153 ioc_gone = &all_gone;
fba82272
OH
4154 /* ioc_gone's update must be visible before reading ioc_count */
4155 smp_wmb();
d6de8be7
JA
4156
4157 /*
4158 * this also protects us from entering cfq_slab_kill() with
4159 * pending RCU callbacks
4160 */
245b2e70 4161 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 4162 wait_for_completion(&all_gone);
80b15c73 4163 ida_destroy(&cic_index_ida);
83521d3e 4164 cfq_slab_kill();
1da177e4
LT
4165}
4166
4167module_init(cfq_init);
4168module_exit(cfq_exit);
4169
4170MODULE_AUTHOR("Jens Axboe");
4171MODULE_LICENSE("GPL");
4172MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");